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Genealogical inferences based on comparison of modern and ancient DNA 

ABSTRACT 

The study of genetic variation within and between populations can help us understand 

aspects of human demographic history over the past thousands of years, i.e. well beyond the time-

scales of historical evidence. Demographic and evolutionary dynamics influence the distribution of 

the observed genetic diversity, and so one can retrospectively reconstruct episodes in population 

history on the basis of genetic diversity data. One way to do this is to make extensive use of 

simulations, considering evolution as a stochastic process in which the genetic data are modeled 

as random variables. The simulation of genetic data under various scenarios allows one to explore 

how demographic and evolutionary parameters can affect genetic variation, also making it 

possible to approximately estimate the historical parameters that produced the observed data. To 

this aim, many statistical approaches have been developed, but, when models are complex or 

datasets are large, they often become computationally expensive, or analytically intractable. 

Approximate Bayesian Computation (ABC) methods overcome these problems allowing, for the 

first time, to analyze large datasets and to interpret them in the light of realistic (i.e. complex) 

models, thus enabling the probabilistic comparison among different models of evolution, the 

simultaneous estimation of demographic and evolutionary parameters, and the quantitative 

evaluation of the results credibility. In this context, we analyzed datasets of modern and ancient 

genetic variation in order to understand the demographic histories of these populations, to 

highlight traces of past genetic variation in modern populations, and to evaluate whether, and to 

what extent, ancient and modern populations that have lived in the same place in different period 

of times can be considered genealogically related. We tried to address three anthropological 

questions, namely the interaction of anatomically modern humans with archaic forms (i.e. 

Neandertals in Europe), evidence for genealogical continuity in Sardinia since the Bronze-age, and 

the origins and evolution of the Etruscan population. Within the ABC framework, in each of the 

three studies, we explicitly compared several models, differing for the demographic processes and 

the genealogical relationship among population, to identify the model best accounting for the 

observed variation, and to estimate its demographic and evolutionary parameters. This way, it has 

been possible to shed light on past population history and to address questions about the nature 

and the extent of genealogical links between modern and ancient populations, clarifying aspects 

of human history that have long been controversial in population genetics and evolutionary 

biology. 



Genealogical inferences based on comparison of modern and ancient DNA 
 

Inferenze genealogiche basate sul confronto di DNA antico e moderno 

ABSTRACT 

Lo studio della variabilità genetica delle popolazioni può aiutarci a comprendere aspetti 

della storia demografica umana ai quali non possiamo risalire tramite evidenze storiche, o perché 

si tratta di eventi troppo antichi, o perché non esistono documentazioni attendibili. Le dinamiche 

evolutive e demografiche delle popolazioni influenzano la distribuzione della diversità genetica 

osservata; è quindi potenzialmente possibile, partendo dall’analisi di questa variabilità, ricostruire 

a posteriori quali siano stati i processi demografici ed evolutivi che possono averla generata. Un 

approccio ampiamente utilizzato in questo contesto riguarda l’uso di simulazioni: considerando 

l’evoluzione come un processo stocastico ed utilizzando un modello probabilistico adeguato, 

vengono simulati dati di variabilità genetica secondo diversi modelli di evoluzione delle 

popolazioni in esame, permettendo di testare in modo esplicito come diversi parametri evolutivi e 

demografici possano influenzare i livelli di variabilità genetica interna e tra le popolazioni. 

Confrontando la variabilità genetica che si ottiene dalle simulazioni con la variabilità genetica 

osservata, è possibile scegliere fra tanti quale modello evolutivo possa aver generato i livelli di 

variabilità osservati, e quali siano i cambiamenti demografici che hanno influenzato in misura 

maggiore tale variabilità. Negli ultimi anni sono stati sviluppati diversi approcci statistici allo scopo 

di stimare, tramite le modalità appena descritte, i parametri storici delle popolazioni. Purtroppo 

però, quando i dati da analizzare sono molti, o i modelli da simulare sono complessi e ricchi di 

parametri, il costo computazionale diventa molto elevato, tale da rendere l’analisi impraticabile. 

Recentemente, lo sviluppo dei metodi bayesiani approssimati (ABC) ha permesso di superare 

questo limite, rendendo possibile l’analisi di dataset sempre più ricchi, in linea con il recente 

sviluppo delle tecniche di sequenziamento su larga scala (Next Generation Sequencing), e di 

interpretarli alla luce di modelli sempre più complessi, e quindi realistici. Questa metodologia ha 

reso possibile molti confronti probabilistici tra diversi modelli di evoluzione, consentendo di 

stimare i valori dei parametri che meglio descrivono i dati.  Abbiamo applicato questa metodologia 

a tre dataset di popolazioni antiche e moderne, allo scopo di determinare quale possa essere stata 

la loro storia demografica ed evolutiva, e al fine di evidenziare eventuali relazioni genealogiche tra 

popolazioni che hanno abitato le stesse località geografiche in diversi periodi temporali. Il primo 

studio riguarda la storia evolutiva dell’uomo moderno e la sua interazione con forme umane 

arcaiche preesistenti (nello specifico il Neandertal in Europa), il secondo è uno studio delle 

relazioni genealogiche fra popolazioni sarde antiche (le popolazioni nuragiche dell’età del Bronzo) 
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e moderne, e il terzo riguarda la storia della popolazione etrusca, le sue origini e le sue relazioni 

genetiche con i toscani moderni. Per ognuno di questi studi è stato scelto un modello genealogico 

più verosimile e si sono stimati i parametri demografici che si adattano meglio alla variabilità 

osservata. Questo ha permesso di far luce su aspetti della nostra specie prima sconosciuti, sia in 

termini evolutivi, sia demografici. Inoltre, è stato possibile testare per la prima volta in modo 

esplicito la continuità genealogica fra popolazioni antiche e moderne provenienti dalla stessa area 

geografica, evidenziando che anche popolazioni molto vicine geograficamente, possono avere una 

storia genealogica molto diversa. 
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1. Introduction 

The goal of population genetics is to understand the forces that produce and 

maintain genetic variation within species. These forces include mutation, recombination, 

gene flow (or its absence), natural selection, and the random transmission of genetic 

material from parents to offspring. 

Even since its onset, theoretical population genetics has had strong statistical bases 

(Provine 1971). From a methodological perspective, the focus of this field was to develop 

models describing the behavior of random processes to depict the evolution of allele 

frequencies over time. A model can be viewed as a relatively simple mathematical 

formulation of the biological process producing the observed data which can incorporate 

parameters of interest in population genetics. Traditionally, these models (which are 

stochastic, since there is no predetermined outcome) have allowed researchers to predict 

how patterns of genetic variation would be affected by forces such as genetic drift, 

mutation, migration and selection (see Introduction, section 1.1).  

One of the most useful stochastic models in population genetics is the coalescent 

(Kingman 1982; Wakeley 2009). In brief, the coalescent provides a theoretical description of 

the ancestral relationships existing in a sample of DNA sequences taken from a population, 

depending on the specific combination of demographic and evolutionary features of the 

population. A detailed description of this model is reported in Introduction, section 1.2. In 

simple cases, the intensity of selection, or the combination of population size (determining 

the impact of drift) and migration rates can be approximately inferred from the data. 

However, as a rule, this exercise turns out to be exceedingly complicated and to require 

untestable assumptions. The modern approach to understand the evolutionary and 

demographic forces behind the patterns of population genetic variation is then to make 

intensive use of simulation methods. Simulating genetic data according to the coalescent 

theory allows one to explore how the data can vary changing population genetics 

parameters such as the effective population size or the mutation rate. A limitation of the 

coalescent is that it can become highly computationally intensive; however, with the rapid 
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growth in computational power, the evolutionary models that can be simulated have grown 

more complex, and have therefore become more realistic.  

There are two different, but related, use of the word “simulation” in this context. The 

first indicates the simulation of the data under a specific demographic model, thus 

producing datasets that are representative of the evolutionary process and that differ from 

each other just by chance. For example, this approach might be used to examine the degree 

of variability that may be found in the data that have been produced under a proposed 

model of evolution (Slatkin & Hudson 1991), or to test if a specific model of evolution (with a 

specific parameters combination) can faithfully reproduce the observed variation (Belle et al. 

2009; Guimaraes et al. 2009). The second sense in which we use simulations refers to the 

use of simulation-based methods of statistical inference exploiting the coalescent to 

estimate parameters, from a particular kind of process that is described by the model. Here 

we start with an observed data set and we use simulations of data under a variety of 

parameter values, in an attempt to infer the probability of the data under a particular model, 

as a function of its parameters. The aim here is to find the combination of parameters value 

that maximize this probability, i.e. the combination of parameters able to generate datasets 

close to those observed. To this aim, Bayesian inference as applied to population genetics, 

represents a powerful tool for addressing a number of longstanding questions in 

evolutionary biology (see Introduction, section 1.3). Combining the intuition that is provided 

by complex stochastic models with the use of simulations methods for inference it is 

possible to address and clarify important aspects of past population history. 
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1.1 Processes shaping genetic variation 

As just said, one of the aims of population genetics is to understand the forces that 

shape patterns of genetic variation. This variation has been shaped by various demographic 

and evolutionary factors, and hence contains information on past population changes and 

on the history of human adaptation to changing environment. Thus, studying how genetic 

variation is distributed within and between populations around the world can provide insight 

into (i) the place and the time of origin of our species, (ii) the degree of admixture with 

archaic Homo forms, (iii) migration of modern humans around the world, and about (iv) 

genealogical links between modern and ancient populations after these migratory events. 

Furthermore, this ability to infer past population dynamics has substantially improved with 

the development of methods for the typing of DNA from ancient specimens. 

The genetic variation might be analyzed through two main classes of different 

approaches. The first one involves a description of the distribution of observed diversity, 

which allows the evaluation of the degree of variation within populations, the comparison of 

genetic diversity and its apportionment between populations. To this aim, relevant statistics 

should be calculated from the data, quantifying both the degree of internal variation 

(number of haplotypes, gene diversity, number of polymorphic sites), and the genetic 

distance between populations (Fst and allele sharing, see Methods, section 3.1). The second 

approach involves testing of hypotheses about how modern genetic diversity evolved, and 

this requires to develop explicit or implicit models of the evolutionary processes, allowing to 

make predictions about origins, movements and demography of populations, including their 

consequences at the DNA level (see Methods, section 3.2). Usually, studies of human genetic 

diversity are limited to modern populations, which severely limit our ability to investigate 

past processes. Prehistorical and historical processes, in this case, can only be inferred from 

modern diversity. However, for some years now, it has been possible to also include in the 

analysis samples coming from ancient specimens (ancient DNA, aDNA, see Introduction, 

section 1.4). The genetic information they yield is mainly from a single marker, the 

mitochondrial DNA (mtDNA), (Caramelli et al. 2008; Green et al. 2008), but with the 

development of the techniques of high throughput sequencing, it is now possible to obtain 

data on nuclear diversity as well (Green et al. 2006), and even sequencing entire ancient 
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genomes (Green et al. 2010; Reich et al. 2010). Considering the ancient genetic data allows 

one not only to increase the power in estimating the historical demographic processes, but 

also to test hypotheses about the genealogical links between modern and ancient 

populations living in the same place at different periods of time. 

It is worth noting that there is not a single and simple way to analyze the data and to 

answer to complex questions of population genetics. A combination of several analytical 

approaches, starting from a description of the variation observed in the data, up to the use 

of inferential methods to estimate evolutionary and demographic parameters, might help to 

answer the question: “How did a particular pattern of genetic diversity arise?” 

1.1.1 Hardy-Weinberg equilibrium 

The first challenge of population genetics was to explain how allele frequencies in 

one generation could be used to calculate genotype proportions in the next generation of an 

infinitely large, randomly mating, population. If we consider a diploid organism, such as 

humans, with two allele A and a, with frequency p and q respectively, three different 

genotypes are possible: AA, Aa and aa. If we know the p and q values in an idealized 

population, we can predict the proportion of genotypes in the succeeding generation by 

combining gametes (containing single alleles) at random. This is known as the Hardy-

Weinberg principle (Hardy 1908). The proportion of each genotype in the next generation is: 

AA = p2 

Aa = 2pq 

aa = q2 

If the genotype proportion in the succeeding generation are calculated in this 

manner, and any variation is found from the parental generation, the population is said to 

be at Hardy-Weinberg equilibrium. To be in Hardy-Weinberg equilibrium, the idealized 

population must have some additional properties other than infinite population size, such 

as no mutation, no migration and no selection; in other words, any factor that might change 

allele frequencies has to be absent. If the calculated genotype proportions are not in Hardy-
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Weinberg equilibrium, we might conclude that evolution is occurring, and that one or more 

of the above factors are acting on the population shaping the observed variation. 

1.1.2 Genetic Drift 

No population is infinitely large, as assumed by the Hardy-Weinberg theorem, 

because each generation represents a finite sample of the previous one. This stochastic 

process of sampling from one generation to another determines a random variation in allele 

frequencies over time and is called random genetic drift (Wright 1931). Genetic drift may 

cause allelic variants to disappear completely or to be fixed (reaching frequency of 1), and 

therefore reduces the population genetic variation. In 1931, Wright demonstrated the 

extent of genetic drift in an idealized population (i.e. random mating, constant size, with 

nonoverlapping generations) introducing the concept of effective population size (Ne). The 

effective population size is the size of an idealized population that experiences the same 

amount of genetic drift of the population under study. It is not easy to relate this effective 

population size (Ne) to the census population size (N), but substantially the Ne is almost 

always smaller than the actual population size N. This concept is fundamental since it was 

demonstrated that the magnitude of the effects of genetic drift is correlated with the 

effective size of the population: the smaller the effective population size, the greater the 

drift effects.  

The concept of effective population size allows one to calculate the probability and 

the rate of fixation for a new allele in a population, in the absence of mutation and selection. 

Fixation is a rare event, and this probability in the absence of selection is equal to the 

frequency of the new allele in the population, that is 1 2ܰൗ . From this equation it is clear that 

the smaller is the population, the greater chance a new mutant has of becoming fixed. 

Moreover, from the effective population size it is also possible to calculate the expected 

time (in generations) since the fixation of a new allele (i.e. equal to 4N generations). This 

equation demonstrates that a new allele in a smaller population will not only have a higher 

probability of becoming fixed, but it will also be fixed more rapidly than it would in a larger 

population.  
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The extant variation at neutral loci depends on past effective population sizes. In 

particular, the long-term effective population size has been shown to be approximately 

equal to the harmonic mean of the population sizes over time (Wright 1938; Crow & Kimura 

1970), and this means that this measure is highly affected by phases in which the population 

size became smaller. In demographic processes involving a reduced ancestral population 

size, the amount of the present variation is largely determined by this smaller ancestral 

population size and the extent of genetic drift will be greater than expected based on 

current census figures. Two examples of processes reducing the effective population size are 

the bottleneck and the founder effect, largely documented in human populations. The first 

refers to the reduction in size of a single, previously larger, population, and the latter to the 

process of colonization and the genetic separation of a subset of the diversity present within 

the source population, both resulting in a loss of genetic diversity.  

1.1.3 Mutation 

Mutation is the sole process generating new alleles.  It provides the material on 

which evolution can act by means of selection or other forces. In absence of these forces, an 

allele will decrease in frequency as new mutations arise and generate other alleles; by 

knowing the mutation rate for the whole gene, the initial allele frequency (p0), and assuming 

no back mutation and multiple substitutions at the same site, is it possible to calculate the 

frequency of the same allele after t generations as: 

௧ =  × ݁ିఓ௧ 

This is known as mutation pressure. Mutation is a weak force (around 0.2 mutational 

events per million year per nucleotide for the human mitochondrial DNA (Henn et al. 2009) 

and around 0.001 mutational events per million year per nucleotide for a human noncoding 

region of autosomal DNA (Fagundes et al. 2007), hence can have an appreciable impact upon 

genetic diversity only over long time periods. 

As said above, when we consider a gene, or in general a DNA sequence, in which 

every mutation creates a new allele, we discount the possibility of back mutations (T->C; C-

>T), and recurrent mutations (same mutation at the same site in different individuals). This 
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model is known as the infinite alleles model (Kimura & Crow 1964). Another model typically 

used is the infinite sites model (Kimura 1969), which assumes that every mutation occurs at 

a different site in the DNA sequence and therefore, under this model, there is no need to 

consider multiple hits, i.e. multiple mutations at the same site. Considering that the total 

number of sites in each gene is so large and the mutation rate per site is so small, at first 

sight these models seem to be a reasonable approximation of the reality for the evolution of 

DNA sequences.  

If we are interested in aspects of sequence evolution that require us to suppose that 

multiple changes might have occurred at the same site, we need more complex models of 

mutation. For example, these models are useful when long time scales are considered (i.e. 

calculating the distance between two DNA sequences separated long time ago), and not 

accounting for back mutation or multiple hits may result in underestimation of the real 

sequence divergence. In the simplest of these models, the Jukes and Cantor model (JC69; 

Jukes & Cantor 1969), all the substitutions occur at the same rate, meaning that every 

nucleotide in the sequence has the same probability of changing into any other nucleotide. 

Kimura (1980) proposed a model that accounts for transitions (A<->G; T<->C) occurring at 

higher rates than transversion (A,G<->T,C) (K2P), and Hasegawa, Kishino and Yano (1985) 

allow this model to account also for the differences in base frequency (HKY). The most 

complex model of nucleotide substitution is the general time reversible (GTR) model (Tavaré 

1986) that considers six different substitution rates instead of two (i.e. transition and 

transversion rate). Moreover, models have been developed that can accommodate rate 

variation among sites, assuming that the mutation rate may vary along the sequence. When 

the rates vary, some sites (mutational hotspots) may accumulate many changes, while other 

sites (conserved sites) remain unchanged. One can accommodate this variation assuming 

that the rate of substitution for any site is a random variable drawn from a statistical 

distribution. The most commonly used distribution is the gamma, defined by the shape 

parameter α, that is inversely related to the extent of rate variation at sites: if α -> ∞ the 

distribution degenerates into a model of a single rate for all sites; if α<1 the distribution has 

a highly skewed L-shape, meaning that most sites have a very low rates of substitutions, and 

there are some substitution hotspots. 
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1.1.4 Migration 

Migration is the movement of individuals from an occupied area to another, and 

differs from colonization since the latter regards a movement into a previously unoccupied 

territory. Gene flow is the outcome of the process of migration, when a migrant contributes 

to the next generation in the new location, and depends on the reproductive success of the 

migrants in the new area. Estimates of gene flow have, therefore, relied upon indirect 

methods linking measures of population subdivision to gene flow via a model for population 

structure. To describe migration processes, one has to envisage a general population 

subdivided in population units or demes. Alternatively, one can speak of several populations 

connected by gene flow into a large meta-population. From the practical standpoint, the two 

terminologies are equivalent; in what follows I shall use the latter. 

The simplest model of gene flow is the island model, devised by Sewall Wright 

(1931), in which a meta-population is subdivided into islands of equal size N, exchanging 

genes at the same rate m per generation. The assumptions of this model include that all 

islands are equivalent, without substructure other than the division into islands; no selection 

is present; each population has reached an equilibrium between mutation and drift; the 

migrant are a random sample from the source island population; each population persists 

indefinitely. Under these assumptions it was demonstrated that the rate of migrants 

exchanged determines the level of population subdivision (as measured by Wright’s Fst) by 

the equation: 

ݐݏܨ =  1(1 + 4ܰ݉) 

The island model does not take into account the fact that levels of migration are 

generally affected by the geographic distance between populations. A model considering 

some effect of geography is the stepping stone (Kimura & Weiss 1964). This model allows 

the exchange of genes only between adjacent discrete subpopulations. Similarly to the island 

model, the stepping stone assumes an equal rate of migration between populations. 

A further step toward realistic modelization of migrational relationships is 

represented by the possibility to actually incorporate a measure of geographic distance 
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between potential mating partners. Migration can be modeled within a continuous 

population considering that mating choices are limited by distance and that these distances 

are typically less that the overall range of the population. This is the basis for the isolation by 

distance model (Wright 1943). Under this model, genetic similarity between neighborhoods 

is a function of the dispersal distance. These can be viewed either as difference between 

birthplaces of parent and offspring, or marital distance. Several mathematical functions have 

been used to relate the decline in frequency of the dispersal over geographical distance; 

after reaching equilibrium between genetic drift and gene flow, is it possible to predict the 

rate of decline of genetic similarity at increasing geographical distances.  

A more realistic model of migration has been developed in 1991 by Slatkin and Voelm 

(Slatkin & Voelm 1991). They called this model hierarchical island model. The rationale 

behind this model is that the finite or infinite island model would not be appropriate if some 

of the sampled populations share some recent ancestry, if some sampled populations 

contribute to different migrant pools, or if there is a hierarchical population structure. In a 

hierarchical island model the meta-population is assumed to be made up of n 

neighborhoods, each of which contains d demes of effective size N. The model assume that a 

randomly chosen gamete after a migration event has a probability 1-m1-m2 of being 

nonimmigrant, a probability of m1 of being an immigrant from a different randomly chosen 

deme in the same neighborhood and a probability m2 of being an immigrant from a 

randomly chosen deme in a different neighborhood; moreover, m1 is assumed to be greater 

than m2. 

The migration models are mathematically tractable and can be generalized to many 

species. When the populations under study are human populations, we might have detailed 

information about the migratory processes, such as the migration rates, the marital 

distances and the migration distance. All this information can be incorporated in the 

migration model, which can then account for different migration rates and asymmetric 

migration between subpopulations.  
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1.1.5 Selection 

Natural selection, as defined by Charles Darwin and elaborated by Ronald Fisher, is 

the consequence of differential ability of reproduction of genotypes through generations. 

Individuals exhibit differential capacities to survive and reproduce in different environments 

and evolution occurs by natural selection when these differences in reproductive success 

among organisms are correlated with their genetic differences. The individual’s expected 

reproductive success is measured by her/his fitness, ω (0 ≤ ω ≤ 1), and the relative fitness of 

an individual’s genotype is obtained from a comparison of this genotype with all other 

genotype competing for the same resources. Usually this relative fitness is measured by a 

selection coefficient (s) representing the loss in fitness with respect to the fittest genotype in 

the population. Since the relative fitness is equal to 1- s, a selection coefficient of 0.1 

represents a 10% decrease in fitness compared to the fittest genotype, which means a 

relative fitness of 0.9 (90%).  

Natural selection can act in a population only if mutation has generated heritable 

polymorphism among individuals, i.e. only if any difference in fitness can be transmitted 

from one generation to another. That is why the genetic variance is used as a measure of the 

opportunity of selection in a population or species. For the purpose of this paragraph, 

mutation can be mainly classified into two categories: neutral (not having any effect on the 

fitness, usually located in non-coding regions), and non-neutral, having effect on the fitness, 

and which can be broadly categorized as advantageous (that is, adaptive) or deleterious. 

Variants that increase the fitness of an individual in its environment might increase in 

frequency as a result of positive selection, whereas moderately to severely deleterious gene 

variants tend to be eliminated by purifying selection,  force that probably acts on all genes, 

to preserve their function. 

Natural selection affects the shape of the genealogy of alleles, usually summarized in 

evolutionary trees whose parameters can be can be estimated through the coalescent theory 

(see Introduction, section 1.2). Positive selection, which drives an adaptive variant towards 

fixation, lead to an excess of low frequency variants, distorting the genealogy to create a 

star-like pattern (Hudson & Kaplan 1988). The genealogy of an allele under positive selection 
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usually presents long terminal branches connected to a common ancestor by shorter 

branches. This genealogy is expected to have a more recent coalescence than a genealogy of 

neutral alleles, since positive selection accelerates the process of allelic fixation (see Fig 

1.1B). 

When selection acts to remove damaging mutations, it also eliminates 

polymorphisms linked to the deleterious alleles, reducing the overall level of variation. The 

process of elimination of a deleterious mutation and the consequent reduction in variation 

at neutral linked polymorphisms is called background selection. Under the influence of 

background selection, an allele can be rapidly led to fixation, and, as for positive selection, 

this leads to an excess of polymorphisms at low frequencies. The genealogy of an allele that 

is driven to fixation by means of background selection has a more recent coalescent time 

than expected under a neutral model; this because the linked deleterious mutation caused 

the extinction of one lineage (the "negative selected") more quickly than would be predicted 

for neutral variants, hence by a simple genetic drift model (Fig 1.1C). 

Natural selection does not always increase or decrease the frequency of a single 

allele at a locus. Sometimes, selection tends to maintain the polymorphism, preserving two 

or more alleles at a locus in a population. This type of selection is called balancing selection. 

We can found signatures of balancing selection, for example, in case of rare-allele 

advantage, which involves negative frequency-dependent selection and especially when 

there is generalized overdominance. In the first case, the fitness of an allele decreases as it 

become more common; in generalized overdominance, heterozygous individuals have a 

selective advantage, and this leads to an equilibrium in which two or more alleles have 

nonzero frequencies. This latter case is thought to be the mechanism that allows 

maintaining the high levels of allelic variation observed at the MHC locus (Grimsley, Mather 

& Ober 1998). Balancing selection tends to favor intermediate-frequency alleles, resulting in 

an excess of intermediate-frequency variants, and in a higher level of sequence diversity 

compared with neutral loci (Charlesworth, Nordborg & Charlesworth 1997; Schierup, 

Vekemans & Charlesworth 2000). This is reflected in genealogies with short terminal 

branches and longer internal branches, and having an older coalescence time respect to the 

genealogy expected for a neutral locus (Fig 1.1D). 
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Over the past few years, the interest has grown in characterizing the patterns of 

genetic variation in order to highlight signature of natural selection in human populations 

(Sabeti et al. 2006; Hernandez et al. 2011). Even so, it has been shown that most human 

genetic variation is neutral and that polymorphisms are fixed or eliminated in a population 

as a consequence of the genetic drift, reflecting the populations’ historical dynamics 

(Balaresque, Ballereau & Jobling 2007). Demographic processes, like changes in population 

size or migration, are known to affect the entire genome in the same way, whereas natural 

selection affects specific functionally important sites in the genome. However, similar 

patterns of genetic variation can be produced both by events in demographic history or by 

specific selection regimes (for example a rapid expansion in population size or positive 

selection can produce a similar excess of low-frequency variants (Harpending 1994; 

Braverman et al. 1995).  One way to disentangle the confounding effect of population 

history from the effect of selection is a comparison of the pattern of variation at a candidate 

locus with the genome-wide pattern estimated from a set of neutral markers that have been 

typed in the same individual or population (Bamshad et al. 2002). 

 

Fig 1.1. Effects of natural 

selection on gene 

genealogies and allele 

frequencies. Genealogies (A-

D) for a population of 12 

haploid individuals, 

considering alleles from a 

locus A- neutral, B- under 

positive selection, C- affected 

by background selection 

(each circle represents the 

elimination of a deleterious 

mutation), D-under balancing selection. Modified from Bamshad and Wooding (2003). 
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1.2 The Coalescent: population genetic inference using genealogies 

The genetic relationships among a sample of individuals can be described by their 

genealogy. Genealogies are family trees which depict ancestors and descendants of 

individuals. In the same way that we can construct genealogies of individuals, we can 

construct genealogies of genes, considering that transmission of every independent gene is a 

single realization of a stochastic process in which one of two alleles is passed on to the 

offspring. Therefore, for every independent gene, there is a potentially different genealogy. 

Every genealogy has exactly n external branches, one for each gene sampled in an individual. 

Proceeding backwards in time, pairs of branches have a common ancestor and the number 

of lineages is reduced by one. This event is called a coalescence event. In a genealogy there 

are n-1 coalescence events, until the most recent common ancestor (MRCA) is reached of all 

the gene copies in the sample (Fig 1.2). Genealogies contain information about historical 

demography and about the processes that have acted to shape diversity of populations. In 

fact, we can imagine two samples of genes, one from random people coming from a large 

city, and the other from random people from a small town. Intuitively, we can imagine that 

most pairs of people from the small town will have a common ancestor only few generations 

ago, whereas for two people from the big city the common ancestor would be located many 

generations back in the past. Moreover, this way we would realize that the number of 

generations separating the two individuals from the common ancestor also depends on the 

number of people immigrating to and emigrating from the city or the small town; migration 

tends to push backwards the average estimates of the time since common ancestry. Again, if 

we know that what is now a small town had been a metropolis for a long time, we would not 

be so confident that two individual from this sample have a recent common ancestor. These 

examples show that a number of factors determine the time of the common ancestor: the 

size of the population, the migration rate and the changes in population size. These 

examples capture the importance of reconstructing the genealogy of a sample to make 

inferences about historical population processes and demographies. In 1982, John Kingman 

described this process formally in mathematical terms and called it the coalescent (Kingman 

1982). From its development, the coalescent has been the basic stochastic model in the 
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analysis of genetic variation, allowing, via simulation, to explore the effect that changing 

parameters has on the data that might be observed. 

 

 

 

 

 

 

 

 

Fig 1.2. A genealogy of a sample of n individuals. 

 

1.2.1 Kingman’s Coalescent 

In its simplest statement, the coalescent includes a Wright-Fisher population model 

(Fisher 1930; Wright 1931). In this model, a panmictic haploid population has N individuals, 

and its size remains constant over time. Generations are discrete (non-overlapping), so that 

at each generation only the offspring of the preceding generation survives; no selecting 

forces are acting on the population, and all individuals have an equal chance of producing 

offspring. If we sample n individuals from this population (with n larger than 2 but smaller 

than N), the history of this sample comprises n-1 coalescence events (Fig 1.2), each event 

decreasing the number of lineages by one. This takes the sample from the present day when 

there are n lineages through a series of step in which the number of lineages decreases from 

n to n-1, then from n-1 to n-2 and so on, and finally from two to one. This last coalescent 

event is called the time of the most recent common ancestor, and the single lineage 
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remaining after this event represents the most recent common ancestor of the entire 

sample.  At each coalescent event, two of the lineages merge into one common ancestral 

lineage, resulting in a bifurcating tree as shown in Fig 1.2; the time Ti on the figure is the 

time in which exactly i lineages remain. Because of the last assumption of the Wright-Fisher 

population model, individual are equally likely to reproduce, and therefore all lineages must 

be equally likely to coalesce; the probability that two individual will share a common 

ancestor in the preceding generation is  1 ܰൗ  . The probability that a pair of individuals will 

share a common ancestor two generations ago is the probability that they will not share an 

ancestor in the preceding generation (1 −  ଵே), multiplied by the probability that their 

respective parents will share a common ancestor two generations ago 1 ܰൗ .  We can 

generalize this formulation and calculate the probability that any pair of the n individuals will 

have their common ancestor k generations ago: 

(݇ݐ)ܲ = ൬1ܰ൰ (1 − 1ܰ)ିଵ 

In our sample of n individuals there are ݊(݊ − 1) 2ൗ  possible pairs of individuals in the 

present generation that may share a common ancestor in the preceding generation. Each of 

these ݊(݊ − 1) 2ൗ  possible pairs has a 1 ܰൗ  chance of having the same parent, so the 

probability that there will be one common ancestor in the preceding generation is: 

(1ݐ)ܲ =  ݊(݊ − 1)2ܰ  

and the probability that the first MRCA of any of the possible pairs in the sample will 

be at tK (i.e. k generations ago) is: 

(݇ݐ)ܲ = (݊(݊ − 1)2ܰ )(1 −  ݊(݊ − 1)2ܰ )ିଵ 

Kingman (1982) showed that as N goes to infinity, with n much smaller than N, we 

can move from time in discrete generation to continuous time, so that the previous equation 

becomes: 



Genealogical inferences based on comparison of modern and ancient DNA 
 

16 
 

(݇ݐ)ܲ = (݊(݊ − 1)2ܰ ݊)݊)ݔ݁( − 1)2ܰ  ݐ݀(݇ 

, that is the density function of the exponential distribution, usually indicated as:  

(݅ݐ)݂݅ܶ = ቀ2݅ቁ ݁ିቀଶቁ௧  
where i = 2, . . . , n, with time rescaled so that one unit of scaled time corresponds to 

N generations. 

Because they are exponentially distributed, the mean and the variance of the 

coalescence times are: 

ሾܶ݅ሿܧ =  2݅(݅ − 1) 

ሾܶ݅ሿݎܸܽ = ( 2݅(݅ − 1))ଶ 

From these equations it is clear that coalescence times are expected to increase as 

one proceeds backwards in time. Accordingly, the most ancient coalescence time, namely 

the one in which the remaining two lineages coalesce into the MRCA of the entire sample, is 

expected to be the longest. Especially in a large sample, many (mutually independent) 

coalescence events will occur over a very short period of time in the recent history of the 

sample. The fact that every pair of lineages is equally likely to be the pair that coalesces 

means that every possible genealogical tree structure is equally likely. All of the remarkable 

results of the standard coalescent model follow directly from these properties: the random-

bifurcating nature of the coalescent trees and the independent, exponential coalescent 

times. 

1.2.2 Demographic history  

Real populations change in size over time. From the equations above it is clear that 

the effective size of a population correlates with the expected interval between coalescence 

events; changes in population sizes will result in changes to the distributions of these times. 
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Imagine a population that evolves according to the Wright-Fisher model, but with a different 

size at each generation, for example an exponentially growing population.  If we sample a 

set of genes from this population now, hence when it has large population size (N0), we 

expect to find that the time to the first coalescent event will be large. After the first 

coalescent event, some generations in the past, the population will be smaller than N0, and 

the lineages will coalesce at a faster rate, proportional to the sample size at generation t 

(Nt). The effect of this process on the genealogy is to produce a tree with long terminal 

branches and shorter internal branches compared with a constant-size population tree (Fig 

1.3, left panel), reflecting the fact that coalescences are more likely to have taken place 

when the population was small. This genealogy is said to be “star-like”. Similarly, in a 

declining population, the effective population size at present (N0) is small relative to 

population sizes in the past. In this case, the first coalescence events occur rapidly, but, as 

one moves backwards, population sizes increase, and so on average coalescence intervals 

get longer (Fig 1.3, right panel).  

Up to this point, the coalescent process has been described for panmictic 

populations. However, real populations are often spatially structured, and it is obviously 

important to be able to incorporate this in the model. The coalescent can be modified for a 

number of geographical structures, considering for example an island model (see 

Introduction section 1.1.4), in which the population is subdivided in demes with a certain 

rate of migration between them, or a stepping-stone model of migration (see Introduction 

section 1.1.4), where demes are arranged linearly or in a two dimensional grid, and 

migration can only take place between neighboring demes. In these models, the distribution 

of times to ancestry depends on the rate of migration between demes and on the effective 

population size within demes. Since two lineages can coalesce only if belonging to the same 

deme, if demes have small population size and low migration rate we expect that lineages 

within demes will coalesce relatively quickly, leaving a single ancestral lineage in each deme. 

Conversely, these ancestral lineages will take long time to coalesce, since this requires a rare 

migration event to another deme. In case of structured coalescent, the expression for the 

distribution of coalescence times keep in consideration the proportion of migrating 

individuals per generation scaled by the total number of individuals (i.e. M = Nm, with 0 < m 

< 1). 
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Fig 1.3. Genealogies under population 

expansion (left) and decline (right). Two 

examples of genealogies for the same 

number of individuals with different 

demographic histories. On the left, a 

genealogy for an expanding population, 

with long terminal branches and short 

internal branches. On the right, a 

genealogy for a declining population, in 

which lineages coalesce at a faster rate 

in the first part of the genealogy, but 

going backwards in time, coalescence intervals get longer. 

 

1.2.3 The serial coalescent 

One of the recent extensions of the coalescent involves the possibility of considering 

genetic samples obtained at different times. Rodrigo and Felsenstein (1999) developed the 

serial coalescent, to describe the distributions of coalescence intervals on a genealogy of 

samples obtained serially in time. Respect to the classical Kingman algorithm, there are two 

differences that arise as a consequence of sampling sequences over time. The first is the 

possibility to obtain a direct estimate of mutation rate simply by estimating the expected 

number of substitutions that accumulate over each sampling interval, and dividing by the 

amount of time between samples. The second difference is that in the serial coalescent, 

going backward in time, the number of lineages can increase.  This can influence the extent 

to which we are able to make statements about historical population dynamics. In fact, with 

a standard coalescent, the number of lineages decreases steadily as one move back in time, 

reducing the certainty about the lengths of the coalescence intervals and so increasing the 

variance in the estimates of evolutionary parameters. This is particularly important when 

there have been changes in the population dynamics over time. On the contrary, with serial 
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coalescent, our ability to add sequences moving back along the genealogy means that we 

can increase the efficiency in estimating the time-to-ancestry. This in turns means that we 

have more power to detect changes in the dynamics of a population, thus rendering the 

analysis more informative.  
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1.3 The Bayesian revolution in genetics 

Considerable progress in the field of population genetics has been made during the 

past decade, following parallel increases in computer processing speed and in the available 

DNA sequence data. To date, most current methods are based on the coalescent theory, the 

stochastic process describing how population genetic processes can shape the genealogy of 

the data (see Introduction, section 1.2). Coalescent-based inference methods enable 

population genetic parameters to be estimated directly from gene sequence data under a 

variety of scenarios, including variable population size (Drummond et al. 2002; Drummond 

et al. 2005), recombination (Kuhner, Yamato & Felsenstein 2000), and population subdivision 

(Beerli & Felsenstein 2001). The inference of demographic histories require a “demographic 

model”, which is simply a mathematical function used to describe the changes in effective 

population size, and/or migration rate, through time. The model reflects how the data were 

generated, and the behavior of the model is determined by the values of a set of 

parameters. We use the results that have been obtained by simulation of genetic data under 

the tested model to estimate how populations evolved over time, i.e. to estimate population 

parameters defining the model under study. The traditional approach to do this is the 

Maximum Likelihood Estimation (MLE) method. The idea behind maximum likelihood 

parameter estimation is to determine the parameters that maximize the probability 

(likelihood) of the sample data. From a statistical point of view, the method of maximum 

likelihood is considered to be robust and yields estimators with good statistical properties 

(Huelsenbeck 1995). However, although the methodology for MLE is simple, the 

implementation is mathematically intense and often unfeasible. The Bayesian inference is a 

convenient way to deal with these sorts of problems. 

1.3.1 Principles of Bayesian Inference 

In Bayesian and classical statistics we want to make inferences about a fixed, but 

unknown, parameter value; the difference is in how we approach this goal and in the 

interpretation of the results. 

Bayesian statistics allows scientists to incorporate prior knowledge about model 

parameters into their data analysis, and the essence of Bayesian statistics is that there is no 
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logical distinction between the data and the model parameters, since they are both random 

variables. Being a random quantities, they have a joint probability distribution, specified by a 

probabilistic model in which the data are the observed variables and the parameters are 

unobserved variables. This joint distribution is a product of the likelihood and the prior. The 

likelihood measures the probability of the data given a particular set of parameter values, 

and is based on a model of the underlying process; the prior represents the probability 

distribution of the parameter values before observing the data. Together, these two 

functions combine all available information about the parameters. The main goal of Bayesian 

statistics is to manipulate this joint distribution in various ways to make inferences about the 

parameters; this is done by calculating the posterior distribution of the parameters, i.e. the 

conditional distribution of the parameters given the data. The first mathematical 

formulation of the Bayesian approach is attributed to Thomas Bayes, a British 

mathematician and Presbyterian minister. He realized that the probability of a particular 

value p, given some observed data D, can be calculated using the probability function: 

(ܦ|)ܲ = ()ܲ  × (ܦ)ܲ(|ܦ)ܲ  

also known as Bayes’ theorem. The function P(p|D) is the posterior probability 

distribution, that is obtained, as said above, from the product of the prior (P(p)) and the 

likelihood (P(D|p)). P(D) is the marginal likelihood of the data, the unconditional probability 

of obtaining the outcome D taking all passible values of p into account. This value is a 

normalizing constant, and simply ensures that the posterior probability distribution 

integrates to 1. These basic features of Bayesian inference are outlined in Fig 1.4. 
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Fig 1.4. Key features of the Bayesian inference. We imagine that the data D can assume any 

value along the x-axis; similarly, the parameter value p can take any value along the y-axis. 

Bayesian inference considers the joint distribution of the parameters and the data (P(p,D)), 

represented by the contour intervals in the figure. This distribution can be obtained by the 

product of the prior (P(p)) and the likelihood (P(D|p)); the former is an assumed distribution 

of the parameters based on the background knowledge, the latter will arise from a statistical 

model in which it is necessary to consider how the data can be explained by the parameters. 

The arrows in the figure show that marginal distributions can be obtained by integrating the 

joint distribution over the data, recovering the prior, or over the parameter values, 

recovering the marginal likelihood P(D). Conditional distributions are indicated by the dotted 

lines in the figure, and represent taking a “slice” through the joint distribution and rescaling 

the distribution so that the integral of possible values is equal to one. The scaling factor is 

given by the marginal distribution. Hence, any conditional distribution is simply the joint 

distribution divided by a marginal distribution. The key quantity of the Bayesian inference, 

the posterior distribution of the parameter given the data (P(p|D)), is in fact the joint 

distribution divided by the marginal likelihood. Modified from Beaumont and Rannala 

(2004). 
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1.3.2 Application to Phylogenetics and Population Genetics 

The main purpose of phylogenetics is to make inferences about the relationships 

between different taxa estimating tree’s parameters like topology, branch lengths and the 

nucleotide substitution model. By contrast population genetics is mainly interested in 

demographic and evolutionary parameters shaping genetic variation. For both disciplines, 

Bayesian methods represent an attractive development, allowing one to test complex, and 

so realistic, evolutionary hypotheses.  

Bayesian approaches to phylogenetics generated a great deal of enthusiasm. This can 

be attributed to a number of factors, including that these methods enable the relatively 

straightforward implementation of extremely complex evolutionary models, producing both 

a tree estimate and a measure of uncertainty for the groups on the tree (Hughes et al. 1993; 

Fleming et al. 2003). Schematically, in a maximum likelihood (ML) phylogenetic analysis a 

hypothesis is judged by how well it predicts the observed data, and the tree that has the 

highest probability of producing the observed sequences is preferred; in a Bayesian 

phylogenetic analysis the optimal tree is the one maximizing the posterior probability, that is 

proportional to the likelihood multiplied by the prior probability of a phylogeny. The 

posterior probability of a tree can be interpreted as the probability that the tree is correct. 

Prior probabilities of different hypotheses (i.e. different phylogenies) convey the scientist’s 

belief before having seen the data. In the absence of background information, a simple 

solution would be to use prior probability distributions largely uninformative, so that most of 

the differences in the posterior probability of hypotheses are attributable to differences in 

the likelihood. One way of doing this is to specify a uniform (or “flat”) prior, in which every 

possible value of a parameter is given the same a priori probability. Thus, usually all trees are 

considered a priori equally probable, and the likelihood is calculated under one of a number 

of standard Markov models of character evolution. In principle, Bayes’ rule is used to obtain 

the posterior probability distribution, and this probability, although easy to formulate, 

involves a summation over all trees and, for each tree, integration over all possible 

combination of branch lengths and substitution model parameter values. An important 

property of the Bayesian inference is that there is no sharp distinction between different 

types of model parameters. Once the posterior probability distribution is obtained, we can 
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derive any marginal distribution of interest, integrating out (marginalizing) the model 

parameters to which we are not interested. This is the main difference between ML and 

Bayesian approaches. Under the ML approach, a joint estimation of the parameters is 

performed, finding the highest point in the “parameter landscape”. A Bayesian analysis 

measures the volume under a posterior probability surface rather than its maximum height. 

Moreover, often these parameters are nuisance parameters, not of direct interest, but must 

be dealt with because they are found in the likelihood equations. When complex models are 

used, many parameters are involved in the analysis; marginalizing becomes increasing 

helpful as the number of parameters increases relative to the amount of data.  

In addition to phylogenetic inference, a number of Bayesian software packages have 

been developed for coalescent-based estimation of demographic parameters from genetic 

data (Rannala & Yang 2003; Kuhner 2006; Drummond & Rambaut 2007). Much like in 

phylogenetic analysis, they also require a gene tree in the underlying model, although, in this 

setting, the sequences represent different individual from the same species, rather than 

from different species. The development of the coalescent theory has strongly influenced 

many areas of population genetics, forming the basis for likelihood calculation in 

genealogical models (Felsenstein 1992), and allowing the use of Bayesian approaches to 

infer demographic history from genetic data (Atkinson, Gray & Drummond 2009; Gronau et 

al. 2011). In addition, Bayesian methods might be used to assign individuals to their 

population of origin (Pritchard, Stephens & Donnelly 2000; Tishkoff et al. 2009) and to detect 

selection acting on genes (Nielsen & Yang 1998; Foll & Gaggiotti 2008; Riebler, Held & 

Stephan 2008). 

Together with progress in phylogenetic and coalescent-based population genetics, 

Bayesian methods have been the main factor of success in addressing many evolutionary 

questions. There are many practical reasons to use Bayesian inference: if a probability model 

includes many interdependent variables that are constrained to a particular range of values 

(as is often the case of genetics), maximum likelihood inference requires that a constrained 

multidimensional maximization be carried out to find the combined set of parameter values 

that maximize the likelihood function. This often entails a difficult numerical analysis 

problem and may require enormous computational efforts. In addition, some 
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approximations are required to calculate confidence intervals, approximations that are most 

accurate for large sample size. On the other hand, in Bayesian inference, in which the priors 

automatically impose the parameter constraints, inferences about parameter values on the 

basis of the posterior distribution require integration rather than maximization, and no other 

approximations are involved. Moreover, the development of numerical methods to study 

properties of complex probability distributions (i.e. Markov Chain Monte Carlo, see below) 

have greatly facilitated the evaluation of Bayesian posterior probabilities, making the 

calculations tractable even for complicated genetic model. 

1.3.3 Markov Chain Monte Carlo Sampling 

In most cases it is impossible to derive the posterior probability distribution 

analytically. The reason is that most of the posterior probability is likely to be concentrated 

in a small part of a vast parameter space. Even with a massing sampling effort, it is highly 

unlikely that we would obtain enough samples from the interesting region of the posterior 

distribution. Fortunately, a number of numerical methods allow one to approximate the 

posterior probability, the most useful of which is Markov chain Monte Carlo (MCMC) (Gilks, 

Richardson & Spiegelhalter 1996). MCMC has revolutionized Bayesian inference, with 

applications to Bayesian pylogenetic (Brown & Yang 2010) and population genetics (Choi & 

Hey 2011) inference. Markov chains have the property that they converge toward an 

equilibrium state regardless of their starting point, so we just need to set up a Markov chain 

that converges onto the posterior probability distribution. This can be achieved using 

different methods, the most flexible of which is known as the Metropolis algorithm 

(Metropolis 1953). In 1970 Hastings (Hastings 1970) introduced an important extension, and 

so the sampler is referred as Metropolis-Hastings method. The basic idea is to construct a 

Markov chain that has as its state space the parameters of the statistical model, and as 

stationary distribution the posterior distribution of the parameters. The MCMC algorithm 

involves the following steps. The chain starts at an arbitrary point in the parameters 

landscape (Θ). In the next generation of the chain, a new point is considered (Θ*) drawn 

from a proposal distribution f(Θ*|Θ). The ratio of the posterior probabilities at the two 

points is then calculated (= P(Θ*|D)/P(Θ|D)); if the new point has higher posterior 

probability (the point is “uphill”), the chain moves to this state and it becomes the starting 
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point for the next cycle of the chain; otherwise, if the ratio is <1, the new state is accepted 

with a probability that is proportional to the height ratio (Fig 1.5). After this, a new state is 

proposed. It turns out that for a properly constructed and adequately run Markov chain, the 

amount of time it eventually spends sampling a particular parameter value or interval is 

proportional to the posterior probability of that value or interval. 

The chain starts from random parameter values, and it is quite likely that the initial 

likelihoods are low, so low that is not really fair to consider those points as being drawn from 

the posterior distribution to be estimated. This early phase of the run is known as the burn-

in, and the burn-in samples are often discarded because they are heavily influenced by the 

arbitrarily-chosen starting point. After a phase in which the posterior probabilities tend to 

increase, the chain reaches the stationary distribution. At this point the likelihood values 

tend to a plateau, and this can be confirmed from the trace plot, i. e. the plot of the 

likelihood values against the generation of the chain. Looking at the trace plot is important 

to monitor the performance of an MCMC analysis, since we are not only interested in 

reaching stationarity, but also in an adequate coverage of this region (which means that 

there has been convergence of the sample to the stationary distribution). The convergence 

diagnostics helps determine the quality of the sampling from the posterior distribution. 

Three different types of diagnostics are currently in use: examining autocorrelation times 

(effective sample sizes), comparing samples from successive time segments in a single chain, 

and comparing samples from different runs started from different space points. The speed 

with which the chain covers the interesting region of the posterior is known as mixing 

behavior. The better the mixing, the faster the chain will generate adequate sample from the 

posterior. To improve mixing, and thereby convergence, it might be possible to implement a 

Metropolis-coupled version of the algorithm (Geyer 1991) in which multiple chains are run 

simultaneously, with all chains but one having heated stationary distribution. This heating is 

achieved by raising the posterior probability to a power smaller than one. The effect is to 

flattened out the posterior probability surface, and if the surface is flattened, a Markov chain 

will move faster in the space. This is useful also if local maxima, i.e. isolated peaks of 

probability are present in the space, and the chain may get stuck on one of these local 

maxima, thus disregarding the absolute maxima of the posterior distribution. The heated 

chains will not individually return the correct posterior distribution but they will explore the 
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state space more quickly than the non-heated chain (cold chain) will. At regular intervals, 

there is a swap of the states between two randomly picked chains, and if the cold chain is 

one of them, it can jump a considerable distance in parameter space in a single step. In this 

way the overall mixing of the cold chain may be substantially improved.  

 

Fig 1.5. Markov chain Monte Carlo 

procedure. MCMC analysis is used to 

generate valid samples from the posterior. 

A: The chain is started at a random point 

(red), and a new state is proposed 

according to a proposal distribution (blue). 

If the new point is uphill, it will be always 

accepted as the new point of the chain. 

When another state is proposed (green) 

that is downhill with respect to the 

current state (blue), we accept it with a 

probability is proportional to the height 

ratio. B: The chain explores the 

parameters space until reaching 

stationarity. The initial running of the 

chain before approaching the stationary 

distribution is the burn-in phase (red 

points). After that, the chain starts to explore the posterior distribution (black points) and 

the amount of time it spends sampling a region of the parameters’ space (proportional to 

the density of black circles) is proportional to its posterior probability. 

1.3.4 Bayesian Model Choice 

So far, in referring to the posterior distribution, we have always considered implicitly 

that it was conditioned on a specific model. To make it explicit, we could write Bayes’ 

theorem as: 
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,ܦ|)ܲ (ܯ = (ܯ|)ܲ  × ,|ܦ)ܲ (ܯ|ܦ)ܲ(ܯ  

It is now clear that the normalizing constant (P(D|M)), is the probability of the data 

given the chosen model after we have integrated out all parameters. This quantity is known 

as “model likelihood” and is used for Bayesian model comparison. Indeed, if we assume that 

we are choosing within two models, M0 and M1, the ratio of their posterior probabilities can 

be calculated as: ܲ(ܦ|0ܯ)ܲ(ܦ|1ܯ) = (1ܯ)ܲ(0ܯ)ܲ ×  (1ܯ|ܦ)ܲ(0ܯ|ܦ)ܲ

The first factor is the prior odds, and the second factor is known as the Bayes Factor, 

which is the ratio of the model likelihoods, calculated as the harmonic mean of the likelihood 

values from the stationary phase of an MCMC run. When the compared models have the 

same prior probability, the first factor is equal to one, the Bayes Factor is the same of the 

posterior odds, and from it we can get information about the support of the data to model 0 

with respect to model 1. The interpretation of a Bayes Factor comparison is up to the 

investigator, but some guidelines were suggested by Kass and Raftery (1995). An alternative 

of the Bayes Factor to compare models is the reversible-jump MCMC. Instead of running a 

full analysis on each model and then choosing among them using the estimated model 

likelihoods, in a reversible jump MCMC a single Bayesian analysis explore the models in a 

predefined model space. In this case, all parameters estimates will be based on an average 

across models, each model weighted according to its posterior probability.  

1.3.5 Summarizing the data: the Approximate Bayesian Computation 

All these methods are computationally intensive, and analyzing the data fully and 

accurately becomes impossible when loci are many and the models complex. In MCMC 

methods the difficulty lies in evaluating the likelihood, and in evaluating it in a reasonable 

time. In fact, even if the statistical estimation of mutation and demographic parameters 

have drastically improved in the last 10 years (Marjoram & Tavarè 2006), these methods are 

still restricted to relatively simple models for which the likelihood function can be computed, 

or to small dataset that can be analyzed in a reasonable amount of time. The increasing 
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production of genetic data and the need to simulate more realistic (which usually means 

complex) models, has led to the development of methods that try to approximate the 

likelihood. One of these methods was firstly proposed by Fu and Li (1997) and Tavaré et al 

(1997), and then by Weiss & Von Hassler (1998) and Pritchard et al (1999) under the name of 

Approximate Bayesian Computation (ABC). Few years later, Beaumont et al. (2002) 

formalized and generalized this approach introducing a series of improvements, so that the 

actual birth of the ABC coincides with his study.  The ABC methods, for the first time in 

population genetics, combine the analysis of abundant data and realistic modeling. They 

allow the probabilistic comparison of different models of evolution accounting for the 

observed variation, the simultaneous estimation of demographic and evolutionary 

parameters, and the quantitative evaluation of the results credibility. An explanation of a 

complete ABC analysis, detailing the approaches used in this thesis, can be found in the 

Methods section (3.2.2). 

In general, the idea behind the classical ABC methods is to use simulations across a 

wide range of parameter values within a model to find the parameter values that match 

most closely those in the observed data. Initially, at each iteration of the simulation step, the 

simulated data D’ were compared with the observed data D, and if D’ were identical to D, 

the parameters that generated that dataset were stored, and discarded otherwise (Tavaré et 

al. 1997). At the end of the simulation step the retained parameters were used to estimate 

the posterior distribution. Since this procedure is very unlikely to produce a dataset identical 

to the observed one, whenever the data are many and/or the models are complex, it has 

been proposed to replace the data with a set of summary statistics (S), and to retain a 

simulation only if the simulated set of summary statistics (S’) are sufficiently close to the 

observed S (Pritchard et al. 1999). In order to account for the difference between S and S’, 

Beaumont et al (2002) proposed to perform a local weighted linear regression to compute 

the posterior distribution, and this adjustment showed to substantially improve estimation. 

Recently, Leuenberger and Wegmann (2010) propose to reformulate the regression step 

using the General Linear Model (GLM) to improve the fit of the relationship between 

parameters and summary statistics in the retained simulations (ABC-GLM). Other 

improvements have recently been proposed, to increase the efficiency of the simulation 

step. Indeed, during an ABC analysis, all simulations are independent; this means that if a 
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simulated genealogy produces a data set of statistics similar to the observed one, the next 

simulation can be absolutely useless. Millions of simulations are needed to be sure of 

approaching the real values a sufficient number of times to opportunely calculate the 

posterior distributions. Interesting solutions, which I will not describe in detail here, were 

proposed by Wegmann and colleagues (2009; MCMC without likelihood (ABC-MCMC)) and 

Beaumont et al (2009; Population Monte Carlo (PMC)). 

In short, the whole ABC machinery is based on comparisons between observed and 

simulated statistics, calculated respectively on observed and simulated data sets of genetic 

variation. The choice of the statistics is recognized as one of the most important step 

(Beaumont, Zhang & Balding 2002; Marjoram et al. 2003), but there is still no general rule 

about which and how many statistics should be used. The set of statistics has to be 

“sufficient”, to capture the whole information contained in the data about the model 

parameters, but what “sufficient” means is difficult to say. Increasing the number of 

summary statistics calculated on the data obviously increases the amount of information 

considered, but other issues may arise; the larger the number of summary statistics, the 

larger the statistical noise included in the posterior estimation (known as “curse of 

dimensionality”, Joyce & Marjoram 2008). In other word, by considering many variables one 

takes the risk to give limited or insufficient weight to the variables that would be most 

informative about the process of interest. Many approaches have been proposed to solve 

this trade-off between information and stochastic noise. Between these, Joyce and 

Marjoram (2008) proposed to score the different summary statistics based on their impact 

on the inference and Wegmann et al. (2009) proposed to transform the summary statistics 

via Partial Least Square to obtain a set of orthogonal linear combination of statistics best 

explaining the variance in the model parameter space. Alternatively, principal component 

analysis (PCA) can be used to select statistics most correlated with the model parameters 

variance (Bazin, Dawson & Beaumont 2010). 

A second, critical point is the criterion to identify the model best accounting for the 

data. There are two main methods for the model selection in the ABC procedure, detailed in 

the Methods section. The first one is a “direct” method proposed by Pritchard et al. (1999) in 

which, after pooling all the simulations generated under different models, only those falling 
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within an arbitrary distance threshold from the real data are retained. The posterior 

probability of each model is then calculated as the fraction of retained simulations produced 

by each of them. This method is simple and straightforward; however it could be inaccurate 

if the distance threshold between observed and simulated statistics is not close to zero. To 

solve this problem, Beaumont (2008) proposed to improve the model selection procedure 

using a logistic regression approach (see Methods for details). 

When the likelihood function can be evaluated, there is no advantage of using ABC as 

alternative. However, for many applications of population genetics, the likelihood function 

can be evaluated in principle, but in practice it is computationally too expensive. Moreover, 

the trend is analyze increasingly large datasets and to interpret them in the light of more 

realistic models, for which ABC methods can provide reasonable good estimates in a 

reasonable computational time. 
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1.4 Ancient DNA 

For many years, inferences about the past of human populations could only come 

from the study of modern genetic variation. With the advent of ancient DNA techniques is it 

possible to add the genetic information coming from humans and pre-humans and to 

address directly questions such as the evolution of genes involved in human specific traits, 

the analysis of diversity of ancient populations and the reconstruction of their histories, the 

determination of past frequencies for alleles involved in phenotypes such as pigmentation, 

dietary adaptation linked to agriculture, and responses to particular pathogens. 

Unfortunately, there are lots of practical difficulties with ancient DNA analysis in general, 

and analysis of human samples in particular, due to the postmortem degradation of 

molecules of DNA and contamination with ubiquitous modern DNA.  

1.4.1 Molecular damage 

Within living cells, the integrity of DNA molecules is maintained by enzymatic 

processes (Lindahl 1993). After the death of an organism, cellular compartments that 

normally seize catabolic enzymes stop working, and, as a consequence, DNA is degraded by 

enzymes such as lysosomal nucleases. Under some rare conditions, a tissue becomes rapidly 

desiccated after death, or the DNA becomes adsorbed to a mineral matrix, escaping 

enzymatic degradation. Besides the enzymatic degradation, some other chemical processes 

can affect DNA in a dead cell; many of these are similar to those affecting the DNA in living 

cells, with the difference that in a living cell these processes are counterbalanced by cellular 

repair processes. After death, damages accumulate progressively until the DNA loses its 

integrity and decomposes, with an irreversible loss of nucleotide sequence information. 

With the development of polymerase chain reaction (PCR), that made it possible to produce 

unlimited number of copies of the same sequence of DNA from very few or even single 

original DNA copies, the salvage of information from rare samples in which disintegration of 

DNA is not yet complete is possible, although technically challenging. 

Another problem of the DNA extracted from subfossil and fossil remains is its 

degradation to small fragments, usually between 100 and 500 base pairs in size (Hofreiter et 

al. 2001). This degradation is due both to enzymes and to hydrolytic cleavage of 
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phosphodiester bonds in the phosphate-sugar backbones (Lindahl 1993), and of glycosidic 

bonds between nitrous bases and the sugar backbone. The extent of degradation by these 

processes depends on the preservation of the specimens, and represents a limit during a 

PCR amplification. Moreover, the functionality of the PCR is limited by lesions blocking the 

elongation of DNA strands by Taq polymerase. These lesions are induced by free radicals, 

which are created by background radiation, attacking the double bounds of pyrimidines and 

purines (major sites of oxidative attack) leading to ring fragmentation. DNA extracted from 

fossil remains is susceptible to cleavage with endonuclease III, which is specific for oxidized 

pyrimidines (Paabo 1989); sequences with higher amounts of oxidized pyrimidines could not 

be amplified via PCR (Hoss et al. 1996). 

In addition to fragmentation and DNA modification that prevent the extension of 

DNA polymerase, there are other common damages in ancient DNA. Some of these are 

problematic for the investigator because even if they allow the amplification of template 

molecules, they cause incorrect bases to be incorporated during the PCR. An example is the 

hydrolytic loss of amino groups from the bases adenine, cytosine, 5-methylcytosine and 

guanine, resulting in hypoxanthine, uracil, thymine and xanthine, respectively (Friedberg, 

Walker & Siede 1995). When the deamination produces uracil, thymine and xanthine are 

incorrectly inserted by PCR. Clearly, the risk of determination of incorrect DNA sequences 

due to misincorporations is great if amplification starts from a single DNA molecule and if 

DNA sequences are determined from a single amplification. Under such conditions, any 

consistent misincorporation would result in an incorrect base being determined. A way 

around this problem is to perform more amplifications and compare the results. 

1.4.2 Contamination with exogenous DNA 

Ancient samples may not contain endogenous DNA detectable with current 

techniques. However, if primers that amplify current human DNA are used to perform 

amplifications from non-human remains, they often yield DNA sequences identical to those 

found in contemporary humans (Serre et al. 2004). This means that, together with the 

ancient specimen’s DNA, and sometimes in the absence of amplifiable DNA, modern DNA is 

present in many ancient samples. Identifying it is easy in studies of non-human species, but 
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not at all when the specimen’s DNA does not differ by much from the contaminant’s DNA 

(Handt et al. 1994; Handt et al. 1996; Hofreiter et al. 2001; Wall & Kim 2007). This problem 

might be alleviated in two ways: first, it is necessary to handle specimens, perform DNA 

extraction, and set up amplifications in dedicated laboratory facilities, where no post-PCR 

work has ever been conducted (Paabo 1990), and where all extraction work is conducted 

with protective clothing and the work space cleaned regularly with oxidant such as bleach 

and irradiated with UV lights; second, it was suggested to follow some criteria of authenticity 

(Paabo 1989), detailed below. The first published criteria of authenticity (Paabo 1989) were 

limited to three points: (a) testing of control extracts should be performed in parallel with 

extracts from old specimens to detect contamination introduced from reagents and 

solutions during the extraction procedure; (b) more than one extract should be prepared 

from each specimen and both should yield identical DNA sequences; (c) there should be an 

inverse correlation between amplification efficiency and size of the amplification product, 

reflecting the degradation and damage in the ancient DNA template. Later, these criteria 

have been expanded (Cooper & Poinar 2000; Hofreiter et al. 2001), and they can now be 

summarized as follows: 

1. Cloning of amplification products and sequencing of multiple clones. This serves to 

detect heterogeneity in the amplification products, due to contamination, DNA damage, or 

jumping PCR (Paabo, Irwin & Wilson 1990). 

2. Extraction controls and PCR controls. Each set of extractions should include at least 

one extraction control that does not contain any sample material but is otherwise treated 

identically. Similarly, for each set of PCRs, multiple negative PCR controls should be 

performed to differentiate between contamination that occurs during the extraction and 

during the preparation of the PCR. 

3. Repeated amplifications from the same or several extracts. This serves two 

purposes. First, it allows detection of sporadic contaminants; second, it allows detection of 

consistent changes due to miscoding DNA lesions in extracts containing extremely low 

numbers of template molecules. 
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4. Quantitation of the number of amplifiable DNA molecules. This shows whether 

consistent changes are likely to occur or not. If consistent changes can be excluded (roughly 

for extracts containing >1000 template molecules), a single amplification is sufficient.  

5. Inverse correlation between amplification efficiency and length of amplification. 

Because ancient DNA is fragmented, the amplification efficiency should be inversely 

correlated with the length of amplification. If not, there is reason to believe that the DNA 

extract is largely composed of exogenous molecules. 

6. Biochemical assays of macromolecular preservation performed on amino acids. 

This method serves two purposes: first, to support the claim that a specimen is well enough 

preserved to allow the preservation of DNA, secondly, to perform a rapid screening to 

identify specimens that, according to their general state of preservation, may contain DNA. 

To this aim, the most widely technique used is based on the analysis of amino acids present 

in specimens, relating on the combination of total amount of amino acids, their composition, 

and their extent of racemization. Samples that contain very little amino acids, indicating that 

the macromolecules in the specimens have been replaced by microorganisms, or where 

amino acids are extensively racemized, are unlikely to contain endogenous DNA. 

7. Exclusion of nuclear insertions of mtDNA. It is highly unlikely that several different 

primer pairs all preferentially amplify a particular nuclear insertion. Therefore, substitutions 

in the overlapping part of different amplification products are a warning that nuclear 

insertions of mtDNA may have been amplified. A lack of diversity in population studies can 

also be taken as an indication that nuclear insertions may have confounded the results. 

8. Reproduction in a second laboratory. This serves a similar purpose as criteria 2 and 

3, i.e., to detect contamination of chemicals or samples during handling in the laboratory. 

Note that contaminants that are already on a sample before arrival in the laboratory will be 

faithfully reproduced in a second laboratory. 

(Paabo et al. 2004) 

Even if all the criteria are followed, this hardly represents a positive proof that a DNA 

sequence is genuinely ancient. Indeed, if a specimen is contaminated within a certain DNA 
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sequence, all criteria can be verified, but the results would still be invalid. When the ancient 

DNA comes from animal, contamination with modern human DNA is easily retrievable; but 

that is not so simple when the DNA comes from ancient humans. In the last case, stricter 

criteria ought to be followed, such as to verify that the sequence determined from the 

ancient specimen is not present in all the investigators, including excavators, museum 

personnel, or laboratory researchers.  

So far, the most common marker used in the ancient DNA study is the mitochondrial 

DNA (mtDNA). This is because mtDNA is present in several hundreds of copies per cell, in 

contrast to the single-copy nuclear genome. Thus, integer sequences of mtDNA are more 

likely to be present in any single extract, and can be easily amplified, than are nuclear 

sequences. In the last years, the development of high-throughput DNA sequencing 

technologies (Bentley et al. 2008) allows large-scale, genome-wide sequencing of random 

pieces of DNA extracted from ancient human specimens, until obtain complete ancient 

genomes (Green et al. 2010; Reich et al. 2010); however the degree of confidence related to 

these genomes is still low, and, to date, they cannot be safely used in a comparative analysis 

with modern humans. 
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2. Purpose of the Thesis 

In this thesis we compare different datasets of modern and ancient human 

populations living in the same geographical areas in different periods of time. This has been 

done in order to highlight traces of past genetic variation in modern populations, and to 

evaluate whether, and to what extent, ancient and modern populations can be considered 

genealogically related. 

To do this, we analyzed the data within the approximate Bayesian computation 

framework, that allows us to simulate complex (and hence, realistic) demographic models 

including the genetic information coming from ancient populations. Moreover, the Bayesian 

philosophy allowed us to incorporate in the analysis the prior information about model 

parameters, such as mutation rate, effective population sizes for both modern and ancient 

populations, separation time (for models involving more than one population) and migration 

rate. This increases considerably the power to draw inference about the evolutionary 

histories of the considered populations. For the first time we applied this methodology to 

datasets of ancient and modern human variation, studying the genealogical relationships 

between archaic humans (i.e. Neandertals), anatomically modern humans (i.e. Cro-Magnon) 

and modern Europeans (see Applications, section 4.1), between ancient (Nuragic) and 

modern Sardinians (see Applications, section 4.2), and between Etruscans and modern 

Tuscans (see Applications, section 4.3 ). Within this framework, for each dataset considered, 

we explicitly compared different demographic models estimating the most probable 

mechanism of evolution of the data, we estimated the combination of demographic end 

evolutionary parameters of the most probable model and we evaluated in several ways the 

quality of our estimates. 
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3. Methods 

3.1 Measuring and summarizing genetic variation 

Genetic data can be summarized by summary statistics calculated on the data (for 

example on DNA sequences). Even if these statistics do not encapsulate all the information 

present in the data, and in general are not sufficient for reliable inference about the 

evolutionary processes that have generated the data, the description of the data is an 

important starting point to have an idea about the amount of population’s diversity and 

population’s structure. 

Descriptive statistics of genetic interest can be mainly grouped into two categories: 

statistics calculated to summarize genetic variation within populations (i.e. intra-population 

statistics, 3.1.1), and statistics calculated between populations (inter-populations statistics, 

3.1.2) to highlight their degree of genetic differentiation. Below, I report the statistics we 

used to summarize ancient and modern mitochondrial DNA data; all the statistics were 

calculated with the software Arlequin 3.5.1 (Excoffier & Lischer 2010). 

3.1.1 Genetic variation within population 

We summarized genetic variation within population through the following statistics: 

Haplotype number: number of different sequences in the sample. 

Segregant sites: number of sites in the sample showing more than one allele per 

locus. 

Gene diversity: the gene diversity calculated on haploid data such as mitochondrial 

DNA is equivalent to the expected heterozigosity for diploid data. The gene diversity at a 

locus is defined as the probability that two randomly chosen haplotypes are different in the 

sample: 

ܪ =  ݊݊ − 1 (1 −   ଶୀଵ ) 
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Where n is the number of gene copies in the sample, k is the number of different 

haplotypes in the sample, and pi is the sample frequency of the i-th haplotype (Nei 1987). 

Mean number of pairwise differences (π): mean number of differences between all 

pairs of haplotypes within the sample. It is given by: 

ොߨ =  ݊݊ − 1    መ݀
ୀଵ


ୀଵ  

Where መ݀ is a count of the number of differences between i and j (i.e. the number of 

mutations having occurred since the divergence of haplotype i and j),k is the number of 

haplotypes, pi is the frequency of haplotype i, and n is the sample size (Tajima 1983). 

Analogous to the mean number of pairwise differences is the nucleotide diversity: it 

represents the probability that two copies of the same nucleotide drawn at random from a 

set of sequences will be different from one another, and is calculated as the mean number 

of pairwise differences divided by the total length of the sequence. 

Tajima’s D: this statistic compares two estimates of theta (θ), the population 

mutation parameter that represents the level of variation in a population under mutation-

drift equilibrium. Under neutral evolution, when equilibrium is reached, the generation of 

new alleles by mutation is balanced by the elimination of alleles by drift; hence the 

expectation is that, under neutrality, different estimates of θ should be equal. Tajima’s D 

compare two different estimates of θ, one based on the number of segregating sites (Theta 

S), and the other based on the nucleotide diversity (Theta π). Theta S is estimated from an 

infinite-site equilibrium relationship (Watterson 1975) between the number of segregating 

sites (S), the sample size (n) and θ for a sample of non-recombining DNA: 

ௌ =  ܵܽଵ 

where: 

ܽଵ =   1݅ିଵ
ୀଵ  
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(Tajima 1989) 

Theta π is estimated from the infinite-site equilibrium relationship between the mean 

number of pairwise difference (π) e θ: 

(ߨ)ܧ =   

(Tajima 1989) 

The test statistic D is then defined as: 

 

ܦ =  గ − ௌටܸܽݎ (గ − ௌ) 

(Tajima 1989) 

Under neutrality the two estimates are expected to be equal, and so Tajima’s D is 

expected to be zero. The significance of the D statistic should be tested by generating 

random samples under the hypothesis of selective neutrality and population equilibrium, 

using a coalescent simulation algorithm adapted from Hudson (1990). The P value of the D 

statistic is then obtained as the proportion of random D statistics less or equal to the 

observation. Significantly positive values of this statistic indicate that the differences 

between alleles are greater than expected from the level of variation, a phenomenon often 

caused by population subdivision or balancing selection.  When the value of Tajima’s D is 

significantly lower than zero, meaning that there are many alleles with respect to variation 

as measured by pairwise differences, this may often be due to a population expansion or 

positive selection.  

3.1.2 Genetic distance measures 

To estimate the degree of genetic differentiation between populations, we used the 

following statistics: 
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Hudson’s Fst: this statistic measures the degree of variation between pairs of 

populations and is based on the mean number of pairwise differences within and between 

populations. It is calculated as: 

ݐݏܨ = 1 − ܪ௪ܪ )  ) 

(Hudson, Slatkin & Maddison 1992) 

Where Hw is the mean number of differences between different sequences sampled 

from the same subpopulation, and Hb is the mean number of differences between sequences 

sampled from the two different subpopulations sampled. 

Haplotype Sharing: similar to allele sharing for genotypic data, this statistic 

represents the degree of genetic similarity between pairs of samples. It is calculated as the 

number of haplotypes that are shared between two samples (e.g. between pop1 and pop2), 

divided by the number of haplotypes in pop1 (haplotype shared between pop1 and pop2 

respect to pop1) or in pop2 (haplotype shared between pop1 and pop2 respect to pop2). 
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3.2 Inference from diversity: estimating parameters from molecular 

data 

Recent population genetics methods (i.e. coalescent based methods) can help us 

understand the evolutionary and demographic processes at population level. These methods 

are implemented in various software packages and programs, which have grown enormously 

in last years. In this section, I outline the two principal methodologies we used to analyze the 

data. The first is a likelihood method based on the Isolation with Migration model (3.2.1) 

(Nielsen & Wakeley 2001) that we applied to study the relationships between two modern 

populations in the Etruscan study (see Applications, section 4.3). Secondly, when the goal 

was to highlight the genealogical links between ancient and modern populations, the models 

became more complex (involving more populations and an elevate number of parameters) 

and cannot be analyzed by classical likelihood methods. To bypass this problem we referred 

to approximate Bayesian computation methods (3.2.2), by which the data are not fully 

considered but are summarized by means of statistics, allowing to simulate genetic data 

according to any demographic model.   

3.2.1 The Isolation with Migration model 

The Isolation with Migration (IM) model provides a statistical framework making it 

possible to discriminate between two factors leading to increased genetic similarity of 

populations, namely common origin and gene flow. The IM model tests for the relative 

weight of common ancestry, drift and gene flow in two (or more) populations. Consider a 

general IM model in which an ancestral population gives rise to two populations, after which 

there may be gene exchange between these two populations (Fig 3.1). In its original 

formulation the model has six main parameters, namely the size of the three populations 

(NA, N1, N2), the time of the splitting event (t), and the rates of gene flow between daughter 

populations (m1, m2). The IM model differs from classical population-genetics models 

(Wright’s island model, Malécot and Morton’s isolation-by-distance model) in that it does 

not require the (often unlikely) assumption that mutation, genetic drift and gene flow have 

reached an equilibrium. As such, it may be used to quantify the roles of these factors in 

determining the degree of genetic relatedness between populations, a classical question in 
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evolutionary genetics. Indeed, in principle, a certain level of similarity between two 

populations may reflect a recent common origin followed by isolation, or a remote common 

origin followed by genetic exchanges, or anything in between. By the IM method one obtains 

maximum-likelihood estimates of the parameters describing the effects of drift (t, NA, N1, 

N2 ) and gene flow (m1, m2) (Nielsen & Wakeley 2001; Hey & Nielsen 2004). 

At first, Nielsen and Wakeley (2001) developed a Bayesian framework for fitting this 

six-parameters version of the IM model to data from a single, nonrecombining locus drawn 

from two population or closely related species. A few years later, Hey and Nielsen (Hey & 

Nielsen 2004) introduced an extension allowing for multilocus analysis, and wrote a 

computer program to implement the method (freely available at 

http://genfaculty.rutgers.edu/hey/software ). In this formulation the IM model could not 

account for changes in population sizes, and for the sizes of founding populations. Later both 

these issues were addressed by including a seventh parameter, s, representing the 

proportion of members of the ancestral population giving rise to each daughter populations 

(respectively, s and 1-s) (Hey 2005). 

Under the assumption of selective neutrality and no recombination within loci, the 

IM software repeatedly generates gene genealogies by Monte Carlo Markov Chain (MCMC) 

simulation (see Introduction, section 1.3.3). Each gene genealogy is generated choosing 

random values (within a predefined interval) of the six or seven parameters. Each new 

parameter value is accepted or rejected, according to standard criteria, until the parameter 

space is explored and stationarity is reached.  One way to have an idea whether the program 

generated a good estimate of the parameter (i.e., whether there was convergence), is to run 

repeated analyses that differ only for the random parameter values from which the 

simulations start. At the end, one can see whether the same parameter distributions are 

obtained. Another possibility is to observe over the course of a run how accurately the 

parameter space is explored. In the IM software this is done by plotting recorded values over 

the course of the run and then by measuring how these values are autocorrelated over the 

length of the run. If the autocorrelation persists for a large number of steps, this means that 

the space is being explored slowly, and longer runs are required. To improve mixing, and 



Genealogical inferences based on comparison of modern and ancient DNA 
 

44 
 

thereby the convergence, the IM software allows the Metropolis coupling of Markov chains, 

where multiple chains are run simultaneously (see Introduction, section 1.3.3). 

We applied this method to the analysis of the Etruscan population (for details see 

Applications, section 4.3), in order to estimate the time of the separation between 

Southwestern Anatolia population (Etruscans’ homeland according to Herodotous) and the 

Tuscan populations related to the Etruscans. Estimating the separation time between these 

two populations allows as understand whether the genetic resemblances between Turks and 

Tuscans can be referred to a common origin just before the onset of the Etruscan culture 

(hence not more than 3,000 years ago), placing the Etruscans’ homeland in Anatolia, or, 

rather, the time estimated supports the autochthonous development of the Etruscan culture 

in Italy. 

 

 

 

 

 

 

 

 

Fig 3.1. A scheme of the basic model of isolation with migration with the additional 

parameter s, as reported in Hey (2005). It is assumed that, t generations ago, an ancestral 

population of size NA split into two daughter populations of sizes, respectively, N1 and N2, 

connected by gene flow. The rates of gene flow between daughter populations are 

expressed by m1 and m2, and s is the proportion of the members of the ancestral population 

giving rise to the first daughter population. 



Genealogical inferences based on comparison of modern and ancient DNA 
 

45 
 

3.2.2 Likelihood free inference: the Approximate Bayesian Computation 

Approximate Bayesian Computation (ABC) is a flexible framework developed to 

choose among alternative models and to infer their parameters. Its flexibility depends on the 

likelihood-free inference allowing to analyze complex, and therefore realistic, demographic 

models (see Introduction, section 1.3; for a review see Bertorelle, Benazzo & Mona 2010). 

We applied this framework to test the genealogical relationships between modern and 

ancient populations living in the same area in different periods of time, and to estimate 

demographic and evolutionary parameters for the models showing the highest fit with the 

data.  The ABC algorithm we used was firstly proposed by Beaumont in 2002 (Beaumont, 

Zhang & Balding 2002) as an extension of the simple rejection procedure by Pritchard et al 

(1999). This procedure includes the following steps: 

1. First of all, one has to “set the scene”, that is specify the history and the 

demography of the populations using a model of evolution with the specific parameters. If 

one is interested in testing among different hypotheses, several models can be designed and 

compared. 

2. For each demographic model thus defined, millions gene genealogies are 

simulated. In our analyses, these genealogies were generated using a serial coalescent 

algorithm by the Bayesian version of SERIALSIMCOAL (Anderson et al. 2005; freely available 

on http://iod.ucsd.edu/simplex/ssc/BayeSSc.htm). Using this software it is also possible to 

include samples collected at different moments in time. Suppose, e.g., that one has samples 

of sizes n0, n1, n2…nk of populations studied 0, t1, t2…tk generations ago. The program 

generates genealogies proceeding backwards in time, starting with n0 samples in the present 

(t0) and adding n1, n2…nk samples at the appropriate moments in the past. The genealogy is 

then extended backwards until it reaches the most recent common ancestor (MRCA) of the 

sampled lineages through a series of coalescence events (see Introduction, section 1.2). At 

this stage, mutations are added onto the tree according to an infinite-site model. The 

parameters defining the model (population sizes, mutation rates, timing of demographic 

processes) are considered as random variables, and their values are extracted from broad 

prior distributions, representing the knowledge on the parameters before the analysis; 

samples ages and sizes are equal to those of the observed samples. 
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3. Observed and simulated data are summarized using the same set of statistics; 

the most common statistics used in our studies were described in the previous section 

(Methods, section 3.1) 

4. For each simulated dataset, a Euclidean distance δ between the observed and 

simulated summary statistic is calculated. Model selection and parameters estimation (see 

below) are based on the δ values thus estimated. 

3.2.2.1 Model Selection 

The ABC methods make it possible to compare alternative hypotheses about a 

process, and assign a probability to each hypothesis tested (i.e. simulated) referring to the 

same set of data. For our analyses, we calculated the posterior probabilities of the models in 

two ways.  

The first criterion is based on the simple rejection procedure (AR) proposed by 

Pritchard et al (1999), for which model posterior probabilities are computed by counting 

how many simulations run under the i-th model (ni) are found among an arbitrarily-defined 

number of  simulations resulting in the shortest δ between observed and simulated data 

(nt). The posterior probability for the model is then = ni/nt. Results of previous studies 

suggest that straightforward rejection may not be robust when considering more than a few 

hundred simulations (Beaumont 2008), and so, when using this approach, we considered nt 

equal to 100, i.e. we selected the 100 closest simulations. 

Under the second criterion, proposed by Beaumont et al (2008), the posterior 

probability for each model can be computed by means of a weighted multinomial logistic 

regression procedure (LR). In the ABC simulations the summary statistics are the predictive 

variable, and the model parameters are the response variable; under the logistic regression 

method the model is the categorical dependent variable Yj (1 ≤ j ≤n for n tested models). 

The regression is local around the vector of observed summary statistics, and the simulations 

are weighted by an Epanechnikov kernel according to their distance from the observed data 

set. The maximum likelihood values of the β coefficients of the regression model are then 

estimated. The probability of the model is evaluated in the point corresponding to the 

observed vector of summary statistics. For this estimation procedure we considered the 
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50,000 simulations generating the shortest δ distance between the observed and simulated 

summary statistics. 

For the model selection procedures performed in these studies, we used a modified 

version of the calmod function, written by M. A. Beaumont (available at 

http://www.rubic.rdg.ac.uk/~mab/stuff/ ) for the R statistical package.  

3.2.2.2 Parameters Estimation 

The purpose of the model selection procedure is to identify the best-fitting model, 

that is, the model that best explains the observed variation. After that, within the ABC 

framework, is it also possible to estimate the demographic and evolutionary parameters 

underlying this model. To do so, only a subset of simulations are retained (in general 2,000 

or 5,000), i.e. the simulations producing statistics closest to the observed statistics, chosen 

from the total amount of simulations generated under the model. For this purpose, we 

implemented the approach developed by Beaumont et al. (2002) based on the computation 

of a local, weighted, linear regression between each parameter and the vector of the chosen 

summary statistics. Each retained simulation is assigned a weight (the commonly used 

weighting function is the Epanechnikov kernel) based on a function increasing as the 

distance between the observed and simulated data decreases. The regression slope is then 

used to adjust the parameters value from the retained simulations towards the value in 

correspondence of a distance zero between observed and simulated statistics. This way we 

obtained an estimate of the parameters’ values that mimic a situation in which all 

simulations produce summary statistics equal to the observed values. Parameters need be 

transformed before the regression step (we use the logtan transformation, Hamilton, 

Stoneking & Excoffier 2005), to avoid adjustment outside the prior distribution. 

The mode and the median value of the correspondent posterior distribution are 

usually used as parameter estimators; the 95% interval of the highest posterior density is 

also calculated, that is the interval which includes the 95% of the parameter values and 

within which the density is never lower than the density outside it. 
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For these purposes we used a modified version of the make_pd2 script, written by M. 

A. Beaumont (available at http://www.rubic.rdg.ac.uk/~mab/stuff/ ) for the R statistical 

package. 

3.2.2.3 Validation of the estimates 

After an ABC analysis it is common to investigate the robustness of the results. To 

test the reliability of the model selection procedures, one can calculate the type I error, 

whereas to assess the quality of the parameters estimate one can calculate indices like the 

coefficient of determination (R2), the bias and the root mean square error (RMSE), the 

coverage and the factor 2. Finally, to test whether the model we considered to best fit the 

observed data might actually generate patterns of genetic diversity resembling the observed 

ones, a posterior predictive test is commonly performed. 

To assess if the models we simulated may be correctly recovered by the procedure 

we chose to calculate their posterior probability (that is: is there enough power in the data 

to allow one to distinguish the alternative models?), Type I Error (i.e. the probability of 

rejecting a true null hypothesis) is evaluated. To do this, some hundreds datasets are 

generated using each of the models considered in the model selection analysis; these 

pseudo-observed datasets are then treated as observed datasets in an ABC analysis using 

the previously simulated models. After that, the Type I error can be calculated as the 

proportion of cases in which the LR or the AR procedures were not able to recover the right 

model, as suggested in Fagundes et al. (2007) and Cornuet et al. (2008). If the Type I error is 

low, this means that the genetic data used in the analysis allow one to distinguish between 

the demographic models tested. 

To determine whether the summary statistics we chose contain enough information 

to estimate model parameters, the coefficient of determination (R2) can be computed. R2 

indicates the percentage of variance of the dependent variable (i.e., the parameter) 

explained by the predictors (i.e., the summary statistics). In the absence of an established 

threshold value, there is a general agreement that when R2 < 0.10, the summary statistics do 

not convey enough information about their posterior distribution (Neuenschwander et al. 

2008). 
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The accuracy of the median estimate of model parameters can be assessed by 

computing the relative bias and the relative mean square error. For these tests, n datasets 

are generated using median or mode point estimates as demographic parameters. Each of 

these n datasets is then used as a pseudo observed dataset which is analyzed with the 

previously described ABC methodology. Bias and RMSE depend, respectively, on the sum of 

differences, and on the sum of squared differences, between the n estimates of each 

parameter thus obtained, and the respective median point estimate (Neuenschwander et al. 

2008). A value of 0 means that the median perfectly estimated the parameter, positive and 

negative values reflect, respectively, biases towards overestimation and underestimation. 

To calculate the coverage and the factor 2, the same pseudo observed datasets are 

used. The coverage is defined as the proportion of times the known value (median or mode 

value) lies within the credible interval of the n estimates. For example, the 90% coverage is 

the proportion of instances in which the true value (i.e. the parameter value estimated 

during the ABC analysis) fall within the 90% credible interval of each of the n estimates 

derived from the pseudo observed dataset. The factor 2 statistic, instead, represents the 

proportion of the n estimated median or mode values from the pseudo observed datasets 

lying between the 50% and the 200% of the fixed (known) value. Note that factor 2 gives 

information about the absolute precision of the estimator, because it is independent of the 

posterior distribution’s variance (which, conversely, is not a property of the coverage). 

Once a model has been shown to be better than any alternatives in generating data 

compatible with the observed one, the question is whether that model can actually generate 

data that faithfully reproduce the observed variation. This question can be addressed by 

performing a posterior predictive test (Gelman et al. 2004). To do this, thousands (n) 

datasets are generated under the selected model, by repeatedly drawing the parameter 

values from the posterior distributions estimated. These simulated data sets are summarized 

by summary statistics, which are then compared with the corresponding summary statistics 

from the observed data. This way one computes a posterior predictive P-value for each of 

the statistics considered, and then combines their probabilities into a global P-value, by a 

method that takes into account non-independence of the statistics (Voight et al. 2005). This 

global P-value is calculated in four steps: (1) each simulated summary statistic is compared 
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with the other n-1 values representing the empirical distribution of the statistic from the 

simulations, and thus associated with a two-tailed P-value; (2) for each simulated genealogy, 

a new statistic C, combining the P-values of the individual statistics (pi) is calculated as: 

ܥ = −2  ln (݅) 

where summation is over all P-values from each summary statistic. This step is 

repeated n times, so as to obtain a null distribution of C; (3) By repeating the same 

procedure over the observed statistics, we calculate an observed C value, Co; (4) by 

comparing Co with the C null distribution, we estimate a one tailed P-value (the Bayesian P-

value) for Co. 

 A scheme of a complete ABC analysis is outlined in Fig 3.2. 
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Fig 3.2. From Bertorelle, Benazzo and Mona (2010). 
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4. Applications 

In this chapter, I briefly present the three studies I co-authored during my PhD. The 

first is a study about the genealogical relationships between archaic humans (i.e. 

Neandertals), anatomically modern humans (i.e. Cro-Magnon) and modern Europeans (4.1); 

the second work regards the genealogical relationships between Bronze-age and modern 

population in Sardinia (4.2); the last study regards the origins and evolution of the Etruscan 

population (4.3). Within the ABC framework, applied here for the first time to datasets of 

ancient and modern human variation, we explicitly compared several models to choose the 

one which best accounts for the observed variation. Then we estimated the parameters of 

the best model and we evaluated the quality of these estimates.  

A detailed description of these works is reported in the “Papers” section (7).  

4.1 Neandertals, Early Modern humans and Modern Europeans 

The debate on modern human origins regards the interpretation of a vast body of 

archaeological, fossil and genetic data, from which the relationships between ancient and 

modern populations and their migrational history can be approximately inferred. Many 

models have been proposed to account for the observed patterns of diversity and similarity, 

but, as a first approximation, it is fair to say the two main models are the “Out of Africa” 

model, and the Multiregional model (Fig 4.1). The distribution of fossils and artifacts clearly 

shows that, up to perhaps 2 million years ago, all human ancestors lived in Africa. Starting 

from that period, human forms are documented in Asia and Europe. At the end of the 1980s, 

the first studies of human molecular diversity suggested that our species had evolved from 

an African population that around 100 thousand years ago colonized the whole world, 

supplanting the former hominid. This replacement model is called “Out of Africa” (OOA) or 

“Recent African Origin” model (Fig 4.1A), and has been widely adopted by the human 

population genetics community. However, this model was disputed by some archaeologists 

for whom there is evidence of a regional continuity in the Pleistocene fossil record, which 

cannot be explained by a complete replacement of Homo erectus in Asia or Neandertal in 

Europe (Wolpoff 1989). They hence proposed a model of Multiregional evolution (MRE) (Fig 

4.1B), where modern humans would have emerged gradually and simultaneously from 
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archaic forms in different continents.  Modern humans would represent a single species 

because the archaic human groups of Africa, Asia and Europe were not reproductively 

isolated, but connected by gene flow (Wolpoff, Hawks & Caspari 2000). Further studies of 

worldwide modern human variation have discovered three trends in summary statistics as a 

function of increasing geographic distance from Africa: a decrease in heterozygosity (Li et al. 

2008), an increase in linkage disequilibrium (LD) (Jakobsson et al. 2008), and a decrease in 

the slope of the ancestral allele frequency spectrum (indicating that derived alleles tend to 

be more frequent in populations at a greater distance away from Africa) (Li et al. 2008); all 

these piece of evidence are in favor of the Out of Africa model.  A related question is what 

extent of genetic exchange between archaic and modern humans is compatible with the 

OOA model. If the Multiregional model could only be rejected by proving that no exchange 

has been happened between them, the model would be impossible to falsify with scientific 

tools, and hence the debate would not be possible within the realm of science. The study 

and the comparison of DNA in ancient human forms (i.e. Neandertals), in anatomically 

modern humans (i.e. Cro-Magnon), and in modern populations, can be useful to address all 

these questions. In fact, Neandertal and Cro-Magnon coexisted in Europe for millennia, and 

fossil and archaeological data document a progressive withdrawal of Neandertal 

communities towards Western Europe as Cro-Magnoids expanded. The Neandertals 

anatomy and their artifacts disappeared from the record around 29,000 years ago (Mellars 

1992; Mellars 2006). In analyses of mitochondrial DNA (mtDNA) Neandertal sequences fell 

out of the range of current European variation (Krings et al. 1997; Briggs et al. 2009), and 

even a small mitochondrial contribution of Neandertals to the modern human gene pool 

appeared unlikely (Currat & Excoffier 2004; Belle et al. 2009). However, in the first survey of 

the whole Neandertal nuclear genome, patterns of allele sharing with modern humans have 

been interpreted as suggesting 1-4% admixture between Neandertals and the ancestors of 

non-African people (Green et al. 2010). On the contrary, when a sample of mtDNA from Cro-

Magnon was analyzed, it appeared indistinguishable from those of modern humans 

(Caramelli et al. 2003; Caramelli et al. 2008).  

In this study, we explicitly compared models of modern human evolution using 

ancient and modern mtDNA sequences under the framework of Approximate Bayesian 

Computations (ABC, see Methods, section 3.2.2). The use of the demographic models allows 
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not only to compare modern and ancient variation highlighting the degree of resemblance in 

the sequences, but also to estimate the degree of confidence in considering Neandertals as 

the ancestor of modern Europeans and how much gene flow between them that can be 

compatible with the observed variation. To do this, we used all the ancient sequences 

available for Neandertals (7) and Cro-Magnon (3), and 150 modern European sequences 

coming from the same geographical area of the ancient samples. From the ABC analysis, the 

model having greater probability was the one in which the Neandertals underwent extinct 

around 29,000 years ago and belong to a separate genealogy respect to the Cro-Magnon and 

the modern Europeans. According to this model, anatomically modern humans emerged 

from a small population after a founder effect that followed the expansion out of Africa of 

the early humans. The Out of Africa model of human evolution appears to be hundreds-fold 

as likely as the alternative model. A direct comparison between a model without gene flow 

from Neandertals into Cro-Magnons and a model of gene flow during the period of the 

coexistence in Europe of Neandertals and Cro-magnons, showed that the best estimate of 

mitochondrial admixture between Neandertals and the ancestors of modern Europeans is 

zero. Additional tests on the reliability of the estimates confirmed the quality of the analysis, 

indicating that the data we analyzed contained enough information to allow one to 

distinguish among the models tested.  

This study, albeit exploiting one of the most powerful statistical methodology of 

genetic inference, was limited to the mitochondrial DNA, and hence to the maternal lineage. 

In the recent nuclear genome survey, Neandertals appeared genetically closer to all non-

Africans than to Africans. This observation was interpreted as evidence of admixture, 

between 1% and 4%, between Neandertals and the common ancestors of Asians and 

Europeans, in the Levant (Green et al. 2010). We propose a way to reconcile these findings, 

involving a more articulate model of genetic drift. Under such a model, the greater similarity 

between Neandertals and non-Africans would not necessarily require admixture between 

them. Indeed, if the common ancestors of Neandertals and modern humans were 

geographically structured, as proposed by Falush et al. (2003) and Harding & McVean (2004), 

all non-Africans could share with Neandertals a longer section of their genealogy, also 

sharing more alleles than Africans with Neandertals, including the derived alleles upon which 

Green et al. (2010) based their estimates. By contrast, in the mitochondrial DNA, having 
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lower effective population size compared with nuclear DNA, the sorting of the lineages due 

to genetic drift would be already complete. This view is also supported by data on the DNA 

of the human gastric parasite Helicobacter pilori, in which ancestral genetic clusters seem to 

have given rise to two distinct populations, one exclusively African, and the other 

cosmopolitan (Falush et al. 2003), and by the extreme levels of DNA variation still present in 

Africa (Schuster et al. 2010).  The only additional assumption one has to make to account for 

the observed results is that the latter population was also ancestral to the European 

Neandertals typed by Green et al. (2010).  

The complete published study is reported at p. 74. 

 

 

 

 

 

 

 

Fig 4.1. Out of Africa (A) and Multiregional (B) model of human evolution. 
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4.2 Modern and ancient mitochondrial variation in Sardinia 

The population of Sardinia is known as one of the main genetic outliers in Europe 

(Cavalli-Sforza & Piazza 1993).When compared with populations from all over the world, 

Sardinians are clearly part of a European genetic cluster (Rosenberg et al. 2002), but they 

differ sharply from their European (Barbujani & Sokal 1990) and Italian (Barbujani & Sokal 

1991; Barbujani et al. 1995) neighbors. Moreover, Sardinian populations show some 

(elsewhere rare) Y-chromosome and mitochondrial haplotypes at very high frequencies 

(Morelli et al. 2000; Semino et al. 2000; Quintana-Murci et al. 2003), and an unusual pattern 

of internal genetic diversity. Strong genetic differences are observed among Sardinian 

communities, both for allele frequencies (Barbujani & Sokal 1991) and polymorphism level 

(Fraumene et al. 2003). These peculiar features are probably due to the small effective 

population size combined with the reproductive isolation, caused by the fragmented habitat, 

that have probably enhanced the role of the genetic drift within the Sardinian communities. 

An ancient Sardinian sample was analyzed in a previous work (Caramelli et al. 2007), 

comprising 23 mitochondrial sequences from Bronze-Age Sardinia (“Nuragic” population). 

The authors observed very different resemblances with two modern populations of the 

island, separated in space by less than 120 km. One population came from Ogliastra, an 

isolated community in the middle-east of the island, and the other came from Gallura, an 

“open” region in the north-east of the island, where recent immigration is documented from 

mainland Italy. More than a half of the ancient haplotypes were present in the Ogliastra’s 

sample, but only the 18% in Gallura, which is the same proportion one would observe by 

picking up random modern individuals from all over Europe (Caramelli et al. 2007). The 

existence of such sharp differences between one modern population and the ancient 

inhabitants of the island calls for an explanation, which lies in questions on the existence and 

on the strength of genealogical ties between ancient and modern people, and which can be 

empirically addressed by means of ABC. 

In our study we defined three main models of evolution, tested both without and 

with migration from the mainland into Gallura (as historically documented), and differing 

mainly for the genealogical relationships between modern and ancient populations. In fact, 

in each of the three models, the ancient sample was placed respectively as ancestor of the 
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Ogliastra’s population only, of Gallura’s population only, or of both. The comparison 

between the observed mtDNA diversity and the patterns of variation simulated under these 

models clearly showed that haplotypes documented in the Bronze Age, or derived from 

them assuming a reasonable mutation rate, are still present and common in the isolated 

Ogliastra community. Conversely, the modern population of Gallura seems derived from 

ancestors who separated in Palaeolithic times (around 12,500 years ago) from the common 

ancestors of Bronze-Age and modern Ogliastra people, and have poor genealogical 

relationships, if any, with the ancient people of Sardinia. The only haplotype shared between 

Bronze-Age Sardinia and Gallura  is the Cambridge Reference Sequence (CRS), which is very 

common all over Europe; however, the ABC analysis showed that there is no way of 

generating the  genetic variation observed in Gallura starting from an ancient population 

with the same mtDNA diversity of Bronze-Age Sardinia. The most probable model estimated 

from the ABC analysis included also variable rates of gene flow from Latium, the mainland 

region nearest to Sardinia, into Gallura. Considering this migration rate we could also 

account for part of the excess of mtDNA variation found in Gallura with respect to Ogliastra.  

This study cast new light on the nature and the extent of the genealogical ties 

between modern and ancient populations, a long-term source of controversy in evolutionary 

biology. In the case of Sardinia, we showed that, when properly analyzed, even a few tens 

ancient sequences can be sufficient to test hypotheses on the relationships between past 

and modern people and to improve the estimation of demographic and evolutionary 

parameters underlying their model of evolution.  

The complete published study is reported at p. 97. 
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4.3 Origin and evolution of the Etruscans’ DNA 

The first urban settlements in Tuscany (Italy) date back to the Iron-Age, eighth 

century BC, and are associated with the onset of the Etruscan culture. Modern Tuscany 

broadly corresponds to the core of the Etruscan territory, or Etruria, and indeed the word 

‘Tuscany’ itself is derived from ‘Etruscan’. The Etruscan communities shared a non-

Indoeuropean language, a religion and a material culture, but they never formed a political 

unit. According to ancient historians, the resemblances between Etruscans and other Iron-

Age populations were extremely low, since they did not language, lifestyle or customs 

(Barker & Rasmussen 1998). Between the seventh and the fifth centuries, leagues of 

Etruscan cities exerted a crucial cultural and political role in the Mediterranean area. In the 

first century BC, the Etruscans obtained Roman citizenship, and their language and culture 

vanished from the archaeological record (Pallottino 1975; Barker & Rasmussen 1998). There 

is a long lasting controversy about the origin of the Etruscan population, whether local or 

Anatolian. To date, there is consensus among modern archaeologists that the Etruscan 

culture developed locally, with some features suggesting an Eastern influence; this 

hypothesis was also shared by the ancient historian Dionysius of Halicarnassus (Barker & 

Rasmussen 1998). However, other ancient historians like Herodotus and Livy regarded the 

Etruscans as immigrants, respectively, from Lydia (modern Western Anatolia) or from North 

of the Alps. Modern experts definitely support the former view, but affinities between the 

Lydian and the Etruscan languages seem to exist (Beekes 2002). Unfortunately, no historical 

documents are available to help address this question. In fact, even if we understand 

reasonably well the Etruscan language, the surviving Etruscan texts are mainly funerary or 

religious inscriptions. However, a language or a culture can rapidly get extinct, but that is 

certainly not the case for the DNA of its speakers; genetic evidence from Etruscans and other 

related populations may hence help one answer two questions, namely: what were the 

Etruscans’ origins? And, what is their biological relationship with the modern inhabitants of 

Etruria? 

In the last years, in the absence of any ancient genetic information, it was generally 

assumed that modern Tuscans are descended from Etruscans. The Etruscans’ origins were 

thus studied comparing Tuscans and other modern populations (Piazza et al. 1988; Achilli et 
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al. 2007; Brisighelli et al. 2009). Both Achilli et al. (2007) and Brisighelli et al. (2009) observed 

some affinities between Tuscans and modern Anatolian people; this similarity might be due 

to a common origin at any time in the past, but the authors viewed their data as supporting 

a recent historical connection with Anatolia due to migratory contacts leading to the 

development of the Etruscan culture. In 2004, for the first time, Vernesi and collaborators 

(2004) analyzed Etruscans’ mtDNA obtained from 27 different individuals, highlighting 

genetic similarities between the Etruscans and the current population of Turkey, but not 

with Italian populations other than Tuscans (even if they shared only two haplotypes). 

However, further studies, considering also a Medieval Tuscan sample (Guimaraes et al. 

2009), do not supported a direct genealogical continuity between the Etruscans and Tuscans 

(or Anatolian) populations (Belle et al. 2006; Guimaraes et al. 2009). The claim that 

systematic errors in the ancient DNA sequences led to flawed genealogical inference 

(Bandelt & Kivisild 2006; Achilli et al. 2007) is not supported by careful reanalysis of the 

Etruscan data (Mateiu & Rannala 2008).  

Previous studies did not exploit the inferential power of the ABC methods, and did 

not consider the potential effects of genetic divergence when populations are structured or 

subdivided. If most Etruscans’ descendants lived in isolated communities in the last 2,000 

years, their DNAs may still persist in some localities, but will escape detection unless they 

are sought at the appropriate (i.e., smaller) geographical scale. In this study we compared an 

enlarged Etruscan sample with Medieval Tuscans (Guimaraes et al. 2009), and four modern 

Tuscans population; three in historical Etruria, namely Casentino, Murlo and Volterra (Achilli 

et al. 2007), and one from Florence (Turchi et al. 2008), representing the general Tuscan 

population. In two populations, Casentino and Volterra, we found evidence of genealogical 

continuity from Etruscans, through Medievals, to current times. By contrast, for Murlo and 

Florence, the ABC analysis highlighted as most probable the model in which the modern 

population occupies a distinct branch of the genealogical tree with respect to Etruscans and 

medieval Tuscans; for these populations this model was shown to be 7 to 99 times more 

likely than any alternative model. We then asked whether genetic similarities between 

current Tuscans and Anatolians (Achilli et al. 2007; Brisighelli et al. 2009) provide some 

evidence for an Etruscan homeland in Anatolia. To answer, we exploited the algorithm of the 

IM methods to estimate the most probable separation time between Anatolians (from Di 
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Benedetto et al. 2001) and Tuscans populations showing genealogical continuity with the 

Etruscans. Our basic hypothesis was that if the genetic resemblance between Turks and 

Tuscans reflects a common origin just before the onset of the Etruscan culture, (meaning 

that the Etruscan population came from Anatolia as hypothesized by Herodotous) we would 

expect that the two ancestral populations separated around 3,000 years ago. Assuming an 

average generation time of 25 years, a plausible mutation rate, and complete isolation after 

the split from the common ancestors, the estimates of the separation time between Tuscany 

and Anatolia was around 7,600 years ago, with a 95% credible interval between 5,000 and 

10,000. Thus, there might have been a genealogical link between modern Tuscans and what 

Herodotus considered the Etruscans’ homeland, Anatolia. However, these results do not 

support an oriental origin for the Etruscans, because, even under the unrealistic assumption 

of complete reciprocal isolation between Tuscany and Anatolia, the likely separation of the 

two gene pools is dated long before the onset of the Etruscan culture. To date, no available 

genetic evidence suggests an Etruscan origin outside Italy, and traces of genealogical links 

with Etruscans are still recognizable in specific localities of Tuscany. This study represents 

the first effort to shed light on the origin and evolution of the Etruscans’ DNA considering 

ancient DNA data and explicitly testing demographic models of evolution within the 

framework of approximate Bayesian computation. 

This study has been submitted to Molecular Biology and Evolution; the submitted 

manuscript is at p. 112. 
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5. Future Developments 

For many years, studies of human genetic diversity have been necessarily limited to 

modern populations, severely limiting our ability to investigate the detail of past processes. 

With the advent of methods for reliably typing ancient DNA, it has been possible to increase 

the power in reconstructing historical demographic processes, and in explicitly testing 

evolutionary hypotheses. Until recently, the ancient genetic information derived mainly from 

a single marker, the mitochondrial DNA (mtDNA), thus allowing one to study the fate of 

maternal lineages. Many advances in this field have been made in the last years and in 2010 

the first three ancient hominid nuclear genomes were published (Green et al. 2010; 

Rasmussen et al. 2010; Reich et al. 2010). These results were achieved thanks to the 

technological developments in high-throughput sequencing, making it feasible to move from 

single genetic locus (such as mtDNA) to (almost) complete genome sequencing of ancient 

populations, and offering novel means of assessing authenticity of ancient DNA, even from 

modern humans. Moreover, extensive human genome data are becoming available, both 

from genome wide SNP data (Li et al. 2008; Reich et al. 2009; Xing et al. 2009; Hatin et al. 

2011; Henn et al. 2011), and from the 1000 Genome Project and other human genome and 

exome studies (Schuster et al. 2010; The 1000 Genomes Project Consortium 2010). In this 

light, we will soon have large numbers of whole genome sequences from several modern 

and ancient populations. Combining this advance in the availability of whole genome 

sequence data and the statistical power provided by model-based methods such as ABC, in 

the near future it will be possible to clarify other long-standing evolutionary questions, and 

to highlight aspects of human history at an unprecedented resolution. 
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