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Chapter 1

Introduction

1.1 Towards the inner structure of matter

Since the beginning of atomic physics, scattering experiments have proven to be a powerful
tool to probe the inner structure of matter. Among the best examples is the discovery of the
atomic nucleus, achieved in 1909 by Rutherford, Geiger and Marsden by scatteringα particles
off a gold foil [Gei09, Rut11]. The increased performances ofthe particle accelerators over the
past decades enabled to dramatically increase the energy ofthe projectiles and thus their spatial
resolution power. As a result the nucleon and its substructures were eventually been resolved
adopting a similar approach, though with an enormously greater experimental complexity.
By the end of the 60’s, the first inclusive Deep Inelastic Scattering (e+p→ e′+X) experiments
at SLAC showed that thestructure functionsof the nucleons were to a large extent independent
on the squared momentum transferQ2. This scaling behaviorof the structure functions was
eventually interpreted by Bjørken and Feynman as the evidence of the existence of point-like
sub-nucleonic particles, calledpartons[Bjo69a, Bjo69b, Fey69]. These objects were later iden-
tified with thequarks, spin 1/2 particles with fractional electric charge and a new degree of
freedom calledflavour, whose existence had been earlier predicted by Gell-Mann and Zweig on
the basis of the symmetry properties of the mesons and baryons multiplets [Gel64, Zwe64].
TheQuark Parton Model, developed in the late 60’s, has proven to be particularly successful in
the prediction of a number of “macroscopic” observables of the hadrons such as the mass, the
charge and the spin. According to this model, the proton is made of three quarks, each carrying
approximately a third of the proton mass. Two quarks have flavour up and charge+2

3
e and one

has flavourdownand charge−1
3
e, thus resulting in a total charge+e (i.e. the same of the elec-

tron but with opposite sign). Furthermore, in a proton with spin along a certain direction, two
of the quarks have spin in the same direction and one in the opposite direction, thus resulting in
a total spin equal to1/2.
Though this model represented a major step toward the understanding of the inner structure of
the nucleon, it was soon found to be not enough appropriate for a comprehensive interpreta-
tion of the experimental data. Indeed, experimental results showed that only roughly50% of
the nucleon’s momentum is carried by quarks [Per72]. The missing momentum could only be

1



CHAPTER 1. INTRODUCTION

explained a few years later within the framework of the quantum chromodynamics (QCD), the
gauge theory of strong interactions (see Appendix A). According to this theory, which requires
the existence of thecolor as an additional degree of freedom of the quarks, the missingmomen-
tum of the nucleon is carried by thegluons, the gauge bosons of the strong interaction. These
particles do not show up in the electro-weak scattering processes as they carry no electro-weak
charge. The first evidence for the existence of gluons was theobservation of three-jet events at
the electron-positron collider PETRA at DESY in 1979 [Bar79].
Among the most surprising consequences of QCD isconfinement, which causes a quark sub-
jected to a high momentum transfer during a scattering process, to fragment into a colorless
bunch of hadrons (jet) along its way to escape the nucleon. Since the momentum, the charge,
the flavour and the spin orientation of the struck quark can beindirectly accessed through the
analysis of the composition of the hadron jet, the experimental investigation of the hadronic
final state in deep inelastic scattering experiments allowsa deeper insight into the sub-nuclear
processes than inclusive measurements alone.

1.2 The internal spin distribution of the nucleon

With the evidence that the proton and the neutron are not elementary particles, physicists were
challenged with the task of explaining the nucleon’s spin interms of its constituents. This
created a new frontier in hadron physics phenomenology which is still very active and has had
a crucial impact in our understanding of the internal structure of the nucleon.
The internal dynamic spin structure of the nucleon can be probed by scattering polarized beams
off polarized targets. As it is non-trivial to produce polarized nuclear targets and high energy
polarized beams, the spin distribution of quarks inside thenucleon remained experimentally
inaccessible for many years.
The first measurements of polarized electron-proton scattering were performed at SLAC by
the E80 and E130 collaborations in the mid ’70s [Alg76, Bau83]. Though affected by large
experimental uncertainties, the spin-dependent structure functions of the proton were founf to
be in reasonable agreement with the theoretical predictions. A break-through occurred in the
late ’80s, when the EMC collaboration repeated these measurements at CERN with higher
precision and in a wider kinematic range using a polarized muon beam with an energy 10 times
higher than at SLAC. The reported results for the spin-dependent structure function of the proton
were found to be in strong disagreement with the predictionsof the Ellis-Jaffe sum rule [Ell74,
Ash88]. When used in combination withSU(3) symmetry arguments to calculate the fraction
of the nucleon’s spin carried by theup, downandseaquarks, this result implies that the majority
of the spin of the nucleon is not carried by the quarks, a majorsurprise that came soon to be
known as the ’spin crisis’. This unexpected result, which caused a lot of excitement in the high
energy physics community, was especially surprising sincethe extraction of the static magnetic
moments of the nucleons, based on similar symmetry arguments, was in perfect agreement
with the quark model predictions. The EMC results were substantially confirmed for both the
proton and the neutron by the SMC experiment at CERN and the E142experiment at SLAC

2



1.2. THE INTERNAL SPIN DISTRIBUTION OF THE NUCLEON

in the following years. The SMC experiment also provided another important result: the first
determination of the separate contributions of the valenceand the sea quarks to the nucleon spin
in Semi-Inclusive Deep Inelastic Scattering measurements[Ade98]. In such measurements,
the scattered lepton is required to be detected in coincidence with at least one of the hadrons
produced in the fragmentation of the struck quark (e+ p→ e+ h+X).
The immediate consequence of all these results was that there ought to be additional sources
of spin within the nucleon besides the quarks. The most natural candidates are the spin of the
gluons(∆G) and the orbital angular momentum of quarks(Lq

z) and gluons(LG
z ):

sN
z =

1

2
=

1

2
∆Σ + ∆G+ Lq

z + LG
z (1.1)

where:
∆Σ = (∆uv + ∆dv + ∆qs) (1.2)

is the contribution carried by the valence and sea quark spins. Precision measurements from the
HERMES and the COMPASS experiments have recently establishedthat this contribution is of
the order of 30%.
A variety of experiments have been realized, since the publication of the EMC results, to in-
vestigate the nucleon’s spin structure with unprecedentedprecision. The main goal of the these
experiments was to provide high precision measurements of all the various spin contributions
listed in eqn. (1.1). Furthermore, thanks to the different experimental setups (beam energies,
targets, detectors, etc), these experiments covered complementary kinematic regions, thus pro-
viding all together a wide coverage inx andQ2 (see Figure 1.1). An overview of past and
present experiments with polarized beam and target is reported in Table 1.1.
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Figure 1.1: Kinematic domains inx andQ2 probed by fixed-target and collider experiments [Yao06].
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Exp. Y Beam [GeV] Target f 〈PT 〉 〈PB〉 Q2 range x range Ref.

SLAC
E80 75 10–13e− H-butanol 0.11 40% 51% 1.4–2.7 0.20–0.33 [Alg76]

77 10–16e− H-butanol 0.13 50% 85% 1.0–4.1 0.1–0.5 [Alg78]
E130 79 16–23e− H-butanol 0.15 58% 81% 3.5–10 0.18–0.7 [Bau83]
E142 92 19–25e− 3He 0.35 33% 36% 1.3–6.5 0.03–0.6 [Ant96]
E143 93 10–29e− 15NH3 0.17 67% 87% 0.3–10 0.02–0.85 [Abe98]

95 15ND3 0.24 24% [Abe98]
E154 95 48.3e− 3He 0.55 38% 82% 1.2–15 0.014–0.7 [Abe97]
E155 97 48.3e− 15NH3 0.15 80% 81% 1.0–40 0.014–0.9 [Ant00]

6LiD 0.36 22% [Ant99]
E155x 99 29–32e− 15NH3 0.13 70% 83% 0.7–20 0.02-0.8 [Ant02]

6LiD 0.18 22% [Ant02]

CERN
EMC 85 100–200µ+ 15NH3 0.17 78% 79% 1.0–60 0.01–0.7 [Ash89]
SMC 92 100µ+ D-butanol 0.19 35% 82% 1.0–30 0.006–0.6 [Ade93]

93 190µ+ H-butanol 0.12 86% 80% 1.0–60 0.003–0.7 [Ada94]
94 D-butanol 0.20 51% 81% [Ada95]
96 15NH3 0.16 89% 77% 0.2–100 0.0008–0.7 [Ade97]

COMPASS 02 160µ+ 6LiD 0.50 50% 76% 1.0–100 0.004–0.7 [Age05]
06 160µ+ 15NH3 0.20 85% – – [Bra06]

DESY
HERMES 95 27.5e+ 3He ‖ 1.00 46% 55% 1.0–15 0.023–0.6 [Ack97]

96 H ‖ 80% 53% 0.8–20 0.021–0.85 [Air98]
98 27.5e+/− D ‖ 84% 1.0–15 0.023–0.4 [Air03]
02 H ⊥ 71% – [Els06]

JLAB
CLAS 98 2.5e− 15ND3 – 14% 72% 0.3–1.3 0.05–0.8 [Yun03]

2.6–4.3e− 15NH3 51% 70% 0.1–1.6 0.05–0.8 [Fat03]
E94-010 98 0.9–5.1e− 3He 35% 70% 0.1–0.9 – [Ama02]
E99-117 00 5.8e− 3He 40% 80% 2.7–4.8 0.33–0.6 [Zhe04]
E01-006 02 15NH3 80% 68% 0.8–1.8 – [Mck02]

15ND3 20% [Ron03]

BNL
STAR 02 100 P–P P–P Coll 1.00 16% 16% – – [Ada04]

PHENIX 02 27% 27% [Adl04]
04 45% 45% [Adl06]

Table 1.1: A selection of past and present experiments with both polarized beam and target is presented
together with some of their main features.〈PT 〉 (〈PB〉) is the Target (Beam) average polarization andf

is the target dilution factor.
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1.3. TRANSVERSITY AND SIVERS DISTRIBUTION FUNCTIONS AT HERMES

1.3 Transversity and Sivers distribution functions at HERMES

After averaging over the quark transverse momentumpT , three parton distribution functions
are needed at leading twist1 for a complete description of the momentum and spin distribu-
tions of the quarks within the nucleon. Two of them have been widely measured in various
experiments: the well known momentum (or spin-independent) distribution functionq(x,Q2),
which reflects the probability to find quarks within the nucleon carrying a fractionx of the
nucleon momentum at photon virtualityQ2, and the helicity distribution∆q(x,Q2), which re-
flects, in the helicity basis, the difference in probabilities to find quarks in a longitudinally
polarized nucleon with their spin aligned and anti aligned to the spin of the nucleon [Lam00].
In a basis of transverse spin eigenstates, the third distribution functionδq(x,Q2), known as
transversity[Ral79, Art90, Jaf92], reflects the difference in probabilities to find, in a trans-
versely polarized nucleon, quarks with their spin aligned and anti-aligned to the spin of the
nucleon. This quantity has no probabilistic interpretation in the helicity basis, where it is re-
lated to a forward scattering amplitude involving helicityflip of both the quark and the target
nucleon (N⇒q←→N⇐q→). Since strong and electromagnetic interactions conservechirality,
transversity has so far remained unmeasured in inclusive processes due to its chiral-odd nature.
At the HERMES experiment, the so calledCollins moments, in which the transversity is con-
voluted with the chiral-odd Collins fragmentation function, are accessible through azimuthal
single-spin asymmetries (SSA) in semi-inclusive deep inelastic scattering (DIS) on a trans-
versely polarized proton target. The Collins function describes the correlation between the
transverse spin of the struck quark and the transverse momentumPh⊥ of the produced hadron
[Col93]. The transverse polarization of the struck quark canindeed influence the transverse
(with respect to the virtual photon direction) component ofthe hadron momentum, leading to
a left-right asymmetry in the momentum distribution of the produced hadrons in the direction
transverse to the nucleon spin (Collins mechanism) [Ant99].
In the last few years, a rapidly increasing attention is being devoted, from both the theoret-
ical and the experimental point of view, to the non-collinear phenomena in the nucleon. It
was indeed realized that many important new aspects of the nucleon structure can be accessed
through the so-called Transverse Momentum Dependent (TMD)distribution functions. These
distribution functions arise when the quark transverse momentumpT is not integrated over.
Among them the Sivers function is particularly interestingsince its existence requires a non-
zero orbital angular momenta of the quarks and has been linked to the spatial distribution of
partons inside the nucleon [Bro02, Bur02]. The Sivers function describes the correlation be-
tween the transverse polarization of the target nucleon andthe transverse momentumpT of
quarks (Sivers mechanism) [Siv90]. The Sivers function appears together with the well known
spin-independent fragmentation function (Sivers moments) in the cross section for a transversely
polarized nucleon and produces a different left-right asymmetry.
From 2002 to 2005 the HERMES experiment has operated with a hydrogen target polarized
transversely to the direction of the HERA lepton beam. The data collected during this period

1A leading-twist or twist-two term is a leading-order term in a1/Q expansion.
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allowed the study of transverse target Single Spin Asymmetries (SSA). In particular, the extrac-
tion of the Collins and Sivers moments from the full HERMES transverse data set is presented
in this thesis. A preliminary extraction of the Sivers function in combination with the momen-
tum distribution function (Sivers polarization) is also presented.

1.4 Outlook of the thesis

The theoretical framework for the inclusive and semi-inclusive deep inelastic scattering is pro-
vided in Chapters 2 and 3, respectively. While a phenomenological and historical perspective
is adopted in Chapter 2 for the description of the inclusive processes, a detailed treatment of
the formalism concerning the physics of the transverse degrees of freedom of the nucleon is
presented in Chapter 3. In Chapter 4 the main components of the HERMES experimental appa-
ratus are presented. The extraction of the Collins and Siversmoments is discussed in Chapter 5
after a brief overview of the main steps of the data analysis.A selection of systematic studies
is also reported at the end of the chapter. Chapter 6 is completely devoted to the estimate of
the acceptance and smearing effects on the extracted azimuthal moments. A crucial role in the
studies presented is played by a newly developed Monte Carlo generator which simulates az-
imuthal asymmetries arising from intrinsic quark momenta.A novel approach for the estimate
of the acceptance effects is presented at the end of the chapter. The extracted Collins and Sivers
moments, corrected for the acceptance effects, are shown inChapter 7. The discussion and the
interpretation of the results, together with a preliminaryextraction of the Sivers polarization,
are also treated in Chapter 7. Final conclusions and a brief summary are reported in Chapter 8.

6



Chapter 2

The Deep Inelastic Scattering

2.1 The non-perturbative regime of QCD and the structure of hadrons

The nucleon, as all baryons and mesons, is a system of confinedquarks and gluons. Therefore
only non-perturbative methods can describe its properties. In the non-perturbative (or long-
distance) regime of QCD (see Appendix A), predictions of the physical observables related
to the structure of the hadrons cannot be formulated from first principles but only within the
framework of effective theories or phenomenological models [Bha88]. Non-perturbative meth-
ods have proved to be notoriously difficult in quantum field theory and often provide only par-
tial descriptions of the structure of the hadrons. For instance, the Chiral Quark Soliton Model
[Chr96, Dia98, Wak01, Efr05], which is one of the most sophisticated models for the nucleon,
lacks any gluonic degree of freedom, thus making only predictions for the quark content of
the nucleon. On the other hand, in the popular MIT bag model [Cho74a, Cho74b] quarks are
treated as massless particles inside a bag of finite dimension and the confinement results from
the balance of the pressure on the bag walls from the outside (vacuum pressure) and the pressure
resulting from the kinetic energy of the quarks inside the bag.
More realistic non-perturbative predictions on the low-energy features of the hadron world are
provided by the lattice-QCD, which allows for exact QCD solutions in a discretized space-time
lattice. However, despite the noteworthy successes achieved in selected subjects and the in-
creasing performances of the computers available, lattice-QCD is still heavily limited by the
available computational power.
Experimental results are thus required to constrain modelsand to provide reliable information
about the hadron inner structure. Among the most promising processes to be explored exper-
imentally are thee+e− andpp annihilation and the lepton-hadron scattering. In particular, the
study of deeply inelastic electron-nucleon scattering is of great historical importance because
it led to the first clear evidence for scattering from individual point-like constituents confined
within the nucleon.

7



CHAPTER 2. THE DEEP INELASTIC SCATTERING

2.2 The elastic electron-nucleon scattering

The elastic scattering of electrons (or muons1) off protons is the simplest process one can think
of in order to extract information on the properties of the proton. In this case, indeed, the target
protons stay intact and there is no creation of new particles:

l + p→ l + p (l = e, µ) . (2.1)

Due to the low energies involved, this reaction is dominatedby the single-photon exchange
mechanisms, as depicted in Figure 2.1.

Figure 2.1: Feynman diagram of elastic electron-proton scattering.

Herek andP are the four-momenta of the incoming electron and proton, respectively, andk′

andP ′ those of the scattered particles. The four-momentumq of the exchanged virtual photon
is given by the difference between the initial and final statefour-momenta:

q = k − k′ = P ′ − P . (2.2)

Averaging over all possible spin states and using the standard Feynman rules for QED, the
squared amplitude of this process can be written in the following compact form:

〈|A|2〉 =
α2

q4
LµνKµν , (2.3)

whereα = e2

4π
is the electromagnetic coupling andLµν andKµν are the leptonic and the hadronic

tensors describing the interaction at the leptonic and hadronic vertices, respectively. In particu-
lar the leptonic tensor can be expressed in the form

Lµν = 2(kµk′ν + kνk′µ + gµν(m2 − kσk′σ)) , (2.4)
1The same arguments apply to electrons and muons since they have identical electro-weak interactions.
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2.3. THE KINEMATICS OF THE DEEP INELASTIC SCATTERING

wheregµν is the metric tensor andm the mass of the lepton. It describes the emission of a
virtual photon by a lepton and is calculable in Quantum Electrodynamics.
Unlike the lepton tensor, the hadronic tensorKµν , which describes the absorption of the virtual
photon by the proton, cannot be perturbatively derived fromfirst principles. However a simple
parametrization is possible in terms of the so-calledelastic proton form factorsK1 andK2:

Kµν = K1

(
− gµν +

qµqν

q2

)
+
K2

M2

(
P µ +

1

2
qµ
)(
P ν +

1

2
qν
)
, (2.5)

whereM is the mass of the proton.
Since the proton stays intact during the process, its constituents can only contribute coherently
to the scattering. As a consequence the two proton form factors contain very limited information
about the substructure of the proton itself. These form factors, which only depend onq2, can be
redefined in terms of the electric(GE) and magnetic(GM) proton form factors. The former is
associated with the charge distribution and the latter withthe magnetic moment distribution of
the proton. The elastic electron-proton scattering cross section can thus be written in the form:

dσ

dΩ
=

4α2E2cos2(θ/2)

q4[1 + (2E/M)sin2(θ/2)]

(
G2

E + τG2
M

1 + τ
+ 2τG2

Mtan2(θ/2)

)
, (2.6)

known as the Rosenbluth formula [Ros50], whereθ is the scattering angle andτ = −q2/4M2.
As in classical Rutherford scattering, a typical1/q4 dependence is observed.
The measurement of the cross section and the subsequent extraction ofGE through the Rosen-
bluth formula allowed to extract the root-mean-square charge radiusrE of the proton [Mur74]:

r2
E =

∫
d3xr2ρ(r) = −6

dGE(q2)

dq2

∣∣∣∣∣
q2=0

= (0.81 ± 0.04 × 10−13 cm)2 . (2.7)

The same radius of about0.8 fm was also obtained for the magnetic moment distribution.

2.3 The kinematics of the Deep Inelastic Scattering

While the elastic lepton-nucleon scattering led to the first measurements of the size of the pro-
ton, deep inelastic lepton-nucleon scattering experiments have proven to be particularly suitable
to probe the partonic structure of the nucleon, allowing themeasurement of a variety of parton
distributions and related observables.
The deep-inelastic lepton-nucleon scattering (DIS) is a process in which a leptonl scatters off
a nucleonN via the exchange of a virtual boson. In contrast to the elastic lepton-nucleon
scattering, where the nucleon recoils but stays intact, in DIS processes the momentum transfer
involved is so large that the nucleon breaks up and forms a hadronic final stateX:

9



CHAPTER 2. THE DEEP INELASTIC SCATTERING

l +N → l′ +X. (2.8)

In lowest order perturbation theory this interaction is described as the exchange of a neutral
boson (γ orZ0) between the lepton and the charged constituents inside thenucleon.
Since the HERMES center of mass energy is well below the mass ofthe neutral weak boson
(
√
s ≈ 7 GeV ≪ mZ0 = 91 GeV), theZ0 exchange is completely negligible at HERMES and

only the single photon exchange mechanism, which is the dominant mechanism at HERMES
energies, will be considered in the following.
Figure 2.2 shows a sketch of the DIS process in the one-photonexchange approximation. The
incoming lepton interacts with the target proton via the exchange of a virtual photon with
squared four-momentumq2 = −(k − k′)2. In contrast to real photons, the exchanged pho-
ton, due to its virtuality, can be either longitudinally or transversely polarized. The quantitiesP
andPX , appearing in Figure 2.2, represent the target proton and the hadronic finalX state four-
momenta, respectively, whilek andk′ are the four-momenta of the incoming and the scattered
lepton, respectively. In fixed target experiments, like HERMES, the laboratory frame coincides
with the target (proton) rest frame so thatP = (M,~0), with M the proton mass. In this frame,
the incoming lepton scatters at an angleθ.

Figure 2.2: Feynman diagram of deep inelastic scattering on a proton.

The kinematics of the process can be characterized by the following Lorentz invariant quantities:

- The negative squared four momentum of the virtual photon

Q2 ≡ −q2 = (k − k′)2 lab
= 4EE ′sin2(θ/2) , (2.9)

10



2.3. THE KINEMATICS OF THE DEEP INELASTIC SCATTERING

whereE andE ′ are the energies of the incident and scattered lepton, respectively.
The quantityQ2 is positive and represents a measure of the spatial scale that can be re-
solved by a virtual photon with wavelengthλ = 1/|q|.

- The energy carried by the virtual photon (i.e. the energy transferred in the reaction)

ν ≡ P · q
M

lab
= E − E ′ (2.10)

- The squared invariant mass of the target-nucleon – virtual-photon system, which corre-
sponds to the invariant mass of the system of hadrons produced in the final state:

W 2 ≡ (P + q)2 lab
= M2 + 2Mν −Q2 (2.11)

- The Bjørken variable

x ≡ −q2

2P · q
lab
=

Q2

2Mν
(0 ≤ x ≤ 1) , (2.12)

which can be understood as a measure of the inelasticity of the scattering process. Com-
bining the last two equations one obtains the relationW 2 = M2+2Mν(1−x). Therefore,
the limit x = 1 corresponds to elastic scattering regime, withW 2 = M2, while x < 1

corresponds to the inelastic regime, in whichW 2 > M2.

- The fractional energy-transfer from the lepton to the nucleon

y ≡ P · q
P · k

lab
=

ν

E
. (2.13)

The deep-inelastic scattering regime is usually defined byQ2 > 1 GeV 2 andW 2 > 4 GeV 2.
These conditions ensure a high enough resolution to probe the internal structure of the nucleon.
Furthermore, theW 2 requirement excludes the elastic scattering region as wellas inelastic
scattering in resonance regions withW 2 = MR, whereMR is the mass of the resonance. Being,
in this regime, the energies of the incident and scattered leptons much larger than the lepton
mass, the latter has been neglected in the definition of all the kinematical variables introduced
above.
In the inclusivemeasurements only the outgoing lepton is detected and the corresponding cross
section can be expressed in terms of two independent variables. It is usually convenient to
express the cross section in terms of(E ′, θ) or alternatively(x,Q2).
In semi-inclusivemeasurements one or more hadrons produced in the finalX state are detected
in coincidence with the outgoing lepton. If only one hadron is detected, the kinematics of this
hadron is completely defined by three independent variables:

11



CHAPTER 2. THE DEEP INELASTIC SCATTERING

- The fractional (relative to the virtual photon) energy

z ≡ P · Ph

P · q
lab
=
Eh

ν
, (2.14)

wherePh = (Eh, ~ph) is four-momentum of the hadron

- The transverse (relative to the direction of the virtual photon) momentum

Ph⊥ ≡ |~Ph × ~q|
|~q| (2.15)

- The azimuthal angleφh, relative to the scattering plane.

The spin-averaged semi-inclusive DIS cross section thus depends on five independent variables:
two inclusive variables (eg.x andQ2) and three semi-inclusive ones (z, Ph⊥ andφh).

The kinematical variables introduced in this section are summarized in Table 2.1.

k = (E,~k); k′ = (E′, ~k′); 4−momenta of incoming and outgoing lepton

P
lab
= (M,~0) 4−momenta of the target nucleon

θ, φ polar and azimuthal scattering angles

q = (ν, ~q) 4−momenta of the virtual photon

Q2 = −q2 lab
= 4EE′sin2(θ/2) negative squared4−momentum transfer

ν = P ·q
M

lab
= E − E′ energy transfer from the incoming lepton

to the target nucleon

x = Q2

2P ·q
lab
= Q2

2Mν Bjørken variable

y = P ·q
P ·k

lab
= ν

E fractional energy of the virtual photon

W 2 = (P + q)2
lab
= M2 + 2Mν − Q2 squared invariant mass of the hadronic final state

Ph = (Eh, ~Ph) 4−momentum of a final state hadron

z = P ·p
P ·q

lab
= Eh

ν fractional energy of the final state hadron

Ph⊥ ≡ |~Ph×~q|
|~q| transverse momentum of the hadron

φh azimuthal angle of the hadron w.r.t. scattering plane

Table 2.1:Definition of the most important kinematic variables used indeep-inelastic scattering.
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2.4. THE DIS CROSS SECTION

2.4 The DIS cross section

The inclusive DIS differential cross section can be writtenin the form

d2σ

dE ′dΩ
=

1

2M

E ′

E
|A|2 , (2.16)

where

|A|2 =
α2

Q4
LµνWµν (2.17)

is the squared amplitude for electron-hadron scattering, expressed in terms of the leptonic (Lµν)
and the hadronic (W µν) tensors. As depicted in Figure 2.3, the former describes the interaction
at the leptonic vertex and the latter at the hadronic vertex.

Figure 2.3: The optical theorem (see Appendix C) relates the squared amplitude |A|2 of the DIS process
(left) with the imaginary part of forward scattering amplitude (right). The latteris here explicitly divided
into the leptonic tensor (upper part) and the hadronic tensor (lower part).

After summation over all possible spin statess′ of the final state lepton, the leptonic tensor
can be split into a symmetric (S) and an antisymmetric (A) (under interchange of the Lorentz
indicesµ andν), part:

Lµ,ν(k, s; k
′) =

∑

s′

Lµ,ν(k, s; k
′, s′) = L(S)

µ,ν(k; k
′) + iL(A)

µ,ν (k, s; k′). (2.18)

The symmetric part

L(S)
µν (k; k′) = 2(kµk′ν + kνk′µ + gµν(m2 − kσk′σ)) (2.19)

is spin-independent while the antisymmetric part

L(A)
µν (k, s; k′) = 2mǫµναβs

α(kβ − k′β), (2.20)

depends on the spins of the incoming lepton. Hereǫµναβ is the totally-antisymmetric Levi-
Civita tensor (withǫ0123 = +1) andm is the lepton mass.
Also the hadronic tensor can be decomposed into a symmetric and an antisymmetric part, the
former being spin-independent and the latter dependent on the target nucleon spinS:

13



CHAPTER 2. THE DEEP INELASTIC SCATTERING

Wµ,ν(q;P, S) = W (S)
µ,ν (q;P ) + iW (A)

µ,ν (q;P, S). (2.21)

The symmetric part can be parameterized in terms of two spin-independent inelastic form fac-
tors,W1 andW2, while the antisymmetric part in terms of two spin-dependent ones,G1 and
G2:

1

2M
W (S)

µν (q;P ) =

(
−gµν +

qµqν
q2

)
W1(P · q, q2) (2.22)

+ 1
M2

(
Pµ − P ·q

q2 qµ

)(
Pν − P ·q

q2 qν

)
W2(P · q, q2),

1

2M
W (A)

µν (q;P, S) = ǫµναβq
α
{
MSβG1(P · q, q2) (2.23)

+ 1
M

[(P · q)Sβ − (S · q)P β]G2(P · q, q2)
}

.

The inelastic form factorsW1, W2, G1 andG2 are Lorentz-invariant scalars and are usually
substituted by four dimensionless quantities dependent onthe two DIS variablesx andQ2:

F1(x,Q
2) ≡MW1(P · q, q2) (2.24)

F2(x,Q
2) ≡ νW2(P · q, q2) (2.25)

g1(x,Q
2) ≡ (P · q)2

ν
G1(P · q, q2) (2.26)

g2(x,Q
2) ≡ ν(P · q)G2(P · q, q2). (2.27)

Being spin-independent,F1 andF2 are usually referred to asunpolarized structure functions.
On the other handg1 andg2, which dependent on spin, are known aspolarized structure func-
tions. Owing to the pQCD regime, all these structure functions cannot be predicted from first
principles and can thus only be determined experimentally.
The symmetric and antisymmetric parts of the hadronic tensor can be rewritten in terms of these
four structure functions according to:

W (S)
µν (q;P ) = 2

(
− gµν +

qµqν
q2

)
F1(x,Q

2)+

2

P · q

(
Pµ − P · q

q2
qµ

)(
Pν −

P · q
q2

qν

)
F2(x,Q

2) (2.28)

W (A)
µν (q;P, S) = ǫµναβ

2Mqα

P.q

[
Sβg1(x,Q

2) +
(
Sβ − S · q

P · qP
β
)
g2(x,Q

2)

]
(2.29)

14



2.4. THE DIS CROSS SECTION

Since the electromagnetic interaction conserves parity, only terms with the same symmetry can
contribute to the cross section. Therefore substituting eqns. (2.18) and (2.21) into the expression
of the differential cross section one obtains:

d2σ

dE ′dΩ
=

α2

2MQ4

E ′

E
[L(S)

µν W
µν(S) − L(A)

µν W
µν(A)]. (2.30)

2.4.1 The spin-independent cross section

Averaging over all spins in the initial state of the scattering process and summing over the spins
in the final state, only the spin-independent symmetric parts of the leptonic and hadronic tensors
contribute to the cross section. Expliciting the symmetricpart of the leptonic and hadronic
tensors, one can express the unpolarized cross section in terms of the spin-independent structure
functionsF1 andF2:

d2σunpol

dE ′dΩ
=

α2

2MQ4

E ′

E
L(S)

µν W
µν(S) =

(
d2σ

dE ′dΩ

)

Mott

·
[

2

M
F1(x,Q

2)tan2(θ/2) +
1

ν
F2(x,Q

2)

]
, (2.31)

where

(
d2σ

dE ′dΩ

)

Mott

=
4α2E ′2

Q4
cos2(θ/2) (2.32)

is the Mott cross section, which describes the elastic scattering of a relativistic spin-1/2 particle
off a spinless point-like particle. As a result, the second term of eqn. (2.31), which contains
the unpolarized structure functions, represents the deviation, due to the composite nature of the
nucleon, of the observed DIS cross section from the Mott cross section. A selection of world
data for the structure functionF2 as a function ofQ2 for differentx is reported in Figure 2.4.
The spin-independent DIS cross section (2.31) can be alternatively represented in terms of the
inclusive variablesx andQ2:

d2σ

dxdQ2
=

4πα2

xQ4

[
y2xF1(x,Q

2) + (1 − y)F2(x,Q
2)
]

(2.33)

or with respect tox andy:

d2σ

dxdy
=

4πα2

sx2y2

[
xy2F1(x,Q

2) +

(
1 − y − γ2y2

4

)
F2(x,Q

2)

]
, (2.34)

wheres = (P + k)2 denotes the squared center-of-mass energy andγ = (2Mx)/Q.

15
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Figure 2.4: World data onF2(x, Q2) from H1, ZEUS, NMC, E665 and the BCDMS collaborations.
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2.4.2 The spin-dependent cross section

If both the incident lepton beam and the target protons are longitudinally polarized, the anti-
symmetric (spin-dependent) parts of the leptonic and hadronic tensors contributes to the cross
section. Since in this case both the spin-independent and the spin-dependent parts of the cross
section are non-vanishing, the only way to isolate the spin-dependent component consists in
measuring the difference of the cross sections obtained with two opposite target spin states. In
the difference the unpolarized components cancel and one obtains the bare spin-dependent cross
section:

d3σ
→
⇐

dxdy
− d3σ

→
⇒

dxdy
=

4α2

sxy

[(
2 − y − γ2y2

2

)
g1(x,Q

2) − γ2yg2(x,Q
2)

]
, (2.35)

where→ indicates the spin orientation of the incoming lepton and⇐,⇒ the two different spin
states of the target nucleon.
Sinceγ2 ∼ 1/Q2 andg2(x,Q

2) is small by itself, the cross section is dominated by the first
term, containing the structure functiong1(x,Q

2). In particular, if the target spin is collinear with
the direction of the virtual photon the contribution ofg2(x,Q

2) vanishes completely. However,
since it is not possible to polarize the target nucleons withrespect to the virtual photon direction,
the non-vanishing contribution of theg2(x,Q

2) structure function, which arises from the fact
that the virtual photon direction has a transverse component with respect to the target spin, is
usually taken into account through a parametrization of theworld data.
Figure 2.5 reports theg1(x) world results for protons, neutrons and deuterons as a function
of the Bjørken variablex. Since it is not possible to build neutron targets, theg1(x) results
on neutrons have been obtained using a polarized3He target, which basically behaves like a
polarized neutron target since the spins of the two protons are opposite and result in a vanishing
contribution, or alternatively from the difference of the results from the deuteron and the proton.
If the target polarization is transverse to the incoming lepton direction, the expression of the
polarized cross section becomes:

d3σ→⇓

dxdydφl
S

− d3σ→⇑

dxdydφl
S

=
4α2

sxy
γ

√
1 − y − γ2y2

4

[
γg1(x,Q

2) + 2g2(x,Q
2)
]
cosφl

S, (2.36)

whereφl
S is the azimuthal angle of the target spin vector~S with respect to the lepton beam

direction. Due to theγ pre-factor, also the term containingg1(x,Q
2) is partially suppressed.

A precise measurement ofg2(x,Q
2) was recently obtained by the E155 Collaboration by scat-

tering longitudinally polarized electrons off transversely polarizedNH3 and6LiD targets [Ant02].

2.5 The Bjørken scaling

The early deep-inelastic scattering experiments performed at SLAC showed that the unpolarized
structure functionF1 andF2 are approximatelyQ2-independent in the large momentum transfer
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Figure 2.5: World results for the spin-dependent structure functiong1(x) of the proton, deuteron and
neutron (from3He target) measured in deep-inelastic scattering of polarized electrons/positrons [Yao06].

region:

F1,2(x,Q
2) ≈ F1,2(x) (Q2 ≫M2) . (2.37)

This phenomenon, predicted by the Quark Parton Model (cf. Section 2.6), became known as
Bjørken scalingor scale invariancebecause, in the so-called Bjørken limit

lim
Bj

=





Q2 → ∞
ν → ∞ ,

x fixed

(2.38)

the structure functions are left unchanged by a scale transformation, i.e. by a transformation in
whichQ2 andν are multiplied by an arbitrary scale factork, so thatx remains unchanged.
A Q2-independence of the structure functions would imply that the electromagnetic probe (in-
coming lepton) “sees” the same proton structure no matter how big the spatial resolution is.
This behavior is in clear contrast with the strongQ2-dependence of the elastic form factors,
which implies a inner structure of the proton2. The observed scaling behavior could be success-
fully accounted for by considering scattering from point-like constituents within the proton,
rather then from the proton as a whole. This was historicallythe first dynamical evidence of

2If the proton were a point-like particle, the elastic form factors would also beindependent ofQ2.
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the quarks, whose existence had been previously inferred solely on the basis of static quantities,
like the masses and quantum numbers of the hadrons.
With the increased accuracy of the next generation DIS experiments and the broadening of the
kinematic regions explored, a noticeableQ2-dependence of the structure functions appeared (cf.
Figure 2.4). This violation of the Bjørken scaling, interpreted as the evidence of the dynamical
structure of the proton (quarks can radiate gluons, gluons can split intoqq pairs and gluons can
couple with other gluons) represented one of the earliest triumphs of QCD (see Section 2.7).

2.6 The Quark Parton Model

The Quark Parton Model (QPM), developed by Bjørken and Feynman in the late 1960’s [Bjo69a,
Bjo69b, Fey69], provided an intuitive explanation for the observed Bjørken scaling. In this
model, deep-inelastic lepton-nucleon scattering at high enough energies is interpreted as the in-
coherent elastic scattering of the lepton off the free point-like spin-1/2 charged constituents of
the nucleon. These constituents, calledpartons, were later recognized to be the quarks, whose
existence had been proposed a few years earlier by Gell-Mannand Zweig on the basis of the
symmetry properties of the mesons and baryons multiplets [Gel64, Zwe64].

The QPM is conveniently formulated in a reference frame (seeFigure 2.6) where the nu-
cleon moves with very high momentum (infinite-momentum frameor Breit frame), such that the
transverse momentum components and the rest mass of the constituents and the nucleon itself
can be neglected3. In this special frame the scattering can be viewed as the absorption of a
virtual photon by one of the collinearly moving partons inside the nucleon. The struck parton,
which carries a fractionpq = ξP of the total momentum of the nucleon, recoils with its original
momentum reversed, as shown in the right-hand panel of Figure 2.6.

Figure 2.6: Feynman diagram of the DIS process in the laboratory frame (left) and in the Breit frame
(right).

After the absorption of the virtual photon, the mass-shell relation for the struck parton yields:

(ξP + q)2 = ξ2P 2 + 2ξP · q −Q2 = 0 , (2.39)

3Since the structure functions are Lorentz invariant, their description in the Breit frame is valid in any other frame as well.
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whereq ≡ (ν, ~q) is the four-momentum of the virtual photon andQ2 = −q2. Being a Lorentz
invariant quantity, eqn. (2.39) also holds in the laboratory frame, whereP ≡ (M, 0):

ξ2M2 + 2ξMν −Q2 = 0, (2.40)

In the scaling limitQ2 ≫ M2, the termξ2M2 becomes negligible and eqn. (2.40) yields
ξ ≈ Q2/(2Mν), which is the definition of the Bjørkenx variable (cf. Section 2.3). In the
QPM the Bjørkenx variable can thus be interpreted as the fractional momentumof the nucleon
carried by the struck quark, and the DIS process consists in the incoherent sum of elastic scat-
tering off the partons carrying a momentum fractionx of the nucleon momentum. The model,
however, requires that the interaction between the individual partons is weak on short distances.
This circumstance is satisfied if the scattering occurs on sufficiently short time scales, i.e. much
shorter that the typical time scales of the interactions between partons. In this approximation,
known as theImpulse Approximation(IA), the partons can be regarded as a gas of quasi-free
particles.

In the QPM the nucleon is described in terms of the parton distribution functions (p.d.f.)
qf (x), which represent the probability density to find in the nucleon a quark of flavourf and
fractional momentumx. The quantityqf (x)dx thus represents the number of quarks with
flavour f and fractional momentum in the range[x, x + dx]. Using the notationsq

→
⇒
f (x) and

q
→
⇐
f (x) for the probability densities to find a quark of flavourf with momentum fractionx

and spin parallel or antiparallel, respectively, to the nucleon spin, one can define the spin-
independent and spin-dependent parton distribution functions as:

qf (x) = q
→
⇒
f (x) + q

→
⇐
f (x) (2.41)

∆qf (x) = q
→
⇒
f (x) − q

→
⇐
f (x) , (2.42)

whereqf (x) represents the distribution of the partons summed over the spin degrees of freedom
and∆qf (x), given by the difference of the distributions of the partonswith different helicity
states, represents the helicity distribution within the nucleon.
The spin-independent and spin-dependent structure functions described in Section 2.4 can now
be interpreted within the QPM as the charge-weighted sums over the quark flavoursf (including
anti-quarks)4 of the corresponding parton distribution functions:

F1(x) =
1

2

∑

f

e2fqf (x) , (2.43)

g1(x) =
1

2

∑

f

e2f∆qf (x) , (2.44)

g2(x) = 0 , (2.45)
4Because of the large mass ofc, b andt quarks, in practice only the three lightest quarks flavoursu, d ands are considered.
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whereef is the fractional charge carried by the quarks. SInce the structure functiong2 is related
to the transverse degrees of freedom of the quarks within thenucleon, it has no interpretation
and vanishes in the QPM, where all the partons are assumed to move collinearly to the nucleon.
The spin-independent structure functionF1 is related toF2 by the ratio of the photo-absorption
cross sections of longitudinally (L) and transversely (T ) polarized virtual photons:

R(x,Q2) =
σL(x,Q2)

σT (x,Q2)
=

(1 + γ2)F2(x) − 2xF1(x)

2xF1(x)
. (2.46)

In the Bjørken limit the kinematic factorγ = (2Mx)/Q becomes negligible (cf. eqn. (2.38)).
In addition, the photo-absorption cross sectionσL for longitudinally polarized photons with
helicity 0 vanishes due to helicity conservation at the virtual photon–parton scattering vertex.
ThusR(x,Q2) → 0 and eqn. (2.46) yields:

F2(x) = 2xF1(x) , (2.47)

known as the Callan-Gross relation [Cal69]. Since this relation only holds for spin-1/2 point-
like partons, its experimental fulfillment represented theproof for the spin-1/2 nature of quarks.

Expliciting the various quark flavours and using the notation qu(x) ≡ u(x), qd(x) ≡ d(x), etc,
the structure functionF2 can be written separately for the proton and the neutron as

1

x
F p

2 =

[
4

9
(up

v + us + us) +
1

9
(dp

v + ds + ds) +
1

9
(ss + ss)

]
(2.48)

1

x
F n

2 =

[
4

9
(un

v + us + us) +
1

9
(dn

v + ds + ds) +
1

9
(ss + ss)

]
, (2.49)

where the sub-indexesv ands denote thevalence quarksand thesea quarks(cf. Section 2.7)
distributions, respectively. In addition, since the proton and the neutron are partners of an
isospin doublet (I = 1/2), their quark distributions are subject to the following relations:

up
v(x) = dn

v (x) = uv(x) dp
v(x) = un

v (x) = dv(x) (2.50)

Using relations (2.50) we can rewrite eqns. (2.48) and (2.49) in the compact form:

1

x
F p

2 =
1

9
[4uv + dv] +

4

3
S (2.51)

1

x
F n

2 =
1

9
[uv + 4dv] +

4

3
S , (2.52)

where we have used the assumption:

us(x) = ūs(x) = ds(x) = d̄s(x) = ss(x) = s̄s(x) = S(x) . (2.53)
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Further constraints on the quark structure functions result from the fact that the quantum num-
bers of the proton (neutron) should correspond to those of the uud (udd) combination of va-
lence quarks: baryon number 1, strangeness 0, charge 1 (0). Therefore, by summing over all
contributing partons, the following sum rules have to be fulfilled:

∫ 1

0

dx[u(x) − u(x)] =

∫ 1

0

dxuv(x) = 2 (1) (2.54)

∫ 1

0

dx[d(x) − d(x)] =

∫ 1

0

dxdv(x) = 1 (2) (2.55)

∫ 1

0

dx[s(x) − s(x)] = 0 . (2.56)

2.7 The QCD-improved Quark Parton Model

As anticipated in Section 2.5, the scaling of the unpolarized structure functions, predicted by the
quark parton model, is only approximately valid. As clearlyvisible in Figure 2.4, the structure
functionF2 significantly increases at smallx and slowly decreases at largex as a function ofQ2.
This behavior cannot be explained in the framework of the QPM. In addition neutrino-nucleon
DIS results showed that only about half of the nucleon momentum is carried by quarks:

∫ 1

0

F ν,N
2 (x)dx =

∫ 1

0

x
[
u(x) + ū(x) + d(x) + d̄(x) + s(x) + s̄(x)

]
dx ≈ 0.5. (2.57)

Both these observations can be explained without having to abandon the successful QPM, pro-
vided interactions among the partons, which were not accounted for in the early version of the
model, are introduced. Such interactions, which are well described in the framework of QCD
(see Appendix A), give rise to high order corrections to the QPM. At NLO in the strong cou-
pling (O(αS)), photon-gluon-fusion (PGF) and QCD Compton scattering, depicted in Figure
2.7, contribute to the DIS cross section. All these higher order corrections are taken into account
in the so-called QCD-improved Quark Parton Model. Accordingto this extended version of the
QPM, quarks in the nucleons are dressed with a cloud of gluonsand virtual quark-antiquark
pairs, the so-called sea-quarks introduced in Section 2.6.
The question about the missing momentum (cf. eqn. (2.57)) istrivially solved ones the gluons,
which cannot be directly probed by the incoming lepton sincethey do not carry electric charge,
are take into account, providing the remaining50% of the total momentum of the nucleon.
The interactions among the partons together with theQ2-dependence of the strong (running)
coupling constantαS can in addition explain the violation of the Bjørken scaling observed
in the structure functions: A photon with a larger four-momentum probes the nucleon with a
higher resolution. At higher resolution the nucleon appears to be composed by a larger number
of resolved quarks and gluons, all sharing the total nucleonmomentum. As a consequence the
probability of finding partons with largex decreases with increasingQ2 while, accordingly,
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Figure 2.7: Feynman diagrams for the leading order DIS process (a) andthe two NLO processes Photon-
Gluon-Fusion (b) and QCD Compton scattering (c).

the probability of probing partons with lowx substantially increases, explaining the results in
Figure 2.4. A sketch of theQ2-dependence of the nucleon structure is reported in Figure 2.8.

Figure 2.8: IncreasingQ2, the spatial resolution improves and a larger number of partons is resolved.

TheQ2-dependence (orQ2-evolution) of the parton (quarks and gluons) distributionfunctions
is described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations ([Dok77],
[Gri72], [Lip75], [Alt77])

dq(x,Q2)

dlnQ2
=

∫ 1

x

dx′

x′

[
q(x′, Q2) · Pqq

( x
x′

)
+ g(x′, Q2) · Pqg

( x
x′

)]
(2.58)

dg(x,Q2)

dlnQ2
=

∫ 1

x

dx′

x′

[
g(x′, Q2) · Pgg

( x
x′

)
+
∑

q

q(x′, Q2) · Pgq

( x
x′

) ]
(2.59)

Once the parton distribution functions are known at some scaleQ2
0, the DGLAP equations allow

to calculate them at any other scaleQ2 where perturbation theory holds.
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Chapter 3

The transverse degrees of freedom of the
nucleon

3.1 The quark-quark correlation matrix

According to the Quark Parton Model, one can describe the DISprocess as the incoherent
sum of elastic scattering on quasi-free constituents (quarks and antiquarks) of the nucleon (cf.
Section 2.6). In this perspective, if we consider a DIS process in which an initial state nucleon
with momentumP and spinS is probed by a virtual photon carrying four momentumq, leading
to a (not observed) final hadronic stateX with momentumPX and energyEX , it is possible to
rewrite the hadronic tensorWµν using a quantum field approach [BDR02]:

W µν =
1

2π

∑

q

e2q
∑

X

∫
d3PX

(2π)32EX

∫
d4p

(2π)4

∫
d4k

(2π)4
δ(k2)

×[ū(k)γµφ(p;P, S)]∗[ū(k)γνφ(p;P, S)]

×(2π)4δ4(P − q − PX)(2π)4δ4(p+ q − k) . (3.1)

Herep andeq are the four-momentum and the fractional electric charge ofthe soft quark struck
by the virtual photon,u(ū) is the spinor of the scattered quasi-free quark, carrying four momen-
tumk = p+ q, andγµ are the Dirac matrices. The matrix elements

φi(p;P, S) = 〈X|ψi(0)|P, S〉 , (3.2)

of the quark fieldsψi between the nucleon|P, S〉 and its remnant|X〉, describe the emission of
the soft quark from the nucleon. The Dirac delta functions ensure momentum conservation. In
this formalism the struck quark and the nucleon remnant appear as two intermediate physical
states of a forward scattering and the hadronic tensor can berepresented by the handbag diagram
reported in Figure 3.1. Eqn. (3.1) can be rewritten in the more synthetic form

Wµν =
∑

q

e2q

∫
d4p

(2π)4
δ((p+ q)2)Tr[Φγµ(/p+ /q)γν ] , (3.3)
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Figure 3.1: Handbag diagram for inclusive DIS.

where we have introduced thequark-quark correlation matrix(or quark-quark correlator)

Φi,j(p, P, S) =
∑

X

∫
d3PX

(2π)32EX

(2π)4δ4(P − p−PX)〈P, S|ψj(0)|X〉〈X|ψi(0)|P, S〉 . (3.4)

Herei andj are Dirac indices and summation over quark color is implicit.
Using translational invariance, the completeness relation

∑
X |X〉〈X| = 1 and the identity

(2π)4δ4(P − p− PX) ≡
∫
d4ξei(P−p−PX)·ξ , (3.5)

it is possible to rewrite the correlation matrix as a bilocal, bilinear operator acting on the initial
nucleon state|P, S〉, integrated over all possible separationsξ of the second quark spinor:

Φi,j(p, P, S) =

∫
d4ξeip·ξ〈P, S|ψ̄j(0)ψi(ξ)|P, S〉. (3.6)

The correlation matrix can be decomposed in a basis of Dirac matrices:

Γ = {1, γµ, γµγ5, iγ5, iσ
µνγ5} , (3.7)

whereσµν = i/2[γµ, γν ], each selecting a different aspect of the nucleon inner structure [BDR02]:

Φ(p, P, S) =
1

2
{S1 + Vµγ

µ + Aµγ5γ
µ + iP5γ5 + iTµνσ

µνγ5} . (3.8)

HereS, Vµ, Aµ, P5 andTµν are scalar, vector, axial-vector, pseudo-scalar and tensor parame-
ters, respectively, all depending on combinations of the momentap, P and the nucleon spinS.
Imposing hermiticity, parity invariance and time-reversal invariance of the correlation matrixΦ,
these quantities are given by:
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S =
1

2
Tr(1Φ) = C1 , (3.9)

Vµ =
1

2
Tr(γµΦ) = C2P

µ + C3p
µ , (3.10)

Aµ =
1

2
Tr(γµγ5Φ) = C4S

µ + C5p · SP µ + C6p · Spµ , (3.11)

P5 =
1

2i
Tr(γ5Φ) = 0 , (3.12)

T µν =
1

2i
Tr(σµνγ5Φ) = C7P

[µSν] + C8p
[µSν] + C9p · SP [µpν] , (3.13)

where the coefficientsCi = Ci(p
2, p · P ) are real functions.

The quantities above can be ordered according to powers of1/P+, where the leading order
term is (1/P+)−1 = P+ and the next-to-leading term is(1/P+)0 = 1 (see Appendix B for
the light-cone formalism). The different powers correspond to the twist expansion according to
[Jaf96], where the leading term is twist-two.
If we neglect, for the moment, the transverse momentum of thequarks in the nucleon, only the
vector, axial-vector and tensor terms survive at leading-order inP+ and the five eqns. (3.9)–
(3.13) reduce to the following three equations.

Vµ =
1

2

∫
d4ξeip·ξ〈P, S|ψ̄(0)γµψ(ξ)|P, S〉 = A1P

µ , (3.14)

Aµ =
1

2

∫
d4ξeip·ξ〈P, S|ψ̄(0)γµγ5ψ(ξ)|P, S〉 = λNA2P

µ , (3.15)

T µν =
1

2i

∫
d4ξeip·ξ〈P, S|ψ̄(0)σµνγ5ψ(ξ)|P, S〉 = A3P

[µS
ν]
T , (3.16)

whereλN denotes the nucleon helicity and

A1 =
1

2P+
Tr(γ+Φ) , (3.17)

λNA2 =
1

2P+
Tr(γ+γ5Φ) , (3.18)

Si
TA3 =

1

2P+
Tr(γ+γiγ5Φ) . (3.19)

In the derivation of eqns. (3.14)–(3.16) the approximate relation Sµ ≈ λNP
µ/M + Sµ

T was
tacitely used.

27



CHAPTER 3. THE TRANSVERSE DEGREES OF FREEDOM OF THE NUCLEON

Integrating the amplitudesAi over p with the constraintx = p+

P+ , three leading-twist parton
distribution functions are obtained:

q(x) =

∫
d4p

(2π)4
A1(p

2, p · P )δ

(
x− p+

P+

)
, (3.20)

∆q(x) =

∫
d4p

(2π)4
A2(p

2, p · P )δ

(
x− p+

P+

)
, (3.21)

δq(x) =

∫
d4p

(2π)4
A3(p

2, p · P )δ

(
x− p+

P+

)
. (3.22)

These parton distribution functions provide, together, a complete description of the momentum
and spin distributions of the quarks within the nucleon at leading-twist level. The first two
were already introduced in Section 2.6: the spin-independent (or momentum) distributionq(x)
and the helicity distribution∆q(x). These quantities have been measured with high accuracy
by a number of experiments in the past decades. In particularthe HERMES experiment has
played a crucial role in the extraction of the helicity distribution, providing the most precise
measurement available to date [Air05b, Air07]. The third p.d.f. (δq(x)), calledtrasversity, has
so far remained unmeasured due to its chiral-odd nature (seenext section). A first extraction
of δq(x), based on a global fit of the data from HERMES, COMPASS and BELLE, has very
recently been reported by [Ans07]. Integrating eqns. (3.20) – (3.22) overx yields:

q =

∫ 1

0

[q(x) − q̄(x)] dx = gV , (3.23)

∆q =

∫ 1

0

[∆q(x) + ∆q̄(x)] dx = gA , (3.24)

δq =

∫ 1

0

[δq(x) − δq̄(x)] dx = gT , (3.25)

i.e. the first moments of the three leading-twist parton distribution functions correspond to the
vector, axial and tensor charge of the nucleon, respectively. In particular, containing the differ-
ence between quark and antiquark momentum distributions, the vector charge of the nucleon is
simply the valence number (2 foru quarks and 1 ford quarks for the proton and viceversa for
the neutron).
In terms of the three leading-twist parton distribution functions the quark-quark correlator reads:

Φ(p, P, S) =
1

2
{q(x)/P + λN∆q(x)γ5/P + δq(x)/Pγ5/ST} . (3.26)
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FUNCTIONS

3.2 Interpretation of the three leading-twist parton distribution fu nctions

In the basis of helicity eigenstates(|+〉, |−〉) (helicity basis) it is possible to define 16 different
quark-nucleon forward amplitudesAΛλ,Λ′λ′, whereλλ′(ΛΛ′) represent quark (nucleon) helicity
states. However, imposing helicity conservation and parity and time-reversal invariance, only
three independent amplitudes survive:

A++,++, A+−,+−, A+−,−+ . (3.27)

The first two are diagonal in the helicity basis, while the third is off diagonal, i.e. requires the
helicity flip of the quark (λ = −λ′)
The optical theorem (see Appendix C) allows to relate these forward quark-nucleon amplitudes
to the three leading-twist parton distribution functions derived in Section 3.1:

q(x) = q
→
⇒(x) + q

←
⇒(x) ≡ q+(x) + q−(x) ∼ Im(A++,++ + A+−,+−) , (3.28)

∆q(x) = q
→
⇒(x) − q

←
⇒(x) ≡ q+(x) − q−(x) ∼ Im(A++,++ −A+−,+−) , (3.29)

δq(x) ∼ Im(A+−,−+) . (3.30)

The first two are related to the two quark helicity conservingamplitudes and can therefore be
diagonalized in the helicity basis. As a consequence they have a precise probabilistic interpre-
tation in this basis:q(x) reflects the probability to find quarks, within an unpolarized nucleon,
carrying a fractionx of its total longitudinal momentum irrespectively to the spin orientation,
and∆q(x) reflects the difference in probabilities to find, in a longitudinally polarized nucleon,
quarks with their spin aligned or anti-aligned to the spin ofthe nucleon.
Unlike q(x) and∆q(x), δq(x), being related to a quark helicity-odd amplitude, cannot bedi-
agonalized in the helicity basis and therefore has no probabilistic interpretation in this basis.
In particular, since helicity and chirality coincide in theinfinite momentum frame, since all
masses can be neglected, transversity is achiral-odd function. Therefore, since electromag-
netic and strong interactions conserve chirality, transversity is not measurable in inclusive DIS
processes. This can be understood since helicity is a conserved quantity for nearly massless
particles and therefore a helicity flip is suppressed by a factor of m

Q2 , as displayed in Figure
3.2 (c). In addition no direct relation betweenδq(x) and the polarized structure functiong2(x)

exists, which can be accessed in inclusive DIS on a transversely polarized target.
However, in a basis of transverse spin eigenstates, which are defined as linear combinations of
the helicity eigenstates

| ↑〉 =
1

2
(|+〉 + i|−〉) , | ↓〉 =

1

2
(|+〉 − i|−〉) , (3.31)

δq(x) acquires a probabilistic interpretation and becomes a number density reflecting the differ-
ence in probabilities to find, in a transversely polarized nucleon, quarks with their spin aligned
or anti-alligned to the spin of the nucleon:

δq(x) = q⇑↑(x) − q⇑↓(x) ≡ q↑(x) − q↓(x) ∼ Im(A↑↑,↑↑ −A↑↓,↑↓) . (3.32)
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Figure 3.2: Handbag diagrams of the three independent configurations of quark and nucleon helicities in
inclusive DIS. The configurations (a) and (b) are proportional toq(x) and∆q(x), respectively. The con-
figuration (c), which includes helicity flips of quark and nucleon, is proportional toδq(x) and forbidden
by helicity conservation.

Since the basis of transverse spin eigenstates can be transformed into the helicity basis through a
simple rotation, only in relativistic regimes, where Lorentz boost and rotation do not commute,
differences between∆q(x) andδq(x) are expected. In addition, unlike the helicity distribution,
transversity does not exist for gluons in the nucleon since ahypotheticalδg(x) would be related
to an helicity flip gluon-nucleon amplitude, which implies an impossible helicity flip of 2 for
a spin-half target. As a consequence, the transversity is a pure valence object. This of course
heavily differentiates theQ2 evolution of the transversity and helicity distributions.So, even
if at some scaleQ2

0 transversity and helicity distribution would coincide, this is not necessarily
the case at a differentQ2 scale, as shown in Figure 3.3.
The three leading-twist parton distribution functions, which are equally important for a com-
plete description of the momentum and spin distribution of the nucleon at leading-twist level,
are related by three important bounds. From the definitions of q(x), ∆q(x) andδq(x), the rela-
tion q(x) = q+(x) + q−(x) = q↑(x) + q↓(x) follows which immediately leads to the first two
bounds:

|∆q(x)| 6 q(x) , |δq(x)| 6 q(x) . (3.33)

The third, more subtle, bound, which simultaneously involves the three leading-twist parton
distribution functions, is known as the Soffer inequality [Sof95]:

q(x) + ∆q(x) > 2|δq(x)| . (3.34)

A graphical representation of this inequality is reported in Figure 3.4. Its derivation is more
complicated as it involves three quantities that are not diagonal in the same basis. Similar
inequalities hold for the antiquark distributions.
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Figure 3.3: Chiral Quark Soliton Model calculation of∆q(x) andδq(x) for up anddownquarks. While
the two distributions are very similar at the scale of the model (Q2

0 = 0.25 GeV2), they differ substan-
tially, especially in the lowx region, after a perturbative evolution at (Q2 = 25 GeV2) [BDR02, Wak99].

Figure 3.4: The Soffer bound on the leading-twist parton distribution functions (source [BDR02]).
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3.3 Transverse Momentum Dependent parton distribution functions

Intrinsic transverse momentum~pT can originate from partonic confinement and from basic QCD
evolution [Arr04]. So far it has been neglected because it issmall compared to the longitudinal
component. However, as it influences the final momenta of the produced hadrons, it becomes
important in the description of the Semi-Inclusive DIS (seesection 3.7). More in general, it
cannot be ignored in perturbative QCD hard processes and in soft non perturbative physics
since it becomes crucial for the explanation of many single spin effects recently observed in
several ongoing experiments.
Taking into account the transverse component, which is suppressed by one power ofP+ with
respect to the longitudinal one, the quark four-momentum reads:

pµ = xP µ + pµ
T , (3.35)

whereP µ is, as usual, the nucleon total longitudinal momentum. Furthermore, additional am-
plitudes now appear in the axial-vector and tensor component of the quark-quark correlator:

Aµ = λNA2P
µ +

1

M
Ã1 pT · STP

µ , (3.36)

T µν = A3P
[µS

ν]
T +

λN

M
Ã2P

[µp
ν]
T +

1

M2
Ã3pT · STP

[µp
ν]
T , (3.37)

where we have defined the new real functionsÃi(p
2, p · P ) and introduced powers ofM so

that all coefficients have the same dimension. As a consequence, if we do not integrate over
the transverse momentumpT , we obtain sixpT -dependent distribution functions. Four of them,
calledq(x, p2

T ), ∆q(x, p2
T ), h1T (x, p2

T ) andh⊥1T (x, p2
T ), reduce to the three leading-twist parton

distribution functionsq(x), ∆q(x) andδq(x) after integration overpT :

q(x) =

∫
d2~pT q(x, p

2
T ) , (3.38)

∆q(x) =

∫
d2~pT ∆q(x, p2

T ) , (3.39)

δq(x) =

∫
d2~pT

{
hq

1T (x, p2
T ) +

p2
T

2M
h⊥q

1T (x, p2
T )

}
≡
∫
d2p2

T δq(x, p
2
T ) . (3.40)

The other two, calledg1T (x, p2
T ) andh⊥1L(x, p2

T ), are completely new and are related, together
with h⊥1T (x, p2

T ), to the terms of the correlation matrix containing theÃi functions.
If the target nucleon is unpolarized, the only measurable quantity isq(x, p2

T ), which represents
the number density of quarks with longitudinal momentum fraction x and squared transverse
momentump2

T . If the target nucleon is longitudinally polarized there issome probability to find
the quarks polarized along the same direction as the nucleon, ∆q(x, p2

T ), or along a different
direction,h⊥1L(x, p2

T ). If, on the other hand, the target nucleon is transversely polarized, there is
some probability to find the quarks polarized along the same direction as the nucleon,δq(x, p2

T ),
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along a different direction,h⊥1T (x, p2
T ), or longitudinally polarized,g⊥1T (x, p2

T ). This variety of
situations is allowed by the presence of a non-vanishing quark transverse momentumpT . After
the integration overpT , only the cases of quark polarization parallel (or antiparallel) to that of
the nucleon,∆q(x) andδq(x), survive.
Relaxing the time-reversal invariance condition (see Section 3.4), which was retained in the
derivation of the parton distribution functions in Section3.1, two additional terms in the vector
and tensor components ofΦ arise:

Aµ = · · · + 1

M
A′1ǫ

µνρσPνpTρS⊥σ , (3.41)

T µν = · · · + 1

M
A′2ǫ

µνρσPρpTσ , (3.42)

which give rise to twopT -dependent T-odd distribution functions. The first of them,f⊥1T , known
as theSivers functionis related to the number density of unpolarized quarks in a transversely
polarized nucleon. The second,h⊥1 , known as theBoer-Mulders function, measures the quark
transverse polarization in an unpolarized hadron.
The Sivers functionf⊥1T was first proposed by Sivers [Siv90] to explain single-spin asymmetries
observed in pion production in proton-proton scattering. The interest on this function has greatly
grown over the past years after a theoretical work [Bro02, Bur02] has demonstrated that a non-
zero Sivers function requires a non-vanishing orbital angular momentum of the quarks within
the nucleon, which is one of the still missing pieces of the nucleon spin puzzle (cf. eqn. (1.1)).
ThepT -dependent parton distribution functions introduced in this section are reported in Figure
3.5 together with a schematic illustration of their probabilistic interpretations. Nucleon and
quarks are represented by yellow (big) and red (small) circles, respectively. The arrows indicate
the spin orientation relative to a virtual photon entering from the left, and U, L and T stand for
Unpolarized, Longitudinal polarized and Transversely polarized quarks and nucleons.
For future applications it is convenient to define the following moments of the generic parton
distribution functiondq(x, p2

T ):

d(1/2)q(x) ≡
∫
d2~pTd

(1/2)q(x, p2
T ) ≡

∫
d2~pT

|~pT |
2M

dq(x, p2
T ) , (3.43)

d(n)q(x) ≡
∫
d2~pTd

(n)q(x, p2
T ) ≡

∫
d2~pT

(
~p2

T

2M2

)n

dq(x, p2
T ) , (3.44)

wheren is an integer.
Positivity bounds similar to those reported in eqn. (3.33) hold for the two T-odd parton distri-
bution functionsf⊥1T andh⊥1 . Using the formalism of eqns. (3.43) and (3.44) yields [Bac00]:

|f⊥(1)q
1T (x, p2

T )| 6 q(1/2)(x, p2
T ) , (3.45)

|h⊥(1)q
1 (x, p2

T )| 6 q(1/2)(x, p2
T ) . (3.46)
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Figure 3.5: Leading-twist transverse momentum dependent quark distribution functions.

3.4 Näıve time-reversal quantities

In order to justify the existence of the T-odd (i.e. time-reversal violating) Sivers (f⊥1T ) and Boer-
Mulders (h⊥1 ) functions introduced in the previous section, a short digression is here necessary.

Invariance under a time-reversal operation which transforms initial states into final states, im-
plies the following constraint on the quark-quark correlation matrixΦ [BDR02]:

Φ∗(p, P, S) = γ5CΦ(p̃, P̃ , S̃)C†γ5 , (3.47)

whereC = iγ2γ0 and the tilde four-vectors are defined asp̃µ = (p0,−~p). Normally, T-odd
terms inΦ would change the sign of the l.h.s. of eqn. (3.47) and would therefore be forbidden.
However, it has been proved [Bro02] that the insertion of a gauge link operatorL in Φ (see
Appendix D), which is required for the gauge invariance ofΦ itself, allows for the existence of
T-odd parton distribution functions. In the simplest case,indeed, the gauge link acts through
a soft gluon exchange, which causes final state interactionsbetween the struck quark and the
nucleon remnant (see Figure 3.6). As a consequence, since the transformation of interacting
final states into initial states is not as simple as for non-interacting final states, time-reversal
invariance cannot be implemented by simply imposing the condition (3.47). Therefore, in the
presence of final state interactions, the violation of condition (3.47) does not mean that time-
reversal is violated. This circumstance is often referred to as näıve T-odd.
While standard time-reversal changes the nucleon state|P, S〉 into | − P,−S〉, näıve time-
reversal, due to the final state interactions, only changes the initial state|P, S〉 into |P,−S〉.
Therefore a violated naı̈ve time-reversal can also be interpreted as a violation of atime-reversal
without interchange of initial and final states. Naı̈ve T-odd distribution functions are thus not
fully T-odd functions and can, therefore, be non-zero. If, on the other hand, one neglects the
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3.5. SUBLEADING-TWIST DISTRIBUTION FUNCTIONS

gauge link, näıve T-odd functions like the Sivers function would transform, under standard time-
reversal, into their negative, and, thus, would vanish. In the following the adjective “näıve” will
be omitted and naı̈ve T-odd quantities will simply be referred to as T-odd.

Figure 3.6: Final state interaction in semi-inclusive deep inelastic scattering (source [Bro02]).

3.5 Subleading-twist Distribution Functions

Taking into account also terms of order of(1/P+)0, six new (twist-three) distribution functions
enter thepT -integrated quark-quark correlation matrix [Mul96]: three T-even functions,eq(x),
hq

L(x) andgq
T (x), and three T-odd functions,hq(x), eq

L(x) andf q
T (x), whereL andT indicate a

Longitudinally and a Transversely polarized nucleon, respectively (see Table 3.1).
Since various kinematical and dynamical effects like the quark masses, the intrinsic transverse
motion and the gluon interactions enter the definition of these functions, their probabilistic
interpretation in terms of partonic distributions is not trivial. However, it can be shown [Mul96]
that twist-three distribution functions can be decomposedinto three parts: a quark mass term, a
term which is related to a leading-twist parton distribution function and a genuine interaction-
dependent twist-three term, which arises from non-handbagdiagrams like the one shown in
Figure 3.7. The latter (interaction-dependent) term, which may differ for different processes,
requires the contribution of the quark-quark-gluon correlation function.

Among the twist-three distribution functions,gq
T (x) is particularly interesting since it is related

to the polarized structure functiong2(x):

g1(x) + g2(x) =
1

2

∑

q,q̄

e2qg
q
T (x) . (3.48)

Furthermore, the decomposition ofgq
T (x) contains, together with other terms, the transversity

distribution, although suppressed by themq/M ratio:
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Figure 3.7: Higher-twist contribution to DIS involving quark-quark-gluon correlation.

Quark Distribution Functions

Twist U L T

2 q(x) ∆q(x) δq(x)

3 (T-even) e(x) hL(x) gT (x)

3 (T-odd) h(x) eL(x) fT (x)

Table 3.1: Leading-twist and twist-three quark transverse momentum independent distribution functions.
U , L andT stand for Unpolarized, Longitudinal polarized and Transversely polarized nucleon.

gq
T (x) =

mq

M
δq(x) +

1

x
g

(1)q
1T (x) + g̃q

T (x) , (3.49)

where the interaction dependent term is indicated by a tilde. Eqn. (3.49) shows that only an
indirect relation betweeng2(x) andδq(x) exists, which means that it is not possible to extract
one of the two from the measurement of the other.

3.6 The polarized Drell-Yan

As anticipated in Section 3.2, helicity conservation prevents transversity to be measured in in-
clusive DIS processes. However transversity can in principle be measured in processes that
involve another chiral-odd object. Such processes will indeed have an overall chiral-even cross
section and ensure helicity conservation.
As an example, transversity can be measured in transversely-polarized Drell-Yan processes in
proton-proton scattering. Here the transversity distribution of the quarks from one of the two
colliding protons can be measured in combination with that of the anti-quarks from the other
proton. Polarized Drell-Yan in proton-proton scattering is part of the RHIC Spin Program.
The PAX experiment [PAX05], proposed for the High Energy antiproton Storage Ring (HESR)
facility at FAIR (GSI) aims to measure transversity in polarized proton-antiproton scattering.
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Since the gluons, which split up into sea quark-antiquark pairs, do not exhibit a transversity
distribution in the nucleon, the valence-quark transversity distributions are expected to be much
larger than the sea-quarks ones. As a consequence larger cross section asymmetries (analyzing
powers) are predicted in the proton-antiproton scatteringthan in the proton-proton scattering.
In the former case, indeed, the product of two valence-quarkdistributions,δq in the proton and
δq̄ in the antiproton, which are equal due to charge conjugationsymmetry, enters the cross sec-
tion, while in the latter case only the product of a valence-quark times a sea-quark transversity
distribution enters the cross section.

3.7 The Semi-Inclusive Deep Inelastic Scattering

The Semi-Inclusive DIS (SIDIS) measurements, in which one or more final state hadrons are
detected together with the scattered lepton, represent an alternative way to access transversity.
Here, indeed, transversity enters the cross section in combination with a chiral-oddfragmen-
tation function(see Section 3.7.3). By identifying the produced hadrons, one is able to gain
valuable information about the parent quarks. This allows,for instance, to measure the flavour
decomposition of the parton distribution functions [Air05b]. Thanks to their highly efficient
discrimination power between leptons and hadrons and amongdifferent hadron types, the HER-
MES and the COMPASS experiments are particularly suited for such measurements.

The formalism described so far for the inclusive DIS can be easily extended to include also
Semi-Inclusive measurements. For the one-hadron case one has:

l(ℓ) +N(P ) → l(ℓ′) + h(Ph) +X(PX) , (3.50)

wherel, N , h andX denote the lepton, the nucleon target, the produced hadron and the un-
detected hadronic final state, respectively, and the quantities in parentheses denote their four-
momenta (see Figure 3.8).

Figure 3.8: Feynman diagram for Semi-Inclusive Deep Inelastic Scattering.

This extension requires, as a new ingredient, a descriptionof the transition from the partonic
(i.e. quarks and gluons) to the hadronic degrees of freedoms.
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The process in which the final hadrons emerge from the deep inelastic scattering is calledfrag-
mentation(or hadronization) and cannot be treated using perturbative QCD since the strong
coupling constantαs becomes too large at low energy, which is exactly where fragmentation
occurs.
However, a variety of phenomenological models has been developed for the description of
the fragmentation process. A very successful model is the LUND string-fragmentation model
[And83, And97]. In this model, the color field connecting theinitial quarks is assumed to pro-
duce a potential which increases linearly with the distancebetween the quarks (color string).
After one of the quarks is struck by the virtual photon and moves away, the energy stored in
the string rises linearly with the increasing separation. As soon as this energy exceeds the rest
mass of a quark-antiquark pair, the string breaks up and leads to the creation of such a pair. The
partners of this pair are then connected to the initial quarks by two new strings. The process
(breaking of the string and formation of new quark-antiquark pairs) continues until a quark-
antiquark pair is formed which is close to the mass shell of a hadron. The LUND model is
widely implemented in the Monte Carlo codes used by the high energy physics community.

3.7.1 Factorization theorem and fragmentation functions

An essential concept for the description of semi-inclusiveDIS is the so-calledfactorization
theorem, which states that the scattering process of the virtual photon off a nucleon can be
divided into three parts: the hard scattering of the photon off one of the nucleon’s constituents,
the selection of these constituents according to their distribution within the nucleon and the
hadronization of the struck parton into the final state hadrons. The cross section for a lepto-
production of a hadronh can thus be factorized as:

d3σh

dxdQ2dz
=

∑

a,b=q,q̄,g

da(x,Q
2) ⊗ σab(x,Q

2) ⊗ F h
b (z,Q2) , (3.51)

whereda(x,Q
2) is a parton distribution function, describing the distribution of the initial state

partonsa in the nucleon,σab is the hard-scattering cross section (calculable from perturbation
theory) for the processla → l′b andF h

b (z,Q2) is a fragmentation function(FF), i.e. a function
that describes the transition (fragmentation) from the final state partonb into a hadronh carrying
a fractional energyz.
More in general, QCD factorization has been established for three classes of semi-inclusive
processes: di-hadron production ine+e− annihilation, semi-inclusive DIS, and Drell-Yan (cf.
Section 3.6). It still remains to be proven whether factorization also holds for more complicated
processes in hadronic scattering.
If we consider only the three lightest quark flavours (u, d, s), the FFs can be divided into three
categories: favorite (fav), unfavorite (unfav) and strange (s), depending on the flavour of the
fragmenting quark and on the quark content of the produced hadron, according to1:

1Since this argument is of general valence,F represents here a generic fragmentation function.
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Ffav(z,Q
2) = F π+

u (z,Q2) = F π−

ū (z,Q2) = F π+

d̄ (z,Q2) = F π−

d (z,Q2) , (3.52)

Funfav(z,Q
2) = F π−

u (z,Q2) = F π+

ū (z,Q2) = F π−

d̄ (z,Q2) = F π+

d (z,Q2) , (3.53)

Fs(z,Q
2) = F π+

s (z,Q2) = F π−

s̄ (z,Q2) = F π+

s̄ (z,Q2) = F π−

s (z,Q2) . (3.54)

Similar expressions hold for the charged kaons. The fragmentation functions are not calculable
from first principles and have been historically derived from fits of data frome+e− experiments
[Kre00]. Parameterizations for the fragmentation functions for charged hadrons have been re-
cently obtained for the first time in a global NLO QCD analysis of e+e− annihilations data and
of single-inclusive hadron production from proton-protoncollisions (RHIC) and deep inelastic
lepton-hadron scattering (HERMES) [Flo07].

3.7.2 The hadronic tensor

Since the leptonic vertex of the Feynman diagram which describes the SIDIS process is identical
to that for the DIS process (cf. Figures 2.2 and 3.8), the leptonic tensor is unchanged:

Lµ,ν = 2(ℓµℓ′ν + ℓνℓ′µ + gµν(m2 − ℓσℓ′σ)) + 2imǫµναβs
α(ℓβ − ℓ′β). (3.55)

In contrast, the hadronic tensor has now to include the fragmentation of the struck quark. If we
limit ourselves to the leading and first subleading (twist-three) terms, the hadronic tensor takes
the form [Bac07]:

2MW µν = 2z
∑

qq̄

e2q

∫
d2pTd

2KT δ(pT + qT −KT ) Tr

{
Φq(x, pT )γµ∆q(z,KT )γν

− 1

Q
√

2

[
γα/n+γ

νΦ̃q
Aα(x, pT )γµ∆q(z,KT ) + γα/n−γ

ν∆̃q
Aα(z,KT )γnuΦq(x, pT ) + h.c.

]}
,

(3.56)

wheren+ = [0, 1, 0T ] andn− = [1, 0, 0T ] are light-like vectors,pT is the quark transverse
momentum andKT denotes the transverse component of the final state hadron momentum with
respect to the direction of the fragmenting quark.Φ and∆ are the correlation functions for the
quark distribution (lower blob of Figure 3.9 a) and for the quark fragmentation (upper blob of
Figure 3.9 a), respectively, while the tilde functionsΦ̃ and∆̃ are their analogs with an additional
gluon leg (see Figure 3.9 b and c) and are usually referred to asquark-gluon-quark distribution
correlation functionandquark-gluon-quark fragmentation correlation function.
A complete parametrization of the correlation functionsΦ(x, pT ), ∆(z,KT ), Φ̃(x, pT ) and

˜∆(z,KT ) up to twist-three level and their decomposition in the basisof the Dirac matrices
(eqn. (3.7)) is reported in [Bac07]. In particular, the decomposition of the correlation matrix
∆(z,KT ) yields eight leading-twist fragmentation functions dependent onz and onK2

T . After
summation over the spin of the produced hadronSh, only two fragmentation functions remain at
leading twist: the spin-independent fragmentation functionDq

1(z,K
2
T ) and the so-calledCollins

functionH⊥q
1 (z,K2

T ) [Col93].
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Figure 3.9: Extended handbag diagrams for semi-inclusive DIS.

3.7.3 TheDq
1(z,K

2
T ) andH⊥q

1 (z,K2
T ) fragmentation functions

Similarly to the leading-twist parton distribution functions, the leading-twist fragmentation
functionsDq

1(z,K
2
T ) andH⊥q

1 (z,K2
T ) have a probabilistic interpretation: the first one repre-

sents the probability density that a struck quark of flavourq fragments into a hadronh with
energy fractionz and transverse momentumKT with respect to the direction of the fragmenting
quark. The second, known as theCollins function, represents the correlation between the trans-
verse spin of the fragmenting quark and the transverse momentum of the produced hadron. It
can thus be viewed as a quark spin analyzer. From a probabilistic point of view, it expresses the
difference of probability densities for quarks with opposite transverse spin states to fragment
into a hadronh with transverse momentumKT with respect to the direction of the fragmenting
quark. A positive Collins function then corresponds to a preference of the hadron to move to
the left for fragmenting quark moving into the page and quarkspin pointing upwards. Like
the Sivers function it vanishes when integrated over the intrinsic transverse momentum. The
probabilistic interpretation of these two fragmentation functions is represented in Figure 3.10.

Figure 3.10: The leading-twist transverse momentum dependent fragmentation functions. The struck
quark (produced hadron) is represented as a small red (big yellow) circle.

WhileDq
1 does not change sign under chirality and time-reversal operations, the Collins function

H⊥q
1 is a chiral-odd and T-odd quantity. In contrast to the T-odd parton distribution functions

described in Section 3.4, T-odd fragmentation functions are not constrained by time-reversal
invariance because of the unknown hadronic final stateX accompanying the detected hadron
h. In particular it has been shown [Bac01, Bac02a] that the exchange of a soft gluon between
the initial quark and the fragmentation correlator is not necessary since final-state interactions,
which occur solely in the upper soft part of the extended handbag diagram shown in Figure 3.9,
are sufficient for the existence of T-odd FFs.
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As for the parton distribution functions, also for the fragmentation functions it is convenient to
introduce of the moments (the relation~KT = −z~kT , where~kT denotes the intrinsic transverse
momentum of the fragmenting quark, is used below):

F (1/2)(z) ≡ z2

∫
d2~kTF

(1/2)(z, z2k2
T ) ≡ z2

∫
d2~kT

|~kT |
2Mh

F (z, z2k2
T ) , (3.57)

F (n)(z) ≡ z2

∫
d2~kTF

n(z, z2k2
T ) ≡ z2

∫
d2~kT

( ~k2
T

2Mh

)n

F (z, z2k2
T ) , (3.58)

wheren is an integer andF represents the generic (spin-independent or Collins) transverse
momentum dependent fragmentation function. In particular, the positivity constraint leads to
the following inequality between the moments of the two fragmentation functions [Bac02b]:

|H⊥(1)
1 (z, z2k2

T )| ≤ D
(1/2)
1 (z, z2k2

T ) . (3.59)

3.7.4 The SIDIS cross section

The cross section of the one-hadron semi-inclusive electron-nucleon scattering is six-fold dif-
ferential :

d6σ ≡ d6σ

dxdydzdφdφSdP 2
h⊥

=
α2y

8zQ4
2MW µνLµν . (3.60)

HereφS is the azimuthal angle, around the virtual photon direction, between the transverse
component of the target spin vector~ST and the scattering plane, andφ is the azimuthal angle
between the scattering plane and the hadron-production plane, as depicted in Figure 3.11. As
will be discussed in Section 3.7.5, these two angles play a crucial role in the interpretation of
the cross section asymmetries.

x
y

z

φS

φ
~Ph

~Ph⊥

~S⊥
~k

~k′
~q

Figure 3.11: Definition of the azimuthal anglesφ and φS between the scattering plane (white), the
hadron-production plane (grey) and the transverse component of thenucleon spin vector~S⊥ (or ~ST ).
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Assuming single photon exchange, the lepton-hadron cross section can be expressed in a model
independent way through a set of structure functions, whichin general depend onx, Q2, z and
P 2

h⊥, according to [Bac07]:

d6σ

dxdydzdφdφSdP 2
h⊥

=
α2

xyQ2

y2

2(1 − ǫ)

(
1 +

γ2

2x

){
FUU,T + ǫFUU,L

+
√

2ǫ(1 + ǫ) cosφ F cosφ
UU + ǫ cos(2φ) F

cos(2φ)
UU + λe

√
2ǫ(1 − ǫ) sinφ F sinφ

LU

+SL

[√
2ǫ(1 + ǫ) sinφ F sinφ

UL + ǫ sin(2φ) F
sin(2φ)
UL

]

+SLλe

[√
1 − ǫ2 FLL +

√
2ǫ(1 − ǫ) cosφ F cosφ

LL

]

+|ST |
[
sin(φ− φS)

(
F

sin(φ−φS)
UT,T + ǫF

sin(φ−φS)
UT,L

)

+ǫ sin(φ+ φS) F
sin(φ+φS)
UT + ǫ sin(3φ− φS) F

sin(3φ−φS)
UT

+
√

2ǫ(1 + ǫ) sinφS F
sinφS

UT +
√

2ǫ(1 + ǫ) sin(2φ− φS) F
sin(2φ−φS)
UT

]

+|ST |λe

[√
1 − ǫ2 cos(φ− φS) F

cos(φ−φS)
LT +

√
2ǫ(1 − ǫ) cosφS F

cosφS

LT

+
√

2ǫ(1 − ǫ) cos(2φ− φS) F
cos(2φ−φS)
LT

]}
. (3.61)

The first and second subscript in the structure functions above indicate the polarization2, with
respect to the photon direction, of beam and target, respectively, whereas the third subscript
in FUU,T , FUU,L, F sin(φ−φS)

UU,T andF sin(φ−φS)
UU,L specifies the polarization of the virtual photon. In

addition,λe denotes the helicity state of the lepton beam and

ǫ =
1 − y − γ2y2

4

1 − y + y2

2
+ γ2y2

4

(3.62)

is the ratio of the longitudinal and the transverse photon fluxes.
By comparing eqn. (3.61) with the expression of the cross section which results from eqn. (3.60)
after substituting the full expressions of the leptonic andhadronic tensors, one can eventually
extract the various structure functions.
If we introduce the unit vector̂Ph⊥ = Ph⊥/|Ph⊥| and the notation

2U=Unpolarized; L=Longitudinally polarized, T=Transversely polarized.
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C[W d F ] = x
∑

q,q̄

e2q I[W d F ] , (3.63)

where

I[W d F ] =

∫
d2~pTd

2~kT δ
2
(
~pT − ~kT −

~Ph⊥

z

)
W(~pT , ~kT ) dq(x, p

2
T ) Fq(z, z

2k2
T ) (3.64)

is a convolution integral over the quark transverse momenta~pT and~kT , defined for any com-
bination of a parton distribution functiond(x, pT ) and a fragmentation functionF (z, z2k2

T )

multiplied by a weightW, one obtains for instance3:

FUU,T = C[q D1] , (3.65)

whereq andD1 are the spin-independent distribution and fragmentation function, respectively;

F cosφ
UU =

2M

Q
C
[
− P̂h⊥ · ~kT

Mh

(
xhH⊥1 +

Mh

Mz
qD̃⊥

)
− P̂h⊥ · ~pT

M

(
xf⊥D1 +

Mh

Mz
h⊥1 H̃

)]
(3.66)

and

F cos2φ
UU = C

[
− 2(P̂h⊥ · ~kT )(P̂h⊥ · ~pT ) − ~kT · ~pT

MMh

h⊥1 H
⊥
1

]
, (3.67)

which include, the Boer-Mulders functionh⊥1 , (see Section 3.3), and the Collins functionH⊥1 ,
and contribute to the spin-independent part of the cross section;

F
sin(φ+φS)
UT = C

[
− P̂h⊥ · ~kT

Mh

δq H⊥1

]
, (3.68)

and

F
sin(φ−φS)
UT,T = C

[
− P̂h⊥ · ~pT

M
f⊥1T D1

]
, (3.69)

which contain the product of the transversity times the Collins function and the product of the
Sivers function times the spin-independent fragmentationfunction, respectively, and are the two
of main interest for the analysis presented in this thesis;

F
sin(3φ−φS)
UT = C

[
2(P̂h⊥ · ~pT )(~pT · ~kT ) + p2

T (P̂h⊥ · ~kT ) − 4(P̂h⊥ · ~pT )2(P̂h⊥ · ~kT )

2M2Mh

h⊥1TH
⊥
1

]
,

(3.70)

F sinφS

UT =
2M

Q
C
{
xfTD1−

Mh

Mz
δqH̃− ~pT · ~kT

2MMh

[(
xhT +xh⊥T

)
H⊥1 +

Mh

Mz

(
f⊥1T D̃

⊥−g1T G̃
⊥
)]}

,

3The full list of structure functions, including those depending on the longitudinal polarization of the beam and/or the target,
is reported in [Bac07].
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(3.71)
and

F
sin(2φ−φS)
UT =

2M

Q
C
{

2(P̂h⊥ · ~pT )2 − p2
T

2M2

(
xf⊥T D1 −

Mh

Mz
h⊥1T H̃

)
−

2(P̂h⊥ · ~pT )(P̂h⊥ · ~kT ) − ~pT · ~kT

2MMh

[(
xhT + xh⊥T

)
H⊥1 − Mh

Mz

(
f⊥1T D̃

⊥ − g1T G̃
⊥
)]}

,

(3.72)

which, although suppressed, also contribute to the transverse-spin dependent part of the cross
section (cf. Section 5.5.1).
Part of the distribution functions that appear in the expressions above have already been in-
troduced in the previous sections and are reported in Table 3.5. The remaining functions (xh,
xf⊥, xfT , xhT , xh⊥T andxf⊥T ) can be expressed in terms of combinations of quantities already
defined (cf. Table 3.5) plus higher order objects [Bac07]. Thetilde functions originate from the
decomposition of the distribution and fragmentation quark-gluon-quark correlators in the basis
of the Dirac matrices.
For our purposes it is convenient to split the differential cross section according to the polariza-
tion state of beam and target:

d6σ = d6σUU + d6σLU + d6σUL + d6σLL + d6σUT + d6σLT , (3.73)

where each of the terms has the following general structure:

d6σBeamTarget =
2α2

sxy2
⊗K(y) ⊗A(φ, φS) ⊗

∑

qq̄

e2q I[W · d · F ] . (3.74)

HereK(y) is a kinematic factor proportional to one of the following quantities [Bac07]:

A(y) =

(
1 − y +

y2

2
− y2γ2

4

)
1

1 + γ2
, (3.75)

B(y) =

(
1 − y − y2γ2

4

)
1

1 + γ2
, (3.76)

C(y) =
1√

1 + γ2
y
(
1 − y

2

)
, (3.77)

D(y) =
2(2 − y)

1 + γ2

√
1 − y − y2γ2

4
, (3.78)

andA(φ, φS) is an azimuthal modulation consisting of thesine or thecosine of a proper com-
bination of the azimuthal anglesφ andφS, defined in Figure 3.11.
Among all these terms, we are mainly interested in the following two, corresponding to the
structure functions (3.68) and (3.69):
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d6σUT = − 2α2

sxy2
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e2qI
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~kT · P̂h⊥

Mh
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T )H⊥q

1 (z, z2k2
T )

]
, (3.79)

in which the convolution integral of the product of the transversity distribution and the Collins
fragmentation function is modulated bysin(φ+ φS), and

d6σUT = − 2α2

sxy2
|~ST |A(y) sin(φ− φS)

∑

qq̄

e2qI
[
~pT · P̂h⊥

M
f⊥q

1T (x, p2
T )Dq

1(z, z
2k2

T )

]
, (3.80)

in which the convolution integral of the product of the Sivers distribution function and the spin-
independent fragmentation function is modulated bysin(φ− φS).

3.7.5 The Collins and Sivers azimuthal moments

In order to extract the distribution and fragmentation functions of interest it is convenient to
measure the so-calledazimuthal moments:

〈sin(nφ+mφS)〉hbeam target ≡
∫
dφSd

2Ph⊥ sin(nφ+mφS)d6σbeam target∫
dφSd2Ph⊥d6σUU

, (3.81)

〈cos(nφ+mφS)〉hbeam target ≡
∫
dφSd

2Ph⊥ cos(nφ+mφS)d6σbeam target∫
dφSd2Ph⊥d6σUU

, (3.82)

wheren andm are positive or negative integers.
To separate the individual terms of the spin-dependent partof the cross section, cross section
differences of opposite spin states are formed. In particular, if we limit ourselves to theUT
case, we can select thed6

UT term through the difference

d6σUT ≡ 1

2

(
d6σU↑ − d6σU↓

)
, (3.83)

where↑ (↓) indicates the spin orientation parallel (antiparallel) to the direction specified by the
angleφS. Since, by definition, the spin averaged cross sections yields the spin-independent part
of the cross section:

d6σUU ≡ 1

2

(
d6σU↑ + d6σU↓

)
, (3.84)

the azimuthal moments assume the structure of cross sectionasymmetries. In particular if one
considers only the target (or the beam) polarization, as forin the UT case, these asymmetries
are usually referred to as Single Spin Asymmetries (SSA). Therefore, for instance, eqn. (3.81)
for the UT case can be written in the form:
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〈sin(nφ+mφS)〉hUT ≈
∫
dφSd

2Ph⊥ sin(nφ+mφS)(d6σU↑ − d6σU↓)∫
dφSd2Ph⊥(d6σU↑ + d6σU↓)

. (3.85)

From the experimental point of view, the main advantage of this approach is that many system-
atic uncertainties that would affect the absolute cross sections cancel in the measurement of the
asymmetry.
The so-called Collins (n = 1, m = 1) and Sivers (n = 1, m = −1) moments, which are
derived from the cross sections (3.79) and (3.80), respectively, can be written in the form:

〈sin(φ+φS)〉hUT = −|~ST |
1

xy2B(y)
∑

qq̄ e
2
q
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T )
]

2 1
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qq̄ e

2
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q
1(z)

, (3.86)

〈sin(φ− φS)〉hUT = −|~ST |
1

xy2A(y)
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q
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. (3.87)

The experimental observation of non-zero Collins and Siversmoments is often referred to as
the Collins and the Sivers effect, respectively.
The Collins moments (3.86) give access to the product of the transversity distribution and
Collins fragmentation function, whereas the Sivers moment (3.87) gives access to the product
of the Sivers function and the spin-independent fragmentation function. Unfortunately these
products are embedded in the convolution integral (3.64), which cannot be factorized because
of the weightsW =

~kT ·~Ph⊥

Mh
(for Collins) andW = ~pT ·~Ph⊥

M
(for Sivers). To solve these integrals

one has to make an assumption on the transverse momentum dependence of the distribution and
fragmentation functions involved.
The simplest assumption one can think of is that there is no intrinsic transverse momentum of
the quarks inside the target. For instance, if we consider the transversity and the Collins func-
tion, and use the relation~KT = −z~kT between the transverse momentum of the hadron with
respect to the quark direction and the transverse momentum of the quark itself, we get

δ(x, p2
T ) ≈ δq(x)δ(p2

T ) H⊥1T (z,K2
T ) ≈ H⊥1T (z)δ(K2

T ) . (3.88)

A more realistic assumption is the so-calledGaussian ansatz[Bac02b], according to which the
transverse momentapT andKT follow a Gaussian distribution:

δq(x, p2
T ) ≈ δq(x)

π〈p2
T (x)〉e

−
p2
T

〈p2
T

(x)〉 H⊥1T (z,K2
T ) ≈ H⊥1T (z)

π〈K2
T (z)〉e

−
K2

T
〈K2

T
(z)〉 , (3.89)

where 〈p2
T (x)〉 =

R

d2~pT p2
T q(x,p2

T )

q(x)
and 〈K2

T (x)〉 =
R

d2 ~KT K2
T D1(z,K2

T )

D1(z)
.

Under this assumption the distribution and the fragmentation functions factorize and the integral
can be calculated analytically. One then obtains:
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In order to avoid any assumption on the transverse momentum distributions one can construct
the so-calledPh⊥-weighted asymmetries, in which the convolution integral is weighted with the
magnitude of the hadron transverse momentumPh⊥ divided byz. This approach yields to the
following expressions for thePh⊥-weighted Collins and Sivers moments:
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(3.92)
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The factor 1
xy2A(y) in eqn. (3.93) may not cancel because numerator and denominator are inte-

grated separately over certainx andy ranges in a measurement.

For the extraction of the Sivers function from the measured azimuthal moments, it is conve-
nient to define thepurities

Ph
q (x, z) ≡ e2q q(x)D

q→h
1 (z)

∑
q′q̄′ e

2
q′q
′(x)Dq′→h

1 (z)
, (3.94)

constructed from known spin-independent distribution andfragmentation functions.
Using the definition of the purities, thePh⊥-weighted Sivers moments can be rewritten as:

〈
Ph⊥

zM
sin(φ− φS)

〉h

UT

≡ −|~ST |
1

xy2A(y)
1

xy2A(y)

∑

q,q̄

Ph
q (x, z)

f
⊥(1)q
1T (x)

q(x)
, (3.95)
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where the ratiof⊥(1)q
1T (x)/q(x) between the Sivers and the spin-independent distribution func-

tion is calledSivers polarization. A similar expression can be written for the unweighted Sivers
moments once the Gaussian ansatz has been applied:

〈 sin(φ− φS)〉hUT ≡ − |~ST |√
1 + 〈K2

T 〉/(z2〈p2
T 〉)

1
xy2A(y)
1

xy2A(y)

∑

q,q̄

Ph
q (x, z)

f
⊥(1/2)q
1T (x)

q(x)
. (3.96)

Results from a large number of high precision unpolarized DISexperiments are available for
the spin-independent distribution functions. The second ingredient of the purities, the spin-
independent fragmentation functions, are usually obtained at HERMES from parameterizations
based on the LUND string fragmentation model tuned in such a way to reproduce the HERMES
multiplicities [Lie04].
For the extraction of the trasversity distribution function from the measured Collins moments,
a similar approach can be adopted, in principle. In this case, however, a new type of purities
has to be defined which includes the Collins fragmentation function. This has represented an
intrinsic limit for years since no measurements were available for the Collins FF. However a
preliminary extraction of the Collins FF has been very recently obtained ine+e− annihilations
at the Belle experiment [Sei06].

48



Chapter 4

The HERMES experiment at HERA

In order to study the inner spin structure of the nucleon in polarized deep inelastic scattering, the
HERMES experiment exploited three major ingredients: a high-energy highly polarized lepton
beam, a highly polarized nucleon target and a spectrometer with a good particle identification
power, a reasonable tracking resolution and a relatively large geometrical acceptance. In this
chapter the various components used in the HERMES experimentduring the 2002-2005 period,
in which a transversely polarized hydrogen target was employed, are described in details.

4.1 The Hadron Electron Ring Accelerator (HERA)

HERMES is one of the four experiments at the HERA lepton-protoncollider at DESY, in Ham-
burg. HERA was built between May 1984 and November 1990 and sawthe first electron-proton
collision at the end of 1991. Until its final shut-down, in June 2007, it was the only lepton-proton
collider existing in the world.
HERA basically consists of two concentric rings accommodated in a tunnel with a circumfer-
ence of 6.3 km. One of the rings provides a27.5 GeV lepton (electron or positron) beam and
the other a920 GeV proton beam. The two beams were brought into collision intwo distinct
interaction points in correspondence of the North and the South experimental Halls, where the
two collider experiments H1 and the ZEUS are located. In contrast, the HERMES experiment,
which is located in the East Hall, has an internal gas target and made use of the lepton beam
only. The fourth experiment, HERA-B, which operated in the West Hall during the limited pe-
riod 1999-2003, was also a fixed target experiment and used the proton beam only.
Before entering the HERA rings, the particles pass through a complex chain of pre-accelerators,
as depicted in Figure 4.1. The proton beam is produced by strip injection ofH− beams pro-
duced by LINAC III into DESY III, followed by the injection into PETRA, which is the HERA’s
main pre-accelerator. Lepton beams are produced and accelerated by Linac II, and then accu-
mulated in the Positron Intensity Accumulator PIA before being injected into DESY II. The
lepton beams are then injected into DORIS or PETRA with an energy of 7 GeV, and finally
injected at12 GeV into the HERA storage ring, where they are eventually ramped up to the
nominal beam energy of27.5 GeV.
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Figure 4.1: Sketch of the HERA accelerator facility at DESY showing the two HERA rings, the location
of the four experiments (HERMES, ZEUS, H1 and HERA-B) and the chain of pre-accelerators.

The HERA lepton beam consists of up to220 bunches with a length of27 ps separated by96 ns
and a lifetime in the range 12-16 hours1. A typical plot reporting the current of the beams (in
mA) as a function of time (in hours) is shown in Figure 4.2.
During the 2001-2002 shut-down, HERA was upgraded with an improved focusing at the col-
lider interaction points and a more efficient transfer line between the different pre-accelerators.
The facility, as it was after 2002, is often referred to as HERAII.

4.1.1 The Lepton Beam Polarization

It is well known that an external magnetic field, pointing to acertain directiony, causes the spin
of a particle passing through to be oriented either parallelor anti-parallel to the field itself. In a
storage ring, such as HERA, the rotating particles will thus have their spin oriented orthogonally
to the orbit plane. At the beginning the beam results unpolarized since, for statistical reasons,
there will be approximately the same amount of particles with spin up and spin down. However

1The proton beam lifetime is much longer.
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Figure 4.2: Current of the beams (in mA) as a function of time (in hours) for three consecutive fills.
For each fill, the upper curve represents the proton beam current, the curve in the middle represents the
lepton beam current and the lower curve shows the electron beam lifetime. During each fill the lepton
beam current decreases exponentially and the beam is dumped when the current has reached∼ 13 mA.
The sudden drop of the lepton beam lifetime from about 15 hours to about 2hours in the very last part
of the fill is due to the injection of high density gas in the HERMES target cell (High Density Runs).

the synchrotron radiation, emitted by the rotating particles, is known to cause a spin flip whose
probabilityP depends on the actual spin orientation of the particle, i.e.:

P(up → down) 6= P(down → up) . (4.1)

As a consequence, after a certain number of revolutions, thenumber of particles with spin up
are different from the number of particles with spin down andthe beam acquires a net transverse
polarization:

P =
N(up) −N(down)

N(up) +N(down)
6= 0 . (4.2)

This mechanism is known as theSokolov-Ternov(ST) effect[Sol64]. The beam polarization
built up from an initially unpolarized beam in a circular machine with a perfectly flat orbit is
described by the empirical formula:

PST (t) =
8

5
√

3

(
1 − e

− t
τST

)
, (4.3)

where

τST =
8

5
√

3

m2
ec

2ρ3

e2~γ5
(4.4)

is the Sokolov-Ternov rise-time constant. Hereγ is the Lorentz factor,ρ is the bending radius
of the orbit,me ande are the electron mass and charge,c is the speed of light,~ is the Planck
constant andE is the lepton (electron or positron) energy.
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Depolarizing effects, which can be caused either by beam-beam interactions or imperfections
and misalignment of the magnets, compete with the ST effect and have to be taken into account
in the evaluation of the polarization. The strength of thesedepolarization effects, which cause a
reduction of the polarization degree of the beam, can be parameterized in terms of a single-time
depolarizing time constantτdep, such that the effective polarization can be written as:

Peff =
8

5
√

3

τdep

τdep + τST

. (4.5)

As a result, the maximum achievable polarization becomes smaller and the rise time shorter.
Efforts taken at HERA in the mid ’90s to optimize the lepton beam orbit allowed to achieve
polarization values in the range50% − 60% (see Figure 4.3).
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Figure 4.3: Polarization build-up through the Sokolov-Ternov effect. Within a rise time of about22

minutes polarizations between50% and60% are typically reached.

Though the lepton beam is naturally polarized in the transverse direction, most of the interesting
physical observables at HERMES require a longitudinally polarized beam. Thelongitudinal
polarization can be achieved by rotating the spin of the beamparticles from the transverse
direction to a direction parallel to the beam orbit. This is done by means of the so-called
spin rotators. These devices consist of six interleaved horizontal and vertical dipole magnets
generating a pattern of vertical and horizontal orbit deflections. After passing through a spin
rotator, the trajectory of an electron (or positron) beam will not be affected, but the orbit kicks
will cause a series of rotations of the spin vector such that it is finally turned by90◦ (see Figure
4.4). Two sets of spin rotators have been installed before and after the experimental North, East
and West Halls2, as depicted in Figure 4.5. The reason for using pairs of spinrotators is that the
polarization needs to be turned back to the transverse direction in order to take advantage of the
Sokolov-Ternov effect.

2The spin rotators close to H1 and ZEUS were only installed after the upgradeto HERA II.
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Figure 4.4: A schematic diagram showing the operation principle of one spin rotator. A sequence of
vertical and horizontal magnetic fields move the beam orbit (top) and rotate the particle polarization
direction (bottom). The sequence is chosen such that the vertical position of the orbit is unchanged by
the rotator, but the spin receives a net rotation to the longitudinal direction.

4.1.2 The Transverse and Longitudinal Polarimeters

The uncertainty in the beam polarization degree constitutes an important part of the systematic
uncertainty for precision measurements of polarized crosssection, asymmetries etc. Therefore
it is essential to provide precise and frequent measurements of the beam polarization. At HERA,
two polarimeters are in operation. Both polarimeters make use of a cross section asymmetry in
the Compton back scattering of circularly polarized photonsoff polarized electrons/positrons.
The Transverse Polarimeter (TPOL) was installed in the HERA east hall in 1992 and measures
the transverse polarization [Bar93]. Circularly polarized light, with its helicity being switched
with a frequency of83.8 Hz, is sent from a continuous Argon ion laser against the lepton beam at
a shallow angle. The backscattered photons are detected with a tungsten-scintillator sandwich
calorimeter consisting of two identical halves separated along the beam plane. If the beam
polarization is in they direction (i.e. perpendicular to the orbit plane), the Compton scattered
photons are distributed asymmetrically along they direction. The asymmetry is proportional to
the beam polarization along they-direction [Bec00]. By measuring the asymmetry in the energy
deposition of backscattered photons between the top and thebottom halves of the calorimeter,
the mean average vertical position〈y〉 of the energy deposition can be inferred. The transverse
polarizationPy of the beam can be derived from the difference of the mean values〈y〉 measured
with right (R) and left (L) circularly polarized light.
The Longitudinal Polarimeter (LPOL), installed in 1995-1996 in the East Right straight sec-
tion of the HERA lepton ring, measures the longitudinal polarization behind the HERMES
interaction point. The setup is similar to that of the TPOL: it consists of a pulsed laser gen-
erating polarized light with alternating helicity at each pulse. The light crosses the beam53
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Figure 4.5: Schematic representation of HERA with the four experiments and the three pairs of spin
rotators. The longitudinal and transverse polarimeters are also shown.

m downstream of the HERMES target at an angle of about9 mrad. Several thousand photons
are backscattered when the laser pulse crosses a electron/positron bunch. Their energy sum is
measured by a radiation hard calorimeter consisting of an array of four20 cm long NaBi(W0)2
crystals. For a longitudinal lepton polarization the Compton cross section is independent of the
azimuthal scattering angle, but switching the laser helicity will modify the energy spectrum.
The asymmetry, generated by the different laser helicity states, of the energy weighted sums of
backscattered photonsζ along they direction, determines the longitudinal polarizationPz of
the beam. A detailed description of the setup of the LPOL can be found in [Bec02].

4.2 The HERMES target

Among the primary goals of the HERMES experiment were the measurement ofDouble Spin
Asymmetries(DSA), which require both the beam and the target to be polarized, and ofSingle
Spin Asymmetries(SSA), which require either a polarized beam or a polarized target. The use
of a gas target was found to be the optimal solution for HERMES since, due to its relatively
low density, it ensures a reasonable life time of the beam. Inaddition a gas target is highly
polarizable and has virtually no dilution from unpolarizedmaterial. This, together with the fact
that polarity of the gas can easily be flipped, constitutes a major advantage with respect to the
use of liquid or solid state targets.
Due to its purity, its high polarization degree and its position internal to the beam pipe (so that
the lepton beam does not encounter any unpolarized materialbefore colliding with the target
atoms), the HERMES target [Ack98, Air05] is unique and represents one of the strengths of the
experiment.
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The target system consists of three main components (all shown in Figure 4.6):

- an Atomic Beam Source (ABS), which produces polarized hydrogen or deuterium atoms

- a storage cell around the central axis of the lepton beam line

- two diagnostic devices: a Breit-Rabi Polarimeter (BRP), to measure the atomic polariza-
tion, and a Target Gas Analyzer (TGA), to measure the atomic fraction of the gas.

In 1995 HERMES started data taking with a longitudinal polarized 3He target followed by
longitudinally polarized hydrogen in 1996 and 1997 and longitudinally polarized deuterium
from 1998 to 2000. During the shutdown in 2001 the longitudinal target magnet was replaced
by a transverse target magnet, and from 2002 to 2005 a transversely polarized hydrogen target
was used. At the end of 2005 the ABS, the BRP and the TGA were removed to allow the
installation of a Recoil Detector around the target cell. Since then, only unpolarized H and
D targets were used till the final shutdown, in July 2007. A schematic view of the HERMES
polarized target region is shown in Figure 4.7.
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TGA

1st sexp. magn. syst.

collimator

discharge tube

SFT
MFT

2nd sexp. magn. syst.

SFT / WFT
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sexp. magn. syst.
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nozzle

injection tube

Figure 4.6: Representation of the Atomic Beam Source (ABS), Breit-Rabi Polarimeter (BRP) and Target
Gas Analyzer (TGA) with the storage cell in the center.

4.2.1 The Atomic Beam Source

The ABS [Nas03] is a device which makes use of the Stern-Gerlach effect [Ger21] to generate
atomic polarization of hydrogen or deuterium. First, the molecular (H2 or D2) gas is dissociated
by means of a radio frequency dissociator (until 2000) or a microwave dissociator (from 2000
on). The hydrogen (deuterium) atoms flow through a cooled nozzle with a temperature of100

K. A thin layer of frozen water on the nozzle surface helps to prevent recombination [Bau03a].
The atomic gas, with all hyperfine states|n〉 ≡ |ms,mI〉 (see Figure 4.8) equally populated,
then enters a beam forming system followed by a system of sextupole magnets with a radial
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Figure 4.7: Side view of the HERMES polarized target region before the installation of the Recoil De-
tector.

field dependence for the hyperfine states selection. Due to the Stern-Gerlach effect, hydrogen
atoms in the two spin states|1〉 = | + 1

2
,+1

2
〉 and |2〉 = | + 1

2
,−1

2
〉, which have the same

electron spin|ms〉 but opposite nuclear spin|mI〉, are focused by the sextupole magnets, while
the other two states|3〉 = | − 1

2
,−1

2
〉 and |4〉 = | − 1

2
,+1

2
〉 are defocused and thus pumped

out by the pump system. In order to obtain nuclear polarization, transitions between hyperfine
states|1〉 → |3〉 and|2〉 → |4〉 are induced respectively by two independent RF-transitions: a
strong (SFT) and a weak (WFT) field transitions (see Figure 4.6). In this way it is possible to
populate the two states with the same nuclear spin orientation. Similar arguments hold for the
six hyperfine states of the deuterium atoms.

Figure 4.8: Hyperfine splitting of hydrogen (left) and deuterium (right) atomic energy levels as a function
of the magnetic holding fieldB relative to the critical fieldBc. The energy is given relative to the
hyperfine splitting atB = 0.
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Since switching on one transition and off the other only requires a very short time, it is possible
to invert the nuclear polarization every 60 s3. The switching of the target polarization is fast
enough to reduce the possibility of systematic time-dependent errors in the measurements of
the asymmetries and is slow enough to avoid synchronizationproblems in the data acquisition.

4.2.2 The Storage Cell

After the selection of the hyperfine states, the gas is fed into a storage cell [Bau03b], which
allows to increase the areal target density by about two orders of magnitude compared to a free
jet target. The areal target density obtained at HERMES is of the order of1014 atoms/cm2.
The storage cell is an open ended elliptical tube (40 cm long,29 mm wide and9.8 mm high)
made of thin (75 µm) ultra pure aluminum. It is embedded in a0.3 mm thick stainless steel
target chamber inside the ultra high vacuum of the HERA leptonbeam pipe. In order to reduce
the amount of synchrotron light entering the target chamberand sequentially the spectrometer,
a number of beam collimators were placed in front of the HERMEStarget (see Figure 4.7).
The feed tube, through which the polarized gas atoms are injected into the cell with fluxes of
up to6.5 · 1016 atoms/s, is installed perpendicular to the beam axis at the center of the cell (as
depicted in Figure 4.7). As a result, the target density has atriangular shape with the maximum
in correspondence of the position of the injection tube. In addition to the injection tube a
smaller sampling tube exists which extracts about5% of the gas for analysis in the TGA and
BRP. This sampling tube is installed opposite to the injectiontube at an angle of120◦. This
angle avoids a direct injection into the sampling tube, thusallowing to analyze the gas only
after the thermalization with the cell wall has occurred. Infront of the storage cell and behind
its extension so-called wake-field suppressors provide a gradual electrical transition between the
storage cell and the beam pipe. Without the wake-field suppressors the bunched lepton beam in
HERA would cause strong radio frequency fields to be emitted atthe discontinuity of the beam
pipe impedance. These wake-field would not only heat up the target cell but also destabilize the
beam orbit. The wake-field suppressor also prevent thermal conduction between the cell and
the beam pipe, which is operated at room temperature. A schematic view of the target cell is
shown in Figure 4.9.

During the 2002–2005 period, the temperature of the cell waskept at 100K in order to reduce
the thermal velocities of the gas atoms inside. In addition this temperature ensures low re-
combination and depolarization effects. In order to reducedepolarization and recombination of
atoms due to wall collisions the cell is coated with a radiation hard hydrophobic silicon based
polymer called Dryfilm. After a number of wall collisions theatoms diffuse along the cell axis
towards both ends. During the diffusion process the atoms cross the lepton beam many times,
significantly enhancing the probability of beam-target collisions. The ultra high vacuum of the
HERA lepton beam line is preserved thanks to a powerful pumping system.

3For the transversely polarized target the spin flip interval was increasedto 90s.
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Figure 4.9: Sketch of the HERMES target cell and its support structure.

4.2.3 The Target Gas Analyzer TGA

In order to measure the atomic and molecular content of the gas extracted from the center of the
storage cell, a special device, called Target Gas Analyzer (TGA) [Bau03b], was installed. The
main component of the TGA is a90◦ off-axis Quadrupole Mass Spectrometer (QMS) with a
beam ionizer and a Channel Electron Multiplier (CEM) for single ion detection. As a first step
particles (both atoms and molecules) are ionized by a 70 eV electron beam. The ions are then
pulled by an electric field toward the QMS, where they are massfiltered, and finally detected
by the CEM. In front of the QMS a chopper with a frequency of 5.5 Hz periodically stops the
sample beam to allow the subtraction of the signal of the residual gas in the chopper chamber.
In order to avoid interference with the BRP measurement, the TGA is tilted by 7◦ with respect
to the sampling tube (see right-hand side of Figure 4.6).

The degree of dissociationαTGA of the sample beam is extracted roughly once per minute from
the measurements of the flow rates for atoms (φa) and molecules (φm):

αTGA =
φa

φa + φm

. (4.6)

The degree of dissociation in the storage cell is then obtained by applying a sampling correction
factorCα. Dissociation degrees up to 92% for hydrogen and 95% for deuterium have been
achieved. Together with calibration measurements, which are performed during the breaks
between fills, two quantities can be calculated: the degree of dissociation in the absence of
recombination within the cell,α0, and the fraction of atoms surviving recombination in the
cell, αr. Both quantities are necessary for the determination of the density-averaged nuclear
polarizationPT in the cell.
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4.2.4 The Breit-Rabi Polarimeter

The gas extracted by the sampling tube also allows the measurement of the polarization degree
of the target. This measurement is performed by a Breit-Rabi Polarimeter (BRP) [Bau02].
The BRP consists of a pair of radio frequency transitions - a strong (SFT) and a medium field
transition (MFT) - which can be tuned for different hyperfinestate transitions (see right-hand
side of Figure 4.6). A sextupole magnet system focuses atomswith ms = +1

2
towards the

detector unit and defocuses atoms withms = −1
2
. As in the TGA, a QMS together with a

chopper for background subtraction is used for the detection. The atomic polarizationPa can be
deduced from the measurement of the relative populations ofthe hyperfine states of hydrogen
or deuterium atoms. This quantity, however, represents thepolarization at the center of the
storage cell. The polarization averaged along the cell,PBRP , is obtained by applying a sampling
correctionscP , provided by a Monte Carlo simulations of the ballistic flow ofthe target gas
atoms in the storage cell [Air05c]:

PBRP = cP · Pa . (4.7)

Combining the BRP and the TGA measurements, the averaged targetpolarizationPT as seen
by the electron beam can be calculated as:

PT = α0[αr + (1 − αr)β] · PBRP . (4.8)

Hereβ is the ratio of the nuclear polarization of molecules produced by recombination and
the nuclear polarization of the atoms. A direct measurementof the remnant polarization con-
tained in the recombined molecules is not possible at HERMES as the BRP is capable only of
atomic polarization measurements. In dedicated measurements at higher storage cell tempera-
ture of260 K, with enhanced recombination, the range ofβ could be restricted to the interval
[0.45, 0.83]. The uncertainty onβ is part of the systematic uncertainty of the target polarization
value.

4.2.5 The Target Magnet

The target magnet surrounding the storage cell provides a holding field which defines the po-
larization axis. While a holding field parallel to the lepton beam has no effect on the beam and
a marginal effect on the scattered particle trajectories, for a transverse holding field different
effects have to be taken into account. The deflection of the beam requires compensation by
correction coils and limits the strength of the magnetic field due to the amount of synchrotron
radiation generated by the beam. Since not only the beam but also the scattered particles are
deflected, the reconstructed vertex position and scattering angles must be corrected for the de-
flection. At HERMES two alternative offline Transverse MagnetCorrection (TMC) methods
have been developed (see Section 4.3.2).
In addition to the influence on the particle trajectories, depolarizations effects occur due to the

59



CHAPTER 4. THE HERMES EXPERIMENT AT HERA

bunched structure of the HERA lepton beam. The time period of96.1 ns between two adjacent
lepton bunches corresponds to a bunch frequency of10.41 MHz. The induced magnetic high
frequency field around the lepton beam contains a large number of harmonics because of the
short bunch length of30 ps. The energy splitting between the hyperfine states of the target
atoms depends on the strength of the magnetic holding field. If a harmonic of the beam induced
field matches a transition frequency, transitions will occur between the hyperfine states result-
ing in a change in the relative populations. As a result the net target polarization decreases.
Therefore, both the longitudinal and the transverse holding fields have been set in such a way
to avoid these resonances, with a good homogeneity over the full length of the storage cell. The
setup for the transverse magnet, installed in 2002, was improved in 2003 with the addition of a
correction coil which further reduced the inhomogeneitiesof the holding field in the transverse
directionsx andy to the level of10−4 [Wan04].

4.2.6 The average target polarization

From 1997 to 2003, the target polarization values provided by the target group were averaged
over each of the data taking periods. These periods were typically of the order of one year,
between main shut-downs of HERA for maintenance4. However, after the first three months
of 2004 the performances of the polarized target became unstable and a similar behavior was
registered throughout the 2005. As a consequence, the target polarization needed to be averaged
over much shorter periods. Since the ABS was removed at the endof 2005, the data collected
during the last two years, 2006 and 2007, were unpolarized. The average target polarization
values obtained with transversely polarized hydrogen from2002 to 2005 are reported in Table
4.1. The estimated systematic uncertainty on the target polarization is of the order of5%.

Period polarization

Apr 2002 - Mar 2003 0.783 ± 0.041

Sep 2003 - Dec 2003 0.795 ± 0.033

Jan 2004 - Mar 2004 0.777 ± 0.039

Apr 2004 - Aug 2004 0.648 ± 0.090 ... 0.775 ± 0.044

Nov 2004 - Nov 2005 0.579 ± 0.112 ... 0.761 ± 0.050

Table 4.1: Target polarization values for the different data taking periods with transversely polarized
hydrogen. Due to the unstable conditions of the target, only the smallest and the highest polarization
values are reported for the last two periods. The statistical uncertainties are negligible compared to the
listed systematic uncertainties.

4During the commissioning of the target in 1996 the TGA was not available formost of the time and the measurement of
the target polarization suffered from a large systematic uncertainty.
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4.2.7 The Unpolarized Gas Feed System (UGFS)

Besides the injection of polarized hydrogen and deuterium atoms, whose density was intrinsi-
cally limited by the performances of the ABS, the storage cellwas also periodically filled with
unpolarized gas by means of the so-calledUnpolarized Gas Feed System(UGFS). After the
removal of the ABS, at the end of 2005, the UGFS was the only device used to feed the storage
cell. The UGFS allowed not only the injection of unpolarizedhydrogen and deuterium, but also
of heavier gasses like krypton, xenon, neon and nitrogen. However, during the last two years
(2006 and 2007) only unpolarized hydrogen and deuterium were used.
The densities of the unpolarized gases provided by the UGFS were adjustable acting on a dosing
valve and only limited by the requirement to provide less than a maximum contributionτmax

H

to the reduction of the lepton beam life time. The beam life time contributionτH is given by
the ratio(τ0τG)/(τ0 − τG), whereτG (τ0) is the beam lifetime with (without) gas in the target
cell. The normal density runs (or Low Density Runs) usually provided a 45-hour beam life time
contribution. Exceptions were represented by the so called’end of fill’ runs, executed during
the very last part of the HERA fills, when the lepton beam current was below∼ 13 mA. During
these runs a high density unpolarized gas was injected into the storage cell providing a beam life
time contribution of only 2 hours. The target density was then only limited by the detector rates,
and densities up to two orders of magnitude larger than that with the ABS could be achieved.
The possibility to change the gas density and to inject the gas also into the target chamber
allowed various calibration measurements.

4.3 The HERMES Spectrometer

The HERMES experiment uses an open forward magnetic spectrometer for the detection of the
scattered lepton and a large fraction of the hadronic final states. The spectrometer is capable
of particle detection in a broad kinematic interval with a good angular and momentum resolu-
tion. It allows to detect particles with scattering angles between±170 mrad in the horizontal
direction and between40 and140 mrad in the vertical direction [Dur95] and consists of two
identical halves placed above and below the HERA beam pipe. The spectrometer consists of
four main components:

• a spectrometer magnet

• a tracking system

• a particle identification (PID) system.

• a triggering system

The spectrometer magnet, which allows the determination ofthe momentum of charged par-
ticles, is a standard dipole magnet with a relatively high angular acceptance. The tracking
system basically consists of three sets of tracking chambers placed in front, inside and behind
the spectrometer magnet, respectively. The particle identification system consists of four main
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components: a RICH, a transition radiation detector (TRD), a preshower detector and an Elec-
tromagnetic Calorimeter, and allows a very good separation between leptons and hadrons and
a good identification of the various hadron types (pions, kaons and protons). Finally, the trig-
gering system, which allows to separate useful physics events from background contributions,
consists of a combination of three hodoscopes built out of scintillating material in combina-
tion with PMTs. The location of the various detectors is shown in Figure 4.10 and a detailed
description of the detector components can be found in [Ack98].

Figure 4.10: A two dimensional, vertical cut of the HERMES spectrometer. Until 1997 a threshold
Čerenkov detector was in place of the Ring ImagingČerenkov (RICH), the silicon detector was not
installed until2001

For the description of the HERMES spectrometer it is necessary to introduce the so-called
HERMES coordinate system. The origin of this reference system is located at the center of the
target cell. The axes are defined such that thez direction is along the incident lepton momentum,
pointing upstream,x points towards the center of the HERA ring andy points upward.

4.3.1 The spectrometer Magnet

During data taking the spectrometer magnet is operated at a deflecting power of
∫
Bdl = 1.3

Tm. The magnetic dipole field is oriented in the vertical direction, deflecting charged particles
horizontally. A11 cm thick iron plate (septum plate), located in the symmetry plane between
the two spectrometer halves, shields both the lepton and theproton beam from the magnetic
field5. The remaining effects are compensated by a correction coil. Field clamps in front and
behind the magnet reduce fringe fields in the adjacent detectors. The aperture of the magnet
limits the geometrical acceptance of the spectrometer to±140 mrad in the vertical and±170

5The proton beam pipe passes in between the spectrometer halves at a distance of 72 cm from the lepton beam.
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mrad in the horizontal direction. The lower limit on the vertical acceptance of±40 mrad is
given by the septum plate.

4.3.2 The Tracking system

The main purpose of the tracking system is the 3-dimensionalreconstruction of the tracks of
the charged particles and the determination of the particles momenta through the definition of
the angle of deflection due to the magnetic field.
All HERMES tracking devices can be divided into two categories depending on their spatial ac-
ceptance: main tracking is provided by the drift chambers, identified as the Drift Vertex Cham-
bers (DVCs), Front Chambers (FCs) and Back Chambers (BCs), depending on their position,
while extended tracking is achieved by wire chambers, located inside the dipole, called Magnet
Chambers (MCs) and a silicon tracker referred to as Lambda Wheel(LW). Except for the sil-
icon detector, which is located right next to the target, alltracking devices are wire chambers,
each consisting of several planes.

The Drift Chambers

The core of the HERMES tracking system is represented by the Front Chambers (FC) [Bra01],
located at about1.6 m from the target center, just in front of the magnet, and the Back Chambers
(BC) [Ber98], that are combined into two groups in front and behind the RICH detector. They
are conventional horizontal drift chambers. Each of their modules consists of six layers of drift
cells, each made of a plane of alternating anode and cathode wires between a pair of cathode
foils. The cathode foils and wires are at high voltage while the anode wires are at ground. The
cells are organized in three pairs, a vertical pair (X-plane), and two staggered planed (U and V
planes), which are at an angle of±30o with respect to the vertical plane to help resolve left-
right ambiguities. They are filled with a mixture of90% Ar, 5% CO2 and5% CF4. The choice
of this particular mixture results from three requirements: non-flammability, fast electron drift
velocities, small aging effects (assured by theCF4 component).
When charged particles traverse the chambers, they ionize the gas molecules encountered along
their paths. While accelerated toward the anode wires, electrons stripped from the gas molecules
ionize other gas molecules. This process results in an avalanche of positive ions which are
attracted to the cathode wires. Due to the high mobility of the electrons, their drift time across
the cell can be used to determine where in the cell a particle has passed.
The two modules of the FC have drift cells of7 mm width and8 mm depth. The resolution per
plane is225 µm, while the single plane efficiency ranges from97% to 99%, depending on the
position in the cell. The BCs have a drift cell size of15 × 16 mm. The resolutions are275 µm

for BC1/2 and300 µm for BC3/4. For leptons (electron or positrons), the BC plane efficiency
was found to be well above99%, while it is somewhat smaller for hadrons (about97%) because
of their reduced ionization density.
Readout cards, responsible for amplification, pulse shapingand discrimination, are mounted on
the drift chambers. The signals are transported to Fast-Bus TDCs in the Electronic Trailer (ET),
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which is located 30 m away. A draw of a BC module is shown in Figure 4.11 together with a
schematic view of the field lines.

Figure 4.11: Left: The thin anode wires, the thick cathode wires and the cathode planes are visible
together with the field lines. Right: a schematic drawing of a BC module.

A set of Drift Vertex Chambers (DVC) was installed1.1 m downstream of the target between the
1996 and1997 data taking periods. The DVCs were installed later since redundancy in the front
region was desired. Furthermore the loss of a single FC planecould have had a large impact
on HERMES tracking. These chambers consist of six planes of conventional drift chambers
with a design similar to that of the FCs, albeit smaller, and the same gas mixture as the FCs.
The acceptance is somewhat larger though, extending vertically from ±35 to ±270 mrad and
horizontally to±220 mrad. The planes have a wire spacing of6 mm and a resolution of220

µm per plane.

The Magnet Chambers

The three Magnet Chambers (MC) [And01] are located in the gap ofthe magnet. Initially they
were intended to help resolve multiple tracks in case of hightrack occupancies. This turned
out not to be necessary because of the low background. Still,they are helpful in determining
the momentum of low energy particles (for instance fromΛ decays) that do not reach the back
part of the detector due to the large deflection in the magnet (see Figure 4.12). These tracks are
calledshort tracksor magnet tracks.
The MCs are multi-wire proportional chambers (MWPC) able to operate in a strong magnetic
field and to deal with high multiplicities. Each chamber has three planes with a cell width of2
mm, providing a resolution of700 µm. The positioning of the MCs is shown in Figure 4.13.
The MCs gas mixture is the same as for the drift chambers, but the mixing ratios have been
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Figure 4.12: A ’short’ and a ’long’ track in the HERMES spectrometer (top view). Although removed
long time ago, the Vertex Chambers (VC) still appear in the picture.

Figure 4.13: The positioning of the six MCs inside the spectrometer magnet.
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optimized:65% Ar, 30% CO2 and5% CF4. A digital single bit-per-wire readout was chosen
to accommodate the readout electronics for a large number ofchannels (5504) within a very
restricted space volume.

The Lambda Weel

After the 2000 shutdown, an additional tracking device, theLambda Weel [Ste00], was installed.
The main goal of this detector was to increase the acceptancefor longer living particles such
asΛ, Λc, Ks that decay outside the target region, allowing the reconstruction of the secondary
vertex. As theΛ-decay length (τ/c) is about7.9 cm, the position of the Lambda Weel was
chosen to be between45 and50 cm downstream of the target cell. Furthermore, since pions
from Λ-decay have small momenta, the detector needed to be placed inside the beam vacuum.
The Lambda-Wheel consists of two sets of disk-shaped silicondetectors. Each set is divided
into 12 modules, each consisting of two trapezoidal double sided 300µm thick silicon strip
sensors. The disk has an external diameter of33.6 cm and a inner diameter of9 cm leaving space
for the beam pipe and wake field suppressors. As the Wheel is placed close to the accelerator,
special care needed to be taken to screen the detector from the RF filed generated by the beam.

The Tracking algorithms

The combined information of many tracking detectors is needed for an unambiguous track re-
construction. At HERMES, a tree-search algorithm is appliedfor fast and efficient track finding.
The principle of this method is to look at the whole hit pattern of the detectors in several iter-
ative steps, doubling the resolution at each step. For a given resolution, the algorithm checks
if the hit pattern contains a subpattern consistent with an allowed track, by comparing with all
sets of allowed patterns stored in a database. If this is the case, the procedure is repeated at
increased resolution, otherwise the pattern is rejected. The HERMES reconstruction program
(HRC) needs about11 iterations to find a track. This is done independently for thehits in the
front and back part of the detector, resulting in a set of front and back partial tracks. In a next
step, all combinations of front and back partial tracks are tested to match spatially in the x - y
plane within a defined tolerance. Matching combinations arerefitted to form a full track. The
track momentum is determined by comparing the position of the track in front and its slope in
front and behind the magnet with numbers in a look-up table. This look-up table contains the
momentum of a given track as a function of the relevant track parameters. The overall momen-
tum resolution in the track reconstruction was estimated tobe∆p/p = 2.6%. In many of the
data productions the information of the DVCs was not used. Instead, a slightly different method
was developed to reconstruct tracks using only the FC and BC hits. The matching of the front
and back partial tracks is first done with a larger tolerance.Then, by fixing the matching point
to the position of the higher quality back track extrapolated in the middle of the magnet, the
front track parameters are recalculated. This method is called force bridging, i.e. the front track
is forced to match the back track in the center of the magnet.
In 1998 the thresholďCerenkov detector in between BC1/2 and BC3/4 was replaced by the
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RICH. The RICH material has a considerably larger radiation length than that of thěCerenkov.
As a consequence, the momentum resolution of the data taken with the RICH decreased by up
to a factor of2 with respect to data taken with thěCerenkov counter.

When analyzing the data collected during the 2002-2005 running period, in which a trans-
versely polarized target has been used, the vertex and scattering angle reconstruction have to be
corrected for the deflection operated by the target transverse magnet (see Section 4.2.5). To do
this, the transverse magnet field has been carefully mapped in 2003. The measured field map
has been used for the 2003-2005 data productions while for the 2002 production a theoretical
field map was calculated with the help of the magnetostatic program MAFIA [Wei97]. A survey
of the magnet field along thez-axis and at certain positions along thex-direction served as input
for this calculation.
Two different methods for the target magnet correction (TMC)are available, both using the
track position information from the DVC and the FCs [Aug07].

In method 1the correction on the particle track is applied based on reference tracks from a data
base. In a detailed tracking calculation a grid of trajectories covering the HERMES acceptance
is computed in small steps of momentum,z-vertex and vertical and horizontal angles. From this
set the trajectory closest to a measured particle track is selected, based on the tracking infor-
mation from the DVC and FCs. The remaining deviations from thereference track in the data
base are used in a linear interpolation to yield the corrected z-vertex and vertical scattering angle
of the measured track. The true horizontal angle can then be computed from the position of FC2.

Method 2 is based on a ray tracing procedure. Using the reasonable assumption that a trajectory
which is in the beginning close to a reference trajectory will also be close to the reference
trajectory at the end, a Taylor expansion for the final position in terms of the initial position
can be performed. The coefficients provide a quick way to relate the initial position of a track
to its final position with the help of a transfer function. Forthe determination of these transfer
coefficients several reference particles had to be tracked through the magnet field using the
MIT-Raytrace program [Kow87]. In order to correct thez-vertex position and the scattering
angles the right transfer function, which depends on the particle momentum and thez-position
from which the particle is assumed to originate, has to be found iteratively until convergence is
achieved.

4.3.3 The Particle Identification (PID) Devices

The HERMES PID system consists of four different particle identification detectors: an electro-
magnetic calorimeter, a preshower detector, a transition radiation detector (TRD) and a thresh-
old Čerenkov detector, that was replaced by a dual radiator Ring ImagingČerenkov detector
(RICH) in 1998. A probabilistic algorithm which uses the responses of these detectors pro-
vides a very clean (> 98%) separation of the scattered leptons from the hadrons. The particle
identification is achieved in two steps: first leptons and hadrons are separated with the TRD,
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the preshower detector and the calorimeter, then pions, kaons and protons are identified by the
response of the RICH. Although the main task of the RICH detector is the identification of the
various hadron types, it helps to identify leptons as well. Typical PID detector responses are
plotted in Figure 4.14.

Figure 4.14: The responses of the different PID detectors for hadrons and leptons. In order to plot the
responses for a given detector, the particles were identified with cuts on the responses of the remaining
PID detectors (source [Els06]).

The Electromagnetic Calorimeter

The HERMES calorimeter [Ava98] was designed to perform an electron-pion separation of at
least 10 at first level trigger, and> 100 in the offline analysis. It consists of420 radiation hard
F101 lead glass blocks [Ava96] per each detector half and is located at the downstream end of
the spectrometer. The main properties of F101 lead glass are listed in Table 4.2. The frontal
area of each block is9 × 9 cm2. The length is50 cm and corresponds to18 radiation lengths6.
Each block is viewed from the rear by a PhotoMultiplier Tube (PMT). The gain of the PMTs is
monitored continuously by a dye laser sending light pulses through glass fibers to every PMT

6The radiation lengthX0 indicates the length after which an electron still has1/e ≈ 37% of its initial energy. It can be
approximated byX0 ∼ 180 · (A/Z2).
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as well as to a reference photo diode. A comparison of the PMT signals to that of the reference
diode measures the relative gain of the PMTs.

F101 Lead Glass

Chemical composition:PB3O4 (51.23 %)

SiO2 (41.53 %)

K2O (7.00 %)

Ce (0.20 %)

Radiation Length: 2.78 cm

Critical Energy (Ec): 17.97 MeV

Refraction index: 1.65
Molire Radius: 3.28 cm

Table 4.2: Chemical composition and calorimetric properties of F101 Lead Glass. The addition of0.2%

of Cerium significantly improves the radiation hardness of the material.

An electron with an energy larger than the critical energyEc, at which radiative processes
start to dominate the energy loss in the material, will lose its energy primarily via emission
of Bremsstralhung photons. If these photons have a sufficiently high energy they convert into
electron-positron pairs, which, in turn, emit Bremsstralhung photons. The process evolves un-
til the energy of the electrons and positrons falls below thecritical energyEc, generating a
so-called electromagnetic shower. The energy of electronsand positrons in the shower is suf-
ficiently high to creatěCerenkov light in the lead glass blocks of the calorimeter. The block
size was chosen in order to contain99% of an electromagnetic shower inside a matrix of3 × 3

blocks. The amount of̌Cerenkov photons, detected by the PMTs, then provides a measure of
the shower and, to a good approximation, of the energy of the primary electron (positron). The
spatial resolution of the impact point isσ ≈ 0.7 cm. The energy resolution of the calorimeter
can be parameterized as [Ava98]:

σ(E)

E
=

5.1 ± 1.1√
E(GeV )

+ (2.0 ± 0.5) +
10.0 ± 2.0

E
. (4.9)

The energy response was measured to be linear within1% in the range from 1 to 30 GeV
[Ava96]. For particle identification the ratioE/p of the deposited energy to the momentum
of the particle is considered. In contrast to leptons (positrons or electrons) which produce
electromagnetic showers depositing almost all their energy, hadrons only deposit a fraction of
their energy due to ionization losses and nuclear interactions. The top-left panel of Figure 4.14
shows the probability distributions for hadrons and leptons to deposit a fractionE/p of their
energy in the calorimeter. The leptons have a distinct peak at E/p ≃ 1, while the hadron
distribution is much wider and mostly to lower values. If leptons with high momentum radiate
bremsstrahlung photons in the detector material in front orinside the magnet, the photons will
travel along the lepton path and may hit the same calorimetercluster as the original lepton. Thus
the detected energy in the calorimeter can be larger than thelepton momentum determined by
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the magnet after the photon emission (this explain the largetail atE/p > 1).
The hadron rejection factor7 of the HERMES calorimeter was measured to be between 10 and
100 depending on the electron (positron) energy and the calorimeter threshold. The rejection
factor increases to values between 50 and 160 in the off-lineanalysis.
The calorimeter is also used for detection and energy determination of photons. This is, for
instance, of crucial importance for the identification of neutral pions. In addition the calorimeter
is part of the first level trigger.

The Preshower Detector

Electron-hadron separating power of an electromagnetic calorimeter can be substantially im-
proved if the calorimeter is preceded by a material with a large mean free path length for
hadrons8. By doing so, indeed, charge exchange reactions such asπ−p → π0n are suppressed.
For this reason a∼ 2X0 thick preshower detector, consisting of a wall of42 vertically oriented
plastic scintillator paddles behind an11 mm thick lead plate, was installed right in front of the
calorimeter. A schematic drawing of the preshower-calorimeter setup is shown in Figure 4.15.

Figure 4.15: Three dimensional view of the preshower detector and the electromagnetic calorimeter.

The paddles have an area of9.3 × 91 cm2 and overlap by2 − 3 mm for maximum efficiency.
Each paddle is read out individually by a PMT. Leptons may initiate electromagnetic showers
in the lead plate and deposit energy with a mean of20 − 40 MeV in the scintillators whereas
hadrons only produce a minimum ionizing signal of2 MeV. The probability distribution for the
preshower signal is also shown in Figure 4.14.

7The hadron rejection factor is defined as the ratio of the total number of hadrons to the number of hadrons misidentified as
leptons, for a given energy cut.

8The mean free path length for hadrons can be approximated asλ ∼ 35 · A1/3 and is measured in[g/cm2].
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The Transition Radiation Detector (TRD)

In order to achieve a sufficiently large electron-hadron separation, the installation of a detector
with a pion rejection factor of about 100 was required. Because of the limited available space,
a transition radiation detector (TRD) was chosen to this purpose.
When a relativistic particle passes through the interface between two dielectric media with dif-
ferent dielectric constants it emits radiation in a narrow cone with an opening angleθ inversely
proportional to the Lorentz factorγ = 1/

√
1 − β2. This phenomenon is a consequence of the

requirement of continuity of the Coulomb field at the boundarybetween the two media.
The transition radiation (TR) for ultra-relativistic particles is in the X-ray region (several keV).
In the passage from vacuum to a medium with electron densityne, the probability of emission
of a transition radiation photon in the ultra-relativisticregime is given by:

WTR =
8πα2γne

3me

, (4.10)

whereα is the fine structure constant andme is the electron mass. The linear dependence of
WTR on γ enables a separation of highly relativistic (β ≃ 1) particles in a way that would
require a much longeřCerenkov detector for the same separation power.
At HERMES energies only electrons (positrons) emit such transition radiation in the X-ray
region. For instance a5 GeV electron has aγ = 10000 while for a pionγ = 35, so that
the probability that the electron emits a TR photon will be300 times larger than for the pion.
The detection of an X-ray in coincidence with a charged particle thus allows to discriminate
between electrons (positrons) and hadrons. Figure 4.16 shows how the measurements of the TR
improves the separation of electrons from pions.
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Figure 4.16: Response of a single TRD module. The energydE/dx deposited in the TRD due to ioniza-
tion is not able to provide a clear separation between pions and electrons. When the transition radiation
is included, the electron peak moves to higher energies and the separation significantly improves.

The dependence ofWTR on the square ofα = 1/137 implies that in order to achieve a con-
siderable probability for the emission of a TR photon, many radiator layers are needed, and the
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dependence onne implies the use of a material with high electron density. Theradiator also
needs to be highly transparent to X rays, in order to avoid self-absorption. A polypropylene
fiber radiator satisfies all requirements, while the last problem is solved by building a sandwich
structure of radiators and X-rays detectors.
The HERMES TRD consists of a sequence of 6 modules per detector half, arranged as shown
in Figure 4.17. Figure 4.17 also shows the different impact of the detector on an electron track
and a pion track.

Figure 4.17: Schematic overview of the 6 modules of the HERMES TRD. Each module consists of a
radiator and a multi-wire proportional chamber.

Each of these modules consists of a radiator material and a multiwire proportional chamber
(MWPC), separated by a flush-gap whereCO2 circulates in order to avoid the diffusion of
oxygen and nitrogen into the chambers. The structure of a single module is shown in Figure
4.18.
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Figure 4.18: Top view of a single TRD module.

The radiator is a loosely packed array of polypropylene fibers with a diameter of17 − 20 µm,

72



4.3. THE HERMES SPECTROMETER

arranged in roughly300 two-dimensional layers, with a total thickness of6.35 cm. The gas in
the wire chambers needs to have high atomic number, in order to achieve best X-ray absorption,
thus a mixture of90% Xenon and10% Methane, the latter acting as a quencher to avoid the
creation of electron avalanches in the chamber, is used. TheMWPC consists of 256 vertical
wires . Signals from the wires are amplified and transmitted to Fast-Bus ADCs.
In order to obtain a good hadron rejection factor, data from several modules need to be com-
bined. A functional combination based on the ’truncated mean’ method was adopted. Accord-
ing to this method the largest signal from the six modules is rejected while the average of the
other five is considered. The improvement obtained with thismethod, which yields a pion re-
jection factor above 100, is illustrated in Figure4.19. By using a probability based approach,
this factor is further increases.

Figure 4.19: Left: the response of a single TRD module. Right: the truncatedmean of all 6 modules
significantly improves the lepton-hadron separation.

The Čerenkov Detector and the RICH

If a particle passes through a material with a velocity larger than the phase velocity of light in
the material, it emitšCerenkov radiation on a cone with a characteristic opening angle θc given
by:

cos θc =
1

βn
, (4.11)

wheren is the refractive index of the material andβ = v/c is the ratio of the velocityv of the
particle and the speed of light in vacuumc. On the other hand, particles withβ < βthresh = 1

n

or, equivalently, with momentum

P < Pthresh = βthγthm0 =
m0√
n2 − 1

(4.12)

do not emitČerenkov light. The fact that in a given material different particles have different
threshold momenta provides a way to discriminate between them. This is the working principle
of theČerenkov detectors.
Until the end of1997 a thresholdČerenkov counter was used to provide lepton identification
below the threshold momentum for pions. Each of the countersin top and bottom consisted of a

73



CHAPTER 4. THE HERMES EXPERIMENT AT HERA

glass radiator, a system of20 spherical mirrors and20 matching photomultiplier tubes mounted
on the outside of the aluminum enclosure containing the mirrors and the gas. The radiator gas
was a mixture of70% N2 and30% C4F10, resulting in aPthresh of 20.9 MeV for e±, 3.8 GeV
for pions and13.9 GeV for kaons. For tracks classified as hadrons by the other PID detectors,
the Čerenkov detector could be used to identify pions in a momentum range from3.9 to 13.9

GeV.
During the shutdown break in the Spring of1998, the Čerenkov counter was replaced by a
dual radiator Ring ImaginǧCerenkov detector [Ako02] in order to improve the discrimination
between pions, kaons and protons. The RICH uses the same support structure as thěCerenkov
counter. Two radiators with rather significantly differentrefractive indices are used, enabling
the identification of the different hadron types over a momentum range from1 to 15 GeV. The
first radiator is a wall of10.5×10.5 cm2 aerogel tiles with an entire thickness of5.5 cm, installed
right behind the entrance window [Miy03]. The tiles are stacked in5 layers with5 horizontal
rows and17 vertical columns. Aerogel is a silica gel foam, i.e. containing air, with refractive
index 1.0304. The second radiator is a heavy gas,C4F10 with a refractive index of1.0014,
filling the volume of the detector. Dry nitrogen is constantly flushed through the aerogel layer
to prevent degradation by theC4F10. Čerenkov photons are reflected from a spherical mirror
array onto a photon detector in the focal plane above the gas radiator. The mirror array consists
of eight spherical mirror segment with a radius of curvatureof 2.20 m and a reflectivity of
85%. The photon detector is an array of1934 PMTs with a diameter of18.6 mm, arranged in a
hexagonal closed packed matrix. Conventional PMTs sensitive to the visible light region were
chosen to detecťCerenkov light. Each of the PMTs is surrounded by an aluminized plastic foil
funnel to maximize light collection. A sketch of the top RICH detector is shown in Figure 4.20.

Figure 4.20: Schematic drawing of the upper half of the HERMES RICH detector.

The expecteďCerenkov angles for pions, kaons and protons, due to the passage through the
two radiators, are plotted as a function of the momentum in Figure 4.21. The two radiators
have a different momentum window in which they give a good separation between pions, kaons
and protons: momenta lower than approximately10 GeV are below the threshold fořCerenkov
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radiation with a gas radiator, while in this range the aerogel has its greatest discriminating
power. At higher momenta the curves for aerogel saturate andit is not possible anymore to
distinguish among hadrons based on aerogel information, and the gas is used instead.
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Figure 4.21: Čerenkov angle versus momentum for aerogel (top curves) andC4F10 (bottom curves)
radiators. Pions, kaons and protons are clearly separated by combiningthe signal from both radiators.

The detected ’rings’ are not circular, but rather distortedellipses, as the photon detector is not
exactly in the mirror’s phocal surface. The aerogel rings are rather difficult to detect, since only
a few photons are produced in the aerogel layer. A typical event with a kaon in the upper and an
electron and a pion in the lower detector half is depicted in Figure 4.22: A 14.6 GeV electron
leaves an aerogel and a gas ring while a 1.5 GeVπ− and a 5.5 GeVK+ only leave an aerogel
ring. The particle associated with the 1.5 GeV track is clearly a pion since a 1.5 GeV kaon is
below theČerenkov threshold. Moreover a pion of 5.5 GeV would have an additional gas ring,
while the radius in case of a proton would be much smaller. Thefigure is an indication of the
particle identification power of the RICH detector.

Figure 4.22: A typical RICH event with a 14.6 GeV electron in the lower half, yielding two rings, a 15
GeVπ− in the lower half and a 5.5 GeVK+ in the upper half.
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In HERMES two reconstruction methods are used: Indirect Ray Tracing (IRT) and Direct Ray
Tracing (DRT). The RICH PID Scheduler (RPS) combines the best features of both tracing
methods by defining which method should be used. More information about the RICH PID
reconstruction can be found in [Hom03].
Although the reconstruction is not always simple, the RICH detector is certainly a powerful PID
instrument. Furthermore, though the RICH was optimized to provide a good hadron separation,
it is also used, together with the other PID detectors, for the separation of leptons and hadrons.

4.3.4 The trigger system

The trigger system selects events interesting for physics analysis from background events. The
HERMES trigger working principle is rather straightforward: if a combination of signals of
certain detectors are above a predefined threshold, all detector responses are read out.
The first level trigger decision is made within about400 nsec after the event occurred, using
proper combinations of signals from the wire chambers, the calorimeter and three hodoscopes:
H0, H1 andH2. H1 andH2 are located in the back part of the spectrometer (see Figure 4.10)
and consist of 42 paddles of9.3×91×1 cm3 scintillating material, a 25 cm long light-guide and
a PMT at the outer end of each paddle. In particularH2 coincides with the preshower detector
described above. During 1995 only the backward region was used for triggering, leading to a
large background originating from the HERA proton beam. In 1996 the third hodoscope (H0)
was installed in the front region to improve trigger efficiencies.H0 has a different structure than
the other two hodoscopes. It consists of a 3.2 mm thick plastic scintillator plate read out by a
couple of PMTs.
Various first-level triggers are used at HERMES for DIS events, photoproduction events and
for calibration and monitoring of the detectors. The main trigger selects candidates for the
scattered lepton in DIS by requiring coincident signals in the three hodoscopes in one detector
half and a minimum energy deposited in two adjacent calorimeter columns in the same half, all
in coincidence with the HERA beam bunch signal. The thresholdenergy of the calorimeter is
set to 1.4 GeV for data taking with polarized target and 3.5 GeV for the unpolarized target. Only
around 13% of the DIS trigger events have at least one identified lepton and approximately 5%
of the recorded events are identified as DIS events in the offline analysis.
Not all the generated triggers can be accepted by the HERMES Data Acquisition system (DAQ).
Indeed, during the time needed for readout, no new events canbe recorded, resulting in a dead
time of the data acquisition. The dead time is defined as the ratio of trigger requests which had
to be rejected and the total number of readout requests. During standard running the HERMES
DAQ is capable of reading out the detector information at rates up to500 Hz with dead time
below10%.

4.3.5 Luminosity Measurement

In order to do absolute measurements of cross sections and tobe able to compare data set of
different years it is crucial that the luminosity is determined precisely. In general this is done
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either by counting the number of DIS events in a data set or by using a luminosity monitor
which makes use of a well known physics process. In case of positron beam, the HERMES lu-
minosity monitor is particularly sensitive to Bhabha scattering (e+e− → e+e−) and annihilation
processes (e+e− → γγ) between beam positrons and the shell electrons of the target atoms. For
electron beam the measurable process is Moller scattering (e−e− → e−e−). All these reactions
have small scattering angles and leave both particles with asimilar amount of energy.
The luminosity monitor consists of two small calorimeters,located on both sides of the beam
pipe in the horizontal plane, about7.2 m downstream of the target. The calorimeters consist of
3 × 4 arrays of radiation resistantNaBi(WO4)2 crystals. Each crystal is 20 cm long and has a
cross section of2.2×2.2 cm2. At the back side a PMT is coupled to each crystal for the read out
of the signal. A schematic drawing of the luminosity monitorand its readout scheme is shown
in Figure 4.23.

Figure 4.23: Left: Schematic drawing of the luminosity monitor and its readout scheme. Right: Front
view showing the reconstructed impact points.

Since the luminosity monitor is positioned outside of the standard HERMES acceptance, it
requires its own dedicated trigger in order to select the desired process. Triggering occurs
when signals in both luminosity detector halves exceed a 4.5GeV threshold. The very well
known cross section of the scattering and annihilation processes is integrated and folded with
the detector acceptance and efficiency. From this and the coincidence rate the luminosity can be
determined with an accuracy of∆L/L ≃ 6%. For asymmetry measurements only the relative
luminosity of data with two different spin configurations isrelevant. In this case the uncertainty
is much smaller,∆R/R ≃ 0.9 − 1.5%. In [Ben01] a detailed description of the luminosity
monitor and the contribution of systematic uncertainties to the luminosity measurement is given.

4.3.6 The Data Acquisition and processing

Different time scales are used in the HERMES data acquisitionsystem. The shortest time in-
terval is theevent, containing all reconstructed tracks which are observed when a trigger is
generated. All events recorded within approximately10 sec are grouped into aburst. Bursts are
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then combined into arun with a size of about450 MB. Dependent on the luminosity, a run lasts
around10 min. The longest time scale, the fill, is determined by the8 − 12 h storage time of
the HERA lepton beam.
Apart from event-based information, also monitoring and calibration data like information from
the luminosity monitor, the polarimeters, the target, detector temperatures, pressure gauges,
voltage settings, etc. needs to be read out from the various detectors. This so-calledslow con-
trol data is read out once every∼ 10 sec, independently on the triggers from the spectrometer.
After the acceptance of a certain trigger, all detector responses are read out by the Data Ac-
quisition (DAQ) chain according to their ’equipment number’. The DAQ system digitizes the
analog and timing information for an accepted trigger in theADC and TDC modules located in
Fastbus crates. The data from the FastBus crates are bundled by event builder modules and sent
over fast opticals links cluster, where they are stored on staging disks and on data tapes.
All raw data is buffered in Experimental Physics Input Output (EPIO) format on hard disks in
the Linux cluster and backed up regularly on data tapes. After the end of each HERA fill all
collected data is transferred to a taping robot at DESY main site using a Fast Distributed Data
Interface (FDDI).
Information contained in the detector signals like the hit positions, energy depositions, etc., are
determined with the HERMES decoder (HDC) using mapping, geometry and calibration of the
individual detectors. All required information is stored in an ADAMO [Cer93] database. In a
next step the HERMES reconstruction (HRC) program finds tracks in the spectrometer. Using
a timing signal that is written to the event data and slow control data streams, both data streams
can be synchronized. All synchronized data which is useful for physics analyses, is stored in
data summary tables, the so-calledµDST files.
For Monte Carlo data a very similar production chain is applied. Instead of the DAQ and
HDC, a generator of DIS events, GMC, based on LEPTO [Ier97] and JETSET [Sjo95] is used.
The simulation of the detector responses and its material isperformed by HMC, containing
a GEANT3 [Bru84] implementation of all detector components.The Monte Carlo data are
reconstructed and compressed with HRC and theµDST-writer, just like real data, although
some tables for the generated values are added. Further details are given in Section 6.1. The
two chains, for real data and Monte Carlo data, are displayed in Figure 4.24.

Figure 4.24: The HERMES data production chains for detector data (top raw) and for Monte Carlo data
(bottom row).
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Chapter 5

The extraction of the Azimuthal Moments

The Collins and Sivers azimuthal moments, discussed in Chapter 3, have been extracted in
the analysis of the HERMES data collected during the 2002-2005 running period, in which a
transversely polarized hydrogen target was used. To this purpose several checks were applied
in order to ensure a high quality of the data before selectingInclusive and Semi-Inclusive Deep-
Inelastic Scattering events. The yields of the selected events were used to construct a single-spin
asymmetry (SSA) dependent on the two azimuthal anglesφ andφS, as reported in Section 3.7.5.
The Collins and Sivers sine modulations were then extracted in a two-dimensional fit using
two different fit methods: a standard least square fit and an unbinned maximum likelihood fit.
In addition, several tests on the extraction method were performed to estimate the impact of
different sources of systematic errors on the final results.

5.1 The HERMES data productions

The starting point of all the analyses performed at HERMES is represented by the so-called
µDST files, in which the data, after being precessed through the chain described in Section
4.3.6, is stored. TheµDST files are labeled by the last two digits of the corresponding year of
data taking, a letter to indicate the production, and a cypher. In the first production ofµDST
files for a new data taking period (a-production), detector calibrations based on the data of the
preceding period are used. Thea-production allows detailed detector calibrations which serve
as input for a re-production of theµDST files (b-production). In the subsequentc-production,
additional corrections which rely on proper calibrations are taken into account. The cypher,
which completes the production name, is increased for further fast re-productions which do not
require the track reconstruction. Such re-productions areusually carried out when improved
slow control information such as beam or target polarization values becomes available.

The analysis presented here is based on the HERMES full transverse data set, achieved during
the 2002-2005 data taking period, in which a transversely polarized hydrogen target was used.
The data productions used in the present analysis are:02c0, 03c0, 04c0 and05c0.
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5.2 Data quality

Since, depending on the argument/type of the analysis, not all the information from the entire
experimental set-up is needed, theµDST files also contain events collected when one or more
detectors were not working properly. The first step of each analysis consists in the selection of
those events for which all needed parts of the experimental set-up were properly operating. All
information about the performance of the detectors, which is stored at theburst level, is com-
bined, by the data-quality group, into the so-calledburst lists. These lists contain bit patterns
of 32 bits for each burst for both detector halves. Each bit corresponds to a certain detector (or
part of the experiment) and is set to “1” if the detector was operating properly and to “0” in
the opposite case. For the present analysis all bits were required to be set to “1”, with the only
exception of the first bit, which requires a beam polarization above20%. This requirement is
left out since the present analysis deals with single spin asymmetries in which only the target
(and not the beam) needs to be polarized. In general, all PMTsare required to work properly.
However, one single PMT, out of all those connected to the calorimeter blocks, is allowed to
be dead in the year 2002, when several failures occurred as a consequence of ageing. This was
shown not to influence the SSAs of charged hadrons in SIDIS [Has03].

The most important data quality requirements are:

- good performance of the PID detectors and the tracking detectors

- good target performances

- reasonable beam current and luminosity

- reasonable luminosity rate(1 Hz ≤ L ≤ 50 Hz)

- DAQ dead time smaller than50 %.

Details about the data quality checks can be found in [Wen03]and on the HERMES data quality
web page [HDQb].

5.3 The event selection

Once the ’good’ bursts of a certain data production are selected according to the data quality
criteria, several requirements have to be imposed at the event level. Indeed, a number of cuts
and constraints have to be applied on the recorded tracks in order to correctly identify Inclusive
and Semi-Inclusive Deep Inelastic Scattering events. The events that pass all requirements
constitute the data set that is used in the physical analysis. In this section the various selection
criteria are discussed in the same order as they are applied in the analysis chain.
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5.3.1 The geometrical cuts

As a first step, several geometrical cuts are applied in orderto suppress the background and to
exclude those tracks that might be affected by edge effects of the spectrometer. For instance,
the longitudinal vertex coordinatezvertex at which the scattering occurs is restricted to the lon-
gitudinal dimension of the target cell. Furthermore the tracks have to be fully contained within
the effective volume of the spectrometer, the so-calledfiducial volume. Differently from the
charged particles, the photons identification is exclusively based on the calorimeter signal. In
order to avoid transverse shower leakages, which would result in a partial loss of the original
photon energy, photons are required to hit a smaller sectionof the effective calorimeter front
area. All geometric cuts are listed in Table 5.1.

charged particles photons

vertex position −18 cm ≤ zvertex ≤ 18 cm

calorimeter position |xcalo| ≤ 175 cm |xcalo| ≤ 125 cm

30 cm ≤ ycalo ≤ 108 cm 33 cm ≤ ycalo ≤ 105 cm

front field clamp position |xffc| ≤ 31 cm

rear field clamp position |yrfc| ≤ 54 cm

rear clamp position |xrc| ≤ 100 cm

|yrc| ≤ 54 cm

septum plate position |ysp| ≥ 7 cm

Table 5.1: The geometrical cuts applied to the detected charged particles andphotons.

5.3.2 The Particle Identification

Lepton-Hadron discrimination

Combining the responses of the four PID detectors a very good separation between leptons
(electrons and positrons) and hadrons is achievable at HERMES. From the response of the par-
ticle identification detectors it is possible to generate a likelihood function, PID, that is related
to the probability of a particle to be a hadron or a lepton. In particular, given the energyE
deposited in the detector and the momentump of the particle, the issue is to find the probability
P (l(h)|Ep) that the particle is a leptonl or a hadronh. Bayes theorem relates such a probability
to the observable probabilitiesP (l(h)|p) that a particle with momentump is a lepton (hadron),
andP (E|l(h)p) that a lepton (hadron) with a momentump deposits an energyE in the detector:

P (l(h)|Ep) =
P (l(h)|p)P (E|l(h)p)

P (l|p)P (E|lp) + P (h|p)P (E|hp) . (5.1)

The probability distributionsP (E|lp) andP (E|hp), calledparent distributions, can be esti-
mated in a test beam facility by measuring the response of thedetectors to a beam of leptons
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or hadrons. A different approach, which is commonly used at HERMES, consists in measuring
the response of a given PID detector for a certain type of particle which is selected by the other
PID detectors. This method has the advantage of taking into account possible ageing effects
of the detectors. The cuts have to be hard enough to define a clean sample but, at the same
time, have to ensure a reasonable statistics. As a consequence the cut ranges vary for each data
production, being tighter for the productions with higher statistics and less tight for those with
a lower statistics. From the ratio between the probabilities P (l|Ep) andP (h|Ep), defined in
eqn. (5.1), one can define the quantity:

PID ′ = PID − log10 φ , (5.2)

where

PID = log10

P (E|lp)
P (E|hp) (5.3)

and

φ =
φh

φl

=
P (h|p)
P (l|p) . (5.4)

The hadron and lepton fluxesφh andφl are calculated with an iterative procedure. In general
the combinedPID for more then one detectorD is given by:

PID = log10

∏

D

PD(E|lp)
PD(E|hp) =

∑

D

PIDD . (5.5)

The most common PID combinations used in HERMES are:

PID3 = PIDCALO + PIDPRE + PIDCER (5.6)

PID5 = PIDTRD =
6∑

i=1

PIDTRDi
, (5.7)

where ’CALO’, ’ PRE’, ’ CER’ and ’TRD’ stand for the electromagnetic calorimeter, the preshower
detector, thěCerenkov detector and the transition radiation detector, respectively. The sum
in eqn. (5.7) runs over the6 TRD modules per detector half. In1998 the Čerenkov detector
was replaced by the RICH, and the product of the conditional probabilities for gas and aerogel
radiators is used.PID3 andPID5 values are assigned to each detected particle and a cut is
applied on the quantity:

PID′ = PID3 + PID5 − log10 φ = log10

Pl

Ph

, (5.8)

which represents the logarithm of the probability ratio that a given particle is a lepton or a
hadron. By definition, the quantityPID′ is positive if the probability of being a lepton is higher
than that of being a hadron, and negative in the opposite case. This provides a simple way to
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separate leptons from hadrons (see Figure 5.1). In the analysis reported in this thesis, leptons
and hadrons are identified with the following PID cuts:

PID3 + PID5 − log10φ > 2.0 (leptons) (5.9)

PID3 + PID5 − log10φ < 0.0 (hadrons) . (5.10)

1

10

10 2

10 3

10 4

-15 -10 -5 0 5 10

Hadrons Leptons

PID3+PID5 - log10φ

E
ve

n
ts

Figure 5.1: Typical distribution ofPID3 + PID5. The applied PID cuts are also represented.

Charged Hadrons identification

When passing through the two RICH radiators, charged particlesemit a certain pattern of
Čerenkov photons (see, for instance, Figure 4.22), allowingthe separation of the various charged
hadron types (pions, kaons and protons). The photon pattern, which is focused on the PMT ma-
trix by the spherical mirror array, is associated with a track in the spectrometer using an inverse
ray tracing algorithm [Jun00]. Combining all measuredČerenkov angles in a range around the
theoretical expected angle, averageČerenkov angles are computed for the two radiators, aero-
gel (a) and gas (g), for each of the three hadron hypothesis,h = π,K, p. Two likelihoods,La

h

andLg
h, can be calculated and combined to the total likelihoodLtot

h = La
h · Lg

h. The hadron
type hypothesis with the largest total likelihood is assigned to the track. The correctness of the
identification is assured by requiring the condition

Qp = log10

Ltot
h1

Ltot
h2

> 0 , (5.11)

whereh1 andh2 are the most and the second most likely hadron type, respectively. If the
identification algorithm could not find a most probable hadron type, the quality parameterQp is
set to zero.
The efficiency and the contamination degree of the hadron identification are estimated using
a Monte Carlo simulation of the RICH detector. The analysis of the Monte Carlo data allows
the determination of the conditional probabilityP (hid|htrue) that a given hadron of the true
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typehtrue is identified as particle of typehid. The conditional probability is equivalent to the
efficiency of the identification ifhtrue = hid. However, for the interpretation ofP (hid|htrue) as
a contamination in case ofhtrue 6= hid, the relative hadron fluxes must be taken into account.
These conditional probabilities, which depend on the trackmomentum and the topology of the
photon pattern on the PMT matrix, are combined into a matrix [Hom03]

P =




P (πid|πtrue) P (πid|Ktrue) P (πid|ptrue)

P (Kid|πtrue) P (Kid|Ktrue) P (Kid|ptrue)

P (pid|πtrue) P (pid|Ktrue) P (pid|ptrue)


 . (5.12)

TheP-matrix elements are extracted in 1 GeV momentum bins. Furthermore, since the more
tracks are detected in one detector half (top or bottom), thehigher is the probability for patterns
to overlap, theP-matrix elements are extracted separately for one, two and more than two tracks
in a given detector half. The results are plotted in Figure 5.2.

Figure 5.2: TheP-matrix elements as a function of the particle momentum. The plot shows the con-
ditional probabilities that a given hadron of true typehtrue is identified as a pion, kaon, or proton,
respectively. The different symbols represent the different numberof charged particle tracks per detector
half.

The RICH pion identification has a large efficiency and the probability to misidentify a kaon or
a proton as a pion is small over almost the entire momentum range. For kaons the momentum
threshold of the gas radiator is visible as a discontinuity at around 10 GeV.
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TheP-matrix relates the flux of identified hadrons~I = (N id
π , N

id
K , N

id
p ), to the true flux of ’true’

hadrons,~N = (N true
π , N true

K , N true
p ), through the linear relation~I = P · ~N . In order to obtain

the true flux from the measured flux of identified hadrons, theP-matrix has to be inverted:

~N = P−1 · ~I . (5.13)

In the analysis of semi-inclusive events, a weightwi dependent on the identified hadron type is
assigned to each particle track according to the inverseP-matrix. For instance, a track identified
ashid is weighted by(P−1)πtrue,hid

in the true pion count rate and by(P−1)Ktrue,hid
in the true

kaon count rate. The sum of these weights over all tracks withidentified hadron type(hid)i

yields the number of true hadrons

N true
h =

∑

i

(P−1)htrue,(hid)i
=
∑

i

wh,i (5.14)

used in the analysis.

Neutral pions Identification

Due to their short mean life [(8.4 ± 0.6) × 10−17 s → cτ = 25.1 nm], the identification of the
neutral pions is obtained through the detection of pairs of correlated photons, which represent
the dominant decay mode, with a branching ratio of almost 99%. As described in Section
4.3.3, at HERMES the energies and positions of photons are measured by the electromagnetic
calorimeter. The calculation of the photon 4-momentum is then achieved by connecting the
photon position on the calorimeter front to the z-coordinate of the electon/positron scattering
vertex with a straight line. The next step for the identification of the neutral pions consists in the
computation of the invariant massMγγ. For this purpose pairs of photons with energy above 1
GeV are considered. For events with more than two photons (and less than nine), all possible
combinations are taken into account. Events with more than nine photons are considered as
background and rejected in order to limit the combinatorialbackground.
Figure 5.3 shows the invariant mass distribution of all photon pair combinations after applying
the geometrical cuts (see Table 5.1) and the kinematic cuts (see Section 5.3.3). In order to
estimate the mean value and the width of the experimentalπ0 mass distribution as well as
the background/signal ratio, the invariant mass distribution spectrum has been fitted with a
normalized Gaussian plus a modified second order polynomial. The fit results are listed in Table
5.2. The obtainedπ0 mass is reasonably close to the value quoted by the Particle Data Group
(134.29 ± 0.06 MeV) [Yao06]. The5σ deviation is mainly caused by the energy calibration of
the calorimeter and the fact that the position reconstruction of the photons is solely based on the
calorimeter signals. In the data production used in this analysis, the energy calibration of the
calorimeter yielded a constant correction factor for the measured photon energies. An energy
calibration dependent on the signal in the preshower detector, which will improve the resolution
of the calorimeter and, consequently, the reconstruction of theπ0 mass, is currently under study
and not yet implemented in this analysis. The width of the peak reflects the limited resolution
of the calorimeter.
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Figure 5.3: Invariant mass distribution of the photon pairs that have passed the geometric and the kine-
matic cuts. The solid line is a fit of the spectrum obtained using a Gaussian plus amodified second order
polynomial. The latter, which parameterizes the combinatorial background, isalso shown (dotted line).
In order to facilitate the combinatorial background subtraction, the spectrum is divided into three distinct
regions: the signal region (between 0.10 and 0.17 GeV) and the two side bands.

Fit parameters

Mπ0 (mean value) = 134.29 ± 0.06 MeV
σ (width) = 11.26 ± 0.06 MeV

Nbackground/Nsignal = 0.373 ± 0.008

R = NSR
background/N

SB
background = 1.215

Table 5.2: Invariant mass fit parameters. The last raw reports the ratio between the background events
within the signal region (SR) and those in the side bands (SB).

As shown in Figure 5.3, the invariant mass spectrum has been divided into three mass regions:
a signal region, between 0.100 and 0.170 GeV (corresponding to approximately Mπ0 ± 3σ),
and the twoside bands, from 0.065 to 0.100 and from 0.170 to 0.205, respectively. The signal
region includes all the photon pairs which are decay products of neutral pions plus part of the
combinatorial background, while the side bands only include uncorrelated photons, which only
contribute to the background. The widths of the two side bands are chosen in such a way that
their sum equals the width of the signal region (0.070 GeV). The ratioR between the number of
background events within the signal region and those in the side bands (see Table 5.2), extracted
from the fit, is used to subtract the combinatorial background within the signal region (see
Section 5.4.2).
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5.3.3 The kinematic cuts

The inclusive DIS events are needed in the present analysis since they provide a measure of
the luminosity and can thus be used for the luminosity normalization, as explained below.
Therefore, after the identification of the scattered lepton(electron or positron) and the pro-
duced hadrons, several cuts are applied on the kinematical variables in order to select inclusive
and semi-inclusive deep inelastic scattering events.
A four-momentum transfer of more than1 GeV2 is required to select the deep inelastic scatter-
ing regime, where perturbative QCD holds. The resonance region (W . 2 GeV) is excluded by
a cut on the squared invariant mass of the final hadronic state: W 2 > 4 GeV2 for the inclusive
andW 2 > 10 GeV2 for the semi-inclusive DIS events. The upper cut on the energy fractiony
is meant to suppress higher order QED effects. The very lowy region, which is affected by a
poor resolution, is excluded by the cuty > 0.1. However, due to the restrictions onQ2 andW 2,
the lowest possible value of the fractional energy transferin semi-inclusive events isy ≈ 0.18.
The range in the Bjørken scaling variablex is determined by the cuts onQ2 andW 2 and by the
HERMES acceptance.

Inclusive DIS Semi-Inclusive DIS

four momentum transfer Q2 > 1 GeV2 Q2 > 1 GeV2

squared inv. mass of hadronic final stateW 2 > 4 GeV2 W 2 > 10 GeV2

fractional energy transfer 0.1 < y < 0.95 y < 0.95

Bjørken scaling variable 0.023 < x < 0.4 0.23 < x < 0.4

virtual photon - hadron angle θγ∗h > 0.02 rad

hadron momentum 2 GeV < Ph < 15 GeV

energy fraction (extended range) 0.2 < z < 0.7 (0.2 < z < 1.2)

Table 5.3: The kinematic cuts for the selection of inclusive and semi inclusiveDIS events.

For those events in which more than one lepton (electron or positron) track remains after the
geometry and kinematic cuts, the one with the highest momentum is identified as the DIS lepton.
For the selection of the SIDIS hadrons, further cuts are applied on selected hadronic variables
for those hadrons that are detected in coincidence with the identified DIS lepton. In particular,
events with an angleθγ∗h between the virtual photonγ∗ and the hadronh smaller that 0.02 rad
are discarded in order to limit the uncertainty in the determination of the azimuthal anglesφ
andφS, defined in Figure 3.11. This constraint onθγ∗h reflects in a constraint on the final state
hadron transverse momentumPh⊥, e.g., for 2 GeV hadrons, transverse momenta below 0.05
GeV are excluded. In addition, for a reliable hadron identification with the RICH detector, the
absolute momenta of the hadrons are restricted to a range between 2 GeV and 15 GeV. The upper
limit of the energy fractionz < 0.7 rejects scattering events in a region which is dominated by
exclusively produced vector mesons (cf. Section 5.7). Nevertheless, in order to investigate the
z dependence of the azimuthal moments in the highz region, the range inz has been extended
up to 1.2. On the other hand, the lower limit of 0.2 enhances the fraction of hadrons which
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carry the information of the struck quark. A list of the kinematic cuts for inclusive and semi-
inclusive DIS is reported in Table 5.3. The distributions ofselected inclusive and semi-inclusive
variables, subjected to the cuts discussed above, are plotted in Figure 5.4.
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Figure 5.4: Selected DIS kinematic variables.

5.3.4 The charge symmetric background

A big fraction of the interactions that take place in the target region do not result in deep inelastic
scattering processes. In addition, due to the limited geometric acceptance of the HERMES
spectrometer, not all the DIS events result in a detected scattered lepton. Nevertheless, high
energy leptons, produced in different processes such as electron-positron pair productions or
Dalitz-like meson decays, might pass all the DIS cuts. Theseleptons can thus be misidentified
as the scattered leptons, resulting in a wrong DIS and SIDIS count rate. Since, however, these
leptons are produced in pairs (charge symmetric background), a same amount of leptons with
the charge opposite to that of the beam particles is produced. These leptons were then used as a
control sample to quantify the amount of charge symmetric background and to correct for it.
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5.3.5 The DIS and SIDIS yields

After correcting for the charge symmetric background, all the DIS and SIDIS events which have
passed both the geometric and the kinematic cuts contributeto the final DIS and SIDIS yields
to be used for the extraction of the azimuthal asymmetries. The total DIS count rates and those
relative to the two target transverse spin states are reported in Table 5.4 for all the data produc-
tions used in the present analysis (cf. Section 5.1). Table 5.4 also reports the corresponding
values of the average target transverse polarization〈Pt〉. The SIDIS yields, calculated for each
hadron typeh as the sum over the RICH event weightswh,i (cf. eqn. (5.14)), are reported in
Table 5.5.

Data Production N↑DIS N↓DIS NTot
DIS 〈Pt〉

02c0 373386 380104 753490 0.783± 0.041
03c0 204562 206183 410745 0.795± 0.033
04c0 1136645 1139633 2276278 0.738± 0.030
05c0 2489996 2485988 4975984 0.706± 0.054

Total 4204589 4211908 8416497 0.726± 0.053

Table 5.4: The Inclusive DIS event yields.

Data Productions: 02c0 + 03c0 + 04c0 + 05c0

N↑
π+ N↓

π+ N↑
π−

N↓
π−

N↑
π0 N↓

π0 N↑
K+ N↓

K+ N↑
K−

N↓
K−

348433 348508 248375 250126 74341 74039 67171 67539 26905 27360

NTot
π+ NTot

π− NTot
π0 NTot

K+ NTot
K−

696941 498500 148380 134710 54265

NTot
all hadrons = 1532796

Table 5.5: The Inclusive SIDIS event yields for the full HERMES transverse data set. These values are
evaluated according to eqn. (5.14).

5.4 The extraction of the azimuthal asymmetry moments

The extraction of the Collins and Sivers azimuthal amplitudes (cf. Section 3.7.5) has been car-
ried out using two different approaches. The first one consists in a binned two-dimensional least
square fit of the cross section asymmetries. The second one consists in a ’partially unbinned’
Maximum Likelihood fit of the semi-inclusive events by meansof a proper Probability Density
Function (PDF). The two methods are discussed separately.

5.4.1 The least square fit approach

In this approach, each of the kinematic variablesx, y, Q2, z, Ph⊥ is binned, together with the
azimuthal anglesφ andφS (defined in Figure 3.11), according to the scheme reported inTable
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5.6. Only the first fourz bins are of interest for the extraction of the azimuthal moments. The
kinematic region covered by the last twoz bins is also investigated although it lies beyond
the SIDIS range (0.2 < z < 0.7) and contains a large contamination from pions and kaons
generated in the decay of exclusively produced vector mesons (cf. Section 5.7). As shown in
Figure 5.5, the limited acceptance of the HERMES spectrometer causes a strong coupling ofx
andQ2, resulting in an increase ofQ2 with x.

variable # of bins bin borders

x 5 [0.023, 0.05] ]0.05, 0.09] ]0.09, 0.15] ]0.15, 0.22] ]0.22, 0.4]
y 5 [0.1, 0.31] ]0.31, 0.415] ]0.415, 0.54] ]0.54, 0.69] ]0.69, 0.95]

Q2 5 [1.0, 1.59] ]1.59, 2.51] ]2.51, 3.97] ]3.97, 6.1] ]6.3, 15.0]
z 4 (+2) [0.2, 0.3] ]0.3, 0.4] ]0.4, 0.55] ]0.55, 0.7] ( ]0.7, 0.85] ]0.85, 1.2] )

Ph⊥ 5 [0.05, 0.25] ]0.25, 0.40] ]0.40, 0.55] ]0.55, 0.8] ]0.8, 2.0]

φπ (φK) 12 (8) [0, π
6 ] · ·· ]11π

6 , 2π] ([0, π
4 ] · ·· ]7π

4 , 2π])

φπ
S (φK

S ) 12 (8) [0, π
6 ] · ·· ]11π

6 , 2π] ([0, π
4 ] · ·· ]7π

4 , 2π])

Table 5.6: Binning in the kinematic variablesx, y, Q2, z, Ph⊥. For the azimuthal anglesφ andφS an
equidistant12 × 12 (8 × 8) binning is chosen for pions (kaons).

For the pions asymmetries each kinematic bin is split into12 × 12 equidistant bins in the az-
imuthal anglesφ andφS. Due to their lower statistics, a8 × 8 binning is chosen for the kaons.
The population of theφ− φS plane is represented in Figure 5.6. The absence of events around
φS = π/2 and φS = 3π/2 is a consequence of the gap between the top and bottom halves of
the spectrometer.
In each azimuthal bin (φ,φS) and for each hadron typeh, the asymmetryAh

UT (φ, φS) of the
cross section between the two opposite target transverse spin states is derived as:

Ah
UT (φ, φS) ∝ σ↑ − σ↓

σ↑ + σ↓
=

1

〈Pt〉
N↑h,norm(φ, φS) −N↓h,norm(φ, φS)

N↑h,norm(φ, φS) +N↓h,norm(φ, φS)
. (5.15)

This is done for each kinematic variable, while integratingover the other kinematic quantities.
HereN↑(↓)h,norm is the luminosity-normalized SIDIS event yield for hadron typeh and spin state
up (down), and〈Pt〉 represents the total average target transverse polarization. Its value,〈Pt〉 ≈
73%, was obtained by weighting the partial target polarizationvalues measured for each data
production with the corresponding integrated luminosities (cf. Table 5.4).
The luminosity normalization is performed by dividing the SIDIS event yield in each azimuthal
bin by the total DIS yieldN↑(↓)DIS obtained with the same target spin state :

N↑h,norm(φ, φS) −N↓h,norm(φ, φS)

N↑h,norm(φ, φS) +N↓h,norm(φ, φS)
=

N↑h(φ,φS)

N↑DIS

− N↓h(φ,φS)

N↓DIS

N↑h(φ,φS)

N↑DIS

+
N↓h(φ,φS)

N↓DIS

. (5.16)
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of the gap between the top and bottom half of the spectrometer.
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Plugging eqn. (5.16) into eqn. (5.17) and rearranging the terms, the latter can be rewritten in the
form:

Ah
UT (φ, φS) =

1

〈Pt〉
N↑h(φ, φS)N↓DIS −N↓h(φ, φS)N↑DIS

N↑h(φ, φS)N↓DIS +N↓h(φ, φS)N↑DIS

. (5.17)

The 144 (64) azimuthal asymmetries associated to each kinematic bin are fitted by a two-
dimensional function whose parameters are the amplitudesA

sin(nφ±mφS)
UT of the different sine

modulations(m,n = integer number). The basic form of the fit function includes the Collins
and Sivers azimuthal modulations plus a constant term C, which is expected to vanish for a
correct luminosity normalization of the asymmetries:

Ah
UT (φ, φS) = A

sin(φ+φS)
UT sin(φ+ φS) + A

sin(φ−φS)
UT sin(φ− φS) + C . (5.18)

The parameters are extracted in a Least Square (LS) fit which makes use of the MIGRAD
routine of the MINUIT program [Jam75] for theχ2 minimization. The extracted amplitudes
A

sin(φ±φS)
UT are related to the Collins and Sivers asymmetry moments〈sin(φ ± φS)〉hUT , defined

in Section 3.7.5, by

A
sin(φ±φS)
UT = 2〈sin(φ± φS)〉hUT = 2

∫
dφSd

2Ph⊥ sin(φ± φS)(d6σU↑ − d6σU↓)∫
dφSd2Ph⊥(d6σU↑ + d6σU↓)

. (5.19)

As discussed in Section 3.7.5, thePh⊥-weighted Collins and Sivers asymmetries

〈
Ph⊥

zMh

sin(φ+ φS)

〉h

UT

and

〈
Ph⊥

zM
sin(φ− φS)

〉h

UT

are also of great interest as they can be interpreted in termsof distribution and fragmentation
functions without the requirement of any assumption on the quark transverse momentum dis-
tribution. For their extraction an asymmetry is formed in which the events in the numerator are
weighted byPh⊥/z:

A
Ph⊥/z
UT (φ, φS) =

1

〈Pt〉
N↓DIS

∑
iwh,i(Ph⊥/z)i −N↑DIS

∑
iwh,i(Ph⊥/z)i

N↑h(φ, φS)N↓DIS +N↓h(φ, φS)N↑DIS

, (5.20)

whereN↑↓h are given in Table 5.5 and, as usual,wh,i are the RICH event weights (cf. eqn. (5.14)).
ThePh⊥-weighted asymmetry amplitudes are extracted in a two-dimensional fit based on the
function:

A
Ph⊥/z
UT (φ, φS) = 2Mh

〈
Ph⊥

zMh

sin(φ+ φS)

〉h

UT

· sin(φ+ φs)+

2M

〈
Ph⊥

zM
sin(φ− φS)

〉h

UT

· sin(φ− φs) + C . (5.21)
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5.4.2 The Maximum Likelihood fit approach

For a set ofN independently measured quantitiesxi following a Probability Density Function
(PDF)f(x; θ), whereθ = (θ1, ..., θm) is a set ofn parameters whose values have to be deter-
mined, the method of Maximum Likelihood (ML) takes the estimatorsθ̂ to be those values ofθ
that maximize thelikelihood function

L(θ) =
N∏

i=1

f(xi; θ) , (5.22)

which represents the joint PDF for the data. Since bothL and log(L) are maximized for the
same parameter valuesθ, it is usually preferable to work withlog(L). The maximum likelihood
estimators can then be found by solving thelikelihood equation

∂log(L)

∂θi

= 0, i = 1, ...,m. (5.23)

For the extraction of the Collins and Sivers amplitudes the following basic PDF was used:

f(φ, φS, Pt;A
sin(φ±φS)
UT ) = 1 + Pt

[
A

sin(φ+φS)
UT sin(φ+ φS) + A

sin(φ−φS)
UT sin(φ− φS)

]
, (5.24)

wherePt is the target transverse polarization corresponding to each event. The product of the
acceptance functionǫ(φ, φS) times the unpolarized cross sectionσUU , which should appear as a
global factor in the r.h.s of eqn. (5.24), is dropped since itdoes not depend on the fit parameters
and thus can not affect the fit results. The RICH event weightswh,i are taken into account,
resulting in the following quantity to be maximized1:

log(L) =
N∑

i=1

wh,i log[f(φ, φS, Pt;A
sin(φ±φS)
UT )] . (5.25)

As anticipated in Section 5.3.2, concerning the identification of the neutral pions, the ratioR
between the number of background events within the signal region and those in the side bands
(see Figure 5.3 and Table 5.2) is used to subtract the combinatorial background in the signal
region. This is done by associating a weightwπ0,i = +1 to all the events in the signal region
andwπ0,i = −R to those in the side bands.

5.4.3 Comparing the two methods

Although the least square fit method is suitable for the pions, it was found to be unsuitable for
the kaons, due to their limited statistics in certain azimuthal bins. The least squares, indeed, are
not good maximum likelihood estimators in case of non-gaussian statistics. Since, in addition,

1In practice, the azimuthal momentsA
sin(nφ±mφS)
UT are extracted in the minimization of the quantity−2log(L), operated

through the MIGRAD routine of MINUIT.
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binning inφ andφS results in a loss of information and hence in larger statistical errors for the
parameter estimates, the method of (unbinned) maximum likelihood was adopted for both pions
and kaons.
The unweighted Collins and Sivers amplitudes for pions and charged kaons, extracted from the
full HERMES transverse-target data set, are reported as a function of x, z, Ph⊥, y andQ2 in
Figures 5.7 and 5.8, respectively. Here the results obtained with the two fit methods discussed
above (least square and maximum likelihood), are compared.As expected, the two sets of
results, obtained with the two different fit methods are compatible. Significant differences are
observed only in correspondence of the kinematic bins with low statistics (highx, highz, high
Ph⊥, low y and highQ2). For these bins, the ML method is superior and provides the most
reliable parameter estimates. In particular while the ML fitdoes not converge in the highest-z

bins for charged kaons (no maximum is found for the likelihood function), the LS fit provides
spurious solutions for these bins.

5.5 Systematic studies

In order to test the stability of the results and to estimate asystematic error which accounts
for all the possible sources of biases, the Collins and Siversamplitudes were extracted under
different conditions. The systematic studies reported in the next sections of this chapter are
based on the full HERMES data set with a transversely polarized target (data productions02c0,
03c0, 04c0 and05c0), while other studies, which are reported in the next chapter, rely on Monte
Carlo simulations. A list of the systematic studies performed is reported below:

- Contribution of other azimuthal moments (Section 5.5.1)

- Compatibility of different data-taking periods (Section 5.5.2)

- Hadron identification with the RICH (Section 5.5.3)

- Effects of beam polarization (Section 5.5.4)

- The Transverse Magnet Correction methods (Section 5.5.5)

- Fake asymmetries (Section 5.5.6)

- QED radiative effects (Section 5.5.7)

- Detector acceptance and smearing effects (Chapter 6)

5.5.1 The contributions of other azimuthal moments

In the previous sections, very simple fit functions, including solely the Collins and the Sivers
azimuthal modulations, were considered for both the fit methods (LS and ML) discussed. These
modulations account for only two terms (3.68 and 3.69) of theSIDIS cross section (3.61).
However, other terms of the cross section might contribute,which are associated to different
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Figure 5.7: Collins moments for pions and charged kaons as a function ofx, z, Ph⊥, y andQ2. The
results obtained with the LS fit (open dots) and the ML fit (full dots) are compared.
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Figure 5.8: Sivers moments for pions and charged kaons as a function ofx, z, Ph⊥, y andQ2. The results
obtained with the LS fit (open dots) and the ML fit (full dots) are compared.
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azimuthal modulations. The inclusion of such modulations in the fit function might then lead to
slightly different amplitudes for the extracted Collins andSivers moments.
In order to test the impact of selected additional azimuthalmodulations on the extracted Collins
and Sivers amplitudes, the latter were extracted in six different fits, each including a different
additional azimuthal modulation (or combination of azimuthal modulations). The azimuthal
modulations considered are summarized in Table 5.7. All of them arise from terms of the cross
section which do not depend on the beam polarization, and aregrouped according to the target
polarization state.

Modulation Beam pol. Target pol. Twist Amplitude Figure

sin(φS) U T 2 free 5.9
sin(2φ − φS) U T 3 free 5.9
sin(3φ − φS) U T 2 free 5.10
sin(2φ + φS) U T 2 free 5.10

sin(2φ) U L 2 free 5.11
sin(φ) U L 3 free 5.11

cos(2φ) U U 2 fixed 5.11
cos(φ) U U 3 fixed 5.11

Table 5.7: Azimuthal modulations included in the fit functions for the extraction of the Collins and Sivers
amplitudes. The fifth column specifies whether the corresponding amplitudes were kept fixed or left free
in the fit. The last column indicates the Figure showing the corresponding comparison plots.

Similarly to the Collins and Sivers modulations, thesin(φS), sin(2φ − φS), sin(3φ − φS) az-
imuthal modulations arise from the polarized part of the cross section dependent on the trans-
verse polarization of the target. As a consequence, they areexpected to contribute to the fit
result for the Collins and Sivers amplitudes. These modulations have already been introduced
in Section 3.7.4 and are included in the expression of the SIDIS cross section (3.61), which
is referred to the direction of the virtual photon. Since, however, experimentally one can only
measure the cross section with respect to the lepton beam direction, a new term has to be taken
into account, which originates from the fact that lepton beam and virtual photon are not per-
fectly collinear. This term, which is related to the〈sin(2φ)〉UL amplitude for unpolarized beam
and longitudinally polarized nucleons, is modulated bysin(2φ+ φS) [Die05].
In order to test the presence of further residual effects dueto the non collinearity of lepton beam
and virtual photon, thesin(2φ) andsin(φ) modulations (cf. eqn. (3.61)) are also regarded. The
last two modulations,cos(2φ) and cos(φ), arise from the spin-independent part of the cross
section (3.61). The latter four modulations are expected toprovide a negligible contribution to
the fit results of the Collins and Sivers amplitudes.
In Figure 5.9 the Collins and Sivers amplitudes extracted in aML fit based on the 2-parameters
PDF (eqn. (5.24)) are compared with those extracted using two different 3-parameters PDFs,
including thesin(φS) and thesin(2φ − φS) modulations, respectively. This comparison shows
that while the inclusion of thesin(2φ − φS) modulation does not cause significant changes in
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the extracted Collins and Sivers amplitudes, that of thesin(φS) modulation produces sizeable
shifts, especially visible in the Collins amplitudes for negative pions.
A similar comparison is shown in Figure 5.10. Here the Collinsand Sivers amplitudes extracted
with the 2-parameters PDF are compared with those extractedusing two other 3-parameters
PDFs, including thesin(3φ− φS) and thesin(2φ + φS) modulations, respectively. Only small
shifts are observed when the latter is included in the PDF, while essentially no effects are ob-
served when the former is included.
The last comparison, shown in Figure 5.11, involves the standard Collins and Sivers amplitudes
(extracted with the 2-parameters PDF) and those extracted with a 2-parameters PDF, includ-
ing also thecos(φ) andcos(2φ) modulations, and with a 4-parameters PDF, including also the
sin(φ) andsin(2φ) modulations. While, similarly to the other cases discussed above, the am-
plitudes for these two sine modulations are extracted in thefit as free parameters, those for the
cos(φ) andcos(2φ) modulations are kept fixed to the values of theA

cos(φ)
UT andAcos(2φ)

UT moments
extracted in [Gio08]. In both cases no significant effects inthe extracted Collins and Sivers
amplitudes are observed.
Despite only thesin(φS) modulation produces sizeable effects on the extracted Collins and
Sivers amplitudes, the four additional modulations dependent on the transverse target polariza-
tion (see first four rows in Table 5.7) were included, for completeness, in the PDF:

f(φ, φS, Pt;A
sin(nφ±mφS)
UT ) =

1 + Pt

[
A

sin(φ+φS)
UT sin(φ+ φS) + A

sin(φ−φS)
UT sin(φ− φS) + A

sin(φS)
UT sin(φS)+

A
sin(2φ−φS)
UT sin(2φ−φS)+A

sin(3φ−φS)
UT sin(3φ−φS)+A

sin(2φ+φS)
UT sin(2φ+φS)

]
. (5.26)

In the following, this PDF will be referred to as the ’standard 6-parameters PDF’. The tiny con-
tributions due to the remaining four azimuthal modulationsnot included in eqn. (5.26) (cos(φ),
cos(2φ), sin(φ) andsin(2φ)) will be regarded as sources of systematic errors (see Section 5.5.8).
Table 5.8 reports the values of the unweighted Collins and Sivers moments extracted at the av-
erage kinematics through the ’standard 6-parameters PDF’ fit.

h 〈x〉 〈z〉 〈Ph⊥〉 〈y〉 〈Q2〉 2〈sin(φ + φS)〉UT 2〈sin(φ − φS)〉UT

π+ 0.094 0.361 0.407 0.542 2.400 0.014 ± 0.003 0.044 ± 0.003

π− 0.090 0.352 0.406 0.548 2.328 −0.023 ± 0.003 0.006 ± 0.003

π0 0.087 0.394 0.458 0.589 2.440 −0.017 ± 0.009 0.032 ± 0.009

K+ 0.097 0.384 0.435 0.538 2.472 0.005 ± 0.009 0.093 ± 0.008

K− 0.090 0.347 0.422 0.552 2.349 0.026 ± 0.014 0.006 ± 0.013

Table 5.8: Kinematic mean values and overall unweighted Collins and Sivers moments extracted with
the standard 6-parameters PDF fit in the semi-inclusive range0.2 < z < 0.7. The averagePh⊥ andQ2

are expressed inGeV andGeV2, respectively. Only the statistical uncertainties are reported.
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Figure 5.9: Unweighted Collins (upper half) and Sivers (lower half) momentsfor π+ (upper panels)
andπ− (lower panels) extracted with the basic 2-parameters PDF (full squares), compared with those
extracted with two different 3-parameters PDFs including thesin(2φ − φS) (open triangles) and the
sin(φS) modulation (open circles), respectively.
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Figure 5.10: Unweighted Collins (upper half) and Sivers (lower half) moments for π+ (upper panels)
andπ− (lower panels) extracted with the basic 2-parameters PDF (full squares), compared with those
extracted with two different 3-parameters PDFs including thesin(2φ + φS) (open triangles) and the
sin(3φ − φS) modulation (open circles), respectively.
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Figure 5.11: Unweighted Collins (upper half) and Sivers (lower half) moments for π+ (upper panels)
andπ− (lower panels) extracted with the basic 2-parameters PDF (full squares), compared with those
extracted with a 2-parameters PDF including thecos(φ) andcos(2φ) modulations (open triangles) and
with a 4-parameters PDF including thesin(φ) andsin(2φ) modulations (open circles).
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5.5.2 Compatibility of the different Data Taking periods

The Collins and Sivers moments extracted in the present analysis are based on the full trans-
verse target data set, collected over a period of four years (2002-2005). During this long period,
changes in the experimental apparatus, e.g. in the efficiencies or in the alignment of the detec-
tors, might have occurred, resulting in a possible influenceon the extracted azimuthal moments.
The different data productions contain completely different amounts of data. For instance, the
statistics collected during the 2005 more than doubles thatcollected during the previous three
years all together (cf. Table 5.4). In addition, during the 2005 data taking, a different lepton
beam charge (e−) was used than in the previous three years (e+). It is therefore natural to com-
pare the results extracted during the 2002, 2003 and 2004 (data productions02c0, 03c0 and
04c0, respectively) with those extracted during the 2005 (data production05c0)2.
In order to identify the presence of systematic discrepancies between the azimuthal moments
extracted from two different data productionsD1 andD2, the so-calleddeviationswere calcu-
lated according to the general formula:

Deviations =
A

sin(φ±φS)
UT (D1) − A

sin(φ±φS)
UT (D2)√

σ2(D1) + σ2(D2)
, (5.27)

whereσ(Di) denote the statistical uncertainties. Figures 5.12–5.14 show the deviations as a
function ofx between the Collins and Sivers moments extracted from the05c0 data production
and those extracted from the02c0, 03c0 and04c0 data productions, respectively.

-3

-2

-1

0

1

2

3

D
ev

ia
ti

o
n

s 
02

-0
5 

(C
o

lli
n

s)

π+ π- π0 K+ K-

-3

-2

-1

0

1

2

3

0 0.2

D
ev

ia
ti

o
n

s 
02

-0
5 

(S
iv

er
s) π+

X
0 0.2

π-

X
0 0.2

π0

X
0 0.2

K+

X
0 0.2

K-

X

Figure 5.12: Deviations for the Collins (upper panels) and the Sivers (lower panels) moments extracted
from the02c0 and05c0 data productions.

2The compatibility among the 2002-2004 data productions was already checked in [Els06].
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Figure 5.13: Deviations for the Collins (upper panels) and the Sivers (lower panels) moments extracted
from the03c0 and05c0 data productions.
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Figure 5.14: Deviations between the Collins and Sivers moments extracted from the two data productions
04c0 and05c0.
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In all of the three cases explored above, the deviations fluctuate around zero without showing
any systematic shift. In addition, the amplitudes of such fluctuations are smaller than| ± 1| in
most of the cases3. As a result, the four data sets considered are compatible within the statistical
uncertainty and can be merged together without introducingany systematic bias.

5.5.3 Systematic uncertainties on the hadron identification with the RICH

As discussed in Section 5.3.2, the charged hadrons identification is performed through an un-
folding procedure (RICH unfolding) which consists in the extraction of the fluxes of ’true’
hadrons from those of the ’identified’ hadrons. The extraction (eqn. (5.13)) is based on the use of
the inverseP-matrix (5.12), whose elements represent the conditional probabilitiesP (hid|htrue)

that a given hadron of the true typehtrue is identified as particle of typehid. It the analysis pre-
sented in this thesis, a weightwi,h dependent on the identified hadron type is assigned to each
particle track according to the inverseP-matrix (cf. eqn. (5.14)).
To estimate the systematic uncertainty in the true hadron numbers, the Collins and Sivers ampli-
tudes were extracted using three different inverseP-matrices [Hom04]. One is based on a full
Monte Carlo simulation of the RICH detector and is considered asthe standard choice. Another
one is derived using identified hadron (e.g.Λ, ρ0 andφ mesons) decays from the HERMES
data4. The last is obtained by fitting a set of RICH operating parameters5 generated by the lep-
ton tracks.
Figures 5.15 and 5.16 show the Collins and Sivers amplitudes for charged pions and koans,
respectively, extracted using the three differentP-matrices. While basically no differences are
observed for the pions, differences are visible for the kaons. These differences will be accounted
for as sources of systematic errors (see Section 5.5.8).

5.5.4 Effects of beam polarization

While in 2002 the polarization of the HERA lepton beam was very low, a beam polarization of
the order of30 − 40% was measured in the following years (2003-2005) for both thepositive
(λ = +1) and negative (λ = +1) helicity states. The existence of a net beam polarization gives
rise to additional cross section terms which result in additional azimuthal modulations. For in-
stance, at leading twist, a contribution of thecos(φ−φS) modulation is expected from the com-
bination of a longitudinally polarized beam and a transversely polarized target (cf. eqn. (3.61)).
The asymmetry amplitudesAcos(φ−φS)

LT of the two helicity states have opposite signs, thus lead-
ing to a non zero amplitude if the polarizations of the two beam spin states differ.
In order to study the influence of the beam polarization on theextracted Collins and Sivers mo-
ments, the 2003-2005 data sample was splitted into two independent data sets, according to the
beam helicity state. The deviations

3By construction, a deviation of| ± 1| corresponds to a discrepancy of 1 standard deviation.
4This procedure, however, only relies on a limited topology of decay events.
5These parameters include the number of PMT hits and the average anglesfor both the aerogel and the gas rings forβ = 1

particles.
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Figure 5.15: Unweighted Collins (upper half) and Sivers (lower half) moments for positive (upper panels)
and negative (lower panels) pions, extracted with the three different inverseP-matrices.
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Figure 5.16: Unweighted Collins (upper half) and Sivers (lower half) moments for positive (upper panels)
and negative (lower panels) kaons, extracted with the three different inverseP-matrices.
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Deviations =
A

sin(φ±φS)
UT (λ = +1) − A

sin(φ±φS)
UT (λ = −1)√

σ2(λ = +1) + σ2(λ = −1)
, (5.28)

were calculated for each kinematic bin. As an example, the deviations for the Collins and Sivers
moments are reported in Figure 5.17 as a function ofx. Similarly to the comparison between
the different data taking periods (cf. Section 5.5.2), the deviations fluctuate around zero without
showing any systematic shift. This result is compatible with a vanishing net beam polarization.
As a consequence, no effort was done to balance the helicity of the two data samples and no
systematic error on the Collins and Sivers moments was assigned.
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Figure 5.17: Deviations for the Collins (upper panels) and Sivers (lowerpanels) moments extracted for
the two beam helicity states.

5.5.5 The Transverse Magnet Correction methods

As discussed in Section 4.2.5, the target magnet surrounding the storage cell provides a holding
field which defines the polarization axis. While a holding fieldparallel to the lepton beam has
no effect on the beam and a marginal effect on the scattered particle trajectories, for a trans-
verse holding field different effects have to be taken into account. Since not only the beam but
also the scattered particles are deflected, the reconstructed partial particle tracks in front of the
spectrometer magnet do not yield the correct vertex positions and scattering angles when they
are extrapolated into the target cell by a straight line.
As discussed in Section 4.3.2, at HERMES two alternative offline Transverse Magnet Correc-
tion (TMC) methods were developed [Aug07]. These methods, later referred to as TMC1 and
TMC2, are not both available for all the data productions. In particular, concerning the data
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productions used in the present analysis, only the TMC2 method is available for 02c0 and only
the TMC1 is available for 03c0, while both methods are available for 04c0 and 05c0.
In order to test the compatibility of the two methods, the Collins and Sivers moments were ex-
tracted from the merged 04c0 and 05c0 data samples, analyzedwith the two different correction
methods. The comparison is shown in Figures 5.18 and 5.19 forthe unweighted Collins and
Sivers moments, respectively. No systematic shifts are observed between the two set of results.
As a consequence no systematic error on the Collins and Siversmoments was assigned due to
the choice of the transverse magnet correction method.

5.5.6 Fake asymmetries

In order to study the impact of other instrumental effects onthe extracted azimuthal moments,
fake asymmetry amplitudes were investigated. To this purpose, the data collected during the
2004 period with unpolarized deuterium target, corresponding to roughly one third of the statis-
tics of the 2002-2005 transverse data set, was analyzed. Theasymmetry amplitudes were then
extracted by assigning the target spin polarization randomly in the interval[−1; 1] and using the
standard 6-parameters PDF maximum likelihood fit (cf. eqn. (5.26)).
The results are shown in Figures 5.20 and 5.21. As expected only statistical fluctuations around
zero are found for both thesin(φ+ φS) andsin(φ− φS) modulations. The overall amplitudes,
obtained integrating over all kinematic variables, were found to be consistent with zero within
the statistical uncertainty for both modulations. Therefore no systematic error originating from
fake asymmetries was assigned to the Collins and Sivers moments.

5.5.7 Radiative effects

Real photons can be emitted in the scattering process either by the incoming lepton (initial state)
or by the scattered lepton (final state). Since these photonscarry a certain fraction of the lepton
momentum, QED radiative effects influence the event kinematics. In particular, not only thex
andQ2 variables are affected, but also the azimuthal anglesφ andφS, since the virtual photon
momentum defines thez-axis of the coordinate system in which these angles are calculated (cf.
Figure 3.11). As a consequence, in order to restore the correct event kinematics, the momentum
of the lepton either before and after the scattering has to becorrected by the momentum of the
real photon.
The PHYTIA Monte Carlo generator (cf. Section 6.2) allows to store, for each event, the four-
momentumqreal of the radiated photon. One can then correct the four-momentum of the virtual
photon using the relation:qcorr = k − k′ − qreal, wherek andk′ are the four-momenta of the
incoming and scattered lepton, respectively.
This approach was adopted in [Els06] to estimate the influence of the radiative effects on the
extracted Collins and Sivers amplitudes for charged and neutral pions. Correction factors of the
order of a few percent (< 5%) were extracted for each kinematic bin [Els06].
Based on these results, a more conservative approach was usedin the present analysis, which
consisted in accounting for a global5% systematic uncertainty due to the radiative effects.
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Figure 5.18: Unweighted Collins amplitudes extracted with the standard 6-parameters ML fit
(eqn. (5.26)) from the 04c0 and 05c0 transverse data with the two transverse magnet correction methods
TMC1 and TMC2.
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Figure 5.19: Unweighted Sivers amplitudes extracted with the standard 6-parameters ML fit (eqn. (5.26))
from the 04c0 and 05c0 transverse data with the two transverse magnet correction methods TMC1 and
TMC2..
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Figure 5.20: Fake Collins asymmetries extracted from the data collected in 2004with an unpolarized
deuterium target. The target polarization was assigned randomly between -1 and 1. The extraction was
performed with the standard 6-parameters ML fit (eqn. (5.26)).
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Figure 5.21: Fake Sivers asymmetries extracted from the data collected in 2004 with an unpolarized
deuterium target. The target polarization was assigned randomly between -1 and 1. The extraction was
performed with the standard 6-parameters ML fit (eqn. (5.26)).
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5.5.8 Systematic uncertainties: a partial estimation

In the previous sections, three sources of systematic uncertainties were identified for the ex-
tracted Collins and Sivers moments:

- Contributions from the azimuthal modulationscos(φ) andcos(2φ) (from the unpolarized
cross section) andsin(φ) andsin(2φ) (from the cross section terms arising from the lon-
gitudinally polarized target) (cf. Section 5.5.1)

- Contributions from the use of three different inverseP-matrices for the hadron identifica-
tion with the RICH (cf. Section 5.5.3)

- Contribution from QED radiative effects

The three contributions above were summed in quadrature to get an overall systematic uncer-
tainty in each kinematic bin. Figures 5.22 and 5.23 show the Collins and Sivers moments
together with the error bands representing the systematic uncertainties included so far. These
systematic uncertainties are however only partial. An additional (dominant) contribution, aris-
ing form the acceptance studies reported in Chapter 6, has to be taken into account to get the
total systematic uncertainty (cf. Section 6.9).

Besides the contributions listed above, another source of systematic error has to be taken into
account which arises from the uncertainty in the measurement of the target polarization.
The average transverse target polarization for the data taking periods considered in the present
analysis was estimated to be (cf. Table 5.4):

〈Pt〉 = 0.726 ± 0.053 . (5.29)

Since〈Pt〉 enters as a global factor in the expression of the target spinasymmetry (cf. eqn. (5.15)),
its error generates an overall scale uncertainty on the extracted asymmetries. The scale uncer-
tainty was evaluated as:

SPol = MAX

{ |Amin − Amid|
Amid

;
|Amax − Amid|

Amid

}
≈ 7.9% , (5.30)

where:

Amid =
A

〈Pt〉
; Amin =

A

〈Pt〉 + error
; Amax =

A

〈Pt〉 − error
, (5.31)

andA is the bare cross section asymmetry (eqn. (5.16)). Acting asa global scale uncertainty,
i.e. with no kinematic dependence, this contribution was not included in the computation of the
systematic errors discussed above.
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Figure 5.22: Unweighted Collins amplitudes extracted from the full HERMES transverse data set with
the standard 6-parameters ML fit (eqn. (5.26)). The yellow bands represent the systematic errors includ-
ing the contributions of thecos(φ), cos(2φ), sin(φ) andsin(2φ) azimuthal modulations and those due to
the choice of the inverseP-matrix for the hadron identification with the RICH.
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Figure 5.23: Unweighted Sivers amplitudes extracted from the full HERMEStransverse data set with the
standard 6-parameters ML fit (eqn. (5.26)). The yellow bands represent the systematic errors including
the contributions of thecos(φ), cos(2φ), sin(φ) andsin(2φ) azimuthal modulations and those due to the
choice of the inverseP-matrix for the hadron identification with the RICH.
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5.6 Isospin relation for the extracted azimuthal moments

An important consistency check for the extracted Collins andSivers amplitudes consists in the
fulfilment of a symmetry relation which reflects the isospin symmetry of the pions triplet.
Besides the factorization of the semi-inclusive cross section, the derivation of this relation re-
quires that isospin and charge conjugation symmetry hold inthe fragmentation process. One
thus only needs to consider the two independentfavoredandunfavoredfragmentation functions
(cf. eqns. (3.52–3.53)) and the following isospin relationbetween the fragmentation functions:

FF q→π0

=
1

2
(FF q→π+

+ FF q→π−) . (5.32)

In addition, the reasonable assumption that contributionsfrom the sea quarks are negligible at
the HERMES kinematics is required. This assumption is supported by the HERMES results
on the longitudinal polarizations for the sea quarks (∆s/s and∆s̄/s̄) [Air05b]. Under these
assumptions, thePh⊥-weighted Collins and Sivers moments (3.92–3.93) for the three pion types
can be written in the form:

〈
Ph⊥

zMπ+

sin(φ+ φS)

〉π+

UT

= KC

(4δu+ δd̄)H
⊥(1)
1,fav + (δd+ 4δū)H

⊥(1)
1,unfav

(4u+ d̄)D1,fav + (d+ 4ū)D1,unfav

(5.33)

〈
Ph⊥

zMπ−
sin(φ+ φS)

〉π−

UT

= KC

(4δu+ δd̄)H
⊥(1)
1,unfav + (δd+ 4δū)H

⊥(1)
1,fav

(4u+ d̄)D1,unfav + (d+ 4ū)D1,fav

, (5.34)

〈
Ph⊥

zMπ0

sin(φ+ φS)

〉π0

UT

= KC

(4δu+ δd̄+ δd+ 4δū)(H
⊥(1)
1,fav +H

⊥(1)
1,unfav)

(4u+ d̄+ d+ 4ū)(D1,fav +D1,unfav)
, (5.35)

〈
Ph⊥

zM
sin(φ− φS)

〉π+

UT

= KS
(4f

⊥(1)u
1T + f

⊥(1)d̄
1T )D1,fav + (f

⊥(1)d
1T + 4f

⊥(1)ū
1T )D1,unfav

(4u+ d̄)D1,fav + (d+ 4ū)D1,unfav

, (5.36)

〈
Ph⊥

zM
sin(φ− φS)

〉π−

UT

= KS
(4f

⊥(1)u
1T + f

⊥(1)d̄
1T )D1,unfav + (f

⊥(1)d
1T + 4f

⊥(1)ū
1T )D1,fav

(4u+ d̄)D1,unfav + (d+ 4ū)D1,fav

, (5.37)

〈
Ph⊥

zM
sin(φ− φS)

〉π0

UT

= KS
(4f

⊥(1)u
1T + f

⊥(1)d̄
1T + f

⊥(1)d
1T + 4f

⊥(1)ū
1T )(D1,fav +D1,unfav)

(4u+ d̄+ d+ 4ū)(D1,fav +D1,unfav)
,

(5.38)

whereKC andKS are kinematic factors common to all the Collins and Sivers moments, re-
spectively. Combining eqns. (5.33–5.35), the followingIsospin Relation(IR) results for the
Ph⊥-weighted Collins moments [Mak03]:
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IRPh⊥/zMh·sin(φ+φS) ≡
〈
Ph⊥

zMπ+

sin(φ+ φS)

〉π+

UT

+ C

〈
Ph⊥

zMπ−
sin(φ+ φS)

〉π−

UT

−

(1 + C)

〈
Ph⊥

zMπ0

sin(φ+ φS)

〉π0

UT

= 0 . (5.39)

The coefficientC arises from the spin-independent distribution and fragmentation functions
appearing in eqns. (5.33)–(5.35) and can be expressed in thecompact form

C =
4η + r

4 + rη
, (5.40)

where

r =
d+ 4ū

u+ 1
4
d̄

and η =
D1,unfav

D1,fav

. (5.41)

A similar IR exists for the Sivers moments, which can be derived combining eqns. (5.36)–(5.38):

IRPh⊥/zM ·sin(φ−φS) ≡
〈
Ph⊥

zM
sin(φ− φS)

〉π+

UT

+ C

〈
Ph⊥

zM
sin(φ− φS)

〉π−

UT

−

(1 + C)

〈
Ph⊥

zM
sin(φ− φS)

〉π0

UT

= 0 . (5.42)

The validity of the IR is unaffected by a convolution integral over the transverse quark and pion
momenta. As a consequence, it also holds for the unweighted Collins and Sivers moments:

IRsin(φ±φS) ≡ 〈sin(φ±φS)〉π+

UT +C 〈sin(φ±φS)〉π−UT − (1 +C)〈sin(φ±φS)〉π0

UT = 0 . (5.43)

More in general, it has been shown [Die05b] that the isospin symmetry relation is valid for
any single-spin or double-spin asymmetry in semi-inclusive DIS at twist-two and twist-three
and in leading and next-to-leading order inαs when the coefficientC (5.40) is replaced by the
unpolarized cross section ratio for semi-inclusive negative and positive pion production:

C = σπ−

UU/σ
π+

UU . (5.44)

In the present analysis the coefficientC was extracted using the mean values of the multiplicities
M for positive and negative pions measured on a proton target at HERMES6:

C ≈ 〈M〉π−/〈M〉π+

= 0.723 ± 0.005 . (5.45)

6These multiplicities are corrected for the smearing and radiative effects and for the contribution from exclusively produced
vector mesons [Hil05].
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For the calculation of the Isospin Relation, the averaged Collins and Sivers moments extracted
with the 2-parameters ML fit (cf. eqn. (5.24)) were used, yielding:

IRsin(φ+φS) = 0.0045 ± 0.0064 , (5.46)

IRsin(φ−φS) = 0.0016 ± 0.0066 , (5.47)

where only statistical uncertainties were taken into account. As shown in Figure 5.24, the IR is
fulfilled within the statistical uncertainty for both the Collins and Sivers moments.
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Figure 5.24: Isospin Relation for unweighted Collins and Sivers moments integrated over the full kine-
matic range.

The Isospin Relation can also be evaluated in the individual kinematic bins. The kinematic
dependence of the IR for both the unweighted Collins and Sivers moments is shown in Fig-
ure 5.25. Reflecting the values obtained with the overall moments, the values of the Isospin
Relation are compatible with zero for both the unweighted Collins and Sivers moments.
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Figure 5.25: Isospin Relation for unweighted Collins and Sivers moments as afunction ofx, z andPh⊥.
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The IR was also studied for thePh⊥-weighted moments (cf. eqns. (5.39) and (5.42)). The
results for the Collins and Sivers moments integrated over the full kinematic range are listed
below and shown in Figure 5.26):

IRPh⊥/zMh sin(φ+φS) = 0.0915 ± 0.0494 (5.48)

IRPh⊥/zM sin(φ−φS) = 0.0018 ± 0.0073 . (5.49)

A fair fulfillment is obersved for the Sivers moments while a deviation of less than2σ is ob-
served for the Collins moments. The results in the different kinematic bins are shown in Fig-
ure 5.27.
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Figure 5.26: Isospin Relation for thePh⊥-weighted Collins and Sivers moments integrated over the full
kinematic range.
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Figure 5.27: Isospin Relation forPh⊥-weighted Collins and Sivers moments as a function ofx, z and
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5.7 The contributions from exclusively produced vector mesons

In deep inelastic scattering, the incoming lepton interacts with a quark of the nucleon through a
virtual photon exchange. The virtual photon, however, can also fluctuate into a quark-antiquark
pair. This pair can live long enough to develop into a hadronic state which then interacts with
the nucleon. This interaction between the hadronic component of the photon and the nucleon
can only be described phenomenologically in terms of modelsfor hadron-hadron interactions.
One such model is the well known Vector Meson Dominance (VMD)model [Sak69], which de-
scribes successfully the experimental data over a wide energy range. In this model, the hadronic
component of the photon is interpreted in terms of fluctuations into the vector mesonsρ0, ω and
φ, carrying the same quantum numbers as the photon. The scattering process then factorizes
into the coupling of the virtual photon to the vector meson and the interaction of the vector
meson with the nucleon. This model is implemented in the PYTHIA Monte Carlo generator
(cf. Section 6.2).
The pion and the kaon samples of semi inclusive deep inelastic scattering events detected at
HERMES contain decay particles of exclusively produced vector mesons. For the interpre-
tation of the measured azimuthal moments in terms of quark distributions and fragmentation
functions, these events might be considered as background contributions. These contributions,
however, cannot be excluded entirely from the analysis since, due to the limited acceptance of
the spectrometer, not all the decay particles produced in these events are observed.
Regarding the decay particles of exclusive vector mesons as background contributions to the
semi inclusive DIS sample, one can, in principle, correct the measured asymmetry amplitudes
Ameas using the relation:

Acorr =
Ntot

Nsig

Ameas −
NV M

Nsig

AV M→h =
1

1 − fV M

Ameas −
fV M

1 − fV M

AV M→h . (5.50)

HerefV M is the vector meson fraction, defined as the ratio between thenumber of hadrons from
vector meson decaysNV M and the total number of hadronsNtot, andNsig denotes the difference
betweenNtot andNV M . Two different sources contribute to the amplitudeAV M→h of the decay
particles: any Collins or Sivers like asymmetry amplitudeAV M in the vector mesons production
partially transferred to the hadron, and a spurious asymmetry in the detected hadrons, introduced
by the decay angular distributions. In general, the asymmetry amplitudes of the decay particles
can be expressed as:

AV M→h = T · AV M + Adecay , (5.51)

whereT denotes a transfer coefficient which describes how much of the vector meson asymme-
try amplitude is transferred to its decay particles. For a correction of the measured asymmetries
one thus needs four quantities: the vector meson fractionfV M , the transfer coefficientT , the
asymmetry amplitudeAV M of the exclusively produced vector mesons, and the asymmetry am-
plitudeAdecay acquired in the decay process. An intense work has been done in [Els06] to
extract these four quantities.
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The total (i.e. including the contributions fromρ0, ω andφ) fractions of pions and charged
kaons produced in vector meson decays simulatated by the PYTHIA Monte Carlo tuned to the
HERMES kinematics, are shown, as a function ofx, z andPh⊥, in Figure 5.28.
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Figure 5.28: Fraction of pions (upper panel) and charged kaons (lower panel) produced in vector meson
decays simulated by PYTHIA.

An increase of the vector meson fractions with decreasingx is observed for all hadron types.
The fractions, which are dominated by exclusiveρ0 decays, also increase with increasingz,
reaching values of about50% for z > 0.7. This is the reason why the higherz region was lim-
ited by the cut0.2 < z < 0.7 (cf. Section 5.3.3). Except for the higherz region, the fractions
stay below10% for charged pions, and below5% for neutral pions and charged kaons.
The decay particles from exclusive vector mesons are expected to influence the extracted Collins
and Sivers amplitudes. With the help of Monte Carlo simulations, the transfer coefficientsT
for charged pions coming from exclusiveρ0 decays, and for neutral pions coming from exclu-
siveω decays, were determined in [Els06]. In addition, Collins andSivers like asymmetries
were extracted from the HERMES data for both exclusiveρ0 mesons and their decay pions.
In both cases the obtained amplitudes were found to be statistically consistent with zero. Fur-
thermore, significantly positive amplitudes were extracted from azimuthal asymmetry in the
yield difference of positive and negative pions, which has no contribution from exclusive vector
mesons [Els06]. All these studies led to the conclusion thatone can safely assume that ex-
clusively produced vector mesons do not significantly affect the extracted Collins and Sivers
amplitudes. This assumption is also supported by the fulfillment of the Isospin Relation, shown
in Section 5.6.
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Chapter 6

Monte Carlo studies

Due to the complexity of the experimental apparatus and of the physics processes involved,
Monte Carlo simulations represent nowadays an indispensable tool in nuclear and high energy
physics. Based on models and parameterizations, they allow to simulate, on a statistical basis,
many aspects that can not be calculated in an analytical way and that are necessary for a com-
plete understanding of the physical problems under study. For the analysis presented in this
thesis, Monte Carlo simulations were used to estimate the impact of the limited resolution and
geometrical acceptance of the HERMES detector on the measured asymmetry amplitudes.

6.1 The HERMES Monte Carlo Implementation

The HERMES Monte Carlo consists in a chain of programs that are operated in the order de-
scribed in Figure 4.24. The chain starts with a physics generator, built within a general frame-
work called GMC (Generator Monte Carlo). Several event generators are available which are
suitable to simulate different aspects of the HERMES physics(exclusive processes, deeply vir-
tual Compton scattering, transversity, etc). Usually, the generated events come with a weight
WMC

j which is needed to reproduce the cross section correctly. The effective number of events

NMC is then given byNMC =
∑Ngen

j=1 WMC
j , whereNgen is the number of generated events.

For a reasonable comparison with experimental data, further effects have to be simulated which
are inevitably introduced by the measuring process. First of all, due to the limited acceptance
of the spectrometer, only a fraction of the produced particles traverse the active area of the de-
tector. These particles interact with the detector material before their kinematic properties are
measured. As a result, the original energies and angles of the tracks are affected. In addition,
one has also to take into account the intrinsic inefficiencies of the detector, like the limited de-
tector resolution, misidentification of the different particle types, etc.
All these effects are simulated by a program called HERMES Monte Carlo (HMC), which con-
tains a model of the HERMES apparatus based on GEANT3 [Bru84]. For each particle, the
transition through the detector is simulated taking into account the interaction with the materi-
als it traverses. The HMC produces a response function whichis very similar to that for the real
data, except that it contains additional Monte Carlo information such as the particle type and
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the originally generated particle kinematics.
Alternatively, one can use the much faster HERMES Smearing Generator (HSG) [Hil05], which,
being based on a parametrization of all smearing and acceptance effects of the detector, does
not require the time consuming full track reconstruction through the detector materials. HSG
makes use of the momentum resolution and of the resolution ofthe scattering anglesθx andθy

obtained from a fully tracked Monte Carlo production, to smear the kinematics of the generated
tracks on a statistical basis. It also applies some acceptance cuts based on lookup tables for the
bending into the magnet field. The HMC and HSG outputs are fed directly into the HERMES
Reconstruction program (HRC), which determines the particle momenta from the bending in
the magnet by matching the back and the front part of each track. It is important to note that
this is exactly the same program used for the reconstructionof the real data. Since the event
reconstruction is identical for both experiment and simulation, all possible biases introduced at
this stage are automatically accounted for. Once the track information is available, a DST file
very similar to that produced by the experimental data processing chain is written.

6.2 The PYTHIA Monte Carlo generator

PYTHIA [Sjo03] is a general purpose Monte Carlo generator forhigh energy physics. It con-
tains a model of soft (non perturbative) as well as perturbative deeply inelastic scattering process
and spans the whole region from real and quasi-real photoproduction (very lowQ2) to highQ2

DIS. PYTHIA also includes a model for the semi-inclusive cross section. In particular, for the
hadron fragmentation it makes use of the LUND string-fragmentation model [And83, And97]
(cf. Section 3.7). The events generated by PYTHIA are processed by the HERMES Monte
Carlo (HMC) for the track reconstruction. The PYTHIA default settings, mostly determined
from e+e− data, do not describe the HERMES data sufficiently well. Therefore the parameters
involved in the description of the cross sections implemented in PYTHIA were tuned to the
HERMES kinematics to reproduce the measured multiplicities[Lie04]. Figure 6.1 shows the
distributions of selected DIS and SIDIS kinematic variables obtained from real events and from
events generated by PYTHIA. The comparison reveals a very good agreement.
In the present analysis, the PYTHIA generator was used to generate a sample of events accord-
ing to the Born (spin-independent) cross section. As described in Section 6.5.1, the latter was
used to project in4π the Collins and Sivers moments extracted within the HERMES acceptance.

6.3 The GMC TRANS Monte Carlo generator

Since HERMES is not a4π detector, and thus can not cover the fullφ − φS plane (see Fig-
ure 5.6), acceptance effects might affect the extraction ofthe azimuthal (e.g. Collins and Sivers)
moments. Moreover, in order to solve the convolution integrals in eqns. (3.86) and (3.87), one
needs in principle to integrate over the whole range of transverse momentum. However this is
experimentally not possible. A new Monte Carlo generator, called GMC TRANS, was devel-
oped in order to simulate azimuthal distributions due to intrinsic transverse quark momenta and
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Figure 6.1: Comparison between the distributions of selected DIS and SIDISkinematic variables ob-
tained from real events and from events generated by PYTHIA.
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to study such kind of effects.
To accomplish the demand of a fast Monte Carlo, the track reconstruction is performed through
the HERMES Smearing Generator (HSG). The model parameters were tuned in such a way that
the extracted asymmetry amplitudes are comparable to thoseextracted from experimental data.

6.3.1 The models

In GMC TRANS, different models for thex andz dependencies of the transversity, Sivers and
Collins functions are available [Mak03]. In these models, the first moments (i.e. integrals over
the intrinsic transverse momenta) of the distribution or fragmentation functions are constructed
proportional to the spin independent distribution of fragmentation functionsq(x), ∆q(x), or
D1(z) (cf. Table 6.1). The latter, in turn, are based on leading order parameterizations based on
fits to world data. It is worth noting that neither the unpolarized cosine moments (cf. eqs. (3.66)
and (3.67)) nor the QED radiative effects (see Section 5.5.7) are implemented in GMCTRANS.
For the Monte Carlo studies reported in this section, two different versions (later referred to as
GMCT1 and GMCT2) of the GMCTRANS generator were used. These two versions have
different ranges for the relevant kinematic variables and different models for the Sivers func-
tion. In particular, while the anti-quarks Sivers functionis set equal to zero in one of the two
versions, a non-vanishing Sivers function for the anti-quarks is implemented in the other. Fur-
thermore, depending on the version used, the mean value〈K2

T 〉, which is always assumed to
be independent of the quark flavours, is chosen to be dependent or independent ofz. Table 6.1
summarizes the main settings of the two versions used. The parametrization of the spin in-
dependent fragmentation functions, taken from [Kre00], fulfil isospin and charge conjugation
symmetry, leaving three independent fragmentation functions: favored (fav), unfavored (unfav)
and strange (s) (cf. Section 3.7.1). In addition, unfavored and strange fragmentation functions
are equal in the parametrization. The first moments of the Collins function are constructed pro-
portional to the spin-independent fragmentation functionwith a coefficient for the unfavored
fragmentation function twice as large as for the favoured one and with opposite sign (cf. Ta-
ble 6.1). The current versions of GMCTRANS allow to have only pions as final state hadrons.
In the studies presented in the following sections, only thecharged pions will be regarded.

6.3.2 The skewed Gaussian ansatz

In GMC TRANS thep2
T (K2

T ) dependence in the quark distribution (fragmentation) functions is
factorized and a Gaussian distribution for the transverse momenta is assumed (Gaussian ansatz).
Under these assumptions the unpolarized distribution and fragmentation functions can be ex-
pressed as:

q(x, p2
T ) = q(x)

1

π〈p2
T (x)〉e

−
p2
T

〈p2
T

(x)〉 (6.1)

D1(z,K
2
T ) = D1(z)

1

π〈K2
T (z)〉e

−
K2

T
〈K2

T
(z)〉 , (6.2)
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GMC TRANS settings
Version GMCT1 Version GMCT2

Distribution Functions (qsea = ū, d̄, s, s̄)

δu(x) = 0.7 · ∆u(x) δu(x) = 0.7 · ∆u(x)

δd(x) = 0.7 · ∆d(x) δd(x) = 0.7 · ∆d(x)

δqsea(x) = 0.7 · ∆qsea(x) δqsea(x) = 0.7 · ∆qsea(x)

f⊥u
1T (x) = −0.3 · u(x) f⊥u

1T (x) = −0.6 · u(x)

f⊥d
1T (x) = 0.9 · d(x) f⊥d

1T (x) = 1.05 · d(x)

f⊥qsea

1T (x) = 0.0 f⊥qsea

1T (x) = 0.3 · qsea(x)

Fragmentation Functions

H
⊥(1)
1,fav(z) = 0.65 · D1,fav(z) H

⊥(1)
1,fav(z) = 0.65 · D1,fav(z)

H
⊥(1)
1,unfav(z) = −1.30 · D1,unfav(z) H

⊥(1)
1,unfav(z) = −1.30 · D1,unfav(z)

Transverse momentum mean values

〈P 2
h⊥(z)〉 = z2〈p2

T 〉 + 〈K2
T 〉 〈P 2

h⊥(z)〉 = z2〈p2
T 〉 + 〈K2

T (z)〉
(〈p2

T 〉 = 〈K2
T 〉 = 0.18 GeV2 〈K2

T 〉 z-dependent

kinematic ranges

Q2 > 1 GeV2 Q2 > 0.9 GeV2

0.023 < xBj < 0.4 0.02 < xBj < 0.5

y < 0.85 y < 0.99

W 2 > 10 GeV2 W 2 > 4 GeV2

z > 0.2 z > 0.18

Table 6.1: The main settings of the two versions of the GMCTRANS generator.

127



CHAPTER 6. MONTE CARLO STUDIES

whereq(x) andD1(z) are the well known transverse momentum integrated spin-independent
distribution and fragmentation functions and:

〈p2
T (x)〉 =

∫
d2~pTp

2
T q(x, p

2
T )

q(x)
, 〈K2

T (x)〉 =

∫
d2 ~KTK

2
TD1(z,K

2
T )

D1(z)
. (6.3)

Similar expressions hold for the1/2-moments of the Sivers and the Collins function:

f
⊥(1/2)q
1T (x, p2

T ) ≡ |~pT |
2M

f⊥q
1T (x, p2

T ) =
|~pT |
2M

f⊥q
1T (x)

1

π〈p2
T (x)〉e

−
p2
T

〈p2
T

(x)〉 (6.4)

H
⊥(1/2)
1 (z, z2k2

T ) ≡ |~kT |
2Mh

H⊥1 (z, z2k2
T ) =

|~kT |
2Mh

H⊥1 (z)
1

πz2〈k2
T 〉
e
−

k2
T
〈k2

T
〉 , (6.5)

where the usual relation~KT = −z~kT was used.
However, when the eqs. (6.1)–(6.5) are inserted into the positivity constraints [Bac00, Bac04]

f
⊥(1/2)q
1T (x, p2

T ) ≤ 1

2
q(x, p2

T ) (6.6)

H
⊥(1/2)
1 (z, z2k2

T ) ≤ 1

2
D1(z, z

2k2
T ) , (6.7)

one obtains:

|~pT |
M

f⊥q
1T (x) < q(x)

|~kT |
Mh

H⊥1 (z) < D1(z) , (6.8)

which, due to the explicit dependence on|~pT | and|~kT | of the left-hand sides, cannot ensure the
fulfillment of the positivity bounds without applying unphysical cut-offs in|~pT | and|~kT |.
This problem can be solved by using a modified version of eqs. (6.4) and (6.5), which allows
for smaller widths of the quark transverse momentum distributions (skewed gaussian ansatz)
[Bac04]:

f⊥q
1T (x, p2

T ) = f⊥q
1T (x)

1

π(1 − Cs)〈p2
T (x)〉e

−
p2
T

(1−Cs)〈p2
T

(x)〉 (6.9)

H⊥1 (z, z2k2
T ) = H⊥1 (z)

1

πz2(1 − Cc)〈k2
T 〉
e
−

k2
T

(1−Cc)〈k2
T
〉 , (6.10)

whereCc andCs are twoskewednessparameters defined in the range0 < Cc, Cs < 1. In the
limit C → 1 the transverse momentum distributions reduce to a Dirac delta function, while in
the limit C → 0 one recovers the linear, i.e. unbound,pT (kT ) dependence. With this new
parametrization the positivity limits read:

f⊥q
1T (x)

|~pT |
2M

1

π(1 − Cs)〈p2
T (x)〉e

−
p2
T

(1−Cs)〈p2
T

(x)〉 ≤ 1

2
q(x)

1

π〈p2
T (x)〉e

−
p2
T

〈p2
T

(x)〉 (6.11)
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H⊥1 (z)
|~kT |
2Mh

1

πz2(1 − Cc)〈k2
T 〉
e
−

k2
T

(1−Cc)〈k2
T
〉 ≤ 1

2
D1(z)

1

πz2〈k2
T 〉
e
−

k2
T
〈k2

T
〉 (6.12)

whence

|~pT |
1 − Cs

e
− Cs

(1−Cs)

p2
T

〈p2
T

(x)〉 ≤M
q(x)

f⊥q
1T (x)

and
|~kT |

1 − Cc

e
− Cc

(1−Cc)

k2
T
〈k2

T
〉 ≤Mh

D1(z)

H⊥1 (z)
. (6.13)

These inequalities can easily be fulfilled for a reasonable choice of the skewedness parame-
tersCs andCc. In particular, it has been shown [Bac04] that small skewedness parameters
(Cc = Cs = 0.25) are sufficient to bound the functions. Very large values of these skewedness
parameters would limit the range of the intrinsic momentum dependent functions to quite un-
physical values.
With the skewed Gaussian ansatz for thepT (kT ) dependence of the Sivers (Collins) function,
one can solve analytically the convolution integral involved in the Sivers (Collins) term of the
cross section (cf. eqs. (3.79) and (3.80)), yielding respectively [Bac04]:

I
[
f⊥q

1T (x, p2
T )D1(z, z

2k2
T )
~pT · P̂h⊥

M

]
=

f⊥q
1T (x) ·D1(z) ·

|~Ph⊥|
Mπz3

· (1 − Cs)〈p2
T 〉

[〈k2
T 〉 + (1 − Cs)〈p2

T 〉]2
· exp

[
− P 2

h⊥/z
2

〈k2
T 〉 + (1 − Cs)〈p2

T 〉

]
, (6.14)

I
[
δq(x, p2

T )H⊥1 (z, z2k2
T )
~kT · P̂h⊥

Mh

]
=

−δq(x) ·H⊥1 (z) · |~Ph⊥|
Mhπz3

· (1 − Cc)〈k2
T 〉

[〈p2
T 〉 + (1 − Cc)〈k2

T 〉]2
· exp

[
− P 2

h⊥/z
2

〈p2
T 〉 + (1 − Cc)〈k2

T 〉

]
. (6.15)

6.3.3 The implemented asymmetries

The main advantage of using the Gaussian ansatz is that it allows to calculate the asymmetry
amplitudes analytically for all the generated events. These values, which we callimplemented
asymmetries, can then be compared with theextracted asymmetries, obtained applying the stan-
dard fit procedure described in Section 5.4 to the MC events selected by the analysis program
(see Sections 6.4.3 and 6.4.4).
The unweighted andPh⊥-weightedimplemented asymmetriesare calculated according to

2〈sin(φ+ φS)〉h,implem
UT =

1

Mh

√
π

2

(1 − Cc)〈k2
T 〉√

(1 − Cc)〈k2
T 〉 + 〈p2

T 〉
·

1
xy2B(y)

∑
q e

2
qδq(x)H

⊥(1/2)q
1 (z)

1
xy2A(y)

∑
q e

2
qq(x)D

q
1(z)

,

(6.16)
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2〈sin(φ−φS)〉h,implem
UT = − 1

M

√
π

2

(1 − Cs)〈p2
T 〉√

(1 − Cs)〈p2
T 〉 + 〈k2

T 〉
·

1
xy2A(y)

∑
q e

2
qf
⊥(1/2),q
1T (x)Dq

1(z)
1

xy2A(y)
∑

q e
2
qq(x)D

q
1(z)

,

(6.17)

2

〈 |Ph⊥|
zMh

sin(φ+ φS)

〉h,implem

UT

=
(1 − Cc)〈k2

T 〉
M2

h

·
1

xy2B(y)
∑

q e
2
qδq(x)H

⊥(1)q
1 (z)

1
xy2A(y)

∑
q e

2
qq(x)D

q
1(z)

, (6.18)

2

〈 |Ph⊥|
zM

sin(φ− φS)

〉h,implem

UT

= −(1 − Cs)〈p2
T 〉

M2
·

1
xy2A(y)

∑
q e

2
qf
⊥(1),q
1T (x)Dq

1(z)
1

xy2A(y)
∑

q e
2
qq(x)D

q
1(z)

, (6.19)

and stored for each eventj. In order to compare them with the correspondingextracted asym-
metriesin a given kinematic bin, theimplemented asymmetrieshave to be averaged over all the
events (Nev) in that bin:

2〈sin(φ± φS)〉h,implem
UT =

∑Nev

j 2〈sin(φ± φS)〉h,implem
UT,j

Nev

. (6.20)

Similar expressions hold for thePh⊥-weighted asymmetries. Theimplemented asymmetries
are integrated overPh⊥ and therefore can not be compared to theextracted asymmetriesin the
individual Ph⊥ bins. To this purpose thePh⊥-dependent cross section ratios have to be used
instead.

6.3.4 The comparison Data-GMCTRANS

In order to test the reliability of the GMCTRANS Monte Carlo in reproducing the experimen-
tal results, the asymmetry amplitudes extracted from the GMC TRANS events generated within
the HERMES acceptance were compared with those extracted from the experimental data. The
comparison plots are shown in Figure 6.2. Here the Collins andthe Sivers moments extracted
from the experimental data are reported together with thoseextracted from the two versions of
GMC TRANS. For this comparison the same number (2) of fit parameters has been used for
the three cases. Although the Collins amplitudes extracted from GMCT1 (open triangles) and
GMCT2 (open circles) are substantially different (those extracted from GMCT2 are systemat-
ically lower than the others), they are both reasonably compatible with the experimental ones
(full squares) for both positive and negative pions. In contrast, none of the two GMCTRANS
versions reproduces the experimental Sivers amplitudes for positive pions. Both the simulated
Sivers amplitudes are indeed systematically smaller than the experimental ones. This is espe-
cially true for those extracted from GMCT1, where a zero Sivers function for the sea quarks is
implemented. All the Sivers amplitudes for the negative pions are compatible with zero.
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Figure 6.2: Unweighted Collins (upper half) and Sivers (lower half) moments forπ+ (upper panels) and
π− (lower panels) extracted from the full HERMES transverse data set (full squares), and from the two
GMC TRANS versions GMCT1 (open triangles) and GMCT2 (open circles). The average kinematics of
the bins has been slightly shifted to accommodate the three sets of results.
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6.4 Study of acceptance and smearing effects: a qualitative approach

The studies presented in the following sections were performed in order to estimate the impact
of the acceptance and smearing effects on the extracted Collins and Sivers moments. To this
purpose, different categories of Collins and Sivers asymmetries were extracted and compared
for both the unweighted and thePh⊥-weighted cases. These categories originate from the com-
binations of three different Monte Carlo event samples and two different extraction methods:

MC event samples:

- generated events: GMC TRANS events generated in4π with the original (i.e. unsmeared)
kinematics;

- generated events in acceptance: GMC TRANS events generated within the HERMES
acceptance with the original (i.e. unsmeared) kinematics;

- reconstructed events: GMC TRANS events generated within the HERMES acceptance
with smeared (HSG) kinematics.

Extraction methods:

- implemented asymmetries: asymmetries implemented in GMCTRANS, calculated and
stored for each event (see Section 6.3.3);

- extracted asymmetries: asymmetries extracted from the GMCTRANS events with the
’standard fit method’ (see Section 6.4.1);

The comparison between the asymmetries obtained fromreconstructedandgenerated events
allows to study the impact of the instrumental (detector acceptance and smearing) effects, while
that betweenimplementedandextracted asymmetriesallows to test the extraction method.

6.4.1 Fit methods comparison

The comparison studies mentioned above were repeated for both the GMCTRANS versions
(GMCT1 and GMCT2) described in Section 6.3.1 and making use of both the fit methods (LS
and ML) described in Section 5.4. In particular, since only the Collins and the Sivers effects are
implemented in the GMCTRANS generator, there is no need to include in the fit the four ad-
ditional sine moments appearing in eqn. (5.26). As a result only two parameters, corresponding
to the Collins and the Sivers amplitudes, are used in the ML fit,while an additional constant
term is included in the LS fit. Since no implementation existsat the moment for thePh⊥-
weighted asymmetries in the maximum likelihood fit, these have only been extracted with the
least square fit. The unweighted Collins and Sivers asymmetryamplitudes extracted with the
two different fit methods from the GMCT2generated(reconstructed) events are compared in
Figure 6.3 (6.4). The two sets of results are in a very good agreement. A similar agreement is
observed using GMCT1.
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Figure 6.3: Unweighted Collins (upper half) and Sivers (lower half) moments forπ+ (upper panels) and
π− (lower panels) extracted from the GMCT2generated eventswith ML fit (open squares) and LS fit
(full triangles).
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Figure 6.4: Unweighted Collins (upper half) and Sivers (lower half) moments forπ+ (upper panels) and
π− (lower panels) extracted from the GMCT2reconstructed eventswith ML fit (open squares) and LS
fit (full triangles).
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In the studies reported in the next sections, the ML fit will always be used for the extraction of
the unweighted asymmetries and the LS fit for the extraction of thePh⊥-weighted asymmetries.

6.4.2 The smearing effects

The contribution due to the smearing effects can be evaluated by comparing the asymmetry am-
plitudes obtained from thereconstructed eventswith those obtained from thegenerated events
in acceptance. Any difference between the two sets of results can only be attributed to the ac-
tion of the detector smearing on the event kinematics. For this comparison, the GMCT2 version
of GMC TRANS was used. The results for the Collins and Sivers moments are shown in Fig-
ures 6.5 and 6.6 (upper plots), respectively, together withthe corresponding differences (lower
plots). Except for the highestz-bins, whose events are not accounted for while projecting onto
the other variables (cf. Section 5.3.3), the differences are relatively small in the whole kinematic
range. These differences are considered as a source of systematic uncertainty and are accounted
for in the evaluation of the global systematic error (see Section 6.9).

6.4.3 Acceptance effects: the unweighted asymmetries

As discussed in Section 6.4, the differences betweengeneratedandreconstructed eventsorig-
inate from both the acceptance and the smearing effects. Figure 6.7 reports the comparison
between the unweighted Collins and Sivers moments extractedfrom the GMCT1generated
andreconstructed events. The plots show a relatively good agreement in most of the kinematic
bins, thus leading to the conclusion that acceptance and smearing effects are relatively small
(< 10%). Significant differences are only observed as a function ofPh⊥ for bothπ+ andπ−.
This result fully agrees with that of an equivalent study reported in [Els06], where the same
version of GMCTRANS was used. These figures also show the correspondingimplemented
asymmetries. The differences betweenimplementedandextracted asymmetriesare relatively
small for bothgeneratedandreconstructed events. The latter result ensures that the extraction
method has been implemented correctly and does not introduce any significant bias.
A similar comparison study was performed for the first time using the GMCT2 version of
GMC TRANS. As discussed in Section 6.3.1, this version is expected to be more reliable since
it not only uses a non-zero Sivers function for the sea quarks, but also includes the z-dependence
of 〈K2

T 〉. The comparison plots for GMCT2 are shown in Figure 6.8. Contrarily to the previous
comparison (based on GMCT1), this comparison shows unexpectedly large differences between
the asymmetries extracted fromgenerated eventsand those extracted fromreconstructed events.
These differences are particularly pronounced for the Collins moments forπ+, for which they
are estimated to be, in the average, of the order of40%. Significant differences are also observed
betweenimplementedandextractedasymmetries for thereconstructed events.
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Figure 6.5: Upper half: Collins moments forπ+ and π− extracted from GMCT2 smeared (full dots) and
unsmeared (open dots) events reconstructed within the HERMES acceptance. Lower half: differences
between the amplitudes extracted from smeared and unsmeared events.
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Figure 6.6: Upper half: Sivers moments forπ+ and π− extracted from GMCT2 smeared (full dots) and
unsmeared (open dots) events reconstructed within the HERMES acceptance. Lower half: differences
between the amplitudes extracted from smeared and unsmeared events.
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Figure 6.7: Unweighted Collins (upper half) and Sivers (lower half) moments for π+ (upper panels)
andπ− (lower panels) extracted with ML fit from the GMCT1generated events(open squares) and
reconstructed events(full triangles). The reconstructed and generated implemented asymmetries are
also shown for comparison.
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Figure 6.8: Unweighted Collins (upper half) and Sivers (lower half) momentsfor π+ (upper panels)
andπ− (lower panels) extracted with ML fit from the GMCT2generated events(open squares) and
reconstructed events(full triangles). The reconstructed and generated implemented asymmetries are
also shown for comparison.
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6.4.4 Acceptance effects: thePh⊥-weighted asymmetries

A similar study was done for thePh⊥-weighted asymmetry amplitudes. Theimplementedand
theextracted asymmetriesobtained fromgeneratedandreconstructed eventsare compared for
both the GMCTRANS versions in Figures 6.9 and 6.10, respectively. As already found in
[Els06] with GMCT1, large differences are observed for the Collins moments. Even larger dif-
ferences are observed when GMCT2 is used. In both cases (GMCT1 and GMCT2) the absolute
values of the Collins and Sivers amplitudes extracted from the reconstructed eventsare system-
atically lower than those extracted from thegenerated eventsin most of the kinematic bins.
Big differences are also observed between theextractedand theimplemented asymmetriesfor
reconstructed events. An exception is represented, in both cases, by thePh⊥ bins, where a rel-
atively better agreement is observed. The contrast betweenthe relatively good reproduction of
the amplitudes in the individualPh⊥ bins and the large deviations observed as a function of the
other kinematic variables suggests that an insufficient integration overPh⊥ causes the problem.
Indeed, in the former case, the integration of thePh⊥-dependent cross section is restricted to
the rather small range within each bin. However, it is difficult to interpret the results since the
deconvolution of distribution and fragmentation functions is not achieved with an incomplete
integration overPh⊥.

The studies discussed above show that an estimation of the acceptance and smearing effects
on the extracted asymmetry amplitudes based on this method is strongly model dependent. The
comparisons above were only meant to estimate qualitatively the impact of acceptance and
smearing effects on the extracted asymmetry amplitudes. A different and more sophisticated
approach, aimed to extract a quantitative estimate of theseeffects, was subsequently adopted,
as discussed in Section 6.5.

6.5 Acceptance studies: a more sophisticated approach

The large deviations observed between the asymmetry amplitudes extracted fromgenerated
and reconstructedMonte Carlo events, suggest that the effects of the HERMES acceptance
have a substantial impact on our results. In order to avoid this problem, two alternative ap-
proaches can, in principle, be adopted: A different extraction method which is not influenced
by the HERMES acceptance and smearing, or an a-posteriori correction for these effects. The
first approach, which basically consists in a multi-dimensional unfolding of the radiative and
experimental effects, has already been intensively adopted in different analyses at HERMES
[Hil05, Mai06, Air07]. This method requires a multi-dimensional binning of the selected events.
In the present analysis, however, this method would be prohibitive due to the much lower statis-
tics available for the transversely polarized target data in combination with the relatively high
number of independent variables1. The second approach, based on an innovative method, was
then adopted, as reported in the following sections.

1The SIDIS cross section depends on six independent variables (cf. Section 3.7.4)).
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Figure 6.9:Ph⊥-weighted Collins (upper half) and Sivers (lower half) moments forπ+ (upper panels)
and π− (lower panels) extracted with LS fit from the GMCT1generated events(open squares) and
reconstructed events(full triangles). The reconstructed and generated implemented asymmetries are
also shown for comparison.
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Figure 6.10:Ph⊥-weighted Collins (upper half) and Sivers (lower half) moments forπ+ (upper panels)
and π− (lower panels) extracted with LS fit from the GMCT2generated events(open squares) and
reconstructed events(full triangles). The reconstructed and generated implemented asymmetries are
also shown for comparison.
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6.5.1 The idea underneath the method

This new method [Mil06] is based on two major steps. In the first step, the full kinematic
dependence of the Collins and Sivers moments onx, Q2, z andPh⊥ is extracted from the real
data through a fit based on a fully differential Probability Density Function (PDF):

f(x,Q2, z, Ph⊥, φ, φS, Pt; aC , aS, ...) =

1 + Pt ·
[
ACollins(x,Q

2, z, Ph⊥; aC) · sin(φ+ φS)+

ASivers(x,Q
2, z, Ph⊥; aS) · sin(φ− φS) + ...

]
. (6.21)

HerePt denotes the target transverse polarization andACollins(Sivers)(x,Q
2, z, Ph⊥; aC(S)) the

Collins (Sivers) asymmetry amplitudes, dependent on the four kinematic variablesx, Q2, z
andPh⊥. A set aC(S) of parameters constitute the coefficients of a four-dimensional Taylor
expansion in the four kinematic variables (see an example inthe next section).
The second step then consists in folding these parameterizations with the known Born (spin-
independent) cross sectionσBorn = σ4π

UU(x,Q2, z, Ph⊥), according to the following general
relation:

〈sin(φ± φS)〉h,4π
UT (x) =

∫
dydzdPh⊥ σ

4π
UU(x,Q2, z, Ph⊥) · ACollins(Sivers)(x,Q

2, z, Ph⊥; aC(S))∫
dydzdPh⊥σ4π

UU(x,Q2, z, Ph⊥)
.

(6.22)
In practice, the GMCTRANS events generated in4π summed over the two target spin states
are used to reproduce the Born cross section. The folding is then effectively performed using
the formulae:

〈sin(φ± φS)〉h,4π
UT (x) =

∑NMC

j=1 WMC
j · ACollins(Sivers)(x,Q

2, z, Ph⊥; aC(S))
∑NMC

j=1 WMC
j

(6.23)

and

〈Ph⊥

zM
sin(φ± φS)

〉h,4π

UT
(x) =

∑NMC

j=1 WMC
j · Ph⊥

zM
· ACollins(Sivers)(x,Q

2, z, Ph⊥; aC(S))
∑NMC

j=1 WMC
j

(6.24)

to get, respectively, the unweighted and thePh⊥-weighted Collins and Sivers moments projected
in 4π. HereWMC

j denote the Monte Carlo event-weights2 (cf. Section 6.1). If the method works
correctly, these asymmetry amplitudes should correspond to those that one would measure with
an ideal4π detector, i.e. a detector with a full coverage of the solid angle. Similar relations can
be used to project the extracted Collins and Sivers amplitudes within the HERMES acceptance
itself. In this case the spin-independent cross section within the acceptance can be obtained
from the GMCTRANS reconstructed eventssummed over the two target spin states.

2In the current versions of GMCTRANS all the event-weights are equal to 1.
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It is important to stress that this method represents a real improvement with respect to the stan-
dard method discussed in the previous sections. In this case, indeed, one does not need anymore
to rely on a model (e.g. the GMCTRANS model) for the kinematic dependence of the Collins
and Sivers moments. On the contrary, such a dependence is extracted from the real data through
a Taylor expansion, which does not imply any physical assumption. The limits of the method
are represented by the choice of the truncation of the Taylorexpansion (see Section 6.6.2), the
use of a model for the Born cross section (see Section 6.6.1) and the assumption that the kine-
matic dependence of the azimuthal moments outside the acceptance is the same as inside.
Before applying this method to the experimental data, for which no information outside the
HERMES acceptance is available, a preliminary test was done using the GMCTRANS data.
The use of the Monte Carlo, indeed, allows to test the method bychecking that the asymme-
try amplitudes extracted from thereconstructedevents and folded with the unpolarized cross
section in4π, corresponds to those extracted directly from thegenerated events. A good agree-
ment between the two would, in principle, imply that the method works correctly and can thus
be applied to the real data to make an estimate of the acceptance effects.

6.5.2 A first attempt: the 44-parameters fit

In a first attempt, the GMCTRANS reconstructed eventswere fitted by a ML fit based on a
44-parameters PDF where the Collins and Sivers kinematic dependencies are parameterized as:

ACollins(Sivers)(x,Q
2, z, Ph⊥; aC(S)) = a1 + a2 · x′ + a3 ·Q′2 + a4 · z′ + a5 · P ′h⊥+

a6 · x′2 + a7 · z′2 + a8 · P ′2h⊥ + a9 · x′ · z′+

a10 · x′ · P ′h⊥ + a11 · z′ · P ′h⊥ + a12 · x′3 + a13 · x′ · z′2+

a14 · x′2 · z′ + a15 · x′2 · P ′h⊥ + a16 · x′ · P ′2h⊥+

a17 · z′2 · P ′h⊥ + a18 · z′ · P ′2h⊥ + a19 · x′2 · P ′2h⊥+

a20 · z′2 · P ′2h⊥ + a21 · x′ · z′ · P ′h⊥ + a22 · x′2 · z′ · P ′h⊥ , (6.25)
where:

x′ = x− 〈x〉 Q′2 = Q2 − 〈Q2〉 z′ = z − 〈z〉 P ′h⊥ = Ph⊥ − 〈Ph⊥〉 .
This PDF, proposed in [Mil06], consists of a Taylor expansion of the Collins and Sivers mo-
ments performed around the average values〈x〉, 〈Q2〉, 〈z〉 and〈Ph⊥〉. Its peculiar functional
form, which includes all first order terms plus a selection ofsecond, third and fourth order
terms, was originally derived in such a way to reproduce the full kinematic dependence of the
GMC TRANS implementedCollins and Sivers asymmetry amplitudes.
As an example, the correlation matrix for the Collins set of parameters for positive pions is
shown in Figure 6.11. Except for a few cases, the correlations among the 22 parameters are
relatively small. It is worth noting that a very similar pattern is observed for the negative pions
and for Sivers case (not shown).
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Figure 6.11: Correlation matrix for the 22 Collins parameters forπ+ (GMCT2 events).

The fitted asymmetry amplitudesACollins(Sivers)(x,Q
2, z, Ph⊥; aC(S)) were then folded with the

Born cross section according to eqn. (6.23). The unweighted Collins and Sivers moments, ex-
tracted with the standard method described in Sections 6.4.3 for both thegeneratedandrecon-
structedGMCT2 events (cf. Figure 6.8), are compared in Figure 6.12 with those obtained with
the new method described above (44-parameters fit plus folding with the Born cross section).
The Collins and Sivers moments projected within the acceptance (i.e. folded with the spin-
independent cross section restricted to the HERMES acceptance) are also shown in the plots.
As expected, these amplitudes (open triangles) approach those extracted from thereconstructed
events(full triangles). Similarly, the asymmetry amplitudes folded with the spin-independent
cross section in4π (open squares) approach those extracted from thegenerated events(full
squares). This is particularly visible in the Collins moments for π+, where the largest differ-
ences between the asymmetry amplitudes extracted fromgeneratedand reconstructed events
are observed. Similar conclusions can be drawn for thePh⊥-weighted asymmetries, shown in
Figure 6.13. It is important to note, however, that the errorbars of the asymmetry amplitudes ex-
tracted with the two different methods are not comparable. While the amplitudes extracted with
the standard method are obtained by fitting the events in eachkinematic bin, those extracted
with the new method are obtained from a fit of the full event sample (the kinematic dependence
of the azimuthal amplitudes being accounted for through thefully differential PDF) and pro-
jected in the various kinematic bins afterwards, when folding with the spin-independent cross
section. As a consequence, the errors of the amplitudes extracted with the new method in the
various kinematic bins are fully correlated.
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Figure 6.12: Unweighted Collins (upper half) and Sivers (lower half) moments forπ+ (upper panels) and
π− (lower panels) extracted from GMCT2 events. The amplitudes folded with thespin-independent cross
section in4π (open squares) approach those extracted from the events generatedin 4π (full squares). The
average kinematics of the bins has been slightly shifted to accommodate the foursets of results.
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Figure 6.13:Ph⊥-weighted Collins (upper half) and Sivers (lower half) moments forπ+ (upper panels)
andπ− (lower panels) extracted from GMCT2 events. The amplitudes folded with thespin-indep. cross
section in4π (open squares) approach those extracted from the events generatedin 4π (full squares).
The average kinematics of the bins has been slightly shifted to accommodate the four sets of results.
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The comparison studies discussed above lead to the conclusion that the asymmetry amplitudes
extracted from the events reconstructed within the HERMES acceptance and folded with the
Born cross section reproduce, to a reasonable extent, those extracted from Monte Carlo events
in 4π. This method, thus, allows to recover most of the acceptanceeffects that affect the Collins
and Sivers moments extracted inside the HERMES acceptance.
These studies, performed at the Monte Carlo level, were meantto test the reliability of the
method before applying it to the experimental data (see nextsection).

6.5.3 Applying the method to the experimental data

The studies discussed above show that the new method introduced in Section 6.5.1 works nicely
at the Monte Carlo level. The method can therefore be safely applied to the experimental data
in order to estimate the real acceptance effects.
As a first attempt, the same 44-parameters PDF (6.25), optimized for the GMCTRANS data,
was used to fit the real data. Since, however, the asymmetry amplitudes extracted from the
reconstructedevents generated by GMCTRANS do not fully reproduce the experimental ones
(cf. Figure 6.2), the latter might be better described by a different functional form. In particular,
the 44-parameters fit does not account for the additional sine moments (cf. eqn. 5.26) that were
found to influence the fit results (especially the〈sin(φS)〉hUT moment). This point is discussed
in detail in Section 6.6.2.
Figure 6.14 shows the comparison between the Collins and Sivers moments extracted with the
standard 2-parameter ML fit (cf. Section 5.4.2) (full squares) and those obtained with the new
method in the acceptance (open triangles) and in4π (open squares). Here the GMCT2 version
of GMC TRANS was used to calculate the Born cross section for the folding procedure.
Differently from the case of GMCTRANS, only relatively small differences are observed in
the data between the asymmetry amplitudes in the acceptanceand those extrapolated in4π. A
similar result is observed for thePh⊥-weighted asymmetries for positive pions, while relatively
bigger effects are observed for the negative pions (see Figure 6.15).
Although very preliminar, this study already suggests thatthe real acceptance and smearing
effects are less dramatic than those predicted by the Monte Carlo simulation.

6.6 Testing the stability of the method

The extrapolation in4π of the experimental Collins and Sivers amplitudes, described in the
previous section, was achieved under two very specific conditions: The fit was based on the 44-
parameter PDF, optimized for the GMCTRANS model but not necessarily for the experimental
data, and the folding procedure was performed using the Born cross section derived from one
of the two versions of the GMCTRANS Monte Carlo.
To test the stability of these results, the method was applied under different conditions. In par-
ticular, a variety of PDFs were explored, based on differenttruncations of the Taylor expansion,
and three different models for the Born cross section were compared. For the latter test, which
is discussed first, the 44-parameter fit was used as a first guess.
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Figure 6.14: Unweighted Collins (upper half) and Sivers (lower half) moments for π+ (upper panels)
andπ− (lower panels) extracted from the full transverse data set (full squares). The amplitudes folded
with the spin-independent cross section in the acceptance (open triangles) and in4π (open circles) are
also shown.
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Figure 6.15:Ph⊥-weighted Collins (upper half) and Sivers (lower half) moments forπ+ (upper panels)
andπ− (lower panels) extracted from the full transverse data set (full squares). The amplitudes folded
with the spin-independent cross section in the acceptance (open triangles) and in4π (open circles) are
also shown.
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6.6.1 Three models for the Born cross section

The folding procedure is dependent on the model for the SIDISBorn cross section. In order
to test the sensibility of this procedure upon the choice of the model, the Born cross section
was extracted from three different models: the two versionsof GMC TRANS, GMCT1 and
GMCT2, which are based on different models for the Sivers function and on a different depen-
dence of〈K2

T 〉 (cf. Section 6.3), and PYTHIA.
The projected (in4π) Collins and the Sivers moments, obtained using the three different models
mentioned above, are compared in Figure 6.16. The comparison shows that the Collins ampli-
tudes folded with the Born cross section extracted from GMCT1 and GMCT2 are compatible
in all kinematic bins, while systematic deviations are observed for those based on the PYTHIA
generator. These deviations become significant in the intermediate to highz region (for both
π+ andπ−) and in the lowPh⊥ region (forπ+). No significant deviations are observed for the
Sivers amplitudes. The differences on the extracted amplitudes obtained with the three different
models for the Born cross section are regarded as a source of systematic uncertainty and are
accounted for in the evaluation of the global systematic error (see Section 6.9).

6.6.2 The choice of the PDF

So far, the 44-parameter PDF displayed in eqn. (6.25) was used, as a first guess, to fit the se-
lected events. The peculiar functional form of this PDF, which includes all first order terms
plus a selection of second, third and fourth order terms, is motivated by the fact that it allows
to reproduce satisfactorily the full kinematic dependenceof the Collins and the Sivers am-
plitudes implemented in GMCTRANS. Since, however, the asymmetry amplitudes extracted
from the GMCTRANS reconstructed eventsdo not fully reproduce the experimental ones (cf.
Figure 6.2), the latter might be better described by a different functional form based on a dif-
ferent truncation of the Taylor expansion and/or on the involvement of additional azimuthal
amplitudes besides the Collins and Sivers ones. In particular, as discussed in Section 5.5.1, the
〈sin(φS)〉hUT moment was found to significantly contribute to the Collins and Sivers fit results,
while the other three sine moments (〈sin(2φ−φS)〉hUT , 〈sin(3φ−φS)〉hUT and〈sin(2φ+φS)〉hUT )
were found to barely influence the results.
Since a virtually infinite number of possible combinations exists, only the most relevant cases
were considered, as reported in Table 6.2. These cases include the basic 2-parameters PDF,
with constant Collins and Sivers terms, the 5-parameters PDF, which, apart for the lack of the
sin(2φ + φS)〉hUT moment, corresponds to the standard 6-parameters PDF (5.26), PDFs with
Taylor expansions of increasing order (from1st to 3rd), the ’standard’ 44-parameters PDF and
a 48-parameters PDF which also includes the〈sin(φS)〉hUT moment.
Although limited to the eight scenarios listed above, the choice of the “best” PDF requires
a measure of thegoodnessof the maximum likelihood fit. Such a measure would be highly
desirable since, similarly to theχ2 in the standardχ2-fits, it would provide a powerful tool to
discriminate among the various PDFs. Only recently a general theory of goodness for unbinned
maximum likelihood fits was developed, as reported in [Raj06]. According to this theory, in
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Figure 6.16: Unweighted Collins (upper half) and Sivers (lower half) moments for π+ (upper panels)
andπ− (lower panels) extracted from the full transverse data set (full squares) and their projections in
4π obtained with three different models for the Born cross section. The average kinematics of the bins
has been slightly shifted to accommodate the three sets of results.
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# par. 〈sin(φ + φS) 〈sin(φ − φS) 〈sin(φS)

2 constant constant 0

5∗ constant constant constant

10 constant +1st order constant +1st order 0

22 constant + constant + 0
1st and2nd order 1st and2nd order

32 constant + constant + 0
1st and2nd order + 1st and2nd order +

selection of3rd order selection of3rd order

42 constant + constant + 0
1st, 2nd and3rd order 1st, 2nd and3rd order

44 constant + constant + 0
1st and2nd order + 1st and2nd order +

selection of3rd and4th order selection of3rd and4th order

48 constant + constant + constant +
1st and2nd order + 1st and2nd order + 1st and2nd order +

selection of3rd order selection of3rd order selection of3rd order

Table 6.2: The PDFs analyzed. The first column reports the number of parameters. The second, third and
fourth columns report the terms included in the Taylor expansion for each of the three relevant azimuthal
moments. The order refers to the powers of the kinematic variablesx, z andPh⊥ included in the Taylor
expansion (Q2 only appears at1st order). The same functional form holds for all the azimuthal moments
involved. * The 5-par. PDF also includes the〈sin(2φ − φS)〉 and the〈sin(3φ − φS)〉 sine moments.

order to measure the goodness of the ML fit for a set ofN independently measured quantities
xi, one should consider thelikelihood ratio

LR =
N∏

i=1

f(xi; θ)

f(xi)
(6.26)

of the theoretically predicted probability density function f(xi; θ) to that of the a-prioridata
probability density functionf(xi). Unlike the standard likelihood function, the likelihood ratio
is invariant under change of variable. This condition is necessary to allow for a measure of the
goodness of the fit [Raj06]. In addiction, since thedata probability densityf(xi) is constant
with respect to the fit parametersθ, one needs to solve the same set of equations that one gets
when maximizing the standard likelihood function (cf. eqn.(5.23)), thus resulting in the same
parameter values at the maximum.
In order to evaluate the likelihood ratioLR, one needs to evaluate the functionf(xi) at the
observed event configurationsx1, x2, ..., xN . In statistics this problem is generally solved with
the method of the Probability Density Estimators (PDE). In our contest the PDE was calculated
using an approximated version of the approach described in [Raj06]. The details of the method
are discussed in Appendix E.
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The Negative Log-Likelihood RatioNLLR ≡ −logeLR at the maximum of the likelihood
function provides a measure of the goodness of the fit. If, indeed, the functional form of the
theoretically predicted probability density functionf(x; θ), expressed in terms of the fit param-
etersθ, reproduces the a-prioridata probability density functionf(xi), one would have:

foptimal(xi; θ) ≈ f(xi) ⇒ LR ≈ 1 ⇒ NLLR ≈ 0 ; (6.27)

if, on the other hand, the PDF is not adequate to reproduce thedata, one would getNLLR 6= 0 .
In particular, the worse the PDF is, the more theNLLR would differ from zero.
In order to use this technique efficiently, one needs to compare, for each PDF, the value of
the negative log-likelihood ratio obtained in the fit of the real data, with that obtained in the
fit of a similar amount of events generated by a Monte Carlo simulation in which the same
PDF is implemented for the event generation. For the choice of the best PDF one should then
consider non only the absolute value ofNLLRData (i.e. its distance from 0), but also the
relative distance betweenNLLRData andNLLRMC . The smaller this distance is, the more
appropriate the PDF is for the description of the data.
To avoid the introduction of biases due to the use of specific models for the spin-dependent part
of the cross section, the PYTHIA generator was used to generate events (within the HERMES
acceptance) according to the spin-independent cross section. The azimuthal dependence of the
cross section, due to the target transverse polarization, was then implemented a-posteriori. To
this purpose, the azimuthal asymmetries were extracted from the experimental data for each of
the PDFs tested, and used to create two Monte Carlo data sets with opposite transverse spin
states. For instance, given a generic PDF

f(x,Q2, z, Ph⊥, φ, φS, Pt; θ) = 1 + Pt · A(x,Q2, z, Ph⊥; θ) · sin(mφ± nφS) , (6.28)

in which the asymmetryA is expressed in terms of a set of parametersθ, previously extracted
in a fit of the experimental data, the spin-up and spin-down normalized cross sections were built
up from the PYTHIA events according to:

σ↑(x,Q2, z, Ph⊥, φ, φS, Pt; θ) =
1

2

[
1 + |Pt| · A(x,Q2, z, Ph⊥; θ)

]
· sin(mφ± nφS) , (6.29)

σ↓(x,Q2, z, Ph⊥, φ, φS, Pt; θ) =
1

2

[
1 − |Pt| · A(x,Q2, z, Ph⊥; θ)

]
· sin(mφ± nφS) . (6.30)

Since, by construction,σ↑ + σ↓ = 1 ⇒ 0 < σ↑ < 1, a random number extraction between
0 and 1, modulated byσ↑, allowed to associate to each PYTHIA event the sign of the target
polarization according to the real (experimental) spin-dependent cross section. In particular the
experimental average value|Pt| = 0.73 was used (cf. Section 5.4.1).
Since the Monte Carlo events are generated on a statistic basis, one may obtain different max-
ima of the likelihood ratio for different, although statistically equivalent, Monte Carlo data sets,
all based on the same model. For this reason, for each of the PDFs tested, 48 such Monte Carlo
data sets were produced, each time resulting in a distribution of theNLLRPDF

MCj
(j = 1, 48)
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values. The mean values of such distributions,〈NLLRPDF
MC 〉, were then compared with the

corresponding values of theNLLRPDF
Data , obtained with the use of the same PDF.

As an example, the results obtained with the 44-parameters PDF are shown in Figure 6.18 for
both positive and negative pions. Here the distribution of the negative log likelihood ratios
NLLR44Par

MCj
is shown together with the corresponding value from the data, NLLR44Par

Data (blue

boxes). For the positive (negative) pions case, the distribution of NLLR44Par
MCj

is centered at

124.4 (184.4) with a RMS of 26 (22) andNLLR44Par
Data equals 47 (124). As a result, the dis-

tance between the mean value〈NLLR44Par
MC 〉 andNLLR44Par

Data is 3.0 ×RMS (2.7 ×RMS).
These numbers allow to identify the best PDF among those tested. According to this method,
indeed, the best PDF is the one which results in the smallest value forNLLRPDF

Data and in the
smallest relative distance (in RMS) betweenNLLRPDF

Data and〈NLLRPDF
MC 〉.

The results for all the PDFs tested are reported in Table 6.3 and shown in Figure 6.17. As ex-
pected, both the negative log likelihood ratios and the relative distances between Data and MC
decrease for PDFs with higher number of parameters. This trend is faster for the PDFs with a
smaller number of parameters (2 → 5 → 10), and becomes slower and slower for the those with
a larger number of parameters (10 → ... → 48). These results indicate that the more terms are
included in the Taylor expansion, the more adequate the PDF is. The improvement, however,
saturates beyond a certain number of parameters.
Although in the saturation region, an inversion of the trendis observed from 44 to 48 param-
eters for positive pions. This leads to the conclusion that,although the 48-parameters PDF
includes the〈sin(φS)〉 modulation, a higher number of parameters would be desirable. The
48-parameters PDF is anyway considered the best choice since the〈sin(φS)〉 modulation is
highly recommended to be taken into account (cf. Section 5.5.1). This conclusion is anyway
supported by the monotonically decreasing values of theNLLRPDF

Data with increasing number
of terms involved in the PDF (cf. Figure 6.17). It is important to note, however, that, although
monotonically decreasing, theNLLRPDF

Data never reaches 0. This is due to the fact that all the
PDFs used are based on a truncation of the Taylor expansion, and are thus only approximations
of the ’true’data probability density function.
As a consistency check for the method, the deviations

∆i,j =
Par(i)Data − Par(i)MCj

σPar(i)Data

(i = 1,# par. ; j = 1, 48) (6.31)

were calculated. Here the indexi spans the valuesPar(i) of the parameters of the PDF and
the indexj the 48 MC data sets. As expected, the mean valuesDiff = ∆i = 〈∆i,j〉 fluctuate
around 0 and the RMSs around 1, indicating that no significant biases are introduced in the
method. As an example, the results relative to the 48-parameters PDF are shown in Figure 6.19
for positive pions. For sake of clarity, the 16 parameters for Collins and the 16 for Sivers are
shown separately. Similar results are obtained for the negative pions and for all the other PDFs
tested.
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Positive pions

PDF (# of par.) NLLRData 〈NLLRMC〉 (RMS) ∆ [n × RMS]

2 156 382 (18) 12.8

5 150 309 (22) 7.1

10 88 196 (26) 4.1

22 62 150 (24) 3.7

32 55 139 (25) 3.4

42 49 127 (25) 3.1

44 47 124 (26) 3.0

48 44 131 (27) 3.2

Negative pions

PDF (# of par.) NLLRData 〈NLLRMC〉 (RMS) ∆ [n × RMS]

2 198 300 (19) 5.3

5 168 272 (20) 5.1

10 144 223 (23) 3.5

22 134 202 (22) 3.0

32 130 194 (23) 2.8

42 122 184 (22) 2.8

44 124 184 (22) 2.7

48 106 170 (24) 2.7

Table 6.3: The values ofNLLRData and〈NLLRMC〉 are reported, for all the PDFs tested, for positive
(upper table) and negative (lower table) pions. The last column reports the distance betweenNLLRData

and〈NLLRMC〉, expressed in units of the RMS.
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6.7 The PDFs for the five hadron types

The choice of the 48-parameters PDF was possible for the charged pions, thanks to their rela-
tively high statistics. Instead, a smaller number of terms in the Taylor expansion was required
for the convergence of the fit for the other three hadron types(π0, K+ and K−) due to their
much smaller statistics (cf. Table 5.5).
As a criterion for the choice of the corresponding PDFs, the〈sin(φS)〉 modulation was included
and the higher order terms of the Taylor expansion were reduced until the fit converged. As
a result, a 45-parameters (15 parameters × 3 moments) PDF was selected for theK+ and a
18-parameters (6 parameters × 3 moments) PDF was selected for both theK+ andπ0. In
summary, the three PDFs selected are of the form:

fh(x,Q
2, z, Ph⊥, φ, φS, Pt;α1, α2, α3) =

1 + Pt ·
[
Ah

1(x,Q
2, z, Ph⊥;α1) · sin(φ+ φS)+

Ah
2(x,Q

2, z, Ph⊥;α2) · sin(φ− φS)

Ah
3(x,Q

2, z, Ph⊥;α3) · sin(φS)
]
, (6.32)

where, for each of the three azimuthal moments (i = 1, 2, 3),:

Aπ+,π−

i (x,Q2, z, Ph⊥;αi) = ai(1) + ai(2) · x′ + ai(3) ·Q′2 + ai(4) · z′+
ai(5) · P ′h⊥ + ai(6) · x′2 + ai(7) · z′2 + ai(8) · P ′2h⊥+

ai(9) · x′ · z′ + ai(10) · x′ · P ′h⊥ + ai(11) · z′ · P ′h⊥+

ai(12) · x′3 + ai(13) · x′ · z′2 + ai(14) · x′2 · z′+

ai(15) · x′2 · P ′h⊥ + ai(16) · x′ · P ′2h⊥ , (6.33)

AK+

i (x,Q2, z, Ph⊥;αi) = ai(1) + ai(2) · x′ + ai(3) ·Q′2 + ai(4) · z′+
ai(5) · P ′h⊥ + ai(6) · x′2 + ai(7) · z′2 + ai(8) · P ′2h⊥+

ai(9) · x′ · z′ + ai(10) · x′ · P ′h⊥ + ai(11) · z′ · P ′h⊥+

ai(12) · x′3 + ai(13) · x′ · z′2 + ai(14) · x′2 · z′+

ai(15) · x′2 · P ′h⊥ , (6.34)

AK−,π0

i (x,Q2, z, Ph⊥;αi) = ai(1) + ai(2) · x′ + ai(3) ·Q′2 + ai(4) · z′+

ai(5) · P ′h⊥ + ai(6) · x′2 , (6.35)
and:

x′ = x− 〈x〉 Q′2 = Q2 − 〈Q2〉 z′ = z − 〈z〉 P ′h⊥ = Ph⊥ − 〈Ph⊥〉 .

158



6.8. CORRECTING FOR THE ACCEPTANCE EFFECTS

6.8 Correcting for the acceptance effects

The PDFs showed in the previous section were used to fit the data relative to the five hadron
types analyzed. The extracted Collins and Sivers amplitudes, expressed in terms of the corre-
sponding sets of parameters, where then folded, according to the procedure discussed in Sec-
tion 6.5.1, with the spin-independent cross section provided by the PYTHIA generator. As a
result, the Collins and Sivers amplitudes projected in4π and inside the acceptance itself were
obtained for the five hadron types.
The difference, in each kinematic bin, between the Collins and Sivers moments projected in4π
and those projected within the acceptance, was then used to correct for the acceptance effects.
The final results for the Collins and Sivers moments, presented in Chapter 7, are in fact ob-
tained by correcting for this difference the amplitudes extracted in each bin with the ’standard
6-parameters PDF’ (5.26). This correction introduces an extrapolation error which was taken
into account in the estimation of the global systematic error (cf. Section 6.9).

6.9 The contributions to the systematic error

In Section 5.5.8 a partial estimation of the systematic error affecting the extracted Collins and
Sivers amplitudes was discussed. Here three additional contributions are taken into account.
The first one accounts for the smearing effects, estimated inSection 6.4.2. The differences
between ’smeared’ and ’unsmeared’ amplitudes were regarded as a systematic error due to the
detector smearing of the event kinematics. In particular, in order to get rid of the fluctuations
observed in the lower halves of Figures 6.5 – 6.6, which are ofstatistical nature, the average
values of the differences for each kinematic variable were considered.
The second one arises from the choice of the Monte Carlo generator for the extraction of
the spin-independent cross section to be used in the foldingprocedure. As discussed in Sec-
tion 6.6.1, the spin-independent cross section was extracted with three different MC generators:
the two versions (GMCT1 and GMCT2) of GMCTRANS and PYTHIA. For the final results,
the PYTHIA generator was chosen since, unlike GMCTRANS, it also generates charged kaons
tracks. Since, however, systematic deviations were observed between the moments folded with
the three different Born cross sections (cf. Figure 6.16), a systematic error was assigned accord-
ingly.
The third contribution accounts for the uncertainty that affects the correction for the acceptance
effects (cf. Section 6.8). This uncertainty arises from theerrors of the original fit parameters.
These errors, which are of statistical nature, are propagated, through the folding procedure, to
get the errors of the projected (in4π and inside the acceptance) Collins and Sivers amplitudes.
These final errors then reflect the precision of the correction for the acceptance and are thus re-
garded as systematic errors. In particular, this uncertainty was found to represent the dominant
contribution to the total systematic error.
To summarize, the three sources of systematic errors related to the acceptance studies reported
in this chapter are:
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- Contribution due to the detector smearing

- Contribution due to the choice of the Monte Carlo generator for the extraction of the
spin-independent cross section

- Contribution due to the correction for the acceptance effects

As an example, Figures 6.20 – 6.21 show the unweighted (upperhalves) and thePh⊥-weighted
(lower halves) Collins and Sivers moments for the charged pions. In each plot the amplitudes
extracted with the standard extraction method3, not corrected for the acceptance effects, are
compared with those extracted with the 48-parameters PDF (cf. eqns. (6.32-6.33)) and folded
with the PYTHIA spin-independent cross section in4π and within the HERMES acceptance.
The yellow bands represent the systematic errors obtained adding in quadrature the three con-
tributions listed above.
The total systematic errors, to be associated to the Collins and Sivers amplitudes corrected for
the acceptance effects (see Chapter 7), was then obtained adding in quadrature all the contribu-
tions, included those reported in Section 5.5.8.

3For consistency, the 3-parameters ML fit for unweighted and 4-parameters LS fit forPh⊥-weighted amplitudes were used.
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Figure 6.20: Unweighted (upper half) andPh⊥-weighted (lower half) Collins (upper panels) and Sivers
(lower panels) amplitudes for positive pions. The full squares represent the unweighted (Ph⊥-weighted)
amplitudes extracted with a 3-par. (4-par.) fit (i.e. including also thesin(φs) modulation) based on the
standard method outlined in Chapter 5. Open triangles and open squares represent the amplitudes ex-
tracted with the 48-parameters fit and folded with the spin-independent cross section in4π and within the
acceptance, respectively. The yellow bands represent the systematic errors as estimated in Section 6.9.
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Figure 6.21: Unweighted (upper half) andPh⊥-weighted (lower half) Collins (upper panels) and Sivers
(lower panels) amplitudes for negative pions. The full squares represent the unweighted (Ph⊥-weighted)
amplitudes extracted with a 3-par. (4-par.) fit (i.e. including also thesin(φs) modulation) based on the
standard method outlined in Chapter 5. Open triangles and open squares represent the amplitudes ex-
tracted with the 48-parameters fit and folded with the spin-independent cross section in4π and within the
acceptance, respectively. The yellow bands represent the systematic errors as estimated in Section 6.9.
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Chapter 7

Results and interpretation

As discussed in Chapter 5, the Collins and Sivers moments were extracted simultaneously
through a 6-parameters maximum likelihood fit based on the PDF (5.26). The results are shown
in Figures 5.22–5.23. Similarly, thePh⊥-weighted Collins and Sivers amplitudes (not shown)
were extracted with a 7-parameters fit based on the least square method1. This fit includes the
same six azimuthal moments used for the ML fit plus a constant term. The correlations between
the extracted Collins and the Sivers amplitudes vary over thedifferent kinematic bins and are in
the order of−0.5.
In Chapter 6, an innovative method for the estimation of the effects due to the limited accep-
tance of the HERMES spectrometer was introduced. This methodallowed to fold the extracted
Collins and Sivers moments with the spin-independent cross section to get their projections in
4π and within the acceptance itself. The acceptance effects were then estimated as the differ-
ence between the amplitudes projected in4π and those projected within the acceptance (see
Figures 6.20 – 6.21).
The results of the studies presented in Chapters 5 and 6 were combined to get the final results
presented here. As discussed in Section 6.8, the final results for the Collins and Sivers moments
were obtained by correcting for the acceptance effects the amplitudes obtained with the stan-
dard extraction method. These corrected amplitudes then represent the results that one would
obtain with an ideal detector with a full coverage of the solid angle.

7.1 The Collins moments

The unweighted andPh⊥-weighted Collins moments for pions and charged kaons, corrected
for acceptance, are shown as a function ofx, z, Ph⊥, y andQ2 in Figures 7.1 and 7.2, re-
spectively. The yellow bands, obtained by adding in quadrature all the contributions discussed
in Sections 5.5.8 and 6.9, represent the total systematic errors. The amplitudes are affected
by an overall7.9% scale uncertainty, associated to the measure of the target polarization (cf.
Section 5.5.8).

1As discussed in Section 6.4.1, no implementation exists at the moment for thePh⊥-weighted asymmetries in the maximum
likelihood fit.
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Figure 7.1: Unweighted Collins amplitudes extracted from the full HERMES transverse data set with
the standard 6-parameters ML fit. The amplitudes are corrected for the acceptance effects. The yellow
bands represent the total systematic errors.
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Figure 7.2:Ph⊥-weighted Collins amplitudes extracted from the full HERMES transverse dataset with
the standard 6-parameters ML fit. The amplitudes are corrected for the acceptance effects. The yellow
bands represent the total systematic errors.
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The results show a significantly positive amplitude forπ+ and a significantly negative amplitude
for π−. Because of theu quark dominance in DIS, due to the quark charge factore2

q weight-
ing the contribution of the different quark flavours in the cross section, bothπ+ andπ− are
likely generated in the fragmentation anu quark. Thus, the Collins moments of bothπ+ and
π− receive a dominant contribution from theu quarks of the proton. As a consequence, the
different sign between the Collins amplitudes forπ+ andπ− can only arise from the different
fragmentation functions involved. While the fragmentationof anu quark into aπ+ is favoured,
since theπ+ contains a valenceu quark, the fragmentation of anu quark into aπ− is unfavored
(cf. eqns. (3.52-3.53)). The Collins amplitudes forπ− thus suggests that the unfavored Collins
function is of roughly the same magnitude of the favoured one, but with opposite sign:

H⊥,u→π−

1,unfav (z, z2k2
T ) ≈ −H⊥,u→π+

1,fav (z, z2k2
T ) . (7.1)

Since no gluon transversity can exist in a proton (cf. Section 3.2), the transversity distribution
of the sea quarks, which are produced in pairs in the gluon splitting, is expected to be small. The
increase of the Collins amplitudes with increasingx, observed for bothπ+ andπ−, can then be
interpreted as the evidence that the transversity is a pure valence object (cf. Section 3.2), and
thus dominates the highx region. Since noQ2 dependence is expected for leading-twist cross
section terms, the observedQ2 dependence of the Collins moments for the charged pions can
only be attributed to the strong correlation betweenx andQ2 (cf. Figure 5.5).
The Collins amplitude forπ0, which is consistent with zero, is in agreement with the expecta-
tions based on the Isospin Relation (cf. Section 5.6), which predicts, for theπ0, an amplitude
intermediate between those ofπ+ andπ−.
Due to theu quark dominance, one would naı̈vely expect similar Collins amplitudes for pions
and kaons. However, the amplitudes forK+ are systematically smaller that those forπ+ in the
full kinematic range, even though they are compatible within the statistical uncertainty2. This
difference might be due to the fact that, like in the case of the spin-independent fragmentation
functions, the Collins function may differ for fragmentation of au quark into aπ+ or into aK+.
On the other hand, the Collins amplitudes forπ− andK− are not expected to be similar, not
only because of a different Collins fragmentation function,but also because theK− is a purely
sea object, i.e. it contains only sea-quark flavours of the proton (̄u, s).
A phenomenological explanation of the Collins effect based on the string-fragmentation model
(cf. Section 3.7) is presented in [Art93] and illustrated inFigure 7.3. Chart (a) shows the
absorption of the virtual photon by the struck quark which reverses the quark polarization com-
ponent in the lepton scattering plane. When the string that connects the struck quark and the
nucleon remnant breaks, chart (b), a quark-antiquark pair is produced with vacuum quantum
numbersJP = 0+. Since the positive parity of this state requires aligned spins of quarks and
antiquarks, an orbital angular momentum ofL = 1 has to compensate the spins. This angular
momentum then creates a transverse momentum of the producedpseudo-scalar meson. As a
result, the outgoing meson is deflected with respect to the virtual-photon direction, indicated by
an open arrow in chart (c).

2This can be inferred from Figures 7.1, paying attention to the fact that a different vertical scale is used for pions and kaons.
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Figure 7.3: Collins effect in the string fragmentation model [Art93] for a transversely polarized nucleon
with its spin orientation in (left panels) and perpendicular (right panel) to thelepton scattering plane
(source [Els06]).

Let us now assume a positive transversity distribution function for theu quarks in the proton
(δu > 0). In this hypothesis, the spin of theu quarks are predominantly orientated parallel to the
(transverse) spin of the proton. This assumption is in agreement with all models for transversity,
e.g. with the chiral quark soliton model [Wak01, Efr05] and the light-cone quark-spectator-
diquark model [Ma02], and supported by lattice QCD calculations of the tensor charge [Aok97]
and by the recent extraction of the transversity reported in[Ans07]. If, as depicted in chart (a),
the azimuthal angle of the target spin with respect to the scattering plane is zero (φS = 0), the
spin of theu quark is reversed by the absorption of the virtual photon. The creation of add̄
pair from the vacuum then yields aπ+ meson which is deflected upwards with respect to the
plane of the page, i.e. atφ = π/2 (chart (c)). If, on the other hand, the target spin is oriented
perpendicularly to the scattering plane, as in chart (d), thenφS = π/2 and the virtual photon
does not flip the spin of theu quark. The orbital angular momentum then deflects the produced
π+ meson towards the left-hand side of the target spin, resulting inφ = 0 (chart (e)). For both
target spin orientations one hassin(φ + φS) = sin(π/2) > 0, which is in fair agreement with
the sign of the measured Collins moments for positive pions.
Relation (7.1), which allows to interpret the negative Collins amplitudes observed forπ−, is in
fair agreement with the extractions of the Collins function reported in [Vog05, Efr06, Bac07b].
These extractions are based on the Collins moments measured at the HERMES and COMPASS
experiments, and on model calculations for the trasversitydistribution function3. This interpre-
tation is also in agreement with the recent results reportedin [Ans07]. In this work, the favoured
and unfavored Collins fragmentation functions were extracted based on a global analysis of the
world data. In particular, the Collins moments measured at HERMES, with a transversely

3In particular [Bac07b] reports the first estimates of the Collins function for kaons.
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polarized hydrogen target, and at COMPASS, with a transversely polarized deuterium target
[Age07], were fitted together with the BELLE data. BELLE measured the combined effects of
two Collins mechanisms, obtained by looking at azimuthal correlations between hadrons in op-
posite jets ine+e− → h1h2X unpolarized processes [Sei06]. As a result, a positive (negative)
favoured (unfavored) Collins function was extracted. The same global analysis allowed the first
extraction of the transversity distribution foru andd quarks [Ans07]. In particular a positive
(negative) transversity distribution foru (d) quarks was obtained. The magnitude ofδu(x) was
found to be larger than that ofδd(x), and bothδu(x) andδd(x) were found to be significantly
smaller than the corresponding Soffer bound (cf. eqn. (3.34)). This result represents a milestone
in hadron physics as it constitutes the first glimpse on the last missing piece of the (transverse
momentum independent) nucleon structure at leading-twist(cf. Section 3.1)).

7.2 The Sivers moments

As displayed in eqn. (3.87), the Sivers moments can be expressed in terms of the convolution
of the Sivers function times the spin-independent fragmentation function. The importance of
measuring the Sivers moments is twofold: from one side, being the spin-independent fragmen-
tation function well know, it allows to extract the Sivers function (see Section 7.3), which is a
leading-twist unmeasured distribution function; from theother side it provides indirect infor-
mation on the quark orbital angular momentum and has been linked to the spatial distribution
of the partons inside the nucleon [Bro02, Bur02].
The unweighted andPh⊥-weighted Sivers moments for pions and charged kaons, corrected for
acceptance, are shown as a function ofx, z, Ph⊥, y andQ2 in Figures 7.4 and 7.5, respec-
tively. The yellow bands, obtained by adding in quadrature all the contributions discussed in
Sections 5.5.8 and 6.9, represent the total systematic errors. Similarly to the Collins case, the
amplitudes are affected by an overall7.9% scale uncertainty, associated to the measure of the
target polarization (cf. Section 5.5.8).
A significantly positive Sivers amplitude is observed for positive pions and kaons. This im-
portant result proves the existence of a non-zero Sivers function and, indirectly, of a non-zero
orbital angular momentum of the quarks in the nucleon.
Similarly to the case of the Collins amplitudes, theu quark dominance in DIS would lead to
the näıve expectation of similar Sivers amplitudes for pions and kaons. In contrast, a Sivers
amplitude for the positive kaons which is roughly twice as large as that for the positive pions is
observed. The difference in the spin-independent fragmentation functionsDu→π+

1 andDu→K+

1

can not account for such a large discrepancy. Therefore, since the valence content of these two
mesons differs only in the anti-quark involved, this observation suggests a significant Sivers
function for the proton sea quarks.
An amplitude consistent with zero is observed for the negative pions4 and kaons, while, as pre-
dicted by the Isospin Relation (cf. Section 5.6), an intermediate amplitude between those ofπ+

andπ− is observed for theπ0.

4An interpretation of the zero-amplitude for theπ− in discussed in Section 7.3.
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Figure 7.4: Unweighted Sivers amplitudes extracted from the full HERMES transverse data set with the
standard 6-parameters ML fit. The amplitudes are corrected for the acceptance effects. The yellow bands
represent the systematic errors.
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Figure 7.5:Ph⊥-weighted Collins amplitudes extracted from the full HERMES transverse dataset with
the standard 6-parameters ML fit. The amplitudes are corrected for the acceptance effects. The yellow
bands represent the systematic errors.
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An intuitive phenomenological interpretation of the relation between the orbital angular mo-
mentum of the quarks and the Sivers effect is based on a description of the parton distribution
functions in terms of the impact parameter~bT ≡ (bx, by) [Bur02]. In the impact parameter
space, the spin-independent distribution function can be written as:

q(x) =

∫
d2~bT q(x,~bT ) , (7.2)

where the reference point for the impact parameter is given by the sum over the transverse
positions~rT,i of all quarks, antiquarks and gluons of the nucleon, weighted by their momentum
fractionsxi:

~RT =
∑

q,q̄,g

xi ~rT,i . (7.3)

The impact parameter spin-independent distribution function q(x,~bT ) is axial symmetric for
unpolarized or longitudinally (i.e. along thez-direction) polarized nucleons. In case of trans-
versely polarized nucleon, the distribution of unpolarized quarks is distorted in the direction
perpendicular to the spin and the momentum of the nucleon. This distortion vanishes when
there is no quark orbital angular momentum parallel to the nucleon spin. Figure 7.6 shows a
model calculation of the distribution of unpolarizedu andd quarks with momentum fraction
x = 0.3 in a transversely polarized nucleon. The nucleon spin points to the right (x-direction)
and the virtual photon points into the plane of the page (negative z-axis).

Figure 7.6: Impact parameter distribution function of unpolarizedu andd quarks in a transversely polar-
ized nucleon forx = 0.3. The virtual photon points into the plane of the page (negativez-axis).

The cause of the distortion can be understood, with semi-classical arguments, as the result of
the superposition of translational and orbital motion of the quarks within the nucleon. Indeed,
when viewed in the Breit frame (see Figure 2.6), quarks with orbital angular momentum in the
transverse direction (i.e. parallel to the nucleon spin) move towards the virtual photon on one
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side of the nucleon and away from it on the other side. Therefore, the quarks on one side of
the nucleon are probed by the virtual photon at larger momentum fractions, while those on the
other side are probed at smaller momentum fractions. As a consequence, the spin-independent
distribution function is shifted towards higherx values in one side of the nucleon, and towards
smallerx values in the other side.
Since, in the valence region, the spin-independent distribution function decreases rapidly with
increasing values ofx, the decrease of the momentum on one side of the nucleon spin results
in a larger number density of quarks at this side and in a corresponding smaller number density
in the opposite side. This mechanism thus results in a distortion of the distribution function, as
shown in Figure 7.6.
As depicted in Figure 7.7, according to this semi-classicalpicture,u quarks with positive orbital
angular momentum have a higher probability to absorb the incoming virtual photon in the top
hemisphere of a transversely polarized nucleon (i.e. the left side hemisphere with respect to the
virtual photon direction). After the absorption, attractive final state interactions (FSI), arising
from the fact that the struck quark and the nucleon remnant constitute a color antisymmetric
state, bend the quark towards the center of the nucleon.

Figure 7.7: Semi-classical view of the scattering off au quark with the production of a positive pion.
Attractive final state interactions (FSI) bend the struck quark towards thecenter of the nucleon. (Sorce
[Els06]).

The outgoingπ+, generated in the fragmentation of the struck quark, is therefore observed
on the right-hand side of the nucleon spin direction, i.e.φ = π. This is consistent with the
observed positive Sivers amplitude forπ+ in the HERMES data:sin(φ−φS) = sin(π−π/2) =

sin(π/2) > 0.
In case ofπ− production, due to theu quark dominance, bothu andd quarks have to be taken
into account. Thus, the results can not be interpreted exclusively in terms of scattering off ad
quark alone, which would result in a negative Sivers moment.Our measured amplitudes, which
are consistent with zero, can then be explained as the resultof a cancelation of the contributions
from the two quark flavours in combination with the differentvalues of the favoured and the
unfavored spin-independent fragmentation functions.
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7.3 The extraction of the Sivers Polarization

The formalism of thepurities, introduced in Section 3.7.5, allows to express explicitlythe Sivers
moments in terms of the so-calledSivers polarization(cf. eqn. (3.96)):

S̃(x) ≡ f
⊥(1/2)q
1T (x)

q(x)
, (7.4)

which represents the ratio between the Sivers function (unmeasured) and the well known spin-
independent quark distribution function.
The purities used in the present analysis are based on the parameterizations of the spin-independent
distribution functionq(x,Q2) implemented in the CTEQ4LQ (lowQ2) data base [Lai97]. Tech-
nically, the LO parameterizations are obtained by fits of theexpression

F2(x,Q
2) =

∑

q

x e2
q q(x,Q

2) (7.5)

to world data onF2(x,Q
2). Owing to eqn. (2.46), the parton distributionsq(x,Q2) can be

related to the structure functionF1(x,Q
2):

F1(x,Q
2) =

1 + γ2

1 +R(x,Q2)

1

2

∑

q

e2q q(x,Q
2) . (7.6)

This allows to rewrite eqn. (3.96) in the compact form:

〈 sin(φ− φS)〉hUT ≡ −CT (z)Ci

∑

q,q̄

Ph
q (x, z)

f
⊥(1/2)q
1T (x)

q(x)
, (7.7)

whereCi = (1 +R(x,Q2))/(1 + γ2). The kinematic factor

CT (z) =
1√

1 + 〈K2
T 〉/(z2〈p2

T 〉)
, (7.8)

which originates from the Gaussian ansatz, introduces a biguncertainty since neither thez-
dependence nor the quark flavour dependence of〈K2

T 〉 are known. As a consequence this factor
is assumed to be identical for the different hadron types. Using the approximate relation

〈P 2
h⊥〉 = 〈K2

T 〉 + z2〈p2
T 〉 (7.9)

which can be found (with a different notation) in [Ans05b],CT (z) can be rewritten in the form:

CT (z) ≈ z
√

〈p2
T 〉/〈P 2

h⊥〉 . (7.10)

Therefore, since〈p2
T 〉 and〈P 2

h⊥〉 are of the same order of magnitude, it follows thatCT is of
the order ofz. This has to be taken into account in the interpretation of the Sivers polarization
extracted from unweighted Sivers moments.
Eqn. (7.7) can be expressed as a matrix equation form hadron types andn quark flavours:
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~A(xi) = −Ci · P(xi) ~Q(xi) . (7.11)

Here ~A(xi) contains the Sivers moments extracted for the various hadron types,P(xi) denotes
the so-called purity matrix, and~Q(xi) contains the Sivers polarizations for the different quark
flavours:

~A(xi) =




〈sin(φ− φS)〉h1
UT (xi)

...
〈sin(φ− φS)〉hm

UT (xi)


 , ~Q(xi) =




C̃T
f
⊥(1/2)q1
1T

q1
(xi)

...

C̃T
f
⊥(1/2)qn
1T

qn
(xi)




,

(7.12)

P(xi) =




Ph1
q1

(xi) . . . Ph1
qn

(xi)
...

. . .
...

Phm
q1

(xi) . . . Phm
qn

(xi)


 . (7.13)

Since the purities are evaluated in bins ofx, they are integrated overz. As a consequence the
symbolC̃T was used in eqn. (7.12) to denote theCT kinematic factor averaged overz.
The purities used in the present analysis were extracted through a Monte Carlo generator
called LEPTO. Similarly to PYTHIA, LEPTO generates events in 4π according to the spin-
independent (Born) cross section. LEPTO, however, has the additional advantage that the
flavours of the struck quarks are tagged and stored for each event. This allowed to separate
the generated events according to the struck quark flavourq and to the produced hadron typeh,
thus enabling the construction of the purity matrix elementsPhk

qj
. Figure 7.8 shows the purities

for the six quark flavoursu, d, s, ū, d̄, s̄ and for the five hadron typesπ+, π−, π0, K+ andK−

as a function ofx.
The Sivers polarization (7.4), multiplied by the kinematicfactorsC̃T (vector ~Q(xi)) was ob-
tained forn ≤ m by minimizing the figure-of-merit function:

χ2 = ( ~A+ Ci · P ~Q)T
Γ
−1
A ( ~A+ Ci · P ~Q) , (7.14)

whereΓA denotes the covariance matrix of the set of asymmetry moments. In the present ex-
traction of the Sivers polarization the correlations between the Sivers moments obtained for the
different hadron types were not accounted for. The covariance matrix used has therefore vanish-
ing off-diagonal elements and diagonal elements given by the squared statistical uncertainties
of the Sivers moments.
Since the Sivers moments are measured for only five hadron types, an independent extraction
of the Sivers polarization for the six quark flavoursu, d, s, ū, d̄, s̄ is not possible. Therefore,
a fully symmetric Sivers polarization was initially imposed for the sea quarks:

f
⊥(1/2)qsea

1T

qsea
≡ f

⊥(1/2)us

1T

us

=
f
⊥(1/2)ū
1T

ū
=
f
⊥(1/2)ds

1T

ds

=
f
⊥(1/2)d̄
1T

d̄
=
f
⊥(1/2)s
1T

s
=
f
⊥(1/2)s̄
1T

s̄
. (7.15)
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s ands̄ quarks are scaled for better visibility.
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Hereuv anddv denote the valenceu andd quarks andus andds the seau andd quarks.
Two different combinations of quarks were considered: theFlavour Decomposition(FD), in
which the Sivers polarizations are extracted for sets of quarks and antiquarks of the same flavour

C̃T
f
⊥(1/2)u
1T

u

∣∣∣∣
FD

= C̃T
f
⊥(1/2)u
1T + f

⊥(1/2)ū
1T

u+ ū
,

C̃T
f
⊥(1/2)d
1T

d

∣∣∣∣
FD

= C̃T
f
⊥(1/2)d
1T + f

⊥(1/2)d̄
1T

d+ d̄
,

C̃T
f
⊥(1/2)s
1T

s

∣∣∣∣
FD

= C̃T
f
⊥(1/2)s
1T + f

⊥(1/2)s̄
1T

s+ s̄
≡ C̃T

f
⊥(1/2)qsea

1T

qsea
, (7.16)

and theValence Decomposition(V D), in which the Sivers polarizations are separated into con-
tributions from valence and from sea quarks:

C̃T
f
⊥(1/2)u
1T

u

∣∣∣∣
V D

= C̃T
f
⊥(1/2)u
1T − f

⊥(1/2)ū
1T

u− ū
,

C̃T
f
⊥(1/2)d
1T

d

∣∣∣∣
V D

= C̃T
f
⊥(1/2)d
1T − f

⊥(1/2)d̄
1T

d− d̄
,

C̃T
f
⊥(1/2)qsea

1T

qsea

∣∣∣∣
V D

≡ C̃T
f
⊥(1/2)qsea

1T

qsea
. (7.17)

The formalism above was derived for the extraction of the Sivers polarization from the un-
weighted Sivers moments. The same formalism holds for the extraction from thePh⊥-weighted
Sivers moments. In this case, however, one gets rid of the coefficient C̃T , which introduces a
big uncertainty due to our poor knowledge of the quark transverse momentum distribution. The
components of~Q(xi) thus represent, in this case, the bare Sivers polarizations, with no assump-
tions on the quark transverse momentum. In addition, the1-moment instead of the1/2-moment
of the Sivers function is involved (cf. eqns. (3.95))
The elements of the two purity matrices to be used for the two quark decompositions are ob-
tained from linear combinations of the standard purity matrix elements. For theflavour decom-
positionone obtains:

P̃ FD
u = Pu ·

u+ ū

u
, (7.18)

P̃ FD
d = Pd ·

d+ d̄

d
, (7.19)

P̃ FD
sea = −Pu ·

ū

u
+ Pū − Pd ·

d̄

d
+ Pd̄ + Ps + Ps̄ , (7.20)
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while for thevalence decompositionone obtains:

P̃ V D
u = Pu ·

u− ū

u
, (7.21)

P̃ V D
d = Pd ·

d− d̄

d
, (7.22)

P̃ V D
sea = Pu ·

ū

u
+ Pū + Pd ·

d̄

d
+ Pd̄ + Ps + Ps̄ . (7.23)

The derivation of the combinations above can be found in [Bec00].
The minimization of the figure-of-merit function (7.14), performed with MINUIT, was affected
by strong correlations betweenu, d andsea quarks, especially for the flavour decomposition.
As a consequence, the additional constraint of a null Siverspolarization for the sea quarks was
adopted:

f
⊥(1/2)qsea

1T

qsea
= 0 . (7.24)

Figure 7.9 shows the Sivers polarizations for the flavour andthe valence decomposition ex-
tracted from the unweighted Sivers moments corrected for the acceptance effects. The Sivers
polarization extracted from thePh⊥-weighted Sivers moments is shown in Figure 7.10. At the
present stage, no statistical correlations nor systematicuncertainties are taken into account in
the extraction. The parametrization of the Sivers functionused in [Ans05] to fit the Sivers mo-
ments extracted from the HERMES data collected during the 2002-2004 period [Dief05] are
also shown for comparison in Figure 7.10 for both the valence(blue line) and the flavour (red
line) decompositions. A similar comparison is not possiblefor the Sivers polarizations extracted
from the unweighted moments due to the unknown contributionof theC̃T factor.
A negative (positive) Sivers polarization is observed for the u (d) quarks for both the quark
decompositions although, similarly to the case of the helicity distribution function [Dur98], a
larger sensitivity is obtained for theflavour decomposition.
The average magnitude of the Sivers polarization for thed quarks is, in absolute value, roughly
twice as big as that for theu quarks. Since, however, the spin-independent distribution function,
appearing in the denominator of the Sivers polarization, isfor u quarks about twice as large as
for d quarks, the Sivers functions foru andd quarks are of similar size:

f⊥,u
1T (x) ≈ −f⊥,d

1T (x) . (7.25)

The result above is in fair agreement with previous extractions based on earlier HERMES data
and on the Gaussian ansatz (cf. Section 3.7.5) [Vog05, Ans05, Col06]. It was also proven, in a
model independent way, to be valid in the large-Nc limit of QCD [Efr06, Pob03].
According to the semi-classical picture described in Section 7.2, a negative (positive) Sivers
function would result in a net motion of the struck quark to the right (left) with respect to the
virtual photon direction if the nucleon spin is oriented perpendicular to the scattering plane
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Figure 7.9: Sivers polarizations for flavour and valence decomposition extracted from the unweighted
Sivers moments (corrected for the acceptance) under the assumption of anull sea polarization.
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Figure 7.10: Sivers polarizations for flavour and valence decompositionextracted from thePh⊥-
weighted Sivers moments (corrected for the acceptance) under the assumption of a null sea polarization.
Also shown are the theoretical curves obtained form the fit reported in [Ans05].
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(φS = π/2). This scenario would be compatible with a positive (negative) orbital angular
momentum for theu (d).
The relation (7.25) allows to interpret the smallness of theSivers amplitudes forπ− observed
(cf. Figure 7.4). As discussed in [Col06], combining eqn. (7.25) with the expression of the
Sivers moment (3.91) yields:

〈sin(φ− φS)〉π−UT ∝
(

4

9
D1,unfav −

1

9
D1,fav

)
, (7.26)

whereD1,fav andD1,unfav denote the spin-independentfavouredandunfavouredfragmentation
functions. AlthoughD1,unfav(z) < D1,fav(z) at anyz, due to the weighting by the square of
the quark electric charges, the effects of smallerunfavouredand largerfavouredfragmentation
functions become comparable and tend to cancel each other. As a result the Sivers moments for
π− appear consistent with zero.
Results form the COMPASS experiment [Age07], which show a Sivers effect from deuterium
target compatible with zero for both positively and negatively charged hadrons, can also be
interpreted in terms of relation (7.25). In the COMPASS experiment a solid transversely po-
larized6LiD target was used. Neglecting nuclear binding effects and using isospin symmetry
arguments, one expects for a deuterium target:

f
u/D
1T ≈ f

u/p
1T + f

u/n
1T ≈ fu

1T + fd
1T , (7.27)

and analogously ford and for the antiquarks. Therefore, the deuterium target is sensitive to the
flavour combination which is suppressed by relation (7.25),and this explains the COMPASS
results. The new results from COMPASS, obtained with a transversely polarized proton target,
are expected to exhibit non zero Sivers amplitudes. The muchhigher (with respect to HERMES)
averageQ2 would also help in confirming the leading-twist nature of theSivers (and Collins)
asymmetries.
In order to check the Sivers polarization for the sea quarks,under the assumption (7.15) of
a fully symmetric sea, the constraint (7.24) was relaxed andthe condition (7.25), which is
supported by the COMPASS results and by predictions based on the large-Nc limit of QCD
[Efr06, Pob03], was imposed. The results for unweighted andPh⊥-weighted Sivers moments
are shown in Figures 7.11 and 7.12, respectively. A significantly positive sea quarks polarization
is observed in both cases. This result is compatible with theexpectation of a large Sivers
function for the proton sea quarks, as suggested by the significantly larger Sivers moments
extracted forK+ than forπ+ (cf. Section 7.2).
A particularly interesting feature of the Sivers function concerns its universality property. This
property ensures that one deals with the same parton distribution in SIDIS and in Drell-Yan
process (DY) (cf. Section 3.6). In the case of the Sivers function (and other T-odd distributions)
the universality property takes a different form. Indeed, on the basis of time-reversal arguments,
it was predicted [Col02] thatf⊥1T have opposite sign in SIDIS and DY:

f⊥1T (x, p2
T )
∣∣
SIDIS

= −f⊥1T (x, p2
T )
∣∣
DY

. (7.28)
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Figure 7.11: Sivers polarizations for flavour and valence decompositionextracted from the unweighted
Sivers moments (corrected for the acceptance) under the assumptions (7.15) and (7.25).
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Figure 7.12: Sivers polarizations for flavour and valence decompositionextracted from thePh⊥-
weighted Sivers moments (corrected for the acceptance) under the assumptions (7.15) and (7.25). Also
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The experimental check of relation (7.28) would provide a crucial test of the current under-
standing of the Sivers effect within the QCD framework and, more in general, of the single
spin asymmetries. It would also represent an important testfor the factorization approach to the
description of the non-collinear processes, i.e. sensitive to the quark transverse momentum.
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Chapter 8

Conclusions

The data collected by the HERMES experiment during the 2002-2005 period, with a trans-
versely polarized hydrogen target, was analyzed in this work to extract the so-called Collins
and Sivers moments. The extraction of these moment is of great importance since they pro-
vide information on barely known distribution and fragmentation functions. In particular, the
Collins moments can be expressed as the convolution of the transversity distribution function
times the Collins fragmentation function. The transversityis a leading-twist chiral-odd func-
tion describing the probability to find, in a transversely polarized nucleon, quarks with their
spin oriented parallel or antiparallel to the spin of the nucleon. It is one of the three fundamen-
tal parton distribution functions and, together with the momentum (spin-independent) and the
helicity distribution functions, provides a complete description of the nucleon structure at lead-
ing twist, if the transverse quark momentum is integrated over. The Collins function represents
the correlation between the transverse spin of the quarks and the transverse momentum of the
produced hadron. It can thus be viewed as a quark spin analyzer. This correlation produces left
right (azimuthal) asymmetries in the direction of the outgoing hadrons, thus providing a clear
experimental observable in semi-inclusive DIS. Transversity and Collins function, combined
together in the so-called Collins moments, are indeed accessible at HERMES in Single (trans-
verse target) Spin Asymmetries. These two quantities were recently extracted for the first time
in a global analysis of the HERMES, COMPASS and BELLE data [Ans07].
If one does not integrate over the transverse quark momentum, a variety of new (transverse mo-
mentum dependent) distribution functions arise, which contain a wide spectrum of information
on the nucleon structure. These functions, which have recently experienced a rapidly increasing
interest form both the theoretical and the experimental communities, represent a new frontier
in hadron physics. Among these functions, the Sivers function, which describes the correla-
tion between the transverse momentum of the quarks and the transverse spin of the nucleon, is
of particular importance since its existence requires a non-zero orbital angular momentum of
the quarks. This function appears in the semi-inclusive DIScross section in combination with
the known spin independent fragmentation function, generating the so-called Sivers moments.
Similarly to the Collins moments, the Sivers moments can be accessed at HERMES in Single
(transverse-target) Spin Asymmetries.
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In the present work the HERMES data was analyzed and selected according to kinematic
and geometric cuts. Particular attention was devoted to theparticle identification in order to al-
low for a correct separation between leptons and hadrons andbetween the various hadron types.
The selected semi-inclusive DIS events were used to extractthe ’unweighted’ Collins and Sivers
moments with a 6-parameters maximum likelihood fit. Similarly, the so-called ’Ph⊥-weighted’
Collins and Sivers moments were extracted in a 7-parameters least-square fit. Differently from
the unweighted moments, thePh⊥-weighted moments allow, in principle, to extract the relevant
distribution functions (transversity and Sivers function, in this case) without any assumption
(model) on the quark transverse momentum distribution. This represents a great advantage
with respect to the unweighted moments. However, Monte Carlostudies showed that thePh⊥-
weighted moments are heavily affected by acceptance effects introduced by the detector. For
this reason thePh⊥-weighted moments could not be used in previous analyses to extract the
Sivers function.
In the present work, an innovative technique was adopted to correct for the acceptance effects.
As a result the unweighted andPh⊥-weighted Collins and Sivers in4π were extracted for the
first time. Significant positive (negative) Collins moments were found forπ+ (π−), thus indi-
cating that both the transversity and the Collins function are non-zero. Similarly, significantly
positive Sivers amplitudes were observed for both positivepions and kaons. This result clearly
indicates that the Sivers function is non-zero and, indirectly, that also the quark orbital angular
momentum, which is still an unmeasured quantity, is non-zero. In particular, the amplitude for
theK+ was found to be twice as large as that for theπ+, thus suggesting a significant Sivers
function for the sea quarks.
The extraction of thePh⊥-weighted Sivers moments corrected for acceptance allowed, for the
first time, an extraction of the Sivers function free from assumptions on the quark transverse
momentum distribution. Under the assumption of a null Siverpolarization for the sea quarks, a
negative (positive) Sivers polarization was found foru (d) quarks. This result is in agreement
with the assumption of a Sivers function of opposite sign foru andd quarks, which is supported
by the COMPASS null results on the Sivers moments and by predictions based on the large-Nc

limit of QCD [Efr06, Pob03]. When this condition is imposed, together with a symmetric sea
Sivers polarization, a significantly positive sea Sivers polarization is found. This result is com-
patible with the expectation of a large Sivers function for the proton sea quarks, as suggested
by the significantly larger Sivers moments extracted forK+ than forπ+.
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Appendix A

QCD: general concepts

Quantum Chromo Dynamics (QCD) is the gauge theory of the stronginteractions, i.e. those
occurring among objects which carry color charge, such as the quarks.
The Lagrangian of QCD

LQCD =
∑

f

ψf (x)(i /D −mf )ψf (x) −
1

4
Fα

µν(x)F
µν
α (x) (A.1)

is invariant under theSU(3)C local transformations

ψf (x) → Uψf (x) ≡ eiθα(x)λα
2 ψf (x) α = 1, ..., 8 , (A.2)

whereψ(x)f are the 4-component Dirac spinors associated with each quark field of flavorf1

and massmf , λα
2

are the 8 generators of the transformation, given in terms ofthe so-called Gell-
Mann matricesλα, and θα(x) are the 8 parameters of the transformation, which are functions
of the space-time coordinatex.
SU(3)C is a group of3 × 3 unitary matrices with unit determinant. The subscript C refers to
the Color charge and 3 reflects the dimensionality of the space: 3 possible color states exist for
the quarks (red (r), blue (b) and green (g)) and, correspondingly, 3 anti-color states exist for the
antiquarks (anti-red (r), anti-blue (b) and anti-green (g)).
According to the group properties ofSU(3)C , the3 × 3 combinations of colors and anti-colors
can be combined into two multipletes of states: a color octet, made by 8 different combinations
of colors and anti-colors, such as:

rg, rb, gb, gr, br, bg,

√
1

2
(rr − gg),

√
1

3
(rr + gg − 2bb) (A.3)

and a color singlet:

√
1

3
(rr + gg + bb) . (A.4)

1f = u, d, s, c, b, t.
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Being the color singlet totally symmetric under exchange of colors, it owes a null net color
charge. As a consequence it cannot be exchanged between colored particles and thus cannot
exist as a physical mediator of the strong interaction. On the contrary, the states of the octet are
physical and correspond to the 8 gauge boson fieldsAα

µ(x) of the theory. These fields, called
gluons, act as the mediators of the strong interactions among quarks.
Similarly to the QED, the covariant derivatives

D = ∂µ − igs
λα

2
Aα

µ(x) , (A.5)

which have been introduced in eqn. (A.1) in order to ensure the local gauge invariance of the
theory, provide the gauge interactions between quarks and gluons through the termψ(i /D)ψ

of the Lagrangian. In addition, since gluons carry color (and anti-color) they can interact not
only with the quarks but also among themselves, as depicted in Figure A.1. This fact, which
represents a major difference with respect to QED, where thephotons cannot interact among
themselves since they do not carry electric charge, is a direct consequence of the fact that
SU(3)C is a non-abelian group, i.e. such that the product of two transformationseiθα(x)λα

2 and

eiθβ(x)
λβ
2 depends in general on the order in which these transformations are operated. As a

consequence the field strength tensor

Fα
µν(x) = ∂µA

α
ν (x) − ∂νA

α
µ(x) + gsf

α,β,γAµβAνγ (α, β, γ = 1, ..., 8) , (A.6)

which appears in the last term of the Lagrangian (A.1), contains an additional term which is
bilinear in the gluon fields. This term is responsible for the3-gluon and 4-gluon vertices (see
Figure A.1). The quantitiesfα,β,γ andgs, which multiply the bilinear term in eqn. (A.6), repre-
sent the structure constants of theSU(3) algebra and the strong coupling constant, respectively.

Figure A.1: The four basic gluon interactions. (a) gluon radiation by a quark, (b) splitting of a gluon in
a quark - antiquark pair, (c) splitting of a gluon in two gluons and (d) a gluonfour - vertex.

As in QED, the strength of the color interaction is measured by a coupling constant which
depends on the momentum transfer (running constant). More specifically, it can be shown that
the strong coupling constant is given to a good approximation by:

αs(|q2|) =
12π

(11Nc − 2f) ln(|q2|/Λ2
QCD)

, (A.7)

whereNc is the number of colors (Nc = 3 in QCD),f is the number of quark flavors involved
andΛQCD is the QCD scale parameter, which represents the only free parameter of the theory.
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The approximate value ofΛQCD ≈ 250 MeV has been determined experimentally by measur-
ing the strong coupling constant in a variety of processes.
While the electromagnetic coupling constantα is reduced at large distances due to the effect
of the vacuum polarization, which is responsible for ascreeningof the bare electric charge,
the strong coupling constant is reduced at short distances.Indeed, the interactions among the
gluons induces ananti-screeningof the color charge or, equivalently, an enhancement of the
color charge at large distances. This effect, which is a consequence of the non-commutativity
of SU(3)C , is responsible for the so-calledasymptotic freedom. In this regime, that corresponds
to high momentum transfers (|q|2 ≫ Λ2

QCD), the coupling constant becomes weak (αs ≪ 1)
and can be used as a perturbative expansion parameter. This is the domain of the perturbative
QCD (pQCD) in which quarks can be treated essentially as non-interacting particles. Perturba-
tive QCD is considered a relatively well established theory.It is highly predictive and reliable
in its range of validity and, similarly to QED, it is based on the Feynman-diagram approach2.
On the other hand one immediately sees from eqn. (A.7) that atlow momentum transfers the
coupling becomes large and a perturbative approach is no longer practicable. This is the regime
of confinement, where the color interaction only allows color-singlet states to exists and forces
quarks and gluons to be confined within the colorless bound states that we observe in nature:
the mesons and the baryons.

2Although it often requires the inclusion of higher order processes in order to obtain the desired accuracy.

187



APPENDIX A. QCD: GENERAL CONCEPTS

188



Appendix B

Light-cone variables

A four-vectorAµ with Cartesian contravariant components is represented as

Aµ = (A0, A1, A2, A3) = (A0, ~A). (B.1)

In the light-cone frame (cf. Figure B.1), the components ofAµ are defined as:

A± =
1√
2
(A0 ± A3). (B.2)

In these componentsAµ and its norm are written respectively as

Aµ = (A+, A−, ~A⊥). (B.3)

A2 = (A0)2 − ~A2 = 2A+A− − ~A2
⊥ (B.4)

and the scalar product of two four-vectorsAµ andBµ is

A ·B = A0B0 − ~A · ~B = A+B− + A−B+ − ~A⊥ · ~B⊥. (B.5)

Figure B.1: The light-cone axesx±
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APPENDIX B. LIGHT-CONE VARIABLES

In the Bjørken limit (Q2 → ∞, ν → ∞, x const) the four-momentum vectors of the proton and
the virtual photon can be parameterized in light-cone coordinates as:

P µ =

(
M2

2P+
, P+,~0

)
(B.6)

qµ =

(
Q2

2xP+
,−xP+,~0

)
. (B.7)

This parametrization is valid in any collinear frame, i.e.,in any frame of reference in which the
virtual photon direction is antiparallel to thex3 axis. For all collinear framesP+ is the dominant
variable in a1/Q expansion. In the infinite momentum frameP+ is of the order of Q.
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Appendix C

The optical theorem

Theoptical theorem, which is a very general law of wave scattering theory, relates the forward
scattering amplitude to the total cross section of the scatterer:

σtot =
4π

q
Imf(0) . (C.1)

Heref(0) is the forward (θCM = 0) scattering amplitude,q is the center-of-mass momentum
andσtot is the total cross section, including the elastic and the inelastic contributions.
In the framework of the deep inelastic scattering, the optical theorem relates the hadronic tensor
Wµν to the imaginary part of the forward virtual Compton scattering amplitudeT (see Figure
C.1):

Wµν ∼ Im(T µν) (C.2)

where:

T µν = i

∫
dξ4eiq·ξ〈P, S|T (Jµ(ξ)Jν(0))|P, S〉 . (C.3)

HereT () represents the time-ordered product.

Figure C.1: The optical theorem relates the hadronic tensorWµν to the imaginary part of the forward
virtual Compton scattering.

The optical theorem allows to express the three leading-twist quark distribution functionsq(x),
∆q(x) andδq(x) in terms of quark-nucleon forward amplitudes.
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Appendix D

The gauge link operator

The quark-quark correlation matrixΦ, defined in Section 3.1, relates a quark and an antiquark
at two different space-time points 0 andξ. As quark fields are colored objects, two quarks
separated by a distanceξ must have a gauge link, eg. a gluon field connecting them to become
colorless. Therefore, a path-dependent link operatorL must be inserted between the quark fields
to obtain a gauge invariant quark-quark correlatator [Boe00, Ell83]:

Φi,j(p, P, S) =
1

(2π)4

∫
dξ4eip·ξ〈P, S|ψ̄j(0)L(0, ξ)ψi(ξ)|P, S〉 . (D.1)

The gauge linkL, also known asWilson line, is a bilocal operator connecting the quark fieldsψ

in two different space-time points 0 andξ and is given by

L(0, ξ) = P exp

(
−i

√
4παs

∫ ξ

0

dsµAµ(s)

)
. (D.2)

HereP indicates the path-ordering of the integral over the gauge fieldAµ. The link operator
corresponds to the summation of all diagrams with a soft gluon exchange. Figure D.1 reports,
as an example, the handbag diagram for one-gluon exchange.

Figure D.1: The one-gluon gauge link. A soft gluon is exchanged between the quark line and the nucleon
remnant.
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Appendix E

The Probability Density Estimator

The method of the Probability Density Estimator (PDE) was used for the calculation of the
a-priori data probability density functionf(xi), to be implemented in the so-calledlikelihood
ratio (cf. eqn. (6.26)). Unlike the standard likelihood function, the latter allows for a measure
of the goodness of the fit for unbinned maximum likelihood fits.
For the implementation of this method, the same philosophy adopted in [Raj06] was used.
However, in order to substantially reduce the computation time, a multidimensional binning
was used instead of the original unbinned approach.
As a first step, all the events selected according to the standard kinematic and geometrical cuts
(cf. Section 5.3) were grouped into 28800 multidimensionalbins. The binning adopted is
summarized in Table E.1.

variable # of bins bin borders

x 5 [0.023, 0.10] ]0.10, 0.17] ]0.17, 0.25] ]0.25, 0.32] ]0.32, 0.4]
Q2 2 [1.0, 5.5] ]5.5, 10]
z 4 [0.20, 0.33] ]0.33, 0.45] ]0.45, 0.58] ]0.58, 0.7]

Ph⊥ 5 [0.05, 0.44] ]0.44, 0.83] ]0.83, 1.22] ]1.22, 1.61] ]1.61, 2.0]
φ 12 [0, π

6 ] · ·· ]11π
6 , 2π]

φS 12 [0, π
6 ] · ·· ]11π

6 , 2π]

Table E.1: Binning in the kinematic variablesx, Q2, z, Ph⊥, φ andφS used for the PDE.

For each of those multidimensional binsi ≡ (xα, Q
2
β, zγ , Ph⊥,δ, φε, φS,η) with a sufficiently

high statistics (e.g. containing more than 100 events), theasymmetries

Ai =
Y ↑i − Y ↓i
Y ↑i + Y ↓i

(E.1)

were calculated from the yieldsY ↑(↓)i of the events corresponding to each of the two target spin
states

195



APPENDIX E. THE PROBABILITY DENSITY ESTIMATOR

Y
↑(↓)
i =

N
↑(↓)
ev∑

j=1

wi,j , (E.2)

wherewi,j are the event-weights.
As a last step the a-priori Probability Density Estimator (PDE) was evaluated as:

f(xi) = 1 + Pt · Ai , (E.3)

where, as usual,Pz indicates the target polarization. This quantity has the same structure of the
PDF (cf. eqn. (6.7)) but does not depend on the fit (i.e. theoretical) parameters. In contrast,
it depends on an asymmetryAi directly extracted from the data, thus representing the a-priori
data probability density function.
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