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Introduction

Nature involves different space and time scale phenomena. Things are made up
of atoms and electrons and, at the same time, are characterized by their natural
geometric dimensions which are usually several order of magnitude larger. In
the same way, atomic processes occur at time scales which are much more faster
respect events in our life. Normally, we refer to the macroscopic scale as the
particular scale that we are interested in, all smaller scales are referred to as mi-
croscopic scales. The first approach, to deal with such problems, is to ignore the
details of the microscopic interactions obtaining, analytically or empirically, ex-
plicit models for the scale of interest by ignoring the rest. Unfortunately, this is
not always possible and sometimes, to correctly describe a macroscopic physical
phenomena, microscopic information turn out to be necessary. Many examples
could depict this situation, dislocation in plastic deformation, turbulence in fluid,
molecular reaction in biology simulations or microscopic charge perturbations in
macroscopic neutral plasmas. In all the above examples, we are obliged to intro-
duce and numerically solve different laws which presumably govern processes at
different scales. However, the simulation of large physical systems through the
solution of microscopic deterministic model is computationally highly prohibitive
and in future it is not imaginable that computers technology is able to change
radically this situation.

An intermediate step between the microscopic and the macroscopic descrip-
tion is given by the so-called kinetic or mesoscopic models. These models deal
with a quantity, the distribution function, which represent the density of particles
in phase-space. As a consequence, one possibilities to round on the high cost of
microscale models, is to use particles schemes or other stochastic numerical meth-
ods [80, 28, 18] based on the kinetic equations, which are known to be very fast,
but at the same time, solutions computed with such schemes are affected by lot of
fluctuations. The other possibility is to construct algorithms which are able to face
the particular nature of multiscale problems like heterogeneous or hybrid methods
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[48, 49, 50], wavelets [67], domain decomposition [10, 11, 37], or adaptive mesh
refinement methods [22, 105].

Scope of this PhD thesis is the development of efficient algorithms for the
numerical simulation of multiscale phenomena in the case of problems described
by hyperbolic and/or kinetic equations. In the sequel, we will follow two differ-
ent and complementary methodologies, one in the field of domain decomposition
methods and the other in the field of hybrid methods. We remark the generality
of the formulation of the methods presented, in fact both approaches described
are easily adaptable to different situations as showed in the different parts of this
dissertation.

In the following, we will briefly summarize the contents of the different chap-
ters of the thesis. In the first part we discuss how to deal with multiscale hy-
perbolic equations. In the second part we generalize the hybrid method to kinetic
equations, and we introduce two different domain decomposition methods. All the
schemes proposed in that part are designed with the scope of reducing the compu-
tational cost of the simulation of the Boltzmann equation together with more ac-
curate solutions respect the one furnished by particles schemes, in regimes close
to the thermodynamical equilibrium. In the last part we tackle the difficult prob-
lem of the multiscale description of plasma physics phenomena, first we analyze
how to deal with Coulomb collisions and after we describe an algorithm which
can accelerate Monte Carlo methods for the simulations of plasma problems.

I Multiscale Hyperbolic Equations
Hyperbolic systems of conservation laws with stiff relaxation terms are often used
to describe physical systems. The effect of the relaxation term is to lead the sys-
tem to a reduced one of parabolic or hyperbolic type, when the limit of small value
for the relaxation number is reached. Such systems are normally used to describe
turbulence [74], phase transition [53], water waves [130], viscoelasticity [111],
reacting flow [31] and gas flow [125]. These problems could represent a chal-
lenge for numerical methods due to the presence of different time and/or space
scales. However, because the characteristic of these systems is to present a nat-
ural dimension reduction of the model due to a large variation of some parameters
[30, 91], we could try to take advantage designing the scheme in such a way that
is able to catch this reduction.

A methodology, that can be applied to design new hybrid methods for the
numerical solution of a wide class of hyperbolic problems that involve different
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scales, is presented in this first chapter. We consider hyperbolic systems with
relaxation of the form [30]

∂tU + ∂xF (U) =
1

ε
R(U), x ∈ R, (I.1)

where U = U(x, t) ∈ RN , F : RN → RN , the Jacobian matrix F ′(U) has real
eigenvalues and ε > 0 is the relaxation time. Here we consider one dimensional
system for sake of simplicity, however extension to multi dimensional situations
are straightforward and showed in the numerical tests at the end of the chapter.

The operator R : RN → RN is called relaxation operator, and consequently
(I.1) defines a relaxation system in the sense of Whitham and Liu [81], thus, if
there exists a constant n×N matrix Q with rank(Q) = n < N such that

QR(U) = 0 ∀ U ∈ RN . (I.2)

this gives n independent conserved quantities v = QU . Moreover such conserved
quantities uniquely determine a local equilibrium value

U = E(v) such that R(E(v)) = 0. (I.3)

Using (I.2) in (I.1) we obtain a system of n conservation laws which is satisfied
by every solution of (I.1)

∂t(QU) + ∂x(QF (U)) = 0. (I.4)

For small values of the relaxation parameter ε from (I.1) we get R(U) = 0
which by (I.3) implies U = E(v). In this case system (I.1) is well approximated
by the reduced system

∂tv + ∂xG(v) = 0, (I.5)

where G(v) = QF (E(v)).
For these systems we consider the following general representation

U(x, t) = Ũ(x, t)︸ ︷︷ ︸
nonequilibrium

+ W (x, t)E(v(x, t))︸ ︷︷ ︸
equilibrium

, (I.6)

where W (x, t) = diag(w1(x, t), w2(x, t), . . . , wN(x, t)), 0 ≤ wi(x, t) ≤ 1 is a
N × N matrix that characterizes the equilibrium fraction and Ũ(x, t) the non
equilibrium part of the solution.
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The idea is based on the use of probabilistic Monte Carlo methods for the
solution of the micro scale model Ũ(x, t), combined with deterministic high order
kinetic techniques for the macro scale model W (x, t)E(v(x, t)). The parameter
which measure the distance between the two models is the ratio of the equilibrium
function E(v(x, t)) (which is a function of the macroscopic variables) respect to
the probabilistic distribution function U(x, t) (which is the microscopic variable).

Thus, far from equilibrium regimes the solution is furnished by the stochastic
component, while close to equilibrium regimes the solution is given by the deter-
ministic scheme, in intermediate regimes the solution is obtained as a combination
of the two. In order to better explain the structure of the schemes, in this first ap-
plication, we considered problems which concern simple relaxation systems. The
performance of the new methods is tested at the end of the chapter in the case of
Jin-Xin relaxation system in one and two space dimension and for the Broadwell
model. Results show the schemes ability to merge correctly the probabilistic and
the deterministic fraction of the solution. However, the methods here presented
are based on a kinetic solver for the relaxed part of the solution, thus we wish to
include a more general fluid solver. This extension and extensions of the present
methods to kinetic equations is performed in the next chapter.

II Multiscale Kinetic Equations
The great interest that kinetic models have in applied sciences is due to their abil-
ity in describing many different applications as rarefied gases [28, 7], electron and
ions transport in plasmas [8, 123], granular flows [104], reacting gases [31], quan-
tum gases [83], but also car traffic flows [70], tumor immune cells competition [6],
market economies [32]. In this context, the Boltzmann equation represent the par-
adigm of kinetic equations and his validity to describe different physical systems
has been proven in many different situations. Here we focus on the gas dynamic
interpretation of the Boltzmann equation, extension of the methods presented to
other applications are possible and in progress. For an overview on the Boltzmann
equation and its applications we remind to [26]. We consider the non linear kinetic
equation of the form

∂f

∂t
+ v · ∇xf =

1

ε
Q(f, f) (II.1)

with the initial condition

f(x, v, t = 0) = f0(x, v), (II.2)
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where f = f(x, v, t) is a non negative function describing the time evolution
of the distribution of particles which move with velocity v ∈ R3 in the position
x ∈ Ω ⊂ R3 at time t > 0. The bilinear operator Q(f, f) describes the details
of binary interactions between particles, while ε represent the so called Knudsen
number and it is proportional to the mean free path between particles.

In the present part we work with the BGK relaxation form of the Boltzmann
equation. This simplified model is known to be accurate in describing system
close to the thermodynamical equilibrium, which are the main subject of our re-
search, however we stress that the methods here introduced can be extended to
others collision kernel without changing the structure of the algorithms, one ex-
ample is showed in the third part of the present dissertation, while Boltzmann
kernel of rarefied gas dynamic can be treated thanks to the Time Relaxed meth-
ods described in [94]. In the BGK simplified model, collisions are mimic by a
relaxation towards the equilibrium, thus the operator takes the form

Q(f, f) = (Mf − f) (II.3)

the local Maxwellian function is defined by

Mf (%, u, T )(v) =
%

(2πT )3/2
exp

(−|u− v|2
2T

)
, (II.4)

where %, u, T are the density, mean velocity and temperature of the gas

% =

∫

R3

fdv, u =

∫

R3

vfdv, T =
1

3%

∫

R3

|v − u|2fdv, (II.5)

while the energy E is defined as

E =
1

2

∫

R3

|v|2fdv, (II.6)

The Maxwellian Mf can be characterized as the unique solution of the follow-
ing entropy minimization problem

H(Mf ) = min{H(f), f ≥ 0 s.t.

∫

R3

mf dv = %} (II.7)

where the following inequality expresses the dissipation of entropy:

∂t

(∫
f log f dv

)
+∇x ·

(∫
vf log f dv

)
≤ 0. (II.8)
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and m and % are the vectors of the collision invariants and of the first three mo-
ments of f respectively:

m(v) = (1, v,
1

2
|v|2), % = (%, %u,E) (II.9)

This is the well-known Boltzmann H-theorem, and it means that the local equi-
librium state minimizes the entropy of all the possible states leading to the same
macroscopic properties.

The numerical solution of this equation has encountered and still encounter
many difficulties mainly due to a dimensionality problem: the distribution func-
tion depends on seven independent variables: time, physical space and velocity
space. Moreover the necessity of physical conservation properties, positivity and
entropy inequality are very important since they characterize the steady states, the
significant velocity range that may vary strongly with space position (steady states
may not be compactly supported in velocity space), the stiffness of the problem
for small mean free paths and/or large velocities yields the problem hard to solve
in practice.

Observe, anyway, that in many situations it is not necessary to solve the full
Boltzmann equation, instead same results can be obtained through the solution of
macroscopic transport equations, which describe the temporal and spatial varia-
tion of relevant macroscopic parameters, obtained averaging collective behavior
of large number of particles and directly linked to the moments of the distribu-
tion function. To that aim considering the BGK equation (II.2), multiply it by the
collision invariants, and integrate wit respect to v, we obtain the following set of
balance laws:

∂%

∂t
+∇x · (%u) = 0,

∂%u

∂t
+∇x · (%u⊗ u + P ) = 0,

∂

∂t
E +∇x · (Eu + Pu + q) = 0,

(II.10)

which express the conservation of mass, momentum and energy, in which P =∫
(v − u)⊗ (v − u)f dv is the pressure tensor while q =

∫
1
2
(v − u)|v − u|2 dv is

the heat flux. System (II.10) is not closed, since it involves other moments of the
distribution function than just %, %u and E.

Formally as ε → 0 the function f tends to Maxwellian. In this limit, it is
possible to compute the moments P and q of f in terms of %, %u and E. In this
way, one can close the system of balance laws (II.10) and get the Euler system of
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compressible gas dynamics equations

∂%

∂t
+∇x · (%u) = 0,

∂%u

∂t
+∇x · (%u⊗ u + pI) = 0,

∂E

∂t
+∇x · ((E + p)u) = 0,

p = %θ, E =
3

2
%θ +

1

2
%|u|2.

(II.11)

The rigorous passage from the Boltzmann equation to the compressible Euler
equations for more general collision kernels has been investigated by several au-
thors. Among them we mention references [20, 92]. Higher order fluid models,
such as the Navier-Stokes model, can be considered using the Chapmann-Enskog
and the Hilbert expansions, we refer to [78] for a mathematical setting of the
problem.

Thus, in general if we are just interested to macroscopic variables can be un-
necessary to afford the simulation of microscopic kinetic equations, unfortunately
this is not always true, it happens that macroscopic equations fails to give correct
results and a more detailed analysis becomes essential. Commonly the Knudsen
number permits to switch from one model to the other, when it is sufficiently large
a kinetic description becomes necessary. Anyway, we will see also that, taking in
to account only the Knudsen number, leads to an overestimate of the necessity
of micro model inside computational domains. In this part we develop different
schemes to try to overcome the difficulties just described.

In the second chapter we present an automatic domain decomposition method
for the solution of gas dynamics problems which require a localized resolution
of the kinetic scale. The basic idea is to couple the macroscopic hydrodynamics
model and the microscopic kinetic model through a buffer zone in which both
equations are solved [37]. Discontinuities or sharp gradients of the solution are
responsible for locally strong departures to local equilibrium which require the
resolution of the kinetic model. The buffer zone is drawn around the kinetic region
by introducing a cut-off function, which takes values between zero and one and
which is identically zero in the fluid zone and one in the kinetic zone. Denoting
the buffer interval by [a, b], and introducing a cut-off function h(x, t) such that

h(x, t) =





1, for x ≤ a
0, for x ≥ b
0 ≤ h(x, t) ≤ 1, for x ∈ [a, b]

(II.12)
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we define two distribution functions such that fR = hf while fL = (1− h)f .
Looking now for an evolution equation for fR and for fL, we write

∂tfR = ∂t(hf) = f ∂th + h∂tf,

∂tfL = ∂t((1− h)f) = −f ∂th + (1− h)∂tf.

which after some computations leads to the following system for fL and fR:

∂tfR + hv∂xfR + hv∂xfL =
h

τ
(Mf − f) + f∂th, (II.13)

∂tfL + (1− h)v∂xfL + (1− h)v∂xfR =
1− h

τ
(Mf − f)− f∂th,(II.14)

f = fR + fL (II.15)

It is now possible to derive the following set of equations, replacing fL by MfL
in

the interval x ≤ b:

∂%L

∂t
+ (1− h)∂x(%LuL) = −(1− h)∂x

(∫

R
vfR dv

)
− %∂th,

∂%LuL

∂t
+ (1− h)∂x(%Lu2

L + pL) = −(1− h)∂x

(∫

R
v2fR dv

)
− %u∂th,

∂EL

∂t
+ (1− h)∂x((EL + pL)uL) = −(1− h)∂x

(∫

R
v
|v|2
2

fR dv

)
− E∂th,

(II.16)
Under some assumptions reported in details in the chapter, we are able to prove
that f = fR + MfL

, where fR is a solution of:

∂tfR + hv∂xfR + hv∂xM [%L, uL, θL] =
h

τ
(Mf − f) + f∂th, (II.17)

in the interval x ≥ a. Thus the coupling model consists of system (II.16) for
the hydrodynamic moments in the region x ≤ b and eq. (II.17) for the kinetic
distribution function in the region x ≥ a.

We specifically consider the possibility of moving the kinetic region or cre-
ating new kinetic regions, by evolving the cut-off function with respect to time.
We present algorithms which perform this task by taking into account indicators
which characterize the non-equilibrium state of the gas. The method is shown
to be highly flexible as it relies on the time evolution of the buffer cut-off func-
tion rather than on the geometric definition of a moving interface which requires
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remeshing, by contrast to many previous methods and to allow large speedup with-
out loosing accuracy in the solutions. At the end of the chapter several numeri-
cal examples are shown in order to prove the validity and efficiency of the new
method.

In the third chapter we extend the hybrid methods developed for hyperbolic
problems with relaxations to kinetic equations. This procedure involves some
generalizations to afford the new complications that arise in the simulations of
multiscale gas dynamics like the lack of a compact support for the probability
distribution function in velocity space. Consider the normalized distribution

f(v) ≥ 0, % =

∫ +∞

−∞
f(v)dv = 1, (II.18)

and the following definition of hybrid representation:
Given a probability density f(v), and a probability density M(v), called equi-

librium density, we define w(v) ∈ [0, 1] and f̃ ≥ 0 in the following way

w(v) =





f(v)

M(v)
, f(v) ≤ M(v) 6= 0

1, f(v) ≥ M(v)
(II.19)

and
f̃(v) = f(v)− w(v)M(v). (II.20)

Thus f(v) can be represented as

f(v) = f̃(v) + w(v)M(v). (II.21)

If we take now
β = min

v
{w(v)}, (II.22)

and
f̃(v) = f(v)− βM(v), (II.23)

we have ∫

v

f̃(v)dv = 1− β. (II.24)

Let us define for β 6= 1 the probability density

fp(v) =
f̃(v)

1− β
.
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The case β = 1 is trivial since it implies f(v) = M(v). Thus the probability
density f(v), can be written as a convex combination of two probability densities
in the form [16, 17]

f(v) = (1− β)fp(v) + βM(v). (II.25)

Instead, if we need to restrict the deterministic part of the schemes to com-
pactly supported function in velocity space, the following representations are par-
ticular useful. Consider for R > 0

wR(v) =

{
w(v), |v| ≤ R
0, |v| > R

(II.26)

and

f̃R(v) =

{
f̃(v), |v| ≤ R
f(v), |v| > R

(II.27)

we have the representation

f(v) = f̃R(v) + wR(v)M(v). (II.28)

In this case taking
βR = min

v
{wR(v)} ≥ β, (II.29)

and
f̃R(v) = f(v)− βRE(v), (II.30)

where E(v) = M(v)Ψ(|v| ≤ R) and Ψ(·) is the indicator function, we have
∫

v

f̃R(v)dv = 1− ρEβR, ρE =

∫
E(v)dv ≤ 1. (II.31)

Let us define the probability density

fp
R(v) =

f̃R(v)

1− ρEβR

.

Again f(v), can be written as a convex combination of two probability densities
in the form

f(v) = (1− ρEβR)f p
R(v) + ρEβR

E(v)

ρE

. (II.32)
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More in general we consider the following representation

f(x, v, t) = f̃(x, v, t)︸ ︷︷ ︸
nonequilibrium

+ w(x, v, t)M(x, v, t)︸ ︷︷ ︸
equilibrium

,

where w(x, v, t) is a continuum function (which may or may not be compactly
supported in v) that characterizes the equilibrium fraction and f̃(x, v, t) the non
equilibrium part of the distribution function. Once the problem is defined the idea
is the same of the first chapter, thus we solve the evolution of the perturbation by
Monte Carlo methods, and we solve the evolution of the equilibrium fraction by
deterministic kinetic methods.

Moreover in the present chapter we propose to solve the tails of the density
function with Monte Carlo scheme no matter if they are in thermodynamical equi-
librium or not. That choice combined with the hybrid treatment of the interactions
term leads to a faster and more accurate solution of the Boltzmann equation re-
spect to classical discrete velocity model, that needs the computations at each time
step of a compact supported equilibrium function to mimic the real Maxwellian
distribution. The chapter ends with several numerical tests in which the results of
the simulations are showed in different test cases and for different values of the
Knudsen number.

The next chapter represent a generalization of the kinetic hybrid methods pre-
sented before. Here we develop an algorithm which is easy to implement and
form-fitting with any type of finite volume or finite difference methods of kinetic
or fluid nature. Thanks to the coupling of Monte Carlo techniques for the solu-
tion of the Boltzmann equations with deterministic methods for the compressible
Euler equations, we are able to treat the multiscale nature of fluid dynamic phe-
nomena faster respect to traditional discrete velocity model or spectral model for
kinetic equations with solutions affected by less fluctuations respect to Monte
Carlo schemes. We could estimate the total computational time for this algorithm
as

CTTOT = CTE + αCTMC (II.33)

where CTTOT is the total computational time, CTE the time to compute the solu-
tion for fluid equations, while CTMC is the time we need to perform a particles
simulation for Boltzmann equations, finally α is a scalar function that contains the
information related to the equilibrium/nonequilibrium character of the distribution
function f . If we are in a thermodynamical state α = 0, to the other part if we are
in a completely non equilibrium situation α = 1.
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The results achieved in this chapter represent an important step forward in
the numerical solution of the Boltzmann equation, although, the main gain of the
method described is due to the possibility of determining the equilibrium frac-
tion remained in each cell after the convection of the distribution function. The
intensive research on that problem is the subject of future works, here we only
introduce and test some ideas. In the second part of the chapter we shows how
a set of domain decomposition methods can be obtained as a subset of the fluid
independent hybrid method described. In this part, to overcome the problem of
determining the fraction of equilibrium we use the knowledge of regions in which
commonly the kinetic equations are necessary, thus we construct deriving directly
from the above methods a new class of schemes simply imposing the value of
the Knudsen number equal to zero in some regions of the computational domain.
In that way, where the solution furnished by the macroscopic compressible Euler
equations are sufficiently accurate, we impose artificially the relaxation number
to zero. One dimensional numerical tests are showed for the fluid independent
hybrid method together with some time comparisons between different methods,
while some applications to the two-dimensional BGK equation are presented to
show the performance of the domain decomposition method.

III Multiscale Plasma Modeling and Simulation
The term plasma is used to describe a wide variety of macroscopically neutral
substances containing many interacting free electrons, ionized atoms or mole-
cules, which exhibit collective behavior due to the long-range Coulomb forces
[8]. Plasma draw the attention of the scientific community both for its extremely
large occurrence in nature and for the challenging applications like the controlled
thermonuclear fusion.

The fundamental properties of a plasma depend on the particles interactions.
Collisions can be distinguished in to long-range interactions and short-range inter-
actions, many efficient numerical methods exist for short-range forces, while how
treat long-range forces is still not clear. The Boltzmann bilinear operator Q(f, f)
describes binary collisions between particles

Q(f, f) =

∫

R3

∫

S2

B

(
|q|, q · n

|q|
)

[f(v′)f(v′∗)− f(v)f(v∗)]dndv∗ (III.1)

where S2 is the unit sphere in R3, q = v − v∗, n ∈ S2 the unit normal. The
collision kernel B(|q|, q · n/|q|), which characterize the detail of the interaction,
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is defined as
B(|q|, cos θ) = |q|σ(|q|, θ), (0 ≤ θ ≤ π) (III.2)

Here cos θ = q · n/|q| and σ(q, θ) is the collision cross section at the scattering
angle θ, in the case of Coulomb interactions the Rutherford formula holds

σ(|q|, θ) =
b2
0

4 sin4(θ/2)
(III.3)

where b0 = e2/(4πε0mr|v−v∗|2), with e the charge of the particle, ε0 the vacuum
permittivity and mr the reduced mass, which corresponds to m/2, if the interact-
ing particles are of the same species, with m equal to the mass. Observe that from
the above formula follows that the scattering cross section tends to infinity as the
angle θ tends to zero, thus in order to obtain finite and meaningful values for the
total and the momentum cross section is necessary to introduce a cut-off value for
the impact parameter.

The Boltzmann operator takes into account only binary collisions, while in
plasmas each charged particle interacts simultaneously with a large number of
neighboring particles. However, considering Coulomb interactions as a series of
consecutive weak binary collisions it is possible to derive the Landau-Fokker-
Planck collision term (see [42] for details), which is known to correctly describe
these phenomena

QL(f, f) =
1

8

∂

∂vi

∫

R3

|q|σm(|q|)((|q|2)δij− qiqj)×
(

∂

∂vj

− ∂

∂v∗j

)
f(v)f(v∗)dv∗

(III.4)
In 2000 Bobylev [9] proposed an approximate version of the Boltzmann inte-

gral

Q(f, f) =
1

τ

∫

R3

(exp(τJ)− Î)F (U, q)dv∗ + 0(τ) (III.5)

with U = (v + v∗)/2 denotes the center of mass velocity, and

F (U, q) ≡ f(U + q/2)f(U − q/2) = f(v)f(v∗) (III.6)

and where the operator exp(τJ) can be written as

exp(τJ)ψ(ω) =

∫

S2

Bτ (ω · n, |q|)ψ(n)dn (III.7)



14 III. Multiscale Plasma Modeling and Simulation

with ψ(ω) is an arbitrary function and

Bτ (ω · n, |q|) =
∞∑

l=0

2l + 1

4π
exp(−λl(|q|)τ)Pl(ω · n) (III.8)

is the Green function, with Pl(ω ·n) the Legendre polynomial and λl(|q|) equal to

λl(|q|) = 2π

∫ 1

−1

B(µ, |q|)(1− Pl(µ))dµ (III.9)

where µ = ω · n, −1 ≤ µ ≤ 1.
This approximated operator is showed to represent also a first order approxi-

mation (0(τ)) of the Landau-Fokker-Planck equations in the case of small angle
scattering between particles

Q(f, f) =
1

τ

(∫

R3×S2

D

(
q · n
|q| ,

τ

2%τ1

)
f(v′)f(v′∗)dndv∗ − %f(v)

)
(III.10)

where
1

τ1

= 4π

(
e2

4πε0mr

)2
% ln Λ

|q|3 (III.11)

with Λ = 1
sin(θmin/2)

and

D(µ, τ0) =
∞∑

l=0

2l + 1

4π
Pl(µ) exp(−l(l + 1)τ0) (III.12)

Starting from Bobylev results in chapter 5 we try to give a contribution to the
understanding of the link between binary and multiple simultaneously collisions,
through the construction of a series of direct Monte Carlo methods based on the
commonly used schemes of rarefied gas dynamic like the Bird scheme. In partic-
ular we show the non intuitive nature of the methods, which permit to obtain, with
the same computational price, more accurate solution with algorithms in which,
not all the particles collide in one time step and some particles collide more than
once, respect to algorithms in which all particles collide at least once each time
step.

In the last chapter we open the way to the hybrid simulations of plasma phe-
nomena, through the construction of an algorithm for Coulomb collisions based
both on the binary collision model of Nanbu [88] or of Takizuka & Abe [120]. In



Introduction 15

fact, we observe that if the collisional time scale for Coulomb collisions is com-
parable to the characteristic time scales for a plasma, then simulation of Coulomb
collisions may be important for computation of kinetic plasma dynamics. This can
be a computational bottleneck because of the large number of simulated particles
and collisions (or phase-space resolution requirements in continuum algorithms),
as well as the wide range of collision rates over the velocity distribution function.
Thus, in the scheme proposed the velocity distribution function is represented as
a combination of a thermal component and a kinetic component , i.e.

f(v) = m(v) + k(v). (III.13)

the thermal component is a Maxwellian distribution

m(v) = nm(2πTm)−3/2 exp (−|v − um|2/2Tm). (III.14)

while the kinetic component will be simulated using a set of discrete particles:

g(v) =

nk∑
i=1

δ(v − vi). (III.15)

Because of the (expected) slow interaction of the thermal component m with
the kinetic component k, the average density, velocity and temperature nm, um

and Tm of m are not assumed to be those of the full distribution f . Now, col-
lisions between particles from the thermal component preserve the Maxwellian;
collisions between particles from the kinetic component are performed using the
method of or Nanbu. Collisions between the kinetic and thermal components are
performed by sampling a particle from the thermal component and selecting a
particle from the kinetic component. Particles are also transferred between the
two components according to thermalization and dethermalization probabilities,
which are functions of phase space. Some computational results are showed at the
end of the chapter to prove the validity of the method.

Finally in the appendix, because of the large use of Monte Carlo techniques in
all the dissertation, we inserted a remark about some precautions that are neces-
sary to have when dealing with conservative Monte Carlo methods. We empha-
sized some of the side effects due to the use of conservative methods over a finite
number of statistical samples (particles) in the simulation. The most relevant as-
pect is that the steady states of the system are compactly supported and thus they
cannot be Maxwellian (or any other non compactly supported statistics) unless
the number of particles goes to infinity. We stressed the difference between work-
ing with many or few samples, especially in the simulation of steady problems in
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which averages are often used to eliminate fluctuations. These aspects are stud-
ied numerically with the help of a simple one-dimensional space homogeneous
kinetic model.



Part I

Multiscale Hyperbolic Equations





Chapter 1

Hybrid Multiscale Methods I.
Hyperbolic Relaxation Problems

This Chapter is based on the work [43] published in Communication in Mathe-
matical Sciences Vol. 4, No. 1, pp. 155-177 in collaboration with Prof. Lorenzo
Pareschi of the Department of Mathematics and Center for Modeling Computing
and Statistics (CMCS) of University of Ferrara.

1.1 Introduction

Hyperbolic systems with relaxation are used to describe many physical problems
that involve both convection and nonlinear interaction [30, 81]. In the Boltzmann
equation from the kinetic theory of rarefied gas dynamics, the collision (relax-
ation) term describes the interaction of particles [27]. Relaxations also occur in
several other problems ranging from water waves to traffic flow. In such systems,
when the nonlinear interactions are strong, the relaxation rate is large. In kinetic
theory, for example, this occurs when the mean free path between collisions is
small (i.e., the Knudsen number is small). Within this regime, which is referred
to as the fluid dynamic limit, the gas flow is well described by the Euler or Navier
Stokes equations of fluid mechanics, except in shock layers and boundary layers.

These problems represent a challenge for numerical methods due to the pres-
ence of different time and/or space scales. In these systems, besides conventional
deterministic discretizations, a probabilistic approach is highly desirable. Monte
Carlo methods or probabilistic techniques at different levels are widely used to
simulate complex systems [18, 80]. They have many advantages in terms of com-
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putational cost for problems with high dimensions, simplicity in preserving some
physical properties of the underlying problem (typically using a particle interpre-
tation of the statistical sample) and great flexibility when dealing with complicate
geometries.

A characteristic of relaxation-like systems is to present a natural dimension
reduction of the model due to a large variation of some parameters [30, 81, 66,
91]. Domain decomposition techniques are then used in order to better adapt
the modelling strategy and the design of the numerical schemes. However this
multi-modelling approach, which at the mathematical level is a consequence of
asymptotic approximations, requires the a-priori knowledge of some of the scales
in the problem which are typically hard to know in practice [10, 75].

A complementary strategy would be to use the full model in the whole compu-
tational domain and to design the numerical method in such a way that it is capable
to take advantage of the model reduction induced by the presence of small scales
[21, 62, 64, 65, 90, 95]. Off course this would involve the development of het-
erogeneous numerical methods which hybridize different numerical approaches
of probabilistic and deterministic nature.

Often, the design of such hybrid methodology involves not only the use hybrid
numerical methods but also their efficient coupling with suitable multi-modelling
strategies. Clearly the details of the schemes are rather problem dependent [19,
35, 16, 17, 71, 114, 117]. We quote the recent works by Weinan E and Bjorn
Engquist for a general approach to heterogeneous multiscale methods in scientific
computing [48, 49, 50, 51].

In this work we describe a methodology that can be applied to design new
hybrid methods for the numerical solution of a wide class of hyperbolic problems
that involve different scales. The main components of the schemes is the use
of probabilistic Monte Carlo methods for the full model (far from equilibrium
regimes) combined with deterministic shock capturing techniques for the reduced
one (close to equilibrium regimes). An essential aspect in the development of the
algorithms is the choice of a suitable hybrid representation of the solution. The
main features of the schemes can be summarized as follows

• In non stiff regions, where the solution of the full dimensional model is
required, the schemes provide a probabilistic Monte Carlo approximation
of the solution.

• In stiff regions, where the reduced equilibrium model is valid, the schemes
provide a deterministic high order finite volume (differences) approxima-
tion without any time step restrictions induced by the small relaxation rate.
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• In intermediate regions, the approximated solution is generated automati-
cally by the schemes as a suitable blending of a nonequilibrium probabilistic
component and an equilibrium deterministic components.

The rest of the article is organized as follows. First we introduce the model
problems we are considering. Then we present the different schemes in the case
of Jin-Xin relaxation system. Next we apply the method to the more realistic case
of the Broadwell model. Some final considerations and future developments are
discussed in the last section.

1.2 Hyperbolic relaxation systems
We will consider here one-dimensional hyperbolic systems with relaxation of the
form [30]

∂tU + ∂xF (U) =
1

ε
R(U), x ∈ R, (1.2.1)

where U = U(x, t) ∈ RN , F : RN → RN , the Jacobian matrix F ′(U) has real
eigenvalues and ε > 0 is the relaxation time.

The operator R : RN → RN is said a relaxation operator, and consequently
(1.2.1) defines a relaxation system in the sense of Whitham and Liu [81], if there
exists a constant n×N matrix Q with rank(Q) = n < N such that

QR(U) = 0 ∀ U ∈ RN . (1.2.2)

This gives n independent conserved quantities v = QU . Moreover such conserved
quantities uniquely determine a local equilibrium value

U = E(v) such that R(E(v)) = 0. (1.2.3)

The image of E represents the manifold of local equilibria of the relaxation oper-
ator R. Using (1.2.2) in (1.2.1) we obtain a system of n conservation laws which
is satisfied by every solution of (1.2.1)

∂t(QU) + ∂x(QF (U)) = 0. (1.2.4)

For small values of the relaxation parameter ε from (1.2.1) we get R(U) = 0
which by (1.2.3) implies U = E(v). In this case system (1.2.1) is well approxi-
mated by the reduced system

∂tv + ∂xG(v) = 0, (1.2.5)

where G(v) = QF (E(v)).
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Remark 1.2.1 Following the terminology introduced in [48, 49, 50] the macroscale
process is described by the conserved quantities v whereas the microscopic process
is described by the variables U . The two processes and state variables are related
to each other by compression and reconstruction operators, characterized respec-
tively by the matrices Q and M such that QU = v and Mv = U , with the property
QM = I , where I is the n-dimensional identity matrix. The compression opera-
tor is in general a local/ensemble average (projection to low order moments). The
reconstruction operator does the opposite and in general it is under-determined,
except close to the local equilibrium state when R(U) = 0 implies U = E(v).

1.2.1 Jin-Xin relaxation system

A simple prototype example of relaxation system in the case N = 2 is given by
the Jin-Xin system [66]

∂tu + ∂xv = 0,

∂tv + ∂xau = −1

ε
(v − F (u)),

(1.2.6)

which corresponds to take U = (u, v)T , F (U) = (v, au)T and R(U) = (0, F (u)−
v)T .

For small values of ε from the second equation in (1.2.6) we get the local
equilibrium

v = F (u) (1.2.7)

and under Liu’s subcharacteristic condition a > F ′(u)2 solutions to (1.2.6) con-
verges to the solution of the scalar conservation law

∂tu + ∂xF (u) = 0. (1.2.8)

1.2.2 Broadwell model

A simple discrete velocity kinetic model for a gas was introduced by Broadwell
[13]. It describes a fictitious gas composed of particles with only six (four) veloc-
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ities in the 3D (2D) velocity space. In one space dimension these models reads

∂tf + ∂xf =
1

ε
(h2 − fg),

∂tg + ∂xg =
1

ε
(h2 − fg),

∂th = − 1

αε
(h2 − fg),

(1.2.9)

where ε is the mean free path, f , h, and g denote the mass densities of gas particles
with speed 1, 0, and −1, respectively, and α = 1 for the 2D model and α = 2 for
the 3D one. The fluid dynamic moment variables are density % , momentum m,
and velocity u defined by

% = f + 2αh + g, m = f − g, u =
m

%
(1.2.10)

In addition define
z = f + g (1.2.11)

Then the Broadwell equations can be rewritten as

∂t% + ∂xm = 0,

∂tm + ∂xz = 0,

∂tz + ∂xm = − 1

2α2ε
(%2 + (1− α2)z2 + α2m2 − 2%z).

(1.2.12)

Note that if the fluid variables % , m, and z are known then f , g, and h can be
recovered as

f =
1

2
(z + m), g =

1

2
(z −m), h =

1

2α
(%− z) (1.2.13)

A local equilibrium is obtained when the state variables satisfy

%2 + (1− α2)z2 + α2m2 − 2%z = 0, (1.2.14)

which gives

z = zE(%, u) =





%

3
(2
√

3u2 + 1− 1), α = 2,

1

2
%(1 + u2), α = 1.

(1.2.15)
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Figure 1.1: Hybrid representation of a cell value.

Thus as ε → 0 one gets the fluid dynamic limit described by the set of Euler
equations

∂t% + ∂x(%u) = 0,

∂t(%u) + ∂xzE(%, u) = 0.
(1.2.16)

To the next order, a model Navier-Stokes equation can be derived via the Chapmann-
Enskog expansion. For a description of the Broadwell model and its fluid dynamic
limit see, for example [13].

1.3 Hybrid methods
The starting point in the construction of the methods is the following definition of
hybrid representation of a discrete probability density.

Definition 1.3.1 Given a discrete probability density pi, i = 1, . . . , N (i.e. pi ≥ 0,∑
i pi = 1) and a discrete probability density Ei, i = 1, . . . , N called equilibrium

density, we define wi ∈ [0, 1] and p̃i ≥ 0 in the following way

wi =

{ pi

Ei

, pi ≤ Ei 6= 0

1, pi ≥ Ei

(1.3.1)

and
p̃i = pi − wiEi. (1.3.2)
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Thus pi can be represented as

pi = p̃i + wiEi. (1.3.3)

Remark 1.3.1 If we take
β = min

i
{wi}, (1.3.4)

and
p̃i = pi − βEi, (1.3.5)

we have ∑
i

p̃i = 1− β. (1.3.6)

Let us define for β 6= 1 the discrete probability density

pp
i =

p̃i

1− β
.

The case β = 1 is trivial since it implies pi = Ei, i = 1, . . . , N . Thus the discrete
probability density pi, i = 1, . . . , N can be written as a convex combination of
two probability densities in the form [16, 17]

pi = (1− β)pp
i + βEi. (1.3.7)

Clearly the above representation is a particular case of (1.3.3).

In the case of an hyperbolic system with relaxation we recall that U(x, t) ∈
RN denotes the solution of the system whereas E(v(x, t)) ∈ RN denotes the equi-
librium state where v(x, t) ∈ Rn are the conserved variables.

Thus we consider the following general representation

U(x, t) = Ũ(x, t)︸ ︷︷ ︸
nonequilibrium

+ W (x, t)E(v(x, t))︸ ︷︷ ︸
equilibrium

,

where W (x, t) = diag(w1(x, t), w2(x, t), . . . , wN(x, t)), 0 ≤ wi(x, t) ≤ 1 is a
N × N matrix that characterizes the equilibrium fraction and Ũ(x, t) the non
equilibrium part of the solution.

The general methodology consist in
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• Solve the evolution of the non equilibrium part by Monte Carlo methods.
Thus Ũ(x, t) will be represented by a set of samples in the computational
domain.

• Solve the evolution of the equilibrium part by deterministic methods. Thus
W (x, t)E(v(x, t)) will be represented on a suitable grid in the computa-
tional domain.

In the sequel, we will describe the different schemes in the case of Jin-Xin
relaxation system (1.2.6) although our treatment extends far beyond this simple
system. In order to introduce the reader to the main tools used we start the sec-
tion by describing a simple Monte Carlo approach where the entire solution is
represented by samples [100].

1.3.1 Monte Carlo methods (MCM)
First we rewrite the system in diagonal form

∂tf +
√

a∂xf = −1

ε
(f − Ef (u))

∂tg −
√

a∂xg = −1

ε
(g − Eg(u)).

f =

√
au + v

2
√

a
, g =

√
au− v

2
√

a
,

Ef (u) =

√
au + F (u)

2
√

a
, Eg(u) =

√
au− F (u)

2
√

a
.

We assume −u
√

a ≤ F (u) ≤ u
√

a and u ≥ 0 so that f, g ≥ 0. This is
guaranteed by the subcharacteristic condition if F (0) = 0.

We start by splitting the system in the two separate steps, a relaxation step
represented by a system of stiff ordinary differential equations

∂tf
r = −1

ε
(f r − Ef (u

r))

∂tg
r = −1

ε
(gr − Eg(u

r))

and a convection step

∂tf
c +

√
a∂xf

c = 0

∂tg
c −√a∂xg

c = 0
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Note that, given an initial data f(x, 0) and g(x, 0), we can easily compute the
exact solution of the relaxation step as

f r(x, t) = e−t/εf(x, 0) + (1− e−t/ε)Ef (u(x, 0)), (1.3.8)
gr(x, t) = e−t/εg(x, 0) + (1− e−t/ε)Eg(u(x, 0)), (1.3.9)

this solution is then used as initial data for the transport step to get the approximate
solution at time t. We recall that ur(x, t) = u(x, 0) during the relaxation step.

In the case of nonnegative initial data and if Ef , Eg ≥ 0, the solution of our
problem can be sought in the form of a discrete probability density at each space
point

p(x, v, t) =





f(x, t)

u(x, t)
, v =

√
a,

g(x, t)

u(x, t)
, v = −√a.

(1.3.10)

Let us define with {ν1, ν2, . . . , νN} the initial samples from p(x, v, 0) at a given
space point x, we know that νk = ±√a, k = 1, . . . , N . Hence a Monte Carlo
method to obtain samples from pr(x, v, t) with f r(x, t) and gr(x, t) solutions of
the relaxation step is

Algorithm 1.3.1 (Simple Monte Carlo for Jin-Xin relaxation system)
1. Given a sample νk

(a) with probability e−t/ε the sample is unchanged
(b) with probability 1 − e−t/ε the sample is replaced with an equilibrium

sample. To extract an equilibrium sample proceed as follows

i. with probability
Ef (u(x, 0))

u(x, 0)
take νk =

√
a

ii. with probability
Eg(u(x, 0))

u(x, 0)
take νk = −√a.

Note that the above procedure requires the exact knowledge of u(x, 0) which
we can only estimate from the samples at the given point x.

In practice we can integrate equations (1.3.8-1.3.9) over the cell Ij and write,
up to second order accuracy in space, the time evolution of the cell averages

f r
j+1/2(t) = e−t/εfj+1/2(0) + (1− e−t/ε)Ef (uj+1/2(0)), (1.3.11)

gr
j+1/2(t) = e−t/εgj+1/2(0) + (1− e−t/ε)Eg(uj+1/2(0)). (1.3.12)
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Thus we can apply Algorithm 1.3.1 on the whole set of samples in the space
interval interested by the reconstruction of uj+1/2(0). The simplest method, which
produces a piecewise constant reconstruction, is based on evaluating the histogram
of the samples on the grid. Given a set of N samples p1, p2, . . . , pN we define the
discrete probability density at the cell centers

p(xj+1/2) =
1

N

N∑

k=1

Ψ∆x(pk − xj+1/2), j = . . . ,−2,−1, 0, 1, 2, . . . (1.3.13)

where Ψ∆x(x) = 1/∆x if |x| ≤ ∆x/2 and Ψ∆x(x) = 0 elsewhere.
Let us denote by the index k the sample νk and its position χk. If we use

equations (1.3.13) then uj+1/2 is given by the number of samples Nj belonging to
the cell Ij

uj+1/2 =
1

N∆x

∑
xk∈Ij

1 =
Nj

N∆x

and the Monte Carlo procedure is applied on such set of samples {νk |χk ∈ Ij}.
In this case, when we extract a new equilibrium sample νk in the cell Ij its posi-
tion χk is taken as uniformly distributed in the cell. We refer the reader to [99]
(and the references therein) for an introduction to basic sampling and different
reconstruction techniques in Monte Carlo methods.

Finally the transport step does not present any difficulty and can be applied
without any need of meshes or reconstructions. In fact, from the exact expression
of the solution f c(x, t) = f r(x − √at, t), gc(x, t) = gr(x +

√
at, t) we simply

need to shift the position of the samples accordingly to the law

χk = χk + νkt, ∀k. (1.3.14)

In the sequel we will use the terminology “particle” to denote the pair (χk, νk)
characterizing the sample νk and its position χk.

The method described above deserves some remarks.

Remark 1.3.2

• One important aspect in the method is that we do not need to reconstruct the
functions f and g but only the conserved quantity u. This is of paramount
relevance when dealing with very large systems, as in kinetic equations.

• The Monte Carlo scheme is conservative and preserve positivity of the so-
lution without any time step limitation. Note that as ε → 0 the method
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becomes a Monte Carlo algorithm for the limiting scalar conservation law.
This limiting method is the analogue of a kinetic particle method for the
scalar conservation law [100].

• The simple splitting method we have described here is first order in time.
Second order Strang splitting can be implemented similarly.

1.3.2 The hybrid method (HM)
The standard hybrid method is based on the hybrid representation (1.3.7). Thus
we assume our solution of the form

f(x, t) = (1− β(x, t))fp(x, t) + β(x, t)Ef (u(x, t)), (1.3.15)
g(x, t) = (1− β(x, t))gp(x, t) + β(x, t)Eg(u(x, t)). (1.3.16)

From the exact solution of the relaxation step (1.3.8) if we consider that initially

f(x, 0) = (1− β(x, 0))fp(x, 0) + β(x, 0)Ef (u(x, 0)),

g(x, 0) = (1− β(x, 0))gp(x, 0) + β(x, 0)Eg(u(x, 0))

we obtain the identities

f r(x, t) = (1− βr(x, t))f r
p (x, t) + βr(x, t)Ef (u

r(x, t))

= e−t/ε[(1− β(x, 0))fp(x, 0) + β(x, 0)Ef (u(x, 0))] +

+ (1− e−t/ε)Ef (u(x, 0)),

gr(x, t) = (1− βr(x, t))gr
p(x, t) + βr(x, t)Eg(u

r(x, t))

= e−t/ε[(1− β(x, 0))gp(x, 0) + β(x, 0)Eg(u(x, 0))] +

+ (1− e−t/ε)Eg(u(x, 0)).

By equating the equilibrium terms and the non equilibrium ones in the above
equations and using the fact that ur(x, t) = u(x, 0) we obtain the evolution for the
unknowns f r

p (x, t), gr
p(x, t) and βr(x, t)

f r
p (x, t) = fp(x, 0), gr

p(x, t) = gp(x, 0). (1.3.17)

βr(x, t) = e−t/εβ(x, 0) + 1− e−t/ε. (1.3.18)

Note that βr(x, t) → 1 as ε → 0. If we start from β(x, 0) = 0 (all particles)
at the end of the relaxation a fraction 1− e−t/ε of the particles is discarded by the
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method as the effect of the relaxation to equilibrium. Thus particles will represent
the fractions f r

p (x, t) = (1−βr(x, t))f r
p (x, t) and (1−βr(x, t))gr

p(x, t). Moreover
the hybrid representation is naturally kept by the relaxation.

After relaxation the exact solution of the transport step reads

f c(x, t) = (1− βc(x, t))f c
p(x, t) + βc(x, t)Ef (u

c(x, t)) = f r(x−√at, t)

= (1− βr(x−√at, t))f r
p (x−√at, t) +

+ βr(x−√at, t)Ef (u(x−√at, 0))

gc(x, t) = (1− βc(x, t))gc
p(x, t) + βc(x, t)Ef (u

c(x, t)) = gr(x +
√

at, t)

= (1− βr(x +
√

at, t))gr
p(x +

√
at, t) +

+ βr(x +
√

at, t)Eg(u(x +
√

at, 0)). (1.3.19)

To simplify notations let us set

f ∗p (x, t) = (1− βr(x−√at, t))f r
p (x−√at, t),

E∗
f (x, t) = βr(x−√at, t)Ef (u(x−√at, 0)),

g∗p(x, t) = (1− βr(x +
√

at, t))gr
p(x +

√
at, t),

E∗
g (x, t) = βr(x +

√
at, t)Eg(u(x +

√
at, 0)).

Unfortunately now the hybrid structure of the solution is not kept since E∗
f (x, t)

and E∗
g (x, t) are not equilibrium states. For example the above set of equations

can be solved taking

βc(x, t) = 0, (1.3.20)

and

f c(x, t) = f ∗p (x, t) + E∗
f (x, t), (1.3.21)

gc(x, t) = g∗p(x, t) + E∗
g (x, t). (1.3.22)

Thus we need to resample the whole deterministic fraction E∗
f (x, t) and E∗

g (x, t).
Note however that if we move one step t1 further in the relaxation using

f c(x, t) and gc(x, t) defined above as initial data we have βr(x, t+t1) = 1−e−t1/ε
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and

f r(x, t + t1) = (1− βr(x, t + t1))f
r
p (x, t + t1) +

+ βr(x, t + t1)Ef (u
r(x, t + t1))

= e−t1/εf c(x, t) + (1− e−t1/ε)Ef (u
c(x, t)) (1.3.23)

= e−t1/ε(f ∗p (x, t) + E∗
f (x, t)) + (1− e−t1/ε)Ef (u

c(x, t)),

gr(x, t + t1) = (1− βr(x, t + t1))g
r
p(x, t + t1) +

+ βr(x, t + t1)Eg(u
r(x, t + t1))

= e−t1/εgc(x, t) + (1− e−t1/ε)Eg(u
c(x, t)) (1.3.24)

= e−t1/ε(g∗p(x, t) + E∗
g (x, t)) + (1− e−t1/ε)Eg(u

c(x, t)).

Thus, in practice, we can avoid to resample particles after the convection and ap-
ply the resampling only on a fraction e−t1/ε of the deterministic fraction as needed
by the relaxation. More precisely taking cell averages of (1.3.23)-(1.3.24) as in a
standard Monte Carlo method, and using equations (1.3.13) for the reconstruction
as shown later, the algorithm to compute the particles that represent the fractions
e−t1/εf c

j+1/2(t) and e−t1/εgc
j+1/2(t) reads as follows

Algorithm 1.3.2 (Hybrid Monte Carlo for Jin-Xin relaxation)

1. Given m =
∆x

N

∑
j

uc
j+1/2(t)

2. for each interval Ij , j = . . . ,−2,−1, 0, 1, 2, . . .

(a) set βj = 1− e−t1/ε

(b) set Nj = Iround
(

(1− βj)
∆x

m
uc

j+1/2(t)

)

(c) set Pj =
u∗p,j+1/2(t)

u∗p,j+1/2(t) + u∗E,j+1/2(t)
,

with u∗p,j+1/2(t) = f ∗p,j+1/2(t) + g∗p,j+1/2(t)

and u∗E,j+1/2(t) = E∗
f,j+1/2(t) + E∗

g,j+1/2(t)

(d) for k = 1, . . . , Nj

with probability Pj take (νk, χk) as one of the advected particles.
with probability 1−Pj take one sample νk from the deterministic frac-
tion. To extract such a sample do the following
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i. with probability
E∗

f,j+1/2(t)

u∗E,j+1/2

take νk =
√

a

ii. with probability
E∗

g,j+1/2(t)

u∗E,j+1/2(t)
take νk = −√a

iii. take χk uniformly distributed in Ij

After this the hybrid solution is computed simply adding the deterministic
terms

βjEf (u
c
j+1/2(t)), βjEg(u

c
j+1/2(t))

to the stochastic terms

(1− βj)f
r
p,j+1/2(t) =

m

∆x
N+

j , (1− βj)g
r
p,j+1/2(t) =

m

∆x
N−

j

where N+
j and N−

j are the number of samples in cell Ij equal to
√

a and −√a
respectively.

This permits to avoid inefficient discard-resample procedures for small values
of ε. For example, as ε → 0 we do not perform any resampling at all, and we
obtain a relaxation scheme for the limiting scalar conservation law.

Remark 1.3.3

• The convection part corresponding to f ∗p (x, t) and g∗p(x, t) is solved ex-
actly by transport of particles as in a full Monte Carlo method. At vari-
ance the convection part corresponding to E∗

f (x, t) and E∗
g (x, t) can be

solved by finite volumes or finite differences since it corresponds to solve
the convection step with initial data f(x, 0) = βr(x, t)Ef (u(x, 0)) and
g(x, 0) = βr(x, t)Eg(u(x, 0)).

• At variance with the simple Monte Carlo method positivity of the hybrid
solution and presence of time step restrictions depend on the deterministic
scheme used to solve the convection part for E∗

f (x, t) and E∗
g (x, t).

• Note that the effective value of βj used in the above algorithm differs from
1 − e−t1/ε. In fact if N c

j denotes the number of particles in cell j after the
convection step, during the relaxation we keep only an integer approxima-
tion Nβ

j of (1 − βj)N
c
j . The effective value of βj can then be computed at

the end of the algorithm as

βE
j = 1− Nβ

j

N c
j

.
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1.3.3 A Componentwise hybrid method (CHM)
A better approach would consist in finding the maximum value of βc(x, t) > 0
in order to maximize the deterministic fraction in equations (1.3.19). In order to
achieve this goal we consider the componentwise hybrid representation

f(x, t) = f̃(x, t) + wf (x, t)Ef (u(x, t)), (1.3.25)
g(x, t) = g̃(x, t) + wg(x, t)Eg(u(x, t)). (1.3.26)

The relaxation step now leads to

f r(x, t) = f̃ r(x, t) + wr
f (x, t)Ef (u

r(x, t))

= e−t/ε[f̃(x, 0) + wf (x, 0)Ef (u(x, 0))] +

+ (1− e−t/ε)Ef (u(x, 0)),

gr(x, t) = g̃r(x, t) + wr
g(x, t)Eg(u

r(x, t))

= e−t/ε[g̃(x, 0) + wg(x, 0)Eg(u(x, 0))] +

+ (1− e−t/ε)Eg(u(x, 0)).

Again by equating the equilibrium terms and the non equilibrium ones in the above
equations we obtain the evolution for the unknowns f̃ r(x, t), g̃r(x, t), wr

f (x, t) and
wr

g(x, t)

f̃ r(x, t) = e−t/εf̃(x, 0), wr
f (x, t) = e−t/εwf (x, 0) + 1− e−t/ε, (1.3.27)

g̃r(x, t) = e−t/εg̃(x, 0), wr
g(x, t) = e−t/εwg(x, 0) + 1− e−t/ε. (1.3.28)

As before the hybrid representation is kept by the relaxation process. The only
difference with respect to the HM method is that we discard particles from f and
g with different ratios.

The convection destroys the structure of the solution and we get

f c(x, t) = f̃ c(x, t) + wc
f (x, t)Ef (u

c(x, t)) = f r(x−√at, t)

= f̃ r(x−√at, t) + wr
f (x−

√
at, t)Ef (u(x−√at, 0))(1.3.29)

gc(x, t) = g̃c(x, t) + wc
g(x, t)Ef (u

c(x, t)) = gr(x +
√

at, t)

= g̃r(x +
√

at, t) + wr
g(x +

√
at, t)Eg(u(x +

√
at, 0)).(1.3.30)

To simplify notations let us set

f ∗p (x, t) = f̃ r(x−√at, t), Ẽf (x, t) = wr
f (x−

√
at, t)Ef (u(x−√at, 0)),

g∗p(x, t) = g̃r(x +
√

at, t), Ẽg(x, t) = wr
g(x +

√
at, t)Eg(u(x +

√
at, 0)).
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Here we do not assume wc
f (x, t) = 0, wc

g(x, t) = 0 since we want to take ad-
vantage of the componentwise hybrid representation in order to maximize the
deterministic fraction of the solution. Thus, starting from the deterministic frac-
tions Ẽf (x, t) and Ẽg(x, t) defined above we construct the new values of wc

f (x, t),
f̃ c(x, t), wc

g(x, t) and g̃c(x, t) using Definition 1.3.1.
More precisely we define

wc
f (x, t) =





Ẽf (x, t)

Ef (uc(x, t))
, Ẽf (x, t) ≤ Ef (u

c(x, t)) 6= 0

1, Ẽf (x, t) ≥ Ef (u
c(x, t))

(1.3.31)

and
E∗

f (x, t) = Ẽf (x, t)− wc
f (x, t)Ef (u

c(x, t)). (1.3.32)

In this way we obtain

f̃ c(x, t) = f ∗p (x, t) + E∗
f (x, t). (1.3.33)

Note that if Ẽf (x, t) ≤ Ef (u
c(x, t)) 6= 0 we have f̃ c(x, t) = f ∗p (x, t) and thus we

keep all the deterministic fraction. Similarly we compute wc
g(x, t) and g̃c

p(x, t).
The next relaxation step then applies straightforwardly using directly Algo-

rithm 3.3.3 on cell averages. In fact moving one step further we have

f r(x, t + t1) = f̃ r(x, t + t1) + wr
f (x, t + t1)Ef (u

r(x, t + t1))

= e−t1/εf c(x, t) + (1− e−t1/ε)Ef (u
c(x, t)) (1.3.34)

= e−t1/ε(f ∗p (x, t) + E∗
f (x, t) + wf (x, t)Ef (x, t)) +

+ (1− e−t1/ε)Ef (u
c(x, t))

gr(x, t + t1) = g̃r(x, t + t1) + wr
gEg(u

r(x, t + t1))

= e−t1/εgc(x, t) + (1− e−t1/ε)Eg(u
c(x, t)) (1.3.35)

= e−t1/ε(g∗p(x, t) + E∗
g (x, t) + wg(x, t)Eg(x, t)) +

+ (1− e−t1/ε)Eg(u
c(x, t)).

The only difference is that now the final hybrid solution is recovered adding
the deterministic terms

((1− βj)wf (xj+1/2, t) + βj)Ef (u
c
j+1/2(t)),

((1− βj)wg(xj+1/2, t) + βj)Eg(u
c
j+1/2(t))

in each cell.



1. Multiscale Hyperbolic Relaxation Problems 35

Remark 1.3.4 If we define after the convection step

βc(x, t) = min{wc
f (x, t), wc

g(x, t)}, (1.3.36)

we maximize the common value of βc such that the standard hybrid method ap-
plies. This is particularly relevant in many applications where it is important
that the hybrid decomposition is component independent. For example for more
general relaxation terms.

1.4 Implementation and numerical tests
In this section we report some numerical results for the different schemes consid-
ered. We use the shorthand MCM, HM1, HM2 and CHM to denote the Monte
Carlo Method, the Hybrid Method with the choices (1.3.20) and (1.3.36) respec-
tively, and the Componentwise Hybrid Method.

1.4.1 High resolution scheme for the equilibrium component
In order to compute the evolution of the deterministic part of the solution in all
the hybrid methods we use a second order MUSCL type scheme based on cell
averages [76]. The second order scheme is defined taking as a flux

Fj(xi) =
fj(xi−j+2)− fj(xi−j+1)

4x
φ(θj(xi)) (1.4.1)

where φj is the limiter function

φj = φ(θj), θj(xi) = [
fj(xi)− fj(xi−1)

fj(xi+1)− fj(xi)
]ij .

For example the so-called ”superbee” of Roe

φ(θ) = max(0, min(1, 2θ), min(θ, 2)).

Finally the scheme for the convection step is defined as

f
n+1/2
j (xi) = fn

j (xi) + η(fn
j (xi+ij)− fn

j (xi))−

+ ij
η(1− η)

2
[F n

j (xi+ij)4x− F n
j (xij)4x], j = 1, 2

(1.4.2)
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where η = 4t
4x

and ij = (−1)j . As ε → 0 the relaxation step becomes a projec-
tion step and thus we obtain a second order in space, first order in time relaxation
scheme [66] for the limiting scalar conservation law. Extension to the multidi-
mensional case can be done as usual dimension by dimension.

1.4.2 Jin-Xin system
In all tests we take initially the solution represented by samples and F (u) = u2/2
(thus as ε → 0 we have the Burgers equation). We consider the following test
cases with periodic boundary conditions.

1D case

First we consider a one-dimensional test problem with initial data

u(x, 0) =
1

4
(2 + sin(2πx)− sin(πx)), x ∈ [−1, 1], t ∈ [0, 1]. (1.4.3)

We report the numerical solution for different values of the relaxation para-
meter ε = 0.1, 0.01, 0.001 with 200 grid points starting initially with N = 103

particles. The particle solution has been reconstructed using the simple formula
(1.3.13). The final computing times are given in the figures captions (see Figure
1.2 and Figure 1.3). We also compute the L1 norm of the error in time using a
finite difference solution on a very fine mesh(six times the mesh of the methods)
as a reference result (see Figure 1.4).

In the same figure the number of particles as a function of time is also given.
The variance reduction of hybrid methods with respect to standard MCM is evi-
dent. In particular HM2 and CHM have the better efficiency and accuracy proper-
ties.

2D case

Next we consider the 2D case

∂tu + ∂xv + ∂yw = 0,

∂tv + ∂xp(u) = −1

ε
(v − F (u)),

∂tw + ∂yq(u) = −1

ε
(w −G(u)),

(1.4.4)
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Figure 1.2: 1D case: Solution at t = 1 with ε = 0.1 (top), ε = 0.01 (middle)
and ε = 0.001 (bottom) for MCM (left) and HM1 (right), with initial data (1.4.3).
Particle solution (·), equilibrium solution (dashed line) and hybrid solution (◦).
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Figure 1.3: 1D case: Solution at t = 1 with ε = 0.1 (top), ε = 0.01 (middle)
and ε = 0.001 (bottom) for HM2 (left) and CHM (right), with initial data (1.4.3).
Particle solution (·), equilibrium solution (dashed line) and hybrid solution (◦).
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Figure 1.4: 1D case: Number of particles (left) and relative L1-error in time (right)
for ε = 0.1 (top), ε = 0.01 (middle) and ε = 0.001 (bottom), for (1.4.3) initial
data.
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Figure 1.5: 2D case: Solution at t = 0.5 with ε = 0.1 for HM (top) HM1 (middle)
and CHM (bottom).
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Figure 1.6: 2D case: Solution at t = 3 with ε = 0.01 for HM (top) HM1 (middle)
and CHM (bottom).
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Figure 1.7: 2D case: Solution at t = 3 with ε = 10−6 for HM methods.

with F (u) = G(u) = u2/2. For ε → 0 we obtain the 2D Burgers equation

∂tu + ∂x
u2

2
+ ∂y

u2

2
= 0. (1.4.5)

We consider periodic boundary conditions and initial data

u(x, y) = sin(πx)2 sin(πy)2, (x, y) ∈ [0, 1]2.

First we report the result for the three hybrid methods for ε = 0.1 and ε = 0.01
using a 40×40 mesh. The initial data is represented by N = 8×104 particles. The
results and the final computation times are shown in Figure 1.5 for ε = 0.1 and in
Figure 1.6 for ε = 0.01. Finally we also report the result obtained for ε = 10−6

with a 80 × 80 mesh ( Figure 1.7). In this latter case, due to the small value of ε
all hybrid methods yield essentially the same result corresponding to the second
order relaxation scheme for the limiting equation.

1.4.3 Broadwell models
The extension of the above schemes to the case of the Broadwell model equa-
tions does not present any particular difficulty and we omit the details. We solve
the Broadwell equations with α = 1, corresponding to the four velocity reduced
Broadwell model, with the following initial data

ρ(x, 0) = 2 m = 1 z = 1 x < 0,
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ρ(x, 0) = 1 m = 0.13692 z = 1 x > 0.

We integrate over the domain [−1, 1] with reflecting boundary condition. We
use 100 grid points for ε = 1 and ε = 0.02 and 200 grid points for ε = 0.001
starting initially with N = 3 ∗ 103 particles. The reference solution is obtained
using a second order finite difference solver with six times the cells number of
the computed hybrid solution. We report the results obtained with the different
hybrid methods and the Monte Carlo method (MCM) depicted with the reference
solution. Note that the initial datum for z is not a local equilibrium, which yields
an initial layer. First we consider the case ε = 1 ( Figure 1.8) corresponding to a
non stiff (rarefied) regime where all the hybrid methods give a very similar result
to MCM. In fact, we are far from the local thermal equilibrium and the solution
is represented mostly by samples in all schemes. In the intermediate regime (
Figure 1.9, where ∆x, ∆t and ε are of the same order, the methods give different
results, in particular HM1 is very close to MCM, whereas HM2 and CHM provide
a more accurate solution with less fluctuations due to the stochastic component of
the solution.
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Figure 1.8: The numerical solutions of Broadwell equations for % = (◦), m = (+)
and z(∗) with MCM (top left) HM1 (top right) HM2 (bottom left) CHM (bottom
right) for ε = 1.
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The small hump that is possible to notice near x = −0.2 is part of the exact
solution. It is due to the fact that the initial condition represents an exact traveling
shock wave for the relaxed system. Finally we consider the stiff regime ε = 10−6

(Figure 1.10), corresponding to the Euler limit where the solution is a shock wave
moving right with speed s = 0.86038 determined by the Rankine-Hugoniot jump
condition. In this latter case all hybrid methods give essentially the same result due
to the high resolution second order deterministic solver. The general methodology
is based on a suitable blending of particles representation of the non equilibrium
part of the solution with a finite difference or finite volume approximation of the
equilibrium part.

1.5 Conclusion
In this paper we have considered the development of hybrid methods for multi-
scale problems. Here we restricted our analysis to the case of hyperbolic systems
with relaxation. In order to better explain the structure of the schemes we con-
sidered applications to simple relaxation systems. Several numerical results show
the efficiency of the schemes and their ability to merge correctly the probabilistic
and the deterministic fraction of the solution.
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Figure 1.9: The numerical solutions of Broadwell equations for % = (◦), m = (+)
and z(∗) with MCM (top left) HM1 (top right) HM2 (bottom left) CHM (bottom
right) for ε = 0.02.
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The schemes here presented rely on a relaxed scheme as deterministic solver
and on a kinetic-like interpretation of the hyperbolic system for the Monte Carlo
solver. Several interesting questions remain open among which we mention

• Inclusion in the schemes of a more general fluid solver.

• Extension of the present methods to kinetic equations and other multiscale
problems such as diffusive limits.

• Convergence and error estimates for the hybrid schemes.

The prospects in these directions are encouraging and we hope to present more
challenging results in the nearby future [44].
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Figure 1.10: The numerical solutions of Broadwell equations for % = (◦), m =
(+) and z(∗) with MCM (top left) HM1 (top right) HM2 (bottom left) CHM
(bottom right) for ε = 10−6.
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Chapter 2

A Moving Interface Method for
Dynamic Kinetic-Fluid Coupling

This Chapter is based on the work [40] published in Journal of Computational
Physics Vol. 227, pp. 1176-1208 in collaboration with Prof. Pierre Degond and
Dott. Luc Mieussens of Université Paul Sabatier, Toulouse, France.

2.1 Introduction

In this work we consider the numerical simulation of fluid flows in rarefied regimes.
In this situation the Navier-Stokes or the Euler equations do not provide a satis-
factory description of the physical system and a kinetic description through the
Boltzmann equation becomes necessary. In practice, we are primarily interested in
the macroscopic scales of the problems but the solution of the microscopic model
is necessary to obtain the correct representation of the physical phenomena. From
the computational side, the numerical solution through such microscopic models
remains nowadays too expensive even with the use of super-computers.

The most widely used numerical method for the Boltzmann equation is the
Direct Simulation Monte-Carlo (DSMC) method (see [48], [50], [18] [16], [17],
[44], [99]). It has many advantages in terms of computational cost for large di-
mensional problems, for enforcing physical properties such as conservation laws
and in terms of flexibility when handling with complex geometries. On the other
hand, these methods involve a significant level of numerical noise when the un-
steady character of the problem does not permit averages on the solution. In these
cases, if we want to preserve the efficiency in computational time, fluctuations can
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be present as compared to deterministic methods. Moreover the convergence rate
is in general quite slow.

In situations close to thermodynamical equilibrium, the cost of direct Monte
Carlo simulations increases. For this reason, domain decomposition techniques
have been proposed in the literature (see [10], [75], [71], [77], [38], [45], [128]).
They allow a more efficient treatment of the regions close to thermodynamical
equilibrium. Automatic domain decomposition methods have also been proposed,
(see e.g. [73] or [122]). Indeed, in many situations, the resolution of the kinetic
equations in the whole computational domain is unnecessary because the Euler or
Navier-Stokes equations provide a sufficiently accurate solution, except in small
zones like shock layers where departure from thermodynamical equilibrium is
strong.

The present work is a contribution in this direction. We propose a numeri-
cal method for the resolution of the Boltzmann-BGK equation coupled with the
compressible Euler equations through a domain decomposition technique. The va-
lidity of BGK model is sometimes questionnable. However it provides a cheaper
model than the Boltzmann collision integral, in particular close to the fluid regime
where the simulation of others models becomes extremely expensive. As a mat-
ter of convenience all the schemes and the algorithms are described in the one
dimensional case in the paper, making it more readable. The extension to the
multidimensional case do not introduce any difficulty in the schemes, only the de-
finition of the different domains can create some trouble, which will be examined
in a future work. We could also choose the Navier-Stokes model instead of the
Euler model as a fluid model.

This paper is an extension of an earlier work [37], in which the domain decom-
position technique is used to couple the BGK equation and the compressible Euler
equations. In this earlier work, a buffer zone is introduced. In this buffer zone,
the transition from the Boltzmann model to the hydrodynamic one and vice-versa
is gradual. Therefore, in the buffer zone, both models are solved and the solution
of the problem is obtained as the combination of the kinetic and fluid solutions.
The buffer zone is materialized by a cut-off function which defines the gradual
transition from one model to the other one. Additionally, the introduction of the
cut-off makes each of the models degenerate at the boundary of the buffer zone.
In this way, no interface condition is needed.

In the present work, we propose a methodology to allow for the time evolution
of the buffer zone between the kinetic and fluid models. In this way, we can follow
in time the regions where discontinuities or sharp gradients of the solution occur,
and solve the microscopic model in these regions, while, in the rest of the domain,
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we can use the macroscopic model. Thanks to this technique, it is possible to use
as small a microscopic domain as possible, and to achieve considerable computa-
tional speedup compared with a steady interface coupling strategy. An important
point in implementing this method is to use adequate criteria which allow to re-
liably identify the zones for which the microscopic model is necessary. Another
novelty of the present work is to propose the use of a new indicator, the equilib-
rium fraction, which has been introduced in the works of Dimarco and Pareschi in
[44].

The main features of the method can be summarized as follows:

• The domain is divided in regions where the solution is computed through
kinetic equations and in regions where the solution is computed through
Euler equations and in buffer zones where both model are used.

• During the simulation the zones move according to some equilibrium crite-
ria in order to solve the kinetic model only where it is necessary.

• The utilized criteria are combinations of:

– Checking the value of the Knudsen number against an adequate thresh-
old value

– Checking the values of the gradients of the macroscopic quantities
(density, momentum) against an adequate threshold value

– Measuring the equilibrium fraction in the kinetic zone.

The article is organized as follows. In section 2.2, we introduce the Boltzmann-
BGK equations and its properties. In section 2.3, we present the coupling method
and in section 2.4 the numerical schemes. Section 2.5 is devoted to the illustration
of the equilibrium identification criteria. Several test problems which demonstrate
the capabilities of the method are presented in section 2.6. Some final considera-
tions and future developments are discussed in section 2.7.

2.2 Boltzmann-BGK Equation

2.2.1 The model
We consider the Boltzmann-BGK equation

∂tf + v · ∇xf =
1

τ
(Mf − f), (2.2.1)
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with the initial condition

f(x, v, t = 0) = f0(x, v), (2.2.2)

where f = f(x, v, t) is a non negative function describing the time evolution
of the distribution of particles which move with velocity v ∈ R3 in the position
x ∈ Ω ⊂ R3 at time t > 0. In the BGK equation the collisions are modeled
by a relaxation towards the local thermodynamical equilibrium defined by the
Maxwellian distribution function Mf . The local Maxwellian function is defined
by

Mf = Mf [%, u, T ](v) =
%

(2πθ)3/2
exp

(−|u− v|2
2θ

)
, (2.2.3)

where % and u are the density and mean velocity while θ = RT with T the tem-
perature of the gas and R the gas constant. The macroscopic values %,u and T are
related to f by:

% =

∫

R3

fdv, u =

∫

R3

vfdv, θ =
1

3%

∫

R3

|v − u|2fdv. (2.2.4)

The energy E is defined as

E =
1

2

∫

R3

|v|2fdv =
1

2
%|u|2 +

3

2
%θ. (2.2.5)

The parameter τ > 0 is the relaxation time. In this paper, we use the common
choice τ = (µ

p
) where µ = µref · (θ/θref )

ω is the viscosity and p is the pressure.
We refer to section 2.6 for the numerical value of µref , θref and ω. Finally we
define the kinetic entropy of f by

H(f) =

∫

R3

f log fdv. (2.2.6)

Now, if we consider the BGK equation (2.2.1), multiply it by 1, v, 1
2
|v2| (the

so-called collision invariants), and integrate wit respect to v, we obtain the follow-
ing balance laws:

∂%

∂t
+∇x · (%u) = 0,

∂%u

∂t
+∇x · (%u⊗ u + P ) = 0,

∂

∂t
E +∇x · (Eu + Pu + q) = 0,

(2.2.7)
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which express the conservation of mass, momentum and energy, in which P =∫
(v − u) ⊗ (v − u)f dv is the pressure tensor while q =

∫
1
2
(v − u)|v − u|2 dv

is the heat flux. Furthermore the following inequality expresses the dissipation of
entropy:

∂t

(∫
f log f dv

)
+∇x ·

(∫
vf log f dv

)
≤ 0. (2.2.8)

System (2.2.7) is not closed, since it involves other moments of the distribution
function than just %, %u and E.

The Maxwellian Mf can be characterized as the unique solution of the follow-
ing entropy minimization problem

H(Mf ) = min{H(f), f ≥ 0 s.t.

∫

R3

mf dv = %} (2.2.9)

where m and % are the vectors of the collision invariants and of the first three
moments of f respectively:

m(v) = (1, v,
1

2
|v|2), % = (%, %u,E) (2.2.10)

This is the well-known local Gibbs principle, and it expresses that the local ther-
modynamical equilibrium state minimizes the entropy, in the mathematical mean-
ing, of all the possible states subject to the constraint that its moments % are pre-
scribed.

Formally as ε → 0 the function f tends to Maxwellian. In this limit, it is
possible to compute the moments P and q of f in terms of %, %u and E. In this
way, one can close the system of balance laws (2.2.7) and get the Euler system of
compressible gas dynamics equations

∂%

∂t
+∇x · (%u) = 0,

∂%u

∂t
+∇x · (%u⊗ u + pI) = 0,

∂E

∂t
+∇x · ((E + p)u) = 0,

p = %θ, E =
3

2
%θ +

1

2
%|u|2.

(2.2.11)
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2.2.2 Boundary Conditions
Eq. (2.2.1) must be supplemented with boundary conditions for x ∈ ∂Ω and for
v · n ≥ 0 where n denotes the unit normal, pointing inside the domain. The
boundary conditions are expressed as follows:

|v · n|f(v) =

∫

v∗·n<0

|v∗ · n|K(v∗ → v)f(v∗)dv∗ , (2.2.12)

where v∗ is the particle velocity after its interaction with the boundary. The enter-
ing flux is described as a function of the outgoing flux modified by the boundary
kernel K. Such a definition of the boundary condition preserve the mass if and
only if

K(v∗ → v) ≥ 0,

∫

v∗·n≥0

K(v∗ → v)dv = 1. (2.2.13)

Usually, the boundary condition is a convex combination of specular reflection
and total accomodation. Specular reflection is the process by which the incoming
velocity (i.e. after the interaction with the wall) is the symmetric of the outgoing
velocity with respect to the tangent plane to the wall. Total accomodation instead
means that the outgoing velocity loses the memory of the incoming velocity and
is taken randomly according to a Maxwellian distribution at the wall temperature.
Let α be the fraction of particles which suffer total accomodation and 1 − α that
of specularly reflected particles. With these assumptions, the boundary condition
is written:

f(v) = (1− α)Rf(v)αMf(v), v · n(x) ≥ 0, (2.2.14)

with
Rf(v) = f(v − 2n(n · v)), Mf(v) = µMω(v). (2.2.15)

If we denote by uw and θw the wall velocity and temperature, Mw is given by

Mw[uw, θw](v) =
1

(2πθw)3/2
exp

(−|uw − v|2
2θw

)
, (2.2.16)

and µ is determined by mass conservation

µ

∫

v·n≥0

Mw(v)|v · n|dv =

∫

v·n<0

f(v)|v · n|dv. (2.2.17)

It is easy to show that this boundary condition enters the class of boundary con-
ditions of the type (2.2.12), with a suitably defined (and possibly distributional)
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kernel K. We note that for α = 0 (pure specular reflection) the re-emitted particle
have the same flow of mass, energy and tangential momentum as the incoming
molecules, while as soon as α > 0 (partial or full accommodation) the re-emitted
particle partly or completely lose the memory of the incoming velocities. In par-
ticular, only mass is conserved.

2.3 The coupling method

2.3.1 Decomposition of the kinetic equation
For sake of simplicity we describe the method proposed in [37] in one space and
velocity dimensions. It can be easily extended to a generic N-dimensional setting.
Also different meshes for the cut-off function and for the other variables can be
used.

We denote the buffer interval by [a, b], and we introduce a cut-off function
h(x, t) such that

h(x, t) =





1, for x ≤ a
0, for x ≥ b
0 ≤ h(x, t) ≤ 1, for x ∈ [a, b]

(2.3.1)

For instance, h can be chosen piecewise linear in [a, b]:

h(x, t) =
x− b

a− b
for x ∈ [a, b].

We define two distribution functions such that fR = hf while fL = (1− h)f .
We look now for an evolution equation for fR and for fL. We write

∂tfR = ∂t(hf) = f ∂th + h∂tf,

∂tfL = ∂t((1− h)f) = −f ∂th + (1− h)∂tf.

Thus multiplying the Boltzmann-BGK equation (2.2.1) by h and 1 − h respec-
tively, (2.2.1) can be rewritten in the following form

∂tfR = f ∂th + h(−v∂xf +
1

τ
(Mf − f)),

∂tfL = −f ∂th + (1− h)(−v∂xf +
1

τ
(Mf − f)),
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which finally leads to the following system for fL and fR:

∂tfR + hv∂xfR + hv∂xfL =
h

τ
(Mf − f) + f∂th, (2.3.2)

∂tfL + (1− h)v∂xfL + (1− h)v∂xfR =
1− h

τ
(Mf − f)− f∂th,(2.3.3)

f = fR + fL (2.3.4)

with initial data

fR(x, v, 0) = h(x, 0)f(x, v, 0) , fL(x, v, 0) = (1− h(x, 0))f(x, v, 0). (2.3.5)

It is important to note that if f = fL + fR is the solution of (2.2.1) with initial
data (2.2.2), then (fL, fR) is the solution of (2.3.2-2.3.3) with initial data (2.3.5)
and conversely.

2.3.2 Kinetic-Hydrodynamic coupling
We refer to [37] for more detail about the derivation that follows. Let us assume
that the domain can be subdivided in two regions: in one of the regions, the distri-
bution function is close to a local Maxwellian while in the other, it is far from it.
We choose to set h = 0 in the region where f is close to the Maxwellian. There-
fore, fL = f is close to its associated Maxwellian MfL

= Mf and we can replace
the Boltzmann equation by the Euler equations without making any significant
error. We also suppose that in the buffer zone, fL remains close to the equilibrium
and thus, it can be replaced by MfL

in the whole interval x < b.
Replacing fL by MfL

in (2.3.3) and taking the hydrodynamic moments (mass,
momentum and energy), leads to the following modified Euler system defined in
the interval x ≤ b:

∂%L

∂t
+ (1− h)∂x(%LuL) = −(1− h)∂x

(∫

R
vfR dv

)
− %∂th,

∂%LuL

∂t
+ (1− h)∂x(%Lu2

L + pL) = −(1− h)∂x

(∫

R
v2fR dv

)
− %u∂th,

∂EL

∂t
+ (1− h)∂x((EL + pL)uL) = −(1− h)∂x

(∫

R
v
|v|2
2

fR dv

)
− E∂th,

(2.3.6)
with initial data

(%L, uL, θL)|(x,0) = (1− h|(x,0))(%, u, θ)|(x,0).
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Under these assumptions, we have f = fR + MfL
, where fR is a solution of:

∂tfR + hv∂xfR + hv∂xM [%L, uL, θL] =
h

τ
(Mf − f) + f∂th, (2.3.7)

in the interval x ≥ a. The coupling model consists of system (2.3.6) for the hydro-
dynamic moments in the region x ≤ b and eq. (2.3.7) for the kinetic distribution
function in the region x ≥ a.

When h = 0, system (2.3.6) coincides with system (2.2.11) because fR = 0
and fL = MfL

. Moreover no boundary condition is needed at the boudary x = b
because h = 1 at this point, and the factors in front of the spatial derivatives of
(2.3.6) vanish (in other words, the spatial derivatives are degenerate at x = b for
the fluid model). A similar remark is true for fR. Indeed, when h = 0, fR = 0 and
no boundary condition is needed for the kinetic equation at x = a because h = 0
at this point and the factor in front of the spatial derivatives in (2.3.7) vanishes. In
the buffer zone [a, b], the solution of the full kinetic problem f is computed as the
sum of the Maxwellian MfL

and of the function fR. To summarize, the solution of
the full kinetic problem is given by fR if x > b, by MfL

if x < a and by MfL
+fR

if x ∈ [a, b].
An important feature of the method is that it is very easy to divide the domain

in more than two zones. Thus we can define as many buffers and as many kinetic
regions as necessary if the macroscopic model fails to give the correct solution in
different parts of the domain which are far apart from each other. In this latter case,
the function h is still a piecewise linear function but there are multiple buffer zones
[aj, bj]. Additionally, we can create new buffer zones and new kinetic zones during
the simulation. For this purpose, one can update the cut-off function h according
to convenient criteria to a new value and reset fR = hf and fL = (1 − h)f at
the time when h is changed. The way in which new zones are created is detailed
in the next section. In the last section this technique will be tested on shock tube
problems.

2.4 Numerical approximation of the coupled model
In this section we extend the simple numerical scheme proposed in [37] for the
case of a steady buffer zone to the dynamical buffer zone case considered here.
We also introduce a new scheme based on a time splitting of the equations which
is able to circumvent some numerical problems that are observed with a direct
discretization of the equations. Finally, we introduce a different, more efficient
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kinetic scheme for the solution of the Euler equations. The scheme will be shown
in the last section to dramatically increase the efficiency of the code.

2.4.1 Velocity discretization

We introduce a Cartesian grid V of N nodes vk = k∆v + a, where k is a bounded
index, ∆v is the grid step, and a is a constant. We denote the discrete collision
invariants by mk = (1, vk,

1
2
|v2

k|). The continuous distribution function f is ap-
proximated by a discrete velocity model (fk(t, x))k, where fk(t, x) ≈ f(x, vk, t).
The fluid quantities are obtained from fk thanks to discrete summations on V:

%(t, x) =
∑

k

mkfk(t, x) ∆v. (2.4.1)

The discrete velocity BGK model consists of a set of N evolution equations for
fk:

∂tfk + vk · ∇xfk =
1

τ
(Ek[%]− fk), (2.4.2)

where Ek[%] is an approximation of Mf such that (2.4.2) satisfies the same prop-
erties of conservation (2.2.7) and entropy (2.2.8) as the continuous model (2.2.1).
Namely we have

Ek[%] = exp(α(%) ·mk), (2.4.3)

where α(%) solves the nonlinear equation

∑

k

mk exp(α(%) ·mk) ∆v = %. (2.4.4)

These equations can be solved by a Newton algorithm. In the velocity continuous
case the parameters α are

α =

(
log

(
%

(2πθ)
1
2

− |u|2
2θ

)
,
u

θ
,−1

θ

)
(2.4.5)

This discretization (existence, uniqueness, convergence) has been mathematically
studied in [84, 86].
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2.4.2 Space and time discretization of the kinetic part
According to the previous section, the velocity discretized version of (2.3.7) is

∂tfk,R + hvk∂xfk,R + hvk∂xEk[%L] =
h

τ
(Ek[%]− fk) + fk∂th, (2.4.6)

where fk,R is an approximation of fR(t, x, vk), and Ek[%L] is an approximation of
M [%L, uL, θL] defined as in (2.4.3)–(2.4.4) with % replaced by %L. Finally, fk is
the global distribution defined as in the continuous case by fk = fk,R+Ek[%L], and
the corresponding global Maxwellian Ek[%] is defined accordingly with % being
the moments of fk.

Consider a spatial Cartesian uniform grid defined by nodes xi = i∆x and a
time discretization tn = n∆t. If fn

i = (fn
k,i)k is an approximation of (fk(tn, xi)),

the moments of fn
i are %n

i =
∑

k mkf
n
i ∆v. The corresponding discrete equilib-

rium is Ek[%
n
i ] is defined as in (2.4.3)–(2.4.4)

Eq. (2.4.6) constitutes a set of linear hyperbolic equations with source terms.
The transport part is simply a linear convection equation and can be approximated
by any standard finite volume scheme. For the discretization in time we use an
explicit Euler method. The scheme finally reads

fn+1
k,i,R = fn

k,i,R − hn+1
i

∆t

∆x

(
φi+1/2(f

n
k,R)− φi−1/2(f

n
k,R)

)

− hn+1
i

∆t

∆x

(
φi+1/2(Ek[%

n
L])− φi−1/2(Ek[%

n
L])

)
(2.4.7)

+ hn+1
i

∆t

τn
i

(Ek[%
n
i ]− fn

k,i

)
+ fn

k,i(h
n+1
i − hn

i ).

For every grid function (gk,i)k,i, the numerical fluxes are defined by

φi+1/2(gk) =
1

2
(vkgk,i+1 + vkgk,i − |vk|(gk,i+1 − gk,i)) . (2.4.8)

The updated value of the function hn+1
i is computed, with the criteria described in

section 2.5, at the beginning of each time step. Thus at time step n+1, we compute
hn+1 and next we compute the new value of fR. The time step is computed through
an estimate of the CFL number:

∆t

(
max

i
(

1

τn
i

) + max
k

( |vk|
∆x

))
< 1. (2.4.9)
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2.4.3 Space and time discretization for the hydrodynamic part

A simple kinetic scheme for (2.3.6) is obtained by first discretizing (2.3.3) as we
did for (2.3.2) in the section above. Then like in the continuous case, we take the
moments of the corresponding discrete equation, and fn

L,k,i is replaced by Ek[%
n
L,i].

This leads to

%n+1
i,L = %n

i,L − (1− hn+1
i )

∆t

∆x

∑

k

mk

(
φi+1/2(Ek[%

n
L])− φi−1/2(Ek[%

n
L])

)
∆v

− (1− hn+1
i )

∆t

∆x

∑

k

mk

(
φi+1/2(f

n
k,R)− φi−1/2(f

n
k,R)

)
∆v

(2.4.10)

− (hn+1
i − hn

i )%n
i .

Again we first compute hn+1 at the beginning of the time step and afterwards,
we advance %L in time. The severe time restrictions which occur with the kinetic
scheme due to the relaxation parameter ε, do not occur with the hydrodynamic
model. Thus, it would be possible to use different time steps for the fluid and
kinetic parts of the model. We leave the implementation of this improvement to
future work.

2.4.4 An alternative scheme: time splitting

We propose here an alternative to the previous scheme which consists of a time
splitting scheme. With this scheme, the creation of new kinetic zones is simpler.
It is based on a time splitting between the time evolution of h on the one hand and
the transport and relaxation operators on the other hand. This splitting scheme
reads:

First step: evolution of h:

f
n+ 1

2
k,i,R = fn

k,i,R + fn
k,i(h

n+1
i − hn

i ), (2.4.11)

%
n+ 1

2
i,L = %n

i,L − (hn+1
i − hn

i )%n
i , (2.4.12)
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Second step: evolution of the kinetic and fluid eqs.

fn+1
k,i,R = f

n+ 1
2

k,i,R − hn+1
i

∆t

∆x

(
φi+1/2(f

n+ 1
2

k,R )− φi−1/2(f
n+ 1

2
k,R )

)

− hn+1
i

∆t

∆x

(
φi+1/2(Ek[%

n+ 1
2

L ])− φi−1/2(Ek[%L
n+ 1

2 ])
)

(2.4.13)

+ hn+1
i

∆t

τ
n+ 1

2
i

(
Ek[%

n+ 1
2

i ]− f
n+ 1

2
k,i

)
,

%n+1
i,L = %

n+ 1
2

i,L − (1− hn+1
i )

∆t

∆x

∑

k

mk

(
φi+1/2(Ek[%

n+ 1
2

L ])− φi−1/2(Ek[%
n+ 1

2
L ])

)
∆v

− (1− hn+1
i )

∆t

∆x

∑

k

mk

(
φi+1/2(f

n+ 1
2

k,R )− φi−1/2(f
n+ 1

2
k,R )

)
∆v.

(2.4.14)

The first step of this scheme can be further simplified by using the following
remark: since fn and fn

R are supposed to approximate f(tn) and fR(tn), then we
should have

fn
R ≈ fR(tn) = h(tn)f(tn) ≈ hnfn. (2.4.15)

Consequently, if we assume that fn
R is exactly hnfn, then (2.4.11) reads

f
n+ 1

2
k,i,R = hn+1

i fn
k,i, (2.4.16)

and in the same way we can obtain %
n+ 1

2
i,L = (1− hn+1

i )%n
i .

Thus relation (2.4.13) now reads

fn+1
k,i,R = hn+1

i

{
fn

k,i −
∆t

∆x

(
φi+1/2(f

n+ 1
2

k,R )− φi−1/2(f
n+ 1

2
k,R )

)

− ∆t

∆x

(
φi+1/2(Ek[%

n+ 1
2

L ])− φi−1/2(Ek[%
n+ 1

2
L ])

)

+
∆t

τ
n+ 1

2
i

(
Ek[%

n+ 1
2

i ]− f
n+ 1

2
k,i

)}
.

(2.4.17)

We recall that f
n+ 1

2
i,k = f

n+ 1
2

i,k,R + Ek[%
n+ 1

2
i,L ]. But, we have

Ek[%
n+ 1

2
i,L ] = Ek[(1− hn+1

i )%n
i ] = (1− hn+1

i )Ek[%
n
i ],
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because the equilibria are degree 1 homogeneous functions of %. Then, with
(2.4.16), we have:

f
n+ 1

2
i,k = hn+1

i fn
i,k + (1− hn+1

i )Ek[%
n
i ]. (2.4.18)

However, according to the derivation of the coupling model the kinetic distribution
function in the buffer zone must be close to the equilibrium. Assume again an
exact equality, we have fn

i,k = Ek[%
n
i ]. Inserting this relation into (2.4.18), we

deduce that
f

n+ 1
2

i,k = fn
i,k. (2.4.19)

Note that relation (2.4.19) is very natural, since it means that f is not changed by
the evolution of the buffer zone. With this identity and the linearity of the fluxes
with respect to the distribution function, we use (2.4.17) to rewrite fn+1

k,i,R as

fn+1
k,i,R = hn+1

i

(
fn

k,i −
∆t

∆x

(
φi+1/2(f

n
k )− φi−1/2(f

n
k )

)
+

∆t

τn
i

(Ek[%
n
i ]− fn

k,i

))
,

:= hn+1
i f̃n+1

k,i ,

where f̃n+1
k,i appears to be like an approximation of f(tn+1) by an explicit time

discretization. This means that our assumption (2.4.15) is also valid at time tn+1.
We can of course obtain similar relations for %n+1

i,L .
In summary, the time splitting scheme is written as follows:

First step (modified and simplified):

f
n+ 1

2
k,i,R = hn+1

i fn
k,i, (2.4.20)

%
n+ 1

2
i,L = (1− hn+1

i )%n
i , (2.4.21)

Second step (unchanged):

fn+1
k,i,R = f

n+ 1
2

k,i,R − hn+1
i

∆t

∆x

(
φi+1/2(f

n+ 1
2

k,R )− φi−1/2(f
n+ 1

2
k,R )

)

− hn+1
i

∆t

∆x

(
φi+1/2(Ek[%

n+ 1
2

L ])− φi−1/2(Ek[%L
n+ 1

2 ])
)

(2.4.22)

+ hn+1
i

∆t

τ
n+ 1

2
i

(
Ek[%

n+ 1
2

i ]− f
n+ 1

2
k,i

)
,
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%n+1
i,L = %

n+ 1
2

i,L − (1− hn+1
i )

∆t

∆x

∑

k

mk

(
φi+1/2(Ek[%

n+ 1
2

L ])− φi−1/2(Ek[%
n+ 1

2
L ])

)
∆v

− (1− hn+1
i )

∆t

∆x

∑

k

mk

(
φi+1/2(f

n+ 1
2

k,R )− φi−1/2(f
n+ 1

2
k,R )

)
∆v.

(2.4.23)

In this way, at any location in space, according to certain criteria which are
detailed below, the scheme can shift from a fluid model to a kinetic one and vice-
versa.

2.4.5 An alternative scheme for the fluid equations

Our final goal is a more efficient method for computing rarefied gas dynamics
problems than a full microscopic scheme, while maintaining the same accuracy.
To this aim a fast numerical scheme for the fluid part of the coupling method,
based on the kinetic scheme of Perthame [106] has been implemented. In the last
section, we will observed that considerable speedup is obtained using this method
compared with the scheme (2.4.10).

In this scheme, the true Maxwellian is replaced by the square-shaped func-
tion MP [%] = aχ(v)−b≤v−u≤b, where χ(v) is a non negative function such that
χ(v) = 1 if u ∈ [−b, b] and 0 elsewhere. The coefficients a and b are computed so
that the moment vector of MP [%] is exactly %. Then, the Euler fluxes are approxi-
mated by using a kinetic flux vector splitting based on the exact integration of this
approximate Maxwellian. This scheme applied to the fluid part of the coupling
model then reads:

%n+1
i,L − %n

i,L

∆t
=− (1− hn+1

i )

(Fi+1/2(%
n
L)−Fi−1/2(%

n
L)

)

∆x

− (1− hn+1
i )

∆x

∑

k

mk

(
φi+1/2(f

n
k,R)− φi−1/2(f

n
k,R)

)
∆v

+
(hn+1

i − hn
i )

∆t
%n

i , (2.4.24)

where Fi+1/2(%L) =
∫

v<0
vmMP [%i+1] dv +

∫
v>0

vmMP [%i] dv.
However, for a fair analysis of the behavior of the coupling method, we used

the scheme (2.4.10) in almost all the tests cases. Indeed, this scheme is constructed
from the discrete moments of the scheme for the kinetic part (we could say that
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the schemes for both parts are ’compatible’). In this way, we avoid sources of dis-
crepancies due to a change of the nature of the scheme for the hydrodynamic parts
and our observations can really focus on the behaviour of the coupling model.

We have also observed that, although small, some oscillations appear inside
the buffer zone when the Perthame scheme is used. To circumvent this problem,
we use the Perthame scheme in the pure fluid region (i.e. h = 0) and we use
the scheme (2.4.10) inside the buffer zone. The transition between the fluid and
kinetic models seems to be smoother if the scheme for the fluid part in the buffer
zone is compatible (in the above sense) with the scheme for the kinetic part. To
better clarify this point observe that, even if the quantity fk,L and fk,R are the same
two different schemes leads to two different evaluation of the flux. Thus the flux
on the right can be different to the flux on the left even if they have to be the same.
Outside the buffer zone, it is possible to shift to any other fluid scheme without
noticeable errors.

A different approach to solve this compatibility problem would be to use the
alternative coupling method proposed in [39] using a different decomposition of
the distribution function f . This investigation is in progress. Investigations, which
can possibly solve the above difficulties, on the coupling of the full Boltzmann
equation with the fluid equation trough this method are also in progress.

2.5 Moving Buffer and Kinetic zones

We have already mentioned the possibility of dividing the computational domain
in different regions with the introduction of several buffer and kinetic zones. Now
we need an algorithm for finding the correct locations of the zones and of their
motions. To this aim, we must decide where we need the microscopic model.
Indeed, shock waves, contact discontinuities or rarefaction waves that are respon-
sible of local discontinuities or sharp gradients do actually move in time. Thus, it
is crucial to move the kinetic and buffer regions simultaneously with these waves
in order to represent the solution with the appropriate model. Moreover we can
achieve considerable computational speedup if we can use narrower kinetic zones
(even of width of a few mesh points if the situation permits).

We have experimented different criteria in our simulations. Some of them can
be deduced from both the macroscopic and microscopic models while other ones
only depend on the microscopic model. Of course the second kind of criteria
contain more information but can only be accessed to in the kinetic region.
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Figure 2.1: Distribution function as a combination of equilibrium and non-
equilibrium parts: representation (2.5.1) (left) and representation (2.5.3) (right).

2.5.1 Microscopic Criteria
The most obvious indicator of the degree of rarefaction of a gas (but not of its
closedness to the local equilibrium), is the Knudsen number ε which is defined as
the ratio of the mean free path of the particles λ to a reference length L:

ε = λ/L,

where the mean free path is defined by

λ =
kT√
2πpσ2

c

,

with k the Boltzmann constant equal to 1.380062 × 10−23JK−1, p the pressure
and σc the collision diameter of molecules. The Knudsen number is determined
through macroscopic quantities and can be computed in the whole domain. How-
ever, it is well known that when the flow is undisturbed even in a very rarefaction
regime, the hydrodynamic approximation is valid. Thus, we need a criterion to
locate the discontinuities or sharp gradients inside the domain.

In kinetic regions we can utilize a new indicator, which we will call the equi-
librium fraction, and which will tell us if the thermodynamical equilibrium hy-
pothesis is correct or not. The starting point is the following definition [44]:

Definition 2.5.1 Given a distribution function f(v), and a distribution function
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M(v), called Maxwellian, we define ω(v) ∈ [0, 1] and f̃ ≥ 0 in the following way

ω(v) =





f(v)

M(v)
, f(v) ≤ M(v) 6= 0

1, f(v) ≥ M(v)

and
f̃(v) = f(v)− ω(v)M(v).

Thus f(v) can be represented as (figure 2.1)

f(v) = f̃(v) + ω(v)M(v). (2.5.1)

If we take now
β = min

v
{ω(v)}, (2.5.2)

and
f̃(v) = f(v)− βM(v),

where βM(v) can be seen as the largest Maxwellian smaller than f(v). Thus the
distribution function f(v) can be written in the form [16, 17] (figure 2.1).

f(v) = f̃(v) + βM(v). (2.5.3)

After each time step, once the distribution function has been updated, we pro-
ceed to the computation of β, analyze how it has evolved in the kinetic region
during this time step and decide accordingly how to move the various zones. For
instance in the vicinity of a shock wave, we expect β to be minimal. Thus a pos-
sible strategy is to set the kinetic region around this minimum. This strategy will
be explored in the numerical tests presented in the last section.

In some cases, the parameter β may provide misleading information. One
possible reason for this inaccurate indication comes from the very small values of
the distribution function near the artificial boundaries of the velocity domain of
the discrete Boltzmann-BGK equation. Thus the computation of the equilibrium
fraction near these boundaries is very inaccurate and can lead to values of β much
less than 1 which are meaningless.

Another type of inaccuracy occurs when f is very close to the local Maxwellian
except in a tiny region of velocity space (see e.g. the situation depicted in figure
2.1 (left)). This very local departure can induce a small value of β while only
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a negligible fraction of the particles (in other words, a negligible fraction of the
local total mass) are concerned by this departure to equilibrium. In this situation,
we can still consider that the distribution function is close to equilibrium and that
β provides a misleading information.

One way to circumvent the problem is to take into account the relative weight
of the distribution function fi,k with respect to

∑
k fi,k. Another strategy is also to

measure the global mass of the equilibrium part, and which is given by

%E =

∫

R3

ω(v)M(v)dv,

which for the discrete velocity case becomes

%E =
∑

k∈K
ωkEk,

and to define a new equilibrium fraction indicator as

βM =
%E

%
.

The parameter βM gives us the ratio of mass of the equilibrium part to the total
mass. It may happen that β ¿ 1 while βM ≈ 1.

We finally observe that the parameter τ can also give us some useful informa-
tion. If we split the pure BGK equation in a transport step and in a relaxation step,
the latter reads

fn+ 1
2 = e−

∆t
τ f + (1− e−

∆t
τ )Mf . (2.5.4)

Thus, if τ is sufficient small compared to the other parameters, we can suppose
that the distribution function relaxes to a local Maxwellian, and the fluid model
can be used. On the other hand, the convection term is going to distort the distrib-
ution from equilibrium. The strength of the convection term can be estimated by
the following quantity:

τ
′
= v · ∇xf

f
.

However, while τ is a quantity that can be computed from macroscopic quantities,
τ
′ is not. In order to estimate the magnitude of τ

′ using only fluid quantities,
we can measure the rates of changes of macroscopic quantities linked to f such
as density, momentum and energy. Thus we can compare τ with the following
quantities:

∇xF(%)

%
.
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The investigation of the validity of these indicators will be the subject of future
work.

2.5.2 Macroscopic Criteria
Of course, we cannot use the equilibrium function indicator in the whole domain,
because we can only access it in the kinetic region. Thus, we have to find other
parameters that can indicate a deviation from the thermodynamical equilibrium.
The idea is to make use of smoothness indicators which measure the roughness of
the data. We look at the ratio of consecutive gradients for the density

ψ(i) =
%(i)− %(i− 1)

%(i + 1)− %(i)
,

and for the velocity

φ(i) =
u(i)− u(i− 1)

u(i + 1)− u(i)
.

If ψ(i) and φ(i) are close to 1, then the data are smooth. while if ψ(i) or φ(i)
are far from unity, large variations of these quantities are present. We propose the
value of such indicators in order to locate large gradient zones.

If ψ(i) < 0 or φ(i) < 0, then slopes at neighboring points have different signs
which indicates the existence of maxima or minima. On the other hand, if the
gradient varies by a factor 2 between two neighboring points, we suppose that
the data become unsmooth. Thus the threshold values which we have chosen for
standard conditions are

ψ(i) < 0 or ψ(i) > 2, (2.5.5)

and
φ(i) < 0 or φ(i) > 2, (2.5.6)

meaning that if either (2.5.5) or (2.5.6) is satisfied, we must shift (or stay) in the
kinetic regime.

In rarefied regimes, a shock waves is not a discontinuity any longer, but rather
a region of large gradients. As a consequence, their localization becomes more
difficult. The same considerations hold for rarefaction waves and contact dis-
continuities for which the gradients become smoother as the rarefaction increase.
What happens in practice is that the value of the smoothness indicators decrease
in magnitude when the Knudsen number increases. Thus we propose to link the
value of the smoothness indicators to ε in such a way that, also in the rarefied
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regime we can identify a departure from equilibrium. To this aim we propose that
if ε > 10−4, the criterion for shifting to the kinetic model becomes

ψ(i) < 0.7 or ψ(i) > 1.2, (2.5.7)

and
φ(i) < 0.7 or φ(i) > 1.2, (2.5.8)

Of course, it could be necessary to reduce even more the interval of the fluid
regime if the gas is extremely rarefied. The indicator threshold could also be
made dependent upon the mesh size and the order of the numerical scheme.

Others indicators that could be used instead of the above defined smoothness
indicators are the gradient-length Knudsen numbers

εGL% = λ
|∇%|

%
, εGLu = λ

|∇u|
u

.

Threshold values for these parameters indicating the transition from continuum to
to kinetic regime which have been proposed in [77] and [73] are εGL < 0.05. It is
argued that in this way the error between a macroscopic and a microscopic model
is less than 5% [128].

Remark 2.5.1 In principle, it is possible to use any type of numerical scheme for
the solution of the coupling model for both the fluid and kinetic regions. Thus if,
for instance, we use high resolution methods such as WENO schemes, we could
utilize the smoother indicator defined by measuring the sum of the L2 norms of all
the derivatives of the interpolation polynomial qk(x) over one cell Ij . The relation
reads

ISk =
r−1∑

l=1

∫ xj+1/2

xj−1/2

∆x2l−1(q
(l)
k )2dx (2.5.9)

The value of the weights wk of the WENO method computed from the indicators
ISk can be used to identify a discontinuity.

2.5.3 Adaptive Kinetic/Fluid Algorithm
We have just listed some macroscopic and microscopic criteria allowing to locate
the zones of strong departure to local thermodynamical equilibrium. Using the
above criteria the algorithm detailed below permits to move the kinetic regions
and to create new kinetic regions during the course of the simulation:
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Algorithm for moving Kinetic-Fluid transition region: Assume fn, fn
R,%n

L, hn

and hn+1 are known.

1. Identify the mesh points at which (2.5.5) or (2.5.6) are satisfied;

2. Check the values of the Knudsen number in the zones around the mesh
points found at step 1;

3. if the Knudsen number is greater then 10−4, change the threshold values to
(2.5.7) and (2.5.8) and go back to 1;

4. Put a kinetic region around the mesh points at which the smoothness indi-
cators exceed the corrected threshold value (this gives an updated hn+1);

5. Advance the coupled system in time by using scheme (2.4.7)–(2.4.10). If a
new zone has been created, it is simpler to use the splitting scheme (2.4.20)–
(2.4.23). This gives fn+1

R , %n+1
L and fn+1.

6. Measure β and βM in the kinetic zone;

7. Compute hn+2 by using the values of β or βM . In our tests, we set hn+2
i = 1

if βi or βM,i is lower than 0.95 and 0 sufficiently far from this zones. Thus
automatically fluid zones are created during the simulation if h becomes
zero. Fixed size buffer zones are created to smoothly pass from 1 to 0.

Remark 2.5.2

• Fluid zones are created sufficiently far from the departures of the thermody-
namical equilibrium and wide. Distance from the departures and thickness
of the zones are parameters that can be chosen at the beginning of each
simulation.

• The value of the Knudsen number strongly depends on the choice of the ref-
erence length. In our tests, we choose the domain size as reference length.
However, this choice of reference length depends on the problem. A more
universal Knudsen number can be defined choosing the gradient length de-
fined before as reference length.
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2.6 Numerical tests

2.6.1 General setting
In this section, we present two numerical tests to illustrate the main features of the
method. First the performance of the scheme is tested on the unsteady shock test
problem for which the very simple structure of the solution makes the analysis
easier. The second test problem is the classical Sod shock tube problem, in which
the presence of contact discontinuities and rarefaction waves add new difficulties
compared to the first problem. Both tests are considered in one space dimension.
On each figure, we display the result obtained with the coupling model and with
the hydrodynamic model. We do not show the solution of the full kinetic equation
because it is very close to that of the coupling system for both tests.

In order to obtain the correct equation of state, we use a one-dimensional ve-
locity space model which is able to account for three-dimensional velocity effects.
The model reads

∂t

(
F
G

)
+ v∂x

(
F
G

)
= ν

(
MF − F
TMF −G

)
.

It is obtained from the full three-dimensional Boltzmann-BGK system by means
of a reduction technique [60]. In this model, the fluid energy is given by

E =
∑

k∈K

1

2
v2

kFk + Gk.

In this way, we can recover the correct hydrodynamic limit given by the standard
Euler system even with a lower dimensional velocity space.

The collision frequency is given by ν = τ−1 = (µ
p
)−1 where µ = µref ·

(θ/θref )
ω with µref = 2.117 × 10−5 Pa/s and ω = 0.81. For our simulation we

choose an Argon gas with molecular mass equal to 6.63× 10−27 kg. This yields a
value of the gas constant equal to R ' 208.

The computational speedup compared with a full kinetic simulation is not very
large and mainly corresponds to the possibility of choosing larger timee steps for
the hydrodynamic part. This is due to the fact that the hydrodynamic scheme that
we use is deduced from the kinetic solver by taking discrete velocity moments.
However, the coupling model is not altered if we shift to a more efficient scheme
for the hydrodynamic part. In this case, considerable speedup can be achieved.
In order to demonstrate this, we have repeated some of the tests with the scheme
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described in section 2.4.5. With this scheme, it is possible to achieve a dramatic
speedup.

However, we have made most tests using the unefficient scheme described
in section 2.4.3 because this scheme is directly deduced from the scheme for the
kinetic part by taking discrete velocity moments. In this sense, the schemes for the
kinetic and hydrodynamical parts are ’compatible’. Choosing compatible schemes
for the two parts allows to focus our observations to the effect of the coupling
model, thus reducing the discrepancies which would originate from the choice of
the numerical scheme for the hydrodynamic part.

The thickness of the buffer zones is fixed and taken in each test problem equal
to 1.5 m, while the thickness of the kinetic and fluid regions vary according to the
previously described criteria and can shrink to zero.

2.6.2 Unsteady Shock Tests
We consider an unsteady shock that propagates from left to right. The shock
is produced by a specular wall at the left boundary x = −20. This is per-
formed numerically by introducing an incoming Maxwellian distribution in ghost
cell beyond the boundary with parameters %, u, T equal to the %(1), −u(1), T (1)
where (%(1), u(1), T (1)) are the parameters in the first cell. At the right bound-
ary (x = 20), we also add a ghost cell where, at each time step, we impose the
macroscopic variables equal to %(t = 0), u(t = 0), T (t = 0) and the distribution
function equal to a Maxwellian corresponding to these parameters for the kinetic
scheme. The computation is stopped at the final time t = 0.04 s. There are 1000
cells in physical space and 140 cells in velocity space. Artificial boundaries in
velocity space are put at velocities equal to −3600 m/s and 3600 m/s. The cut-off
function h is initialized as h = 1 for x ranging from −20 to −17.5 = a1 (kinetic
region), h = x−b1

a1−b1
with b1 = −16 (buffer zone) and h = 0 for x > −16 (fluid

region).
The initial conditions are such that mass density % = 5 × 10−7 kg/m3, mean

velocity u = −900 m/s and temperature T = 273 K. The Knudsen number ε at
initialization is equal to ε ' 5.5 × 10−3. Since ε is not too small, this suggests
us that a kinetic scheme is necessary in some zones of the domain. When the
simulation begins, a shock starts to form and a non-equilibrium zone arises. We
plot the solution after few time steps t = 2×10−3 s for the density (figure 2.2, top)
and velocity (figure 2.3, top) to show that the parameters β and βM are less than
1 near the boundary (figure 2.4, top left). Then, the shock starts to move towards
the right and after few time steps, β and βM near the left boundary tend to return



2. A Dynamic Kinetic-Fluid Coupling 73

to their original value 1. Sufficiently far away from the discontinuity, the fluid
approximation becomes valid. Thus, the algorithm automatically introduces a
second buffer zone [a2, b2] (figures 2.2–2.5, middle). On the left-hand side of point
a2, h = 1 which means that the fluid equations alone are solved. All regions move
according to the value of β computed in the kinetic zone. When β approaches the
value 1 then h starts to diminish. We finally plot the results at t = 0.04 s at the end
of the simulation, for the density (figure 2.2, bottom), mean velocity (figure 2.3,
bottom), β and βM (figure 2.4, bottom left), Knudsen number (figure 2.4, bottom
right) and smoothness indicators (figure 2.5, bottom).

We repeat the simulation increasing the initial density to the value % = 10−5

kg/m3. This yields a different initial Knudsen number ε ' 2.7 × 10−4 and gives
different results. Now β and more importantly βM remain close to 1 also in the
vicinity of the shock. This means that the fluid equations must produce very sim-
ilar results as the kinetic equations. After a few time steps, when the shock is
formed and starts to move, β ' 1 and βM ' 1 (figure 2.6, middle left). Then,
the scheme automatically sets h = 0 and computes the solution entirely with the
macroscopic model. We display the density, velocity, Knudsen number, equilib-
rium fractions β and βM , smoothness indicators ψ and φ when t = 2× 10−3 s on
figure 2.6, and when t = 0.02 s on figure 2.7. The final solution (t = 0.04) is very
close to the solution we can compute with a hydrodynamic scheme. So we do not
display it.

We note that as reported in section 2.5.1 the parameter β gives sometimes
results that could suggest a strong departure to equilibrium while βM does not.
The parameter βM seems more accurate in describing the error between a fluid
and a kinetic model.

2.6.3 Sod shock tube problem
We consider the classical Sod test with the same number of mesh points in phys-
ical and velocity spaces as in the previous test (1000 points in physical space
and 140 points in velocity space). We only change the position of the artificial
boundaries in velocity space and set it now to the values −2000 m/s and 2000
m/s. The initial value are such that mass density %L = 5 × 10−6 kg/m3, mean
velocity uL = 0 m/s and temperature TL = 273.15 K if −20 ≤ x ≤ 0, while
%R = 5 × 0.125 × 10−6 kg/m3, uR = 0 m/s, TR = 218.4 K if 0 ≤ x ≤ 20. The
initial data for the kinetic model are taken in thermodynamical equilibrium. The
Knudsen numbers at the beginning of the simulation are εL ' 0.6 × 10−3 and
εR ' 4.5× 10−3 to the left and right hand sides of the discontinuity respectively.
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Figure 2.2: Unsteady Shock 1: Density profile at different times t = 0.002 (top),
t = 0.02 (middle), t = 0.04 (bottom). The solid line is the solution of the coupling
model, the dotted line is that of the Euler system.
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Figure 2.3: Unsteady Shock 1: Velocity profile at different times t = 0.002 (top),
t = 0.02 (middle), t = 0.04 (bottom). The solid line is the solution of the coupling
model, the dotted line is that of the Euler system.
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Figure 2.4: Unsteady Shock 1: Equilibrium fraction profile (left), Knudsen num-
ber (right) at different times t = 0.002 (top), t = 0.02 (middle), t = 0.04 (bottom).
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Figure 2.5: Unsteady Shock 1: Smoothness indicators for density (left) and veloc-
ity (right) at different times t = 0.002 (top), t = 0.02 (middle), t = 0.04 (bottom)
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Figure 2.6: Unsteady Shock 2: Solution at t = 2 × 10−3. Density (top left),
velocity (top right), equilibrium fraction (middle left), Knudsen number (middle
right), density smoothness indicator (bottom left), velocity smoothness indicator
(bottom right). The small panels are a magnification of the solution close to the
shock.
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Figure 2.7: Unsteady Shock 2: Solution at t = 0.02. Density (top left), velocity
(top right), equilibrium fraction (middle left), Knudsen number (middle right),
density smoothness indicator (bottom left), velocity smoothness indicator (bottom
right). The small panels are a magnification of the solution close to the shock.
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We begin by defining a kinetic zone between the initial discontinuity (h = 1) and
two buffer zones to the right [a1, b1] and to the left [a2, b2] of it. In the rest of the
domain the solution is computed with the macroscopic model that corresponds to
h = 0. We plot the results in terms of the density (figure 2.8) and mean velocity
(figure 2.9). We also display the Knudsen number (figure 2.10 right) and the two
equilibrium fractions β and βM (figure 2.10 left). The smoothness indicators for
the density and velocity are shown on figure 2.11. For each variable we plot the
solution at three different times: t = 0.002 s (top), t = 0.015 s (middle) and at
t = 0.03 s (bottom). During the computation, we notice that the region where
β < 1 (figure 2.10 left, top and middle) grows. The algorithm makes the two
buffer zones move accordingly in order to keep this zone inside the kinetic area.
The gas is too rarefied and the rarefaction waves as well as the two other waves
require the microscopic model (figure 2.8 and 2.9, bottom).

We repeat the simulation with different initial densities: %L = 2× 10−5 kg/m3

and %R = 0.25×10−5 kg/m3. The two Knudsen numbers are εL ' 0.18×10−3 and
εR ' 1.1× 10−3. This leads to different final results. The initial cut-off function
h is chosen as previously, but now the Knudsen numbers are such that the dis-
tribution function relaxes more rapidly towards equilibrium and the macroscopic
model is sufficiently accurate except in the vicinity of the contact discontinuity
and shock wave. Again, we display the density (figure 2.12), mean velocity (fig-
ure 2.13), Knudsen number (figure 2.14 right), equilibrium fractions (figure 2.14
left) and smoothness indicators (figure 2.15) at the same instants as in the previous
simulation. At the beginning of the simulation, the rarefaction wave lies within
the kinetic region ( see figures 2.12-2.13 top, middle). As time evolves, the rar-
efaction wave leaves the kinetic region to end in the fluid region (figures 2.12-2.13
bottom). The error between the macroscopic and the microscopic models in this
region is very small. From our tests, we can conclude that the equilibrium para-
meter βM seems to be a more precise indicator of local equilibrium than β. Using
βM to characterize equilibrium regions seems a promising strategy for the future
developments of the coupling method and application to numerical simulations of
transition regimes from rarefied to dense flows.

2.6.4 Use of a different scheme for the fluid-dynamical part
In this section we show how the coupling model behaves when used in conjunction
with a different scheme for the fluid-dynamical part. We repeat the computations
of the two previous sections, namely the unsteady shock test problem and the Sod
shock tube problem. For the unsteady shock test problem, the initial values are
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Figure 2.8: Sod test 1: Density profile at different times t = 0.002 (top), t = 0.015
(middle), t = 0.03 (bottom). The solid line is the solution of the coupling model,
the dotted line is that of the Euler system.
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Figure 2.9: Sod test 1: Velocity profile at different times t = 0.002 (top), t =
0.015 (middle), t = 0.03 (bottom). The solid line is the solution of the coupling
model, the dotted line is that of the Euler system.



2. A Dynamic Kinetic-Fluid Coupling 83

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

x(m)

β M
,β

b

u

f

f

e

r

Hydro

kinetic

Hydro

b

u

f

f

e

r

β
β

M

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
−3

x(m)

ε

b

u

f

f

e

r

Hydro

kinetic

Hydro

b

u

f

f

e

r

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

x(m)

β M
,β

b

u

f

f

e

r

Hydro

kinetic

Hydro

b

u

f

f

e

r

β
β

M

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
−3

x(m)

ε

b

u

f

f

e

r

Hydro

kinetic

Hydro

b

u

f

f

e

r

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

x(m)

β M
,β

b

u

f

f

e

r

Hydro

kinetic

b

u

f

f

e

r

β
β

M

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
−3

x(m)

ε

b

u

f

f

e

r

Hydro

kinetic

b

u

f

f

e

r

Figure 2.10: Sod test 1: Equilibrium fraction profile (left), Knudsen number
(right) at different times t = 0.002 (top), t = 0.015 (middle), t = 0.03 (bottom).
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Figure 2.11: Sod test 1: Smoothness indicators for density (left) and velocity
(right) at different times t = 0.002 (top), t = 0.015 (middle), t = 0.03 (bottom)
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Figure 2.12: Sod test 2: Density profile at different times t = 0.002 (top), t =
0.015 (middle), t = 0.03 (bottom). The solid line is the solution of the coupling
model, the dotted line is that of the Euler system.
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Figure 2.13: Sod test 2: Velocity profile at different times t = 0.002 (top), t =
0.015 (middle), t = 0.03 (bottom). The solid line is the solution of the coupling
model, the dotted line is that of the Euler system.
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Figure 2.14: Sod test 2: Equilibrium fraction profile (left), Knudsen number
(right) at different times t = 0.002 (top), t = 0.015 (middle), t = 0.03 (bottom).
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Figure 2.15: Sod test 2: Smoothness indicators for density (left) and velocity
(right) at different times t = 0.002 (top), t = 0.015 (middle), t = 0.03 (bottom)
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Figure 2.16: Sod Test 3: Density (left), Velocity (right) profiles at different times
t = 0.002 (top), t = 0.015 (middle), t = 0.03 (bottom). The solid line is the
solution of the coupling model, the dotted line is that of the Euler system.
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Figure 2.17: Unsteady shock test: Density (left), Velocity (right) profiles at dif-
ferent times t = 0.002 (top), t = 0.02 (middle), t = 0.04 (bottom). The solid line
is the solution of the coupling model, the dotted line is that of the Euler system.
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% = 5 × 10−6 kg/m3, mean velocity u = −900 m/s and temperature T = 273
K, while for the Sod shock test problem, they are %L = 2 × 10−5 kg/m3, uL = 0
m/s, TL = 273.15 K and %R = 0.25 × 10−5 kg/m3, uL = 0 m/s, TL = 273.15 K.
We use the same meshes in physical and velocity spaces as previously. We only
plot the results for the density and velocity at different time steps. Figure 2.16
for the Sod shock tube problem and figure 2.17 for the unsteady shock problem
show that the solution agrees well with the previous results except for small dif-
ferences due to the different numerical scheme. The computational time of the
two simulations on a 3 Ghz Athlon computer shows a speedup of 65 % for the
Sod problem and of 40 % for the unsteady shock problem. This different speedup
can be explained by the different sizes of the kinetic regions in the two tests, and
also by the different time steps. In the second test, the limitation of the time step
due to convection (CFL condition) and that coming from the relaxation are close.
Therefore, the simulation times for the macroscopic and microscopic models are
closer than in the case of the Sod test. These considerations suggest that the use
of such a decomposition technique is very efficient in regimes close to thermody-
namical equilibrium in which however, Navier-Stokes or Euler fail to accurately
describe the flow. Such regimes are the so-called transitional regimes. Of course,
the computational time can be reduced even further for two or three dimensional
computations.

2.7 Conclusion
In this work we have proposed a new approach for the solution of rarefied gas
dynamics problems through a dynamic coupling of kinetic and fluid equations.
This method extends previous works [37] where a static coupling was considered.
The main feature of the work is that the two models are coupled in a region in
which the full solution is recovered by summing up the two (kinetic and fluid)
contributions. One advantage of this technique is that no boundary condition is
needed at the boundary of each zone, by contrast to conventional domain decom-
position schemes. This makes the method very flexible. In the present work, we
have proposed a procedure to dynamically update the location of the different fluid
and kinetic regions. This allows a time adaptation of the domain decomposition
technique which dramatically increases the efficiency of the method. Another im-
portant feature of the method which has been highlighted in the present work is
the possibility of creating new kinetic regions (in other words, the topology of the
domain decomposition itself can be dynamically updated). The combination of
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different criteria both of macroscopic and microscopic nature allows to reliably
detect the regions of sharp gradients and discontinuities where the microscopic
model must be solved and we can define a priori the approximation tolerance that
we decide to accept.

The last part of the paper is devoted to numerical tests in order to compare the
performances and results of the coupling method with respect to both the macro-
scopic and microscopic models. Although only one-dimensional results have been
presented, and further tests must be performed to completely validate the method,
the results look very encouraging. The algorithm performs well with the two dif-
ferent numerical schemes that have been experimented and significant computa-
tional speedup can be achieved without compromising the accuracy of the results.
Compared to a steady domain decomposition method, the possibility of dynami-
cally updating the kinetic region allows us to shrink the kinetic zones to the region
of interest at any time which results in considerably improved efficiency.

In the future, the numerical tests need to be extended to two dimensional prob-
lems. The dynamic domain decomposition strategy will also be adapted to differ-
ent coupling methods such the localized kinetic upscaling method of Degond, Liu
and Mieussens [39], or the hybrid domain decomposition method developed by
Dimarco and Pareschi [45] where a Monte Carlo scheme is used to compute the
solution of the Boltzmann-BGK equations.



Chapter 3

Hybrid Multiscale Methods II.
Kinetic Equations

This Chapter is based on the work [44] published in SIAM Multiscale Modeling
and Simulation Vol 6., No 4,pp. 1169-1197 in collaboration with Prof. Lorenzo
Pareschi of the Department of Mathematics and Center for Modeling Computing
and Statistics (CMCS) of University of Ferrara.

3.1 Introduction

A broad range of scientific problems involve multiple scales and multi-scale phe-
nomena (material science, chemistry, fluid dynamics, biology...). Examples are
microscopic departures from macroscopic neutrality in plasmas, dislocation in
plastic deformation, turbulence in fluid or molecular reaction in biology sim-
ulations. These phenomena involve different physical laws which govern the
processes at different scales. In many situations we are interested only to the
macroscopic scale of the problems and we would like to have equations to de-
scribe these macroscopic variables ignoring the rest. From the computational
point of view, the representation of the solution through the microscopic model
has an overwhelming cost. To this aim many numerical methods have been devel-
oped which address explicitly the multiscale structure of the solution like wavelet
[67], domain decomposition [10, 11, 37, 38, 75] stiff solvers [21, 62, 64, 65]
adaptive mesh refinement [22, 105]. In addition coupling techniques of micro-
scopic stochastic model with macroscopic deterministic model for ODE or PDE
[48, 49, 50] gave very good results in the nearby past. In the present work we af-
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ford in details the problem in the case of multiscale kinetic equations. The Navier-
Stokes or the Euler equations, that describe the problem at the macroscopic level,
do not give a satisfactory descriptions of the physical system in all situations and
a kinetic description through the Boltzmann equation is often required. The de-
velopment of numerical methods to solve rarefied gas dynamic (RGD) problems
is a big challenge due to the presence of different time and/or space scales. As
a consequence the dominant methods for the computations are based on proba-
bilistic Monte-Carlo techniques at different levels [7, 89, 93]. They have many
advantages in terms of computational cost for problems with high dimensions,
simplicity in preserving some physical properties of the underlying problem (typ-
ically using a particle interpretation of the statistical sample) and great flexibility
when dealing with complicate geometries. On the other hand, particle methods
yield low accurate and fluctuating results with respect to deterministic methods
and the convergence in general is quite low. Typically, in continuum regions a
macroscopic numerical scheme that solves the Euler or the Navier-Stokes equa-
tions gives the correct results. Thus it is highly desirable to have a method that
combine a Monte Carlo solver in non equilibrium regions with a deterministic
solver in equilibrium ones. Domain decomposition techniques are then often used
in order to better treat this difficulties and to design suitable numerical schemes.
However, this multi-modelling approach, requires the a-priori knowledge of some
of the scales, in order to define the different regions where the different models
are valid, which are typically hard to know in practice [10, 75, 40].

In this paper we will focus on the BGK-Boltzmann model which is known to
be accurate in describing systems close to equilibrium [34]. First we extend the
results obtained in [43] for the solution of system of hyperbolic equations with
relaxation to the case of kinetic equations. Next, we propose several generaliza-
tions to the multiscale hybrid schemes in order to afford the new complications
that arise in the simulation of multiscale RGD, like the lack of a compact support
for the probability distribution function in velocity space.

The strategy is based on the solution of the full model in the whole computa-
tional domain and on the design of the numerical method in such a way that it is
capable to take advantage of the model reduction when we approach the thermo-
dynamic equilibrium. This involves the development of heterogeneous numerical
methods which hybridize different numerical approaches of probabilistic and de-
terministic nature.

The main features of the schemes can be summarized as follows

• In regions far from equilibrium, where the solution of the full kinetic equa-
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tion is required, the schemes provide a probabilistic Monte Carlo approxi-
mation of the solution.

• In thermodynamic equilibrium regions, where the Euler equations are valid,
the schemes provide a deterministic finite volume/difference approximation
without any time step restrictions induced by the small relaxation rate.

• In intermediate regions, the approximated solution is generated automati-
cally by the schemes as a suitable blending of a nonequilibrium probabilistic
component and an equilibrium deterministic one.

The rest of the article is organized as follows. First we introduce the Boltzmann-
BGK equations and its main properties. Then we present the hybrid schemes with
particular emphasis to the difference between solving the true Boltzmann-BGK
equation (which is not compactly supported in velocity space) and a discrete ve-
locity model (for which we need an artificial boundary in velocity space). Next in
Section 3.4 we perform several numerical tests in order to compare the different
performances of the methods. Some final considerations are reported in the last
section.

3.2 Boltzmann-BGK Equation
We consider the Boltzmann-BGK equation

∂tf + v · ∇xf =
1

τ
(Mf − f), (3.2.1)

with the initial condition

f(x, v, t = 0) = f0(x, v), (3.2.2)

Where f = f(x, v, t) is a non negative function describing the time evolution of
the distribution of particles which move with velocity v ∈ Rdx , in the position
x ∈ Ω ⊂ Rdv at time t > 0. In most applications dx = dv = 3 however one-
dimensional and two-dimensional models are often used.

The relaxation time τ is defined in the dimensional case as [1]

τ−1 = Ac% (3.2.3)
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Where Ac is a constant and % is the density. In [37] the relaxation parameter is
defined as

τ−1 = C%T 1−ω (3.2.4)

Where T is the temperature, while ω and C are a constant that depend on the gas.
In the adimensional case we have

τ−1 =
C1

ε
(3.2.5)

The parameter ε > 0 is the Knudsen number and is proportional to the mean free
path between collison, while C1 is a constant that we choose equal to one [34],
[107]. In the BGK equation the collision are modelled with a relaxation towards
the equilibrium Mf called Maxwellian. The local Maxwellian function is defined
by

Mf (%, u, T )(v) =
%

(2πT )3/2
exp

(−|u− v|2
2T

)
, (3.2.6)

where %, u, T are the density, mean velocity and temperature of the gas

% =

∫

R3

fdv, u =

∫

R3

vfdv, T =
1

3%

∫

R3

|v − u|2fdv, (3.2.7)

While the energy E is defined as

E =
1

2

∫

R3

|v|2fdv, (3.2.8)

Finally we define the kinetic entropy of f by

Hf =

∫

R3

f log fdv, (3.2.9)

Now, if we consider the BGK equation (3.2.1) and multiply it for 1, v, 1
2
|v2|, the

so-called collision invariant, by integrating in v we obtain the first three moments
of the distribution function f :

∂%

∂t
+

3∑
i=1

∂

xi

(%ui) = 0

∂%uj

∂t
+

3∑
i=1

∂

xi

(%uiuj + pij) = 0, j = 1, 2, 3

∂

∂t

(
1

2
%|u|2 + %e

)
+

3∑
i=1

∂

∂xi

[
%ui

(
1

2
|u|2 + e

)
+

3∑
i=1

uipij + qi

]
= 0

(3.2.10)
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This equations are the corresponding conservations laws for mass, momentum
and energy, in which e represent the internal energy, p the kinetic pressure while
q is the third order moment. Furthermore the dissipation of entropy could easily
be proved

∂t

∫
f log fdv +∇x

∫
vf log fdv ≤ 0 (3.2.11)

Unfortunately the differential system of equations (3.2.10) is not closed, since it
involves higher order moments of the distribution function. Now, it can be seen
that Mf is the unique solution of the following entropy minimization problem

HMf
= min{Hf , f ≥ 0 s.t.

∫

R3

mf = %} (3.2.12)

where m is the vector containing the collision invariants, while % is the vector
containing the first three moments of f

m(v) = (1, v,
1

2
|v|2), % = (%, %u,E) (3.2.13)

This is the well-known Boltzmann H-theorem, and it means that the local equi-
librium state minimizes the entropy of all the possible states leading to the same
macroscopic properties. Now formally as ε → 0 the function f tends to Maxwellian.
In this case it is possible to compute f from its moments thus obtaining the closed
Euler system of compressible gas dynamics equations

∂%

∂t
+∇x · (%u) = 0

∂%u

∂t
+∇x · (%u⊗ u + p) = 0,

∂E

∂t
+∇x · (Eu + pu) = 0

p = %T, E =
3

2
%T +

1

2
%|u|2

(3.2.14)

3.2.1 Boundary Conditions
Typically, equation (3.2.1) is completed with boundary conditions for x ∈ ∂Ω and
for v · n ≥ 0 where n denotes the unit normal, pointing inside the domain. The
boundary conditions are modelled by

|v · n|f(x, v, t) =

∫

v∗·n<0

|v∗ · n|K(v∗ → v, x, t)f(x, v∗, t)dv∗ (3.2.15)
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Where v∗ is the velocity after the process. The entering flux is described as a
function of the outgoing flux modified by the boundary kernel K. Such definition
of the boundary condition preserve the mass if

K(v∗ → v, x, t) ≥ 0,

∫

v∗·n≥0

K(v∗ → v, x, t)dv = 1 (3.2.16)

Usually we apply two type of boundary condition absorbing or reflecting, another
condition could be a convex combination of the two. From a physical point of
view one assume that a fraction of particle (α) is absorbed and re-emitted at a
temperature and velocity corresponding to a Maxwellian (with temperature and
velocity of the boundary), while the other (1 − α) is specular reflected, this is
equivalent to impose for the ingoing velocities

f(x, v, t) = (1− α) ∗Rf(x, v, t) + αMf(x, v, t), v · n(x) ≥ 0 (3.2.17)

And
Rf(x, v, t) = f(x, v − 2n(n · v), t)

Mf(x, v, t) = µ(x, t)Mω(v, t)
(3.2.18)

If we denote by Tω the temperature of the boundary and by uω the velocity, Mω is
given by

Mω(%, uω, Tω)(v) =
%

(2πTw)3/2
exp

(−|uw − v|2
2Tw

)
, (3.2.19)

Finally the value of µ is determined by mass conservation

µ(x, t)

∫

v·n≥0

Mω(v)|v · n|dv =

∫

v·n<0

f(x, v, t)|v · n|dv (3.2.20)

We note that for α = 0 (specular reflection) the re-emitted particle have the same
flow of mass, temperature and tangential momentum of the incoming molecules,
while for α = 1 (full accommodation) the re-emitted particle have completely lost
memory of the incoming values (only the global mass is conserved).

3.3 Hybrid methods
In the sequel we will restrict for the sake of simplicity to the one dimensional
situation dx = dv = 1, even though our methods apply naturally to the full three
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v

Figure 3.1: Distribution function as a combination of equilibrium and non-
equilibrium part representation (3.3.4) left, (3.3.8) right.

dimensional case. Furthermore the dependence on the x and t variables will be
omitted in this introductory part.

The starting point in the construction of all the hybrid methods is the interpre-
tation of the distribution function as a probability density,

f(v) ≥ 0, % =

∫ +∞

−∞
f(v)dv = 1, (3.3.1)

and the following definition of hybrid representation

Definition 3.3.1 Given a probability density f(v), and a probability density M(v),
called equilibrium density, we define w(v) ∈ [0, 1] and f̃ ≥ 0 in the following way

w(v) =





f(v)

M(v)
, f(v) ≤ M(v) 6= 0

1, f(v) ≥ M(v)
(3.3.2)

and
f̃(v) = f(v)− w(v)M(v). (3.3.3)

Thus f(v) can be represented as

f(v) = f̃(v) + w(v)M(v). (3.3.4)
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If we take now
β = min

v
{w(v)}, (3.3.5)

and
f̃(v) = f(v)− βM(v), (3.3.6)

we have ∫

v

f̃(v)dv = 1− β. (3.3.7)

Let us define for β 6= 1 the probability density

fp(v) =
f̃(v)

1− β
.

The case β = 1 is trivial since it implies f(v) = M(v). Thus the probability
density f(v), can be written as a convex combination of two probability densities
in the form [16, 17]

f(v) = (1− β)fp(v) + βM(v). (3.3.8)

Clearly the above representation is a particular case of (3.3.4).

Remark 3.3.1 If we define for R > 0

wR(v) =

{
w(v), |v| ≤ R
0, |v| > R

(3.3.9)

and

f̃R(v) =

{
f̃(v), |v| ≤ R
f(v), |v| > R

(3.3.10)

we have the representation

f(v) = f̃R(v) + wR(v)M(v). (3.3.11)

In this case taking
βR = min

v
{wR(v)} ≥ β, (3.3.12)

and
f̃R(v) = f(v)− βRE(v), (3.3.13)
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where E(v) = M(v)Ψ(|v| ≤ R) and Ψ(·) is the indicator function, we have
∫

v

f̃R(v)dv = 1− ρEβR, ρE =

∫
E(v)dv ≤ 1. (3.3.14)

Let us define the probability density

fp
R(v) =

f̃R(v)

1− ρEβR

.

Again f(v), can be written as a convex combination of two probability densities
in the form

f(v) = (1− ρEβR)f p
R(v) + ρEβR

E(v)

ρE

. (3.3.15)

Off course these representations are particularly useful since, as we will see in the
sequel, they allow to restrict the deterministic part of the schemes to compactly
supported function in velocity space.

For a more general function which depends also on space and time we consider
the following representation

f(x, v, t) = f̃(x, v, t)︸ ︷︷ ︸
nonequilibrium

+ w(x, v, t)M(x, v, t)︸ ︷︷ ︸
equilibrium

,

where w(x, v, t) is a continuum function (which may or may not be compactly
supported in v) that characterizes the equilibrium fraction and f̃(x, v, t) the non
equilibrium part of the distribution function. In order to compute the solution
we need to discretize the velocity space, thus practically the function w(x, v, t)
becomes the approximation wk(x, t) = w(x, vk, t), that means we replace our
continuous function by piecewise constant function. The general methodology
consist in

• Solve the evolution of the perturbation by Monte Carlo methods. Thus
f̃(x, v, t) will be represented by a set of samples in the computational do-
main.

• Solve the evolution of the equilibrium fraction by deterministic methods.
Thus w(x, v, t) M(x, v, t) will be represented on a suitable grid in the com-
putational domain.
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In the sequel we will describe the different schemes. In the first part we start
from a discrete velocity model (DVM) of the Boltzmann-BGK equation. Thus
the velocity space is naturally discretized and bounded by the model itself and the
schemes we obtain in this case represent a direct generalization of [43]. In the
second part we show how to extend our methodology to the full Boltzmann-BGK
equation without any artificial boundary in the velocity space.

3.3.1 Hybrid DVM-BGK Schemes
In order to introduce the reader to the main tools used we first describe briefly a
DVM-BGK and how to solve it with fully deterministic and fully Monte Carlo
method.

DVM-BGK

We assume that gas particles can attain only a finite set of velocities (see [84] for
details about DVM-BGK models). Let K be a set of N multi-indexes, defined by
K = {k = (ki)D

i=1, k
i ≤ K i}, where D = 1, 2, 3 is the space dimension and {K i}

are given bounds. The set of possible velocities reads

V = {vk = k4v + a, k ∈ K} (3.3.16)

where a is an arbitrary vector of RD and 4v is a scalar. We denote the discrete
collision invariants by mk = (1, vk,

1
2
|vk|2), and the continuous distribution func-

tion becomes a piecewise constant function fK(t, x) = (fk(t, x))k∈K, where each
component fk(t, x) is assumed to be an approximation of f(x, vk, t). The macro-
scopic quantities are now given by sums on V .

%K(t, x) =
∑

k∈K
mkfk(t, x) (3.3.17)

HK(t, x) =
∑

k∈K
fk(t, x) log fk(t, x) (3.3.18)

The solution of the BGK model is reduced to the solution of a set of N equations:

∂tfk + vk · ∇xfk =
1

ε
(Ek − fk), ∀k ∈ K (3.3.19)

Now the main problem is to define an approximation EfK of the Maxwellian equi-
librium MfK such that conservation is preserved (3.2.10) and dissipation of en-
tropy is assured (3.2.11). Notice that the natural approximation Ek = MfK(vk)
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cannot satisfy this requirements. Let define EK by the minimum of discrete en-
tropy among all the piecewise constant functions, defined on the same support and
with the same discretization of the velocity space, that have the same moments of
f

HEK = min{Hg, g ≥ 0 s.t.
∑

k∈K
mkgk = %K} (3.3.20)

It has been proved that the solution for this problem exist, it is unique and has an
exponential form [84]. Due to the above results, the computation of EK can be
obtained through the solution of the nonlinear set of equations for α

∑

k∈K
mk exp(α ·mk) = %K (3.3.21)

This nonlinear set of equations can be solved, for instance, by a Newton algorithm.
The parameters α are function of t and x and can be expressed in terms of the
macroscopic variables %, u, T through

α =

(
log

(
%

(2πRT )
3
2

− |u|2
2RT

)
,

u

RT
,− 1

RT

)
(3.3.22)

Now, let f0 be a vector of RN , if the problem (3.3.19) has a solution fK, then we
have

fk(t, x) > 0, ∀ k, t, x (3.3.23)

Ek = exp(α ·mk), ∀k (3.3.24)

∂t

∑

k∈K
mkfk +∇x ·

∑

k∈K
mkvkfk = 0 (3.3.25)

∂t

∑

k∈K
fk log fk +∇x ·

∑

k∈K
vkfk log fk ≤ 0 (3.3.26)

A deterministic numerical scheme for DVM-BGK

We restrict the presentation of the scheme to one spatial dimension and one veloc-
ity dimension on a Cartesian grid (see [84] and [107] for details about DVM-BGK
deterministic numerical schemes). The equations to be solved are

∂tfk + vk · ∇xfk =
1

ε
(Ek − fk), ∀k ∈ K (3.3.27)
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Consider a spatial Cartesian uniform grid defined by nodes xi = (i4x) and a time
discretization tn = n4t. Thus fn

k,i is an approximation of f(tn, xi, vk) inside the
space cell I =]xi− 1

2
, xi+ 1

2
[, the corresponding discrete equilibrium is denoted by

En
i = (En

k,i)k∈K , and is therefore En
k,i = exp(αn

i · mk), where αn
i is the unique

solution of the non linear set of equations

∑

k∈K
mk exp(αn

i ·mk) = %n
i (3.3.28)

The computation of αn
i is performed through a Newton algorithm with the choice

of En
k,i = Mf (xi, vk, tn), ∀k ∈ K as initial value; in the cases tested the con-

vergence of the method is fast, only one iteration is needed very often, how-
ever if the choice of the boundary in velocity space is done wisely En

k,i approach
Mf (xi, vk, tn) ∀k ∈ K.

Now, in order to introduce the hybrid scheme, we split the problem in a relax-
ation step and a convection step, the transport part is simply the linear convection
equation and can be approximated by a standard finite volume scheme, while the
relaxation step is represented by a system of stiff ordinary differential equations.
The scheme reads

f c
k,i = fn

k,i −
∆t

∆x

(Fn
k,i+1/2 −Fn

k,i−1/2

) ∀k ∈ K (3.3.29)

Where c indicates the intermediate step after the transport. The numerical fluxes
are defined by

Fn
k,i+1/2 =

1

2

(
vkf

n
k,i+1 + vkf

n
k,i − |vk|(fn

k,i+1 − fn
k,i)

) ∀k ∈ K (3.3.30)

For the relaxation step we utilize the exact solution of the ODE equation

f r
k,i = e−

∆t
ε f c

k,i + (1− e−
∆t
ε )Ec

k,i ∀k ∈ K (3.3.31)

Where Ec
k,i is the discrete equilibrium function computed with the moments found

after the convection. The distribution function at the next time step is simply
fn+1

i,k = f r
i,k ∀k ∈ K. Finally the time step is computed through the relation

∆t

(
max
K

( |vk|
∆x

))
< 1. (3.3.32)
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A Monte Carlo scheme for DVM-BGK

A Monte Carlo approach to solve the DVM-BGK equations is the next tool we
need for the construction of the hybrid schemes. In this model the distribution
function is again represented by a piecewise constant function, defined on a com-
pact support. We describe the scheme in one dimension in space and one dimen-
sion in space velocity. First we split the equations in two part: a transport and a
relaxation stage

∂tf
c
k(x, t) + vk · ∇xf

c
k(x, t) = 0 ∀k ∈ K (3.3.33)

∂tf
r
k (x, t) = −1

ε
(f r

k (x, t)− Er
k(x, t)) ∀k ∈ K (3.3.34)

The solution of the relaxation problem can be sought in the form of an evolution
of a discrete probability density in each space point

pk(x, t) =

{
fk(x, t)∆v

%(x, t)
, v = v(k), ∀k ∈ K (3.3.35)

Thus, with probability pk(x, t), we assign to a sample velocity vk. In order to begin
the procedure we need to sample from the discrete probability density defined
by the initial data f 0

k (x, t). We want to sample N particle for each interval in
the discrete space. We use the following strategy: divide the interval [0,1] in K
intervals, i-th interval being of length pk, extract a uniform [0, 1] random number
ξ, detect the interval k to which ξ belong, give to the sample velocity vk. We can
proceed as follows for each interval:

Algorithm 3.3.1 (Discrete sampling)

1. compute Pk =
∑k

i=1 pk, k = 1, .., K, P0 = 0

2. find the integer k such that Pk−1 ≤ ξ < Pk, with ξ random number in [0, 1].

Once P has been computed, step 2 can be performed with a binary search, in
O(ln K). Let us define with {ν1, ν2, . . . , νN} the initial samples from p0

k,i at a
given space point xi. Hence a Monte Carlo method to obtain samples from pn

k,i

with n time step and %i solutions of the transport step is
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Algorithm 3.3.2 (Monte Carlo for DVM-BGK equations)

1. Given N samples νk

(a) with probability e−t/ε the samples are unchanged

(b) with probability 1 − e−t/ε the samples are replaced with equilibrium
samples. To extract N equilibrium samples proceed as follows

i. compute pk,i =
Er

k,i∆v

%i

ii. use Algorithm 1

Where Er
k,i represent the discrete equilibrium function at point xi, computed

with the moments found after convection. Note that the above procedure requires
the exact knowledge of %i which we can only estimate from the samples at the
given point xi. In practice we need the knowledge of density, mean velocity and
temperature at each point xi to reconstruct the discrete Maxwellian. The sim-
plest method, which produces a piecewise constant reconstruction, is based on
evaluating the histogram of the samples on the grid. Given a set of N samples
with position χ1, χ2, . . . , χN and velocity ν1, ν2, . . . , νN , we define the discrete
probability density at the cell centers

pk(xi) =
1

N

N∑
j=1

Ψ∆x(χj − xi)Φ∆v(νj − vk), i, k = . . . ,−2,−1, 0, 1, 2, . . .

(3.3.36)
where Ψ∆x(x) = 1 if |x| ≤ ∆x/2 and Ψ∆x(x) = 0 elsewhere, while Φ∆v(v) = 1
if |v| ≡ 0 and Φ∆v(v) = 0 in other cases.

Let us denote by the index k the sample νk and its position χk. If we use
equations (3.3.36) then %i is given by the number of samples Nj belonging to the
cell Ii

%i =
m

∆x

∑
χk∈Ii

1 =
m

∆x
Nj (3.3.37)

where m = 1
N

∫
%dx, while the mean velocity and the energy are given by

ui =
1

Nj

∑
χk∈Ii

νk, Ei =
1

2Nj

m

∆x

∑
χk∈Ii

|νk|2 (3.3.38)

We refer the reader to [99] (and the references therein) for an introduction to basic
sampling and different reconstruction techniques in Monte Carlo methods.
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Finally the transport step does not present any difficulty and can be applied
without any need of meshes or reconstructions. In fact, from the exact expression
of the solution f c

k,i = f r
k,i(x− vkt, t) ∀k ∈ K, we simply need to shift the position

of the samples accordingly to the law

χk = χk + νkt, ∀k. (3.3.39)

In the sequel we will use the terminology “particle” to denote the pair (χk, νk)
characterizing the sample νk and its position χk.

The method described above deserves some remarks.

Remark 3.3.2

• One important aspect in the method is that we do not need to reconstruct
the functions fK but only the conserved quantity %, u, T .

• As for the deterministic DVM-BGK, the Monte Carlo scheme presented
needs the computation of a discrete equilibrium function through some iter-
ative solver, such as Newton method.

• Note that as ε → 0 the method becomes a Monte Carlo algorithm for the
limiting fluid dynamic equations. This limiting method is the analogue of a
kinetic particle method for the compressible Euler equations.

• The simple splitting method we have described here is first order in time.
Second order Strang splitting can be implemented similarly.

The hybrid method (HM)

The standard hybrid method is based on the hybrid representation (3.3.8). In the
DVM case we consider the hybrid representation for the function fK instead of f
using EK instead of MfK . We have two differences respect (3.3.8), the function fK
and EK are piecewise constant and defined on a compact support (see figure 3.2
for the representation of E(v) respect to Mf (v) in the continuous case). Thus we
assume that the solution of the relaxation step has the form

f r
k (x, t) = (1− βr(x, t))f r,p

k (x, t) + βr(x, t)Er
k(x, t), ∀k ∈ K (3.3.40)

From the exact solution of the relaxation step (3.3.31) and the initial data we could
obtain the evolution of the unknowns f p

k,i and βr
i , for the detail of the computations
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we remind the reader to [43]

f r,p
k (x, t) = f p

k (x, t = 0), ∀k ∈ K (3.3.41)
βr(x, t) = e−t/εβ(x, t = 0) + 1− e−t/ε. (3.3.42)

Note that Er
k(x, t) = Ek(x, t = 0) and that βr(x, t) → 1 as ε → 0. If we start from

β(x, t = 0) = 0 (all particles) at the end of the relaxation a fraction 1−e−t/ε of the
particles is discarded by the method as the effect of the relaxation to equilibrium.
Thus particles will represent the fractions (1 − βr(x, t))f r,p

k (x, t). Moreover the
hybrid representation is naturally kept by the relaxation.

After relaxation the exact solution of the transport step reads

f c
k(x, t) = (1− βc(x, t))f c,p

k + βc(x, t)Ec
k(x, t) = f r

k (x− vkt, t)

= (1− βr(x− vkt, t))f
r,p
k (x− vkt, t) + (3.3.43)

+ βr(x− vkt, t)Er
k(x− vkt, 0), ∀k ∈ K.

To simplify notations let us set

f ∗,pk (x, t) = (1− βr(x− vkt, t))f
r,p
k (x− vkt, t), ∀k ∈ K

E∗k (x, t) = βr(x− vkt, t)Er
k(x− vkt, 0), ∀k ∈ K.

Unfortunately now the hybrid structure of the solution is not kept since E∗k (x, t)
are not equilibrium states. For example the above set of equations can be solved
taking

βc(x, t) = 0, (3.3.44)

and

f c,p
k (x, t) = f ∗,pk (x, t) + E∗k (x, t), ∀k ∈ K (3.3.45)

The choice (3.3.44) means we completely loose, after the transport, the structure
equilibrium non-equilibrium. However, note that we do not need to resample the
whole deterministic fraction in fact if we move one step t1 further in the relaxation
using f c

k(x, t) defined above as initial data we have βr(x, t + t1) = 1− e−t1/ε and

f r
k (x, t + t1) = e−t1/ε(f ∗,pk + E∗k (x, t)) + (1− e−t1/ε)Er

k(x, t + t1), ∀k ∈ K.(3.3.46)

Where Er
k(x, t + t1) = Ec

k(x, t). Thus, in practice, we can avoid to resample par-
ticles after the convection and apply the resampling only on a fraction e−t1/ε of
the deterministic fraction as needed by the relaxation. More precisely taking cell
averages of (3.3.46) as in a standard Monte Carlo method, and using equations
(3.3.36) for the reconstruction as shown later, the algorithm to compute the parti-
cles that represent the fractions e−t1/εf c

k(x, t) in each interval reads as follows
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Algorithm 3.3.3 (Hybrid Monte Carlo for BGK Discrete Velocity Model)

1. Given m =
∆x4v

N

∑
i

∑

k

f c
k,i(t) = m0 =

∆x4v

N0

∑
i

∑

k

fk,i(t = 0)

2. for each interval Ii, i = . . . ,−2,−1, 0, 1, 2, . . .

(a) set βi = 1− e−t1/ε

(b) set Ni = Iround

(
(1− βi)

∆x4v

m

∑

k

f c
k,i(t)

)

(c) set Pi =
u∗p,i(t)

u∗p,i(t) + u∗E,i(t)
,

with u∗p,i(t) =
∑

k f ∗,pk,i (t)

and u∗E,i(t) =
∑

k E∗k,i(t)

(d) for k = 1, . . . , Ni

with probability Pi take (νj, χj) as one of the advected particles.
with probability 1−Pi take one sample νj from the deterministic frac-
tion. To extract (1−Pi)Ni samples from discrete advected Maxwellian
do the following

i. Compute pk,i =
E∗k,i·∆v

%i

ii. Compute Pk,i =
∑

K pk,i, k = 1, .., K, P0,i = 0

iii. Compute a random number ξ

iv. find the integer k such that Pk−1,i ≤ ξ < Pk,i

v. Give to the sample νj the velocity vk−1

After this the hybrid solution is computed simply adding the deterministic
terms

βiEr
k,i(t + t1), ∀k ∈ K

to the stochastic terms

(1− βi)f
r,p
k,i (t + t1), ∀k ∈ K

.
Note that as ε → 0 we do not perform any resampling at all, and we obtain a

relaxation scheme for the limiting Euler equations. We denote with the shorthand
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HM the hybrid scheme based on the above algorithm to determine the fraction of
solution represented by particles which make use of the choice (3.3.44) after the
transport.

Remark 3.3.3

• The convection part corresponding to f ∗,pk (x, t) is solved exactly by trans-
port of particles as in a full Monte Carlo method. At variance the convection
part corresponding to E∗k (x, t) is solved by finite volumes scheme for DVM.

• Note that the effective value of βi used in the above algorithm differs from
1 − e−t1/ε. In fact if N c

i denotes the number of particles in cell i after the
convection step, during the relaxation we keep only an integer approxima-
tion Nβ

i of (1 − βi)N
c
i . The effective value of βi can then be computed at

the end of the algorithm as

βE
i = 1− Nβ

i

N c
i

.

Componentwise hybrid method (CHM)

Another approach consist in finding the maximum value of βc(x, t) > 0 in order
to maximize the deterministic fraction in equations (3.3.43). To achieve this goal
we start from representation (4.3.4) which gives for the relaxation step

f r
k (x, t) = f̃ r

k (x, t) + wr
k(x, t)Er

k(x, t), ∀k ∈ K (3.3.47)

The evolution for the unknowns f̃ r
k (x, t), wr

k(x, t) now are (see [43] for details)

f̃ r
k (x, t) = e−t/εf̃k(x, t = 0), wr

k(x, t) = e−t/εwk(x, t = 0) + 1− e−t/ε, ∀k ∈ K.(3.3.48)

As before the hybrid representation is kept by the relaxation process. The only
difference with respect to the HM method is that particles are discarded from fk

with different ratios, depending to the local equilibrium degree.
Again the convection destroys the structure of the solution and we get

f c
k(x, t) = f̃ c

k(x, t) + wc
k(x, t)Ec

k(x, t) = f r
k (x− vkt, t)

= f̃ r
k (x− vkt, t) + wr

k(x− vkt, t)Er
k(x− vkt, 0), ∀k ∈ K.(3.3.49)

To simplify notations let us set

f ∗,pk (x, t) = f̃ r
k (x− vkt, t), Ẽk(x, t) = wr

k(x− vkt, t)Er
k(x− vkt, 0), ∀k ∈ K.
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Here we do not assume wc
k(x, t) = 0, ∀k ∈ K, since we want to take advantage of

the componentwise hybrid representation in order to maximize the deterministic
fraction of the solution. Thus, starting from the deterministic fractions Ẽk(x, t)
defined above we construct the new values of wc

k(x, t), f̃ c
k(x, t), using Definition

4.3.1 in the case of piecewise constant functions defined on a compact support.
More precisely we define

wc
k(x, t) =





Ẽk(x, t)

Ec
k(x, t)

, Ẽk(x, t) ≤ Ec
k(x, t) 6= 0

1, Ẽk(x, t) > Ec
k(x, t)

∀k ∈ K (3.3.50)

and
E∗k (x, t) = Ẽk(x, t)− wc

k(x, t)Ec
k(x, t), ∀k ∈ K. (3.3.51)

In this way we obtain

f̃ c
k(x, t) = f ∗,pk (x, t) + E∗k (x, t), ∀k ∈ K. (3.3.52)

The hybrid method based on the computations of the equilibrium fraction after
the transport through (3.3.50) will be called CHM. The next relaxation step then
applies as in the HM case, substituting the value f̃ c

k(x, t) with the relation above

f r
k (x, t + t1) = f̃ r

k (x, t + t1) + wr
k(x, t + t1)Er

k(x, t + t1)

= e−t1/εf c
k(x, t) + (1− e−t1/ε)Ec

k(x, t)

= e−t1/ε(f ∗,pk (x, t) + E∗k (x, t) + wc
k(x, t)Ek(x, t)) +

+ (1− e−t1/ε)Ek(x, t), ∀k ∈ K. (3.3.53)

If we define after the convection step

βc(x, t) = min{wc
k(x, t)}, ∀k ∈ K, (3.3.54)

we maximize the common value of βc such that the standard hybrid method ap-
plies, that particulary choice leads to another hybrid scheme that will be called
HMI. This could be very relevant in applications where it is important that the
hybrid decomposition is component independent. For instance if we want to treat
the equilibrium part trough a macroscopic scheme we have to adopt this strategy.
The independent fluid solver strategy will be the subject of a future work [46].
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Figure 3.2: Discrete Maxwellian on a truncated velocity domain (dashed lines)
and corresponding Maxwellian with same mass, momentum and energy.

3.3.2 Hybrid Boltzmann-BGK Schemes
The use of a discrete velocity model presents several drawbacks. First, since the
discrete local Maxwellian equilibrium is needed explicitly, we need a suitable nu-
merical method to solve the non linear system of equations (3.3.21). From the
computational side this leads to an increase of computational cost which is espe-
cially relevant in higher dimensions. Next, since discrete Maxwellian equilibrium
states are compactly supported they differ from Maxwellians of the Boltzmann
equation. Thus the corresponding fluid equations may be different from the classi-
cal ones (see Figures 3.2 and 3.3), in other words a discrete velocity model cannot
describe correctly all possible flows [84]. For this reason it is highly desirable to
have a method which is not based on the use of a DVM.

The idea is to split the Maxwellian into two parts

M(v) = ER(v) + TR(v), (3.3.55)

where ER(v) = M(v)Ψ(|v| ≤ R), R > 0 represents the central part of the
solution and TR(v) = M(v)Ψ(|v| > R) the tails. The starting point of such
schemes is given by representations (3.3.11) and (3.3.15).

Since the schemes follows the same lines of the ones described for the DVM-
BGK model we will describe them shortly by emphasizing only the major differ-
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ences.

Boltzmann Hybrid Method (BHM)

We start by splitting again our problem into relaxation and transport steps and use
representation (3.3.15). The solution of the relaxation now reads

f r
R(x, v, t) =

(
1− ρr

E(x, t)

ρr(x, t)
βr

R(x, t)

)
f r,p

R (x, v, t) + βr
R(x, t)Er

R(x, v, t),(3.3.56)

where

ρr(x, t) =

∫
f r

R(x, v, t)dv =

∫
f r,p

R (x, v, t)dv.

As before using the exact solution of the relaxation step starting from initial data at
t = 0 we are able to compute the evolution equations for the unknowns f r,p

R (x, t)
and βr

R(x, t). The equation for βr
R(x, t) is the same as in scheme HM

βr
R(x, t) = e−t/εβR(x, 0) + 1− e−t/ε. (3.3.57)

whereas the equation for the particles distribution now takes into account the
changes due to the presence of the tails

f r,p
R (x, v, t) =

e−t/εβR(x, 0) + 1− e−t/ε

a− b
TR(x, v, 0)

+
1

a− b

(
e−t/ε

(
1− ρE(x, 0)

ρ(x, 0)
βR(x, 0)

))
f p

R(x, v, 0)(3.3.58)

where

b = (1− e−t/ε)

(
ρE(x, 0)

ρ(x, 0)

)
, a =

(
1− ρE(x, 0)

ρ(x, 0)
βR(x, 0)e−t/ε

)
.

The major difference is that as ε → 0 a fraction (1 − ρr
E(x, t)/ρr(x, t)) of the

solution is still represented by particles. After relaxation we transport the particles
and the equilibrium part as before to obtain

f c
R(x, v, t) =

(
1− ρc

E(x, t)

ρc(x, t)
βc

R(x, t)

)
f c,p

R (x, v, t) + βc
R(x, t)Ec

R(x, v, t)

= f ∗,pR (x, v, t) + E∗
R(x, v, t). (3.3.59)
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Figure 3.3: Density (left) and velocity (right) profiles for the Sod test, with initial
data %L = 2× 10−5, uL = 0, TL = 273.15 and %R = 0.25× 10−5, uR = 0, TR =
273.15. The limit ε → 0 for DVM schemes with velocity range [−2000, 2000]
and [−500, 500] respectively.

Finally we reproject the solution into the form (3.3.15) by taking βc
R = 0 as in

scheme HM.
The treatment of the non equilibrium part of the solution has been done using

a discrete velocity Monte Carlo scheme for the central part and a general Monte
Carlo (i.e. samples can attain any velocity) for the tails. The details of the Boltz-
mann hybrid method are given in the following algorithm:

Algorithm 3.3.4 (BHM scheme)

1. Given m =
∆x

N

∑
i

%c
i,R(t), where %c

i,R(t) represent the total mass in each

cell at time t after convection, that now differs from 4v
∑

k f c
k,i,R(t)

2. for each interval Ii, i = . . . ,−2,−1, 0, 1, 2, . . .

(a) set βi = 1− e−t1/ε

(b) set Ni = Iround
(

(1− βi)
∆x

m
%c

i(t)

)

(c) set Pi =
u∗p,i(t)

u∗p,i(t) + u∗E,i(t)
,
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with u∗p,i(t) = m
∆x

∑
χk∈Ii

1 = m
∆x

Nj , where Nj indicate the particles
that belong to the cell Ii

and u∗E,i(t) =
∑

k E∗
k,i,R(t)

(d) for k = 1, . . . , Ni

with probability Pi take (νj, χj) as one of the advected particles.
with probability 1−Pi take one sample νj from the deterministic frac-
tion. To extract (1−Pi)Ni samples from discrete advected central part
of the Maxwellian do the following

i. Compute pk,i =
E∗k,i,R·∆v

%i

ii. Compute Pk,i =
∑

K pk,i, k = 1, .., K, P0,i = 0

iii. Compute a random number ξ

iv. find the integer k such that Pk−1,i ≤ ξ < Pk,i

v. Give to the sample νj the velocity vk−1

(e) set NT
i = Iround

(
βi

(
∆x

m
%c

i,R(t)− ∆x4v

m

∑

k

f c
k,i,R(t)

))

(f) for k = 1, .., NT
i extract a sample from the tail of the Maxwellian. To

extract a sample from the right tail do as following

i. Compute r = cos(2 ∗ π ∗ ξ1)

ii. if r > 0 Compute v =
√
− log(exp(−R2)− ξ2 ∗ exp(−R2))

with ξ1 ξ2 random numbers in [0, 1].
iii. if v > R take the sample, else reject the sample.

As for the HM scheme the final solution is recovered by adding the deterministic
term βi Ek,i,R(t), to the stochastic term.

Boltzmann Componentwise Hybrid Method (BCHM)

The componentwise approach described in the previous section can be adapted to
the case of representation (3.3.11). We have

f r(x, v, t) = f̃ r
R(x, v, t) + wr

R(x, v, t)M r(x, v, t). (3.3.60)

The evolution for the unknowns f̃ r
R(x, v, t), wr

R(x, v, t) now are

f̃ r
R(x, v, t) = e−t/εf̃R(x, v, 0) + (1− e−t/ε)TR(x, v, 0), (3.3.61)

wr
R(x, v, t) = e−t/εwR(x, v, 0) + (1− e−t/ε)Ψ(|v| ≤ R). (3.3.62)
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Clearly as in scheme BHM as ε → 0 a fraction of the solution is represented by
particles. Again after convection we have

f c
R(x, v, t) = f̃ c(x, v, t) + wc

R(x, v, t)M c(x, v, t) = f ∗,pR (x, v, t) + M̃ r(x, v, t),

where f ∗,pR (x, v, t) and M̃ r(x, v, t) represent the advected particles and equilib-
rium fractions. The value wc

R(x, v, t) is now computed only in the central part of
f , |v| ≤ R, by

wc
R(x, v, t) =





M̃ r(x, v, t)

M c(x, v, t)
, M̃ r(x, v, t) ≤ M c(x, v, t) 6= 0

1, M̃ r(x, v, t) > M c(x, v, t).

(3.3.63)

Then we define

M∗(x, v, t) = M̃ r(x, v, t)− wc
R(x, v, t)M c(x, v, t)

to obtain
f̃ c(x, v, t) = f ∗,pR (x, v, t) + M∗(x, v, t). (3.3.64)

Finally the same strategy, described in previous section, of taking βc
R(x, t) =

minv{wc
R(x, v, t)} could be adopted for applications in which the decomposition

is component independent. We omit the details.

3.4 Numerical tests
In this section we compare the performance of the Monte Carlo and the Hybrid
schemes here presented using two classical tests: a Sod test and an unsteady shock
test. We have chosen two unsteady tests because we would like to test the perfor-
mance of the methods without the effect of averaging the solution in time (typical
of Monte Carlo methods for steady problems). Before this, however, we have
performed an overall accuracy test of the different schemes.

3.4.1 Accuracy test
We report the total L1 norm of the errors for the conserved quantity %, u, and T
by considering a periodic smooth solution with initial data

%(x, 0) = 1 + a% sin
2πx

L
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ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

MCM 2.1512 2.3435 2.6886 2.6684 2.6529
HM 2.0234 1.7406 1.2126 0.4020 0.12868
HMI 1.9934 1.600 0.7888 0.2895 0.0961
CHM 1.1704 0.6233 0.2743 0.10938 0.0309
BHM 1.9660 1.9125 1.3499 0.8163 0.7258
BHMI 1.7115 1.4536 0.7517 0.7212 0.6866
BCHM 1.4685 0.9204 0.7000 0.6439 0.6538

Table 3.1: Accuracy test, L1 norm of the errors for density respect to different
value of the Knudsen number ε (in units of 10−2).

ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

MCM 2.9320 3.5061 4.8096 4.626 4.6652
HM 2.8686 2.2685 2.1736 0.7182 0.2503
HMI 2.3551 1.9552 1.3733 0.4994 0.1851
CHM 1.3448 0.9139 0.4739 0.1662 0.0527
BHM 3.0944 2.5336 2.4123 1.5215 1.2635
BHMI 2.5098 2.2245 1.4186 1.4417 1.3714
BCHM 1.8727 1.5825 1.4079 1.2246 1.2355

Table 3.2: Accuracy test, L1 norm of the errors for velocity respect to different
value of the Knudsen number ε (in units of 10−2).

u(x, 0) = 1 + au sin
2πx

L
(3.4.1)

T (x, 0) = 1 + aT sin
2πx

L

Where we set
a% = 0.3 au = 0.1 aT = 1

we use 1500 particles for cell with bounds set at [−15, 15] for the DVM-BGK
schemes and bounds set at [−5, 5] for the Boltzmann-BGK schemes, we integrate
the equations for t ∈ [0, 5 × 10−2] for ∆v = 0.16 and ∆x = 0.05. We compare
our hybrid solutions with a reference solution obtained with a fully deterministic
DVM-BGK model with the same ∆v and ∆x but with bound set at [−20, 20] in
velocity space.
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ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

MCM 3.2923 4.4354 6.2404 5.7733 6.1142
HM 2.9520 2.7893 2.6305 0.96996 0.2840
HMI 2.8437 2.5110 1.6132 0.6617 0.2053
CHM 1.8196 1.2004 0.5368 0.1310 0.0651
BHM 3.1869 3.0254 2.8536 2.1430 1.8134
BHMI 2.7132 2.6807 2.3756 2.0148 2.1010
BCHM 2.6210 2.3226 2.1498 1.9315 1.8849

Table 3.3: Accuracy test, L1 norm of the errors for temperature respect to different
value of the Knudsen number ε (in units of 10−2).

We use the shorthand MCM, HM, HMI, CHM, BHM, BHMI, BCHM to de-
note the Monte Carlo scheme, the DVM-BGK Hybrid Schemes respectively (3.3.44)
(3.3.54) (3.3.50) and the Boltzmann-BGK Hybrid Schemes with the same choice
of βc(x, t). The results for the relative L1 errors are reported in Tables 3.1, 3.2,
3.3. The parameters that influence the numerical solution in all the schemes are
the number of particles and the number of mesh point in velocity space. Moreover
DVM-BGK schemes are influenced by the truncation of the velocity space and by
the method we use to solve the nonlinear system (3.3.21), while BHM schemes
are influenced by the position of the boundary that divide Ef from Tf , that turns
in different number of particles in the domain. The schemes HM, HMI, CHM
cause a progressive reduction of fluctuations as the Knudsen number decreases.
On the other hand the deterministic computation of the function E and of the large
velocity components are expensive and the hybrid schemes, independently of ε,
are computationally more expensive then MCM.

The Boltzmann-BGK solvers are faster since we do not need to compute the
solution of a non linear system at each time step for each component of E . They
are also faster because the deterministic solver contain less mesh point. However
BHM, BHMI, BCHM present more fluctuations with respect HM, HMI, CHM
because tails are represented by particles. We report the corresponding computa-
tional times for the Boltzmann-BGK schemes with respect to MCM scheme for
different Knudsen number in Table 3.4. Note that all these schemes are more ac-
curate and more efficient then MCM. In particular BCHM for ε = 10−3 is about
twice time faster and twice time more accurate then MCM.

We remark that no attempt to optimize the truncation parameter in the Boltzmann-
BGK schemes has been done in order to obtain the optimum compromise between
accuracy and computational time.
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Figure 3.4: Sod test: Solution at t = 0.05 with ε = 10−3 for density (top), mean
velocity (middle) and temperature (bottom) for MCM and HM (left), HMI and
CHM (right), with initial data (3.4.2).
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Figure 3.5: Sod test: Solution at t = 0.05 with ε = 10−5 for density (top), mean
velocity (middle) and temperature (bottom) for MCM and HM (left), HMI and
CHM (right), with initial data (3.4.2).
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Figure 3.6: Sod test: Solution at t = 0.05 with ε = 10−3 for density (top), mean
velocity (middle) and temperature (bottom) for MCM and BHM (left), BHMI and
BCHM (right), with initial data (3.4.2).
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Figure 3.7: Sod test: Solution at t = 0.05 with ε = 10−5 for density (top), mean
velocity (middle) and temperature (bottom) for MCM and BHM (left), BHMI and
BCHM (right), with initial data (3.4.2).
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ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

MCM 23 sec 25 sec 27 sec 26 sec 27 sec
BHM 35 sec 25 sec 22 sec 22 sec 21 sec
BHMI 34 sec 20 sec 19 sec 20 sec 21 sec
BCHM 15 sec 11 sec 17 sec 21 sec 20 sec

Table 3.4: Computational time test for different value of the Knudsen number ε.

3.4.2 Sod Test
We consider the classical Sod test with initial value



%L

uL

TL


 =




1
0
5


 , if 0 5 x < 0.5




%R

uR

TR


 =




0.125
0
4


 , if 0.5 5 x 5 1

(3.4.2)
The solution is computed with 200 space points in [0, 1] and the final time is
t = 0.05. The initial number of particle are 1000 for each space cell, the Knudsen
number is ε = 10−3 in one case and ε = 10−5 in the other. In the HM, HMI and
CHM schemes the velocity space is bounded at [−15, 15] and discretized with
∆v = 0.16. The bounds between tails and central part of the Maxwellian for
BHM, BHMI and BCHM are set to [−5, 5], with the same mesh in velocity. We
compare our solutions with a reference solution obtained with a DVM model with
500 space cell and 250 cell in velocity space with bound set at [−20, 20] in ve-
locity. From Figures 3.4, 3.5, 3.6, 3.7 it is clear that all hybrid schemes provide a
more accurate solution with less fluctuations with respect to MCM method.

3.4.3 Unsteady shock Test
We consider a unsteady shock that propagates from left to right, the shock is
produced introducing a specular wall in the left boundary, this correspond to put
an incoming Maxwellian distribution in the ghost cell with parameters %, u, T
equal to the parameters %(1), u(1), T (1) in the first cell. At the beginning the flow
is uniform with

%(x, 0) = 1 u(x, 0) = −1 T (x, 0) = 4 (3.4.3)

The computations is stopped when t = 0.065, the number of space cells is 200
in [0, 1], the initial number of particle is 1500 for each space cell, the Knudsen
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Figure 3.8: Unsteady Shock: Solution at t = 0.065 with ε = 10−3 for density
(top), mean velocity (middle) and temperature (bottom) for MCM and HM (left),
HMI and CHM (right), with initial data (3.4.3).
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Figure 3.9: Unsteady Shock: Solution at t = 0.065 with ε = 10−5 for density
(top), mean velocity (middle) and temperature (bottom) for MCM and HM (left),
HMI and CHM (right), with initial data (3.4.3).
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Figure 3.10: Unsteady Shock: Solution at t = 0.065 with ε = 10−3 for density
(top), mean velocity (middle) and temperature (bottom) for MCM and BHM (left),
BHMI and BCHM (right), with initial data (3.4.3).
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Figure 3.11: Unsteady Shock: Solution at t = 0.065 with ε = 10−5 for density
(top), mean velocity (middle) and temperature (bottom) for MCM and BHM (left),
BHMI and BCHM (right), with initial data (3.4.3).
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number is ε = 10−3 in one case and ε = 10−5 in the other. In the HM, HMI
and CHM schemes the velocity space is discretized with ∆v = 0.16, the bounds
are set at [−15, 15]. The bounds between tails and central part of the Maxwellian
for BHM, BHMI and BCHM are set to [−5, 5], with the same mesh in velocity.
We compare again our solution with a DVM with 500 space cell and 250 cell in
velocity space with bound set at [−20, 20]. Again the improvement obtained with
the hybrid schemes is clear (see Figures 3.8, 3.9, 3.10, 3.11).

3.5 Conclusion
In this work we have considered the development of hybrid methods for kinetic
multiscale problems. Although we have described the schemes in the case of
Boltzmann-BGK equation our approach can be extended to other kinetic equa-
tions. The additional difficulty usually is represented by the structure of the colli-
sion operator which requires a specific treatment (see [19, 16, 17] for the case of
the full Boltzmann equation).

The hybrid multiscale methods here developed can be used in all cases where a
macroscopic description of the phenomena is known but ceases to be valid in some
region of the computational domain and the microscopic model has to be used.
The necessary condition is that the microscopic variables and the macroscopic
conserved variables are linked through an operator that define a local equilibrium.

The general approach consist in a suitable blending of deterministic methods
for the equilibrium part and particle methods for the non equilibrium part. Several
numerical examples are shown in order to prove the validity and efficiency of the
new methods. Off course other tests have to be done to measure the performance
of the hybrid methods in real applications.

Acknowledgements. The authors would like to thank Russ Caflisch for the
many stimulating discussions.



Chapter 4

A Fluid Solver Independent Hybrid
Method and Domain Decomposition
Techniques for Multiscale Kinetic
equations

This Chapter is based on the work [46] which has to be submitted in 2008 and on
the work [45] published in Proceedings of the 11th International Conference on
Hyperbolic problems: Theory, Numerics, Applications, pp. 457-464 both in
collaboration with Prof. Lorenzo Pareschi of the Department of Mathematics and
Center for Modeling Computing and Statistics (CMCS) of University of Ferrara.

4.1 Introduction
In this chapter we afford the problem of the simulations of Rarefied Gas Dynamic
(RGD) phenomena. However, we want to underline the generality of the formula-
tion of the method presented, which permits to easily extended to other multiscale
phenomena the algorithms introduced in the RGD contest. In fact, in order to use
the hybrid approach described in the sequel, the only condition which is necessary
to satisfy is the possibility to identify a local equilibrium function, which will be
defined in details in the case of RGD and known in many cases of practical inter-
est, either analytically or numerically, that originates a model reduction from the
microscale to the macroscale formulation. In general, dealing with macroscopic
phenomena, permits to ignore the details of microscopic interactions, thus the
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model reduction, in terms of equations which describe the system, becomes a nat-
ural consequence of the change of scale. The description of a general multiscale
hybrid procedure is a subject of a future work.

In fluid dynamic the classical ways to treat problems are Navier-Stokes or
Euler equations, however when dealing with large temperature or very low den-
sities, these models are not enough satisfactory in describing the physics and an
analysis at mesoscopic level becomes necessary. Thus the well known kinetic ap-
proach through the Boltzmann equation [26] is often used instead, besides, the
introduction of such a model is closely linked with the introduction of difficulties
from the computational point of view. In fact, the system of equation to solve
becomes too large, especially in the multidimensional situations, and even with
computers of last generation the cost remains too high. To this aim, probabilistic
techniques as DSMC are extensively used in real simulations for their great flex-
ibility and low computational cost compared to any type of deterministic scheme
for kinetic equations [17], [18], [80], besides the solutions are affected by large
fluctuations and, in non stationary situations, the impossibility to average leads to,
or low accurate solutions, or high costly simulations. However, even in extremely
rarefied regimes the fluid equations still furnish correct solution in regions of the
domain in which the gas is not subjected to sharp gradient. The direct consequence
is that domain decomposition methods [10], [71], [77], [38] which consider the
problem at different scale, fluid or kinetic, in different part of the computational
domain, is a practical way to take advantage of the physics without loosing ac-
curacy. We quote also the possibility to improve domain decomposition schemes
trough a moving boundary [40, 122], in order to follow discontinuities and sharp
gradients inside the domain, methods that are particulary important in the simu-
lation of non stationary problems. However, the exact identification of the non
equilibrium zones remains an hard task to accomplish and an open research argu-
ment.

Here we propose an alternative algorithm respect to the domain decomposi-
tion methods, which represent an effective application of the schemes developed
in [44] and which can be used in real simulations. The basic idea consist in solv-
ing the kinetic model and the macroscopic model in the entire domain, the first
through Monte Carlo(MC) methodologies and the latter through a deterministic
scheme and to consider as a solution a suitable merging of the two. Moreover we
will show that is not necessary to solve the entire kinetic problem, in fact it is suf-
ficient to describe at a mesoscopic level only the part of the solution which is far
from the thermodynamic equilibrium. The immediate result of this observation is
a reduction of the number of samples used in the MC solution, and consequently,
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of the computational time and fluctuations. These improvements are linked with
the diminish of the local Knudsen number, that is a measure of the rarefaction of
the gas, thus closer to the fluid regime cost and fluctuations diminish. The imple-
mentation of such methodology furnishes results which in general are much more
faster than traditional deterministic kinetic schemes and for flow regimes close
to fluid, in which the Euler or Navier-Stokes still furnish wrong results, also to
DSMC schemes. Moreover the formulation presented already include a domain
decomposition technique, which can be obtained forcing the Knudsen number to
zero (see [45]) in some part of the domain.

The main features of the scheme can be summarized as follows

• In regions far from equilibrium (i.e. the Knudsen number is big ), where
the solution of the full kinetic equation is required, the schemes provide a
probabilistic Monte Carlo approximation of the solution.

• In thermodynamic equilibrium regions (i.e. the Knudsen number is zero),
where the Euler equations are valid, the schemes provide a deterministic
finite volume (differences) approximation of the fluid equations.

• In intermediate regions, the approximated solution is generated automati-
cally by the schemes as a suitable blending of a nonequilibrium probabilis-
tic component and an equilibrium deterministic components furnished by
the solution of the fluid equations.

The rest of the article is organized as follows. In Section 4.1 we introduce the
Boltzmann-BGK equations and his properties. In Section 4.2 we present the fluid
solver independent hybrid scheme. In the next section we propose two ways in
which is possible to increase the equilibrium fraction of the solution. In Section
4.4 a domain decomposition method based on the hybrid techniques is described.
Finally Section 4.5 is devoted to numerical results in one and two-dimension
to compare performances respect traditional Monte Carlo and kinetic schemes.
Some final considerations and future developments are discussed in the last Sec-
tion.

4.2 The Boltzmann Equation with BGK Collision
Kernel

We will consider in this paper a BGK collision kernel for the Boltzmann equations
which is known to be a satisfactory model close to equilibrium regimes, we quote
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that extensions to other collision kernel are possible through the use of the Wild’s
sum [131] and Time Relaxed Methods [94]. The Boltzmann-BGK equation reads

∂tf(x, v, t) + v · ∇xf(x, v, t) =
1

τ(x, t)
(Mf (x, v, t)− f(x, v, t)), (4.2.1)

with the initial condition

f(x, v, t = 0) = f0(x, v), (4.2.2)

Where f(x, v, t) is a non negative function describing the time evolution of the
distribution of particles with velocity v ∈ Rdv and position x ∈ Ω ⊂ Rdx at
time t > 0, with dv and dx representing the dimension in velocity and physical
space respectively. In this simplified model, collisions are mimic by a relaxation
towards the equilibrium. In the present work the nondimensional formulations of
the Boltzmann equation will be used, in that case τ is defined by

τ(x, t)−1 =
C

ε(x, t)
, (4.2.3)

with the choice C = 1 [107, 34] and ε(x, t) Knudsen number. Others choices
for the relaxation time do not change significantly the hybrid algorithm we will
describe in next section. Observe anyway that the ratio of deterministic and sto-
chastic component is a function of the relaxation time as explained in details in
the next Section.

The local Maxwellian function, representing the local equilibrium, is defined
by

Mf (%, u, T )(x, v, t) =
%

(2πT )d/2
exp

(−|u− v|2
2T

)
, (4.2.4)

where %, u, T are the density, mean velocity and temperature of the gas in the
x-position and at time t

% =

∫

Rd

fdv, u =

∫

Rd

vfdv, T =
1

d%

∫

Rd

|v − u|2fdv, (4.2.5)

while the energy E is defined as

E =
1

2

∫

Rd

|v|2fdv, (4.2.6)

Consider the BGK equation (4.2.1) and multiply it for 1, v, 1
2
|v|2, the so-called

collision invariant, by integrating in v the above quantities, the equations for the
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first three moments of the distribution function f are obtained. They describe
respectively the conservations laws for mass, momentum and energy. Unfortu-
nately, the system obtained through the above average in velocity space is not
closed since it involves higher order moments of the distribution function.

Observe that, formally from (4.2.1) as ε → 0, the function f approach the
local Maxwellian. In this case it is possible to compute analytically the higher
moments of f from %, u and T . Carrying on this computation we obtain the set of
compressible Euler equations (see: [27] for details)

∂%

∂t
+∇x · (%u) = 0

∂%u

∂t
+∇x · (%u⊗ u + p) = 0,

∂E

∂t
+∇x · (Eu + pu) = 0

p = %T, E =
3

2
%T +

1

2
%|u|2

(4.2.7)

where p is the thermodynamical pressure while ⊗ represent a tensor product.
Higher order fluid model, like Navier-Stokes, can be derived from the Boltzmann
equations. In this case, with some adaptations, is still possible to use the hybrid
scheme, we remind to a future work the development of such an hybrid method.

Typically, equation (4.2.1) is completed with boundary conditions for x ∈ ∂Ω
and for v · n ≥ 0 where n denotes the unit normal, pointing inside the domain.
The boundary conditions are modeled by

|v · n|f(x, v, t) =

∫

v∗·n<0

|v∗ · n|K(v∗ → v, x, t)f(x, v∗, t)dv∗ (4.2.8)

Where v∗ represent the velocity value after the boundary process. The entering
flux is described as a function of the outgoing flux modified by the boundary
kernel K. Such definition of the boundary condition preserve the mass if

K(v∗ → v, x, t) ≥ 0,

∫

v∗·n≥0

K(v∗ → v, x, t)dv = 1 (4.2.9)

While the simulation of boundaries in open domain is quite simple, the intro-
duction of suitable boundary conditions for gas-surface interaction is an area of
research by itself, [28] and reference therein. Two type of conditions absorbing or
reflecting are normally applied, another condition could be a convex combination



134 4.3. Hybrid Representation

of the two. From a physical point of view one assume that a fraction of parti-
cle (α) is absorbed and re-emitted at a temperature and velocity corresponding to
a Maxwellian (with temperature and velocity of the boundary), while the other
(1−α) is specular reflected, this is equivalent to impose for the ingoing velocities

f(x, v, t) = (1− α) ∗Rf(x, v, t) + αMf(x, v, t), v · n(x) ≥ 0 (4.2.10)

and
Rf(x, v, t) = f(x, v − 2n(n · v), t)

Mf(x, v, t) = µ(x, t)Mω(v, t)
(4.2.11)

If we denote by Tω the temperature of the boundary and by uω the velocity, Mω is
given by

Mω(%, uω, Tω)(v) =
%

(2πTw)3/2
exp

(−|uw − v|2
2Tw

)
, (4.2.12)

Finally the value of µ is determined by mass conservation

µ(x, t)

∫

v·n≥0

Mω(v)|v · n|dv =

∫

v·n<0

f(x, v, t)|v · n|dv (4.2.13)

Concerning inflow and outflow conditions, we set f(x, v, t) = g(v, t) for x ∈ ∂Ω
and v · n ≥ 0 where g(v, t) could be any positive function, typically Maxwellian,
in the first case, while in the latter case one possibility is to choose fx(x, v, t) = 0
for x ∈ ∂Ω.

4.3 Hybrid Representation
The scheme described on this paper is based on the hybrid representation defined
in [44]. Here we recall only the key points of the methods, for details we remind
to it.

In the following description we restrict to 1-D in velocity and physical space,
extensions of the methods to the multidimensional case are straightforward. First
we need to interpret the distribution function as a probability density, that in the
space homogeneous case reads (the x-dependence is omitted in the sequel)

f(v, t) ≥ 0, % =

∫ +∞

−∞
f(v, t)dv = 1 (4.3.1)

and the following definition of hybrid representation:
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w(v)M(v)

nonequilibrium
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f(v)

v −R R
 

equilibrium

f(v)
nonequilibrium

βM(v)

v

Figure 4.1: Distribution function as a combination of equilibrium and non-
equilibrium part representation (4.3.4) left and (4.3.8) right.

Definition 4.3.1 Given a probability density f(v, t), and a probability density
M(v, t), called equilibrium density, we define w(v, t) ∈ [0, 1] and f̃(v, t) ≥ 0
in the following way

w(v, t) =





f(v, t)

M(v, t)
, f(v, t) ≤ M(v, t) 6= 0

1, f(v, t) ≥ M(v, t)
(4.3.2)

and
f̃(v, t) = f(v, t)− w(v, t)M(v, t). (4.3.3)

Thus f(v, t) can be represented as (Figure 4.1)

f(v, t) = f̃(v, t) + w(v, t)M(v, t). (4.3.4)

If we take now
β(t) = min

v
{w(v, t)}, (4.3.5)

and
f̃(v, t) = f(v, t)− β(t)M(v, t), (4.3.6)

we have ∫

v

f̃(v, t)dv = 1− β(t). (4.3.7)
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Let us define for β(t) 6= 1 the probability density

f(v, t)p =
f̃(v, t)

1− β(t)
.

The case β(t) = 1 is trivial since it implies f(v, t) = M(v, t). Thus the proba-
bility density f(v, t), can be written as a convex combination of two probability
densities in the form [16, 17] (Figure 4.1 right)

f(v, t) = (1− β(t))f(v, t)p + β(t)M(v, t). (4.3.8)

Clearly the above representation is a particular case of (4.3.4). Now we consider
the following general representation, including space dependence

f(x, v, t) = f̃(x, v, t)︸ ︷︷ ︸
nonequilibrium

+ w(x, v, t)M(x, v, t)︸ ︷︷ ︸
equilibrium

,

where w(x, v, t) is in general a continuum function that characterizes the equilib-
rium fraction and f̃(x, v, t) the non equilibrium part of the distribution function.
The general methodology consist in

• Solve the evolution of the perturbation by Monte Carlo methods. Thus
f̃(x, v, t) will be represented by a set of samples in the computational do-
main.

• Solve the evolution of the Maxwellian by deterministic methods. Thus
w(x, v, t)M(x, v, t) will be represented on a suitable grid in the compu-
tational domain.

In the sequel we will describe the Fluid Solver Independent (FSI) scheme, one
of the most important difference respect the hybrid kinetic scheme [44] is that
a common value for the equilibrium fraction in space velocity has to be chosen
β(x, t) = minv{w(x, v, t)} and that it cannot be determined directly, other strate-
gies are necessary, some ideas are explained in the section 4.3.2.

4.3.1 The Fluid Solver Independent Hybrid scheme
FSI is able to take advantage from the solution of the equilibrium part of the
distribution function through a macroscopic scheme instead of a kinetic scheme,
this leads to a strong reduction of the computational time respect any deterministic
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scheme that solve Boltzmann equations. Moreover we stress we could be faster
of DSMC (Direct Simulation Monte Carlo) while Knudsen approach zero and
moreover more accurate using this methodology. In fact the ratio, between number
of particles used in the solution respect number of particles used in a full MC
scheme, is equal to the ratio of nonequilibrium portion of the distribution function
respect to the entire distribution function. Thanks to that properties we could
easily estimate the total computational time as

CTTOT = CTE + αCTMC (4.3.9)

where CTTOT is the total computational time, CTE the time to compute the solu-
tion for fluid equations, while CTMC is the time we need to perform a particles
simulation for Boltzmann equations, finally α is a scalar function that contains the
information related to the equilibrium/nonequilibrium character of the distribution
function f .

We now briefly describe a simple MC scheme for the Boltzmann-BGK equa-
tion used in the sequel for the hybrid model, the scheme is based on the inter-
pretation of the distribution function as a probability density. First we sample N
particles from the initial distribution function f(x, v, 0), subsequently the evolu-
tion of f(x, v, t) is given by the evolution of the particles. The second step consists
in splitting the equation in a relaxation and transport step

∂tf
c(x, v, t) + v · ∇xf

c(x, v, t) = 0 (4.3.10)

∂tf
r(x, v, t) = − 1

ε(x, t)
(f r(x, v, t)−M r(x, v, t)) (4.3.11)

The first stage is solved through the shifting of the particles according to

pn+1
j = pn

j + νj∆t (4.3.12)

where pn+1
j and pn

j represent the position of the sample, before and after the trans-
port, and νj its velocity. In order to continue the computation an intermediate step
is necessary, in this step the first three moments of the distribution function are
reconstructed in each spatial cell starting from samples. They are given by

%i =
m

∆x

∑
pj∈Ii

1 =
m

∆x
Ni, ui =

1

Ni

∑
pj∈Ii

νj, Ei =
1

2Ni

m

∆x

∑
pj∈Ii

|νj|2 (4.3.13)

where m = 1
Nt

∫
%dx represent the mass of a particle, Ni the number of particle

inside the space cell Ii and Nt the total initial number of particles, while %i, ui, Ei
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are respectively the mass the mean velocity and the energy in the cell. For details
about reconstruction techniques we refer to [98]. Once the moments are computed
it is possible to estimate the local Maxwellian distribution in each spatial cell.
Thanks to the above knowledge the second stage of the splitting is solved in the
following way: with probability e−(t+t1)/ε(x,t) we leave the velocity of the sample
unchanged while with probability 1 − e−(t+t1)/ε(x,t) we substitute the velocity of
the sample with one taken from the local Maxwellian. Hence an algorithm for the
Monte Carlo BGK model reads

Algorithm 4.3.1 (Monte Carlo for BGK equation)

1. Compute the initial velocity and position of the particles {ν0
j , j = 1, .., N}

{p0
j , j = 1, .., N} by sampling them from initial density f0(x, v)

2. Given a spatial discretization ∆x, and an estimate of the larger sample
velocity νmax = 4

√
2Tmax, with Tmax the maximum temperature in the do-

main, compute ∆t = ∆x/νmax

3. While t ≤ tf with tf the final chosen time and t the actual time.
Given the samples values {νn

j , j = 1, .., N} and {pn
j , j = 1, .., N} at time t

(a) with probability e−∆t/ε(x,t) the samples are unchanged

• set νn+1
j = νn

j

(b) with probability 1− e−∆t/ε(x,t) the samples are replaced with equilib-
rium samples. To extract one equilibrium samples proceed as follows

νn+1
j = un

i +
√

2T n
i ρ cos(θ), (4.3.14)

with T n
i temperature un

i mean velocity in the cell at time n and

ρ =
√
− log(ξ1), θ = 2πξ2 (4.3.15)

where ξ1 and ξ2 are uniformly distributed random number in [0, 1].

(c) transport the particle

pn+1
j = pn

j + νn+1
j 4t, ∀j (4.3.16)

(d) Compute the updated value of ∆t = ∆x/νn+1
max
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(e) Compute the new value of %n+1
i , un+1

i , T n+1
i in each cell (this require

a loop on the particle vector)

end for

Note that we do not need to reconstruct the full distribution function at each time
step but only the conserved quantities %, u and T (this is computationally advan-
tageous). The simple splitting showed is first order in time, implementation of
second order in time scheme through the Strang splitting is possible, however for
ε → 0 second order splitting reduces to first order.

In order to easily describe the FSI method we introduce the projection operator
P , the relaxation operator R, and the transport operator T . The projection operator
compute from microscopic variable f or Mf the macroscopic variables U(x, t) =
(%(x, t), u(x, t), T (x, t)), thus P (f(x, v, t)) = U(x, t) and P (Mf (x, v, t)) = U(x, t),
since local Maxwellian has the same moments of the distribution function. Given
N samples representing the distribution function fMC(x, v, t) at time t, where the
subscript MC indicates we are solving the Boltzmann equations through a parti-
cle scheme, performing the splitting as in the Monte Carlo case, we could write
for the relaxation stage of the microscopic equation

R(fMC(x, v, t)) = (1− β(x, t))fMC(x, v, t) + β(x, t)Mf,MC(x, v, t) (4.3.17)

where β(x, t) = 1− e∆t/ε(x,t). In our hybrid scheme, the transport step consists of
two part, push particles, and compute the solution of Euler equations for t = t+∆t
given the value of conserved variable UE(x, t) = P (β(x, t)Mf (x, v, t)) at time t

UE(x, t + ∆t) = T (β(x, t)P (Mf (x, v, t))) (4.3.18)

f̃MC(x, v, t + ∆t) = T ((1− β(x, t))fMC(x, v, t)) (4.3.19)

where the subscript E indicate we are solving the Euler equations through a de-
terministic macroscopic scheme. The hybrid solution is recovered at the next time
step as

UH(x, t + ∆t) = P (f̃MC(x, v, t + ∆t)) + UE(x, t + ∆t) (4.3.20)

The new value of the conserved variables UH(x, t + ∆t) is used to compute the
new local Maxwellian Mf (x, v, t + ∆t) and continue the computation. Observe
now that, at the next time step, the relaxation stage reads

R(f(x, v, t + ∆t)) = (1− β(x, t + ∆t))fMC(x, v, t + ∆t) +

+ β(x, t + ∆t)Mf,MC(x, v, t + ∆t) (4.3.21)
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where

fMC(x, v, t + ∆t) = f̃MC(x, v, t + ∆t) + T (β(x, t)Mf,MC(x, v, t)) (4.3.22)

thus we need all the transported distribution function to advance in time. The
computational cost of the scheme described at each time step is CTTOT = CTE +
CTMC , in fact we are both solving the full Boltzmann equation with MC and the
compressible Euler equations. However, we could improve the performances of
the above algorithm observing that we do not really need the knowledge of the full
distribution function at each time step, besides we need only (1−β(x, t))f(x, v, t).
We recall

f̃MC = f̃MC(x, v, t + ∆t) (4.3.23)

β(x, t)M̃f = T (β(x, t)Mf,MC(x, v, t)) (4.3.24)

f(t) = f(x, v, t), f(t + ∆t) = f(x, v, t + ∆t) (4.3.25)

β1 = β(x, t), β2 = β(x, t + ∆t) (4.3.26)

Mf1 = Mf (x, v, t), Mf2 = Mf (x, v, t + ∆t) (4.3.27)

Considering one space cell and substituting (4.3.22) in (4.3.21), we obtain

R(f(t + ∆t)) = (1− β2)(f̃MC + β1M̃f ) + β2Mf2 (4.3.28)

Thus we need only to sample (1 − β2)β1Mf1 particles instead of β1Mf , that
means when β1 or β2 approach one we do not sample any particles. The com-
putational cost of the algorithm, with the above modifications, becomes CT =
CTE +αCTMC , where α = (1−β2)Np +β1(1−β2)NM , with Np and NM respec-
tively equal to the number of particles used to describe the non-equilibrium part
of the distribution function and the number used for the thermodynamical equilib-
rium description. The FSI hybrid scheme for the solution of the Boltzmann-BGK
equations reads in the simple case in which the Knudsen number remains constant
in time and space during the whole simulation

Algorithm 4.3.2 (FSI Hybrid Scheme)

1. Compute the initial velocity and position of the particles {ν0
j , j = 1, .., N}

{p0
j , j = 1, .., N} by sampling them from initial density f0(x, v)

2. Given a spatial discretization ∆x, and an estimate of the larger sample
velocity νmax = 4

√
2Tmax, with Tmax the maximum temperature in the do-

main, compute ∆tMC = ∆x/νmax
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3. Given the initial value of the moments of the distribution function in each
cell %i, (%u)i, Ei, compute the larger time step allowed by the deterministic
macroscopic scheme ∆tD

4. Set ∆t = min(∆tMC , ∆tD), normally the stronger restriction on the maxi-
mum time step is furnished by the microscopic scheme

5. While t ≤ tf with tf the final chosen time and t the actual time.
Given the samples values {νn

j , j = 1, .., N} and {pn
j , j = 1, .., N} and the

moments values Un
i = (%n

i , (%u)n
i , En

i ) at time t

(a) Perform the relaxation step

i. with probability e−∆t/ε the samples are unchanged
• set νn+1

j = νn
j

ii. with probability 1 − e−∆t/ε the samples are replaced with equi-
librium samples. Sample only e−∆t/ε(1 − e−∆t/ε) particles. To
extract one equilibrium samples proceed as follows

νn+1
j = un

i +
√

2T n
i ρ cos(θ), (4.3.29)

with T n
i temperature un

i mean velocity in the cell at time n and

ρ =
√
− log(ξ1), θi = 2πξ2 (4.3.30)

where ξ1 and ξ2 are uniformly distributed random number in [0, 1].

iii. Compute the effective fraction of equilibrium βE
i = 1 − Np

i

Nt
i

with
Np

i the number of samples which represent the part in non equi-
librium and N t

i the total number of samples inside the cell

(b) Solve the Euler equations for Un
E,i and find Un+1

E,i as specified in Eqs.
(4.3.18)

(c) Transport particles

pn+1
j = pn

j + νn+1
j 4t, ∀j, (4.3.31)

(d) Compute the moments of the non-equilibrium part P (f̃MC,i) using the
advected particles that did not change their velocity during the relax-
ation step

(e) Compute the hybrid solution Un+1
H,i = P (f̃MC,i) + Un+1

E,i



142 4.3. Hybrid Representation

(f) Compute the updated value of ∆t

(g) Use the new macroscopic value Un+1
H,i to find the new Maxwellian and

restart the computation.

end for

Note that we need to compute and use the effective equilibrium fraction βE
i

which normally is different respect to βi. In fact given the total number of particles
N t

i in the cell Ii we keep only the integer approximation of Np
i = (1− βi)N

t
i .

4.3.2 Increasing the Equilibrium Fraction

Observe that the method described does not permit to optimize the equilibrium
fraction. In fact at each time step the equilibrium structure is entirely lost and
the new fraction of equilibrium is only given by the relaxation step. However,
in principle, it is possible to recover some information from the transported local
Maxwellian even though we know it through samples rather than analytically. In
fact we do not conserve any microscopic information from the solution of the
macroscopic equations for the equilibrium part. In the sequel, we will propose
two methods to increase the equilibrium fraction after the transport step, leaving a
more detailed research on this argument to a future work. We start describing the
generalization of the hybrid method once this optimization has been achieved in
some way. Finally we will conclude describing an algorithm which can be used
with the above method.

We define the equilibrium fraction βc as the ratio of the transported Maxwellian
at time t respect to the new local Maxwellian at time n + 1, with notations intro-
duced in eqs. (4.3.23-4.3.27) this function reads

βc(x, t) = min
v

β1M̃f

Mf2

= min
v

T (β(x, t)Mf,MC(x, v, t))

Mf (x, v, t + ∆t)
(4.3.32)

Suppose now, for simplicity, that βc(x, t) = 0 at the beginning of our computation,
it follows that the hybrid method reads in the same way from equation (4.3.17)
to equation (4.3.20). After the transport of the continuous and stochastic part
βc(x, t + ∆t) is computed, thanks to this knowledge the relaxation step in one
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space cell at time n + 1 becomes

R(f(t + ∆t)) = (1− β2)(f̃MC + β1M̃f ) + β2Mf2

= (1− β2)(f̃MC + βc
2Mf2 + M̂f ) + β2Mf2 (4.3.33)

= (1− β2)(f̃MC + M̂f ) + ((1− β2)β
c
2 + β2) Mf2

where the relation β1M̃f = M̂f + βc
2Mf2 with βc

2 = βc(x, t + ∆t) holds. Note
that M̂f represent the part of the transported Maxwellian which is no more in
equilibrium. The possibility of making βc(x, t) 6= 0, gives the opportunity to yield
independent from the mesh the hybrid method. In fact β(x, t), obtained as solution
of the relaxation step, is a function of ε(x, t) and4t, it follows that the equilibrium
component is a function of the mesh, being ∆t ≤ ∆x/νmax. However, the ratio
of Maxwellian respect to the global distribution function does not depend from
the method, instead is intrinsic to the Boltzmann-BGK model. Recovering part of
the equilibrium after the transport permits to increase the efficiency of the method
without loosing accuracy, thus to extend the use of the scheme to a larger set of
problems.

The first and simplest method to estimate βc(x, t) consists in measuring the
departure from equilibrium reconstructing the transported Maxwellian from sam-
ples. Thus we need a grid in velocity space and a loop over the particles inside
each cell. To that aim we consider a cartesian grid of Nv nodes vk = k∗∆v+b with
k bounded index, ∆v the grid step and b the artificial boundary in the unbounded
velocity space. Approximating the continuous distribution function f(x, v, t) or
Mf (x, v, t) with a discrete velocity model f(x, vk, t), Mf (x, vk, t), we are able to
identify for each sample the belonging spatial and velocity cell and to measure the
quantity

wc(x, vk, t + ∆t) =
β1M̃f

Mf2

=
T (β(x, t)Mf,MC(x, vk, t))

Mf (x, vk, t + ∆t)
(4.3.34)

In order to use the method here described with the algorithm of the previous sec-
tion, we need for each spatial cell one value for the equilibrium fraction, thus we
define

βc(x, t + ∆t) = min
vk

{wc(x, vk, t + ∆t)} (4.3.35)

This method deserves some remarks. The reconstruction of the distribution func-
tion from samples increase the computational cost, moreover a small number of
particles inside a cell, which is quite common in applications, furnish a large os-
cillating function, this turns in an imprecise estimate of βc(x, t).
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A second way to estimate the equilibrium fraction is still based on the analy-
sis of the transported Maxwellian, we discretize in space and time preserving the
velocity space continuous. Consider a time splitting between relaxation and trans-
port part, focusing on the latter

M̃n+1
i (v)−Mn

i (v)

∆t
+ v

Mn
i (v)−Mn

i−1(v)

∆x
= 0, v ≥ 0 (4.3.36)

M̃i(v)n+1 −Mn
i (v)

∆t
+ v

Mn
i+1(v)−Mn

i (v)

∆x
= 0, v < 0 (4.3.37)

where Mn
i (v) ' Mf (x, v, t), Mn

i+1(v) ' Mf (x + ∆x, v, t), Mn
i−1(v) ' Mf (x −

∆x, v, t), M̃n+1
i (v) ' M(x, v, t+∆t). We put a tilde on the transported Maxwellian

to distinguish it respect to the local Maxwellian at time t+∆t, which is Mn+1
f,i (v) '

Mf (x, v, t+∆t). The scheme described above is an upwind method for the Boltz-
mann equation in the non collisional limit, where of course is necessary to choose
a maximum value for the velocity being the Maxwellian function unbounded.
Commonly the bound is chosen equal to the larger velocity value of the particles.
Solving Eqs. (4.3.36) and (4.3.37)

M̃n+1
i (v) = (1− v∆t

∆x
)Mn

i (v) +
v∆t

∆x
Mn

i−1(v), v ≥ 0 (4.3.38)

M̃n+1
i (v) = (1 +

v∆t

∆x
)Mn

i (v)− v∆t

∆x
Mn

i+1(v), v < 0 (4.3.39)

Thus, if |v|∆t ≤ ∆x, the updated function M̃n+1
i (v) is a convex combination of

the local Maxwellian in the cell i and i − 1 for positive velocity and in the cell i
and i + 1 for negative velocity. Now in each cell we are looking for the minimum
of the ratio

min
v

(
β1M̃f

Mf2

)
= min

v

(
T (β(x, t)Mf,MC(x, v, t))

Mf (x, v, t + ∆t)

)
' min

v

(
M̃n+1

i (v)

Mn+1
f,i (v)

)

(4.3.40)
In the general case the above computation is not possible with analytic tools. Of
course it is always possible to find approximated solutions of (4.3.40), however
this operation can be expensive, if it has to be done at each time step in each cell.
An alternative and fast way could be to search instead of the minimum an infimum
value for (4.3.40) which hopefully results to be close respect the aforementioned
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minimum. That value can be estimated observing that

min
v

(
M̃n+1

i (v)

Mn+1
f,i (v)

)
≥ min

(
min

v

(
Mn

i (v)

Mn+1
f,i (v)

)
, min

v

(
Mn

i−1(v)

Mn+1
f,i (v)

))
=

= βc
R(x, t + ∆t), v ≥ 0 (4.3.41)

min
v

(
M̃n+1

i (v)

Mn+1
f,i (v)

)
≥ min

(
min

v

(
Mn

i (v)

Mn+1
f,i (v)

)
, min

v

(
Mn

i+1(v)

Mn+1
f,i (v)

))
=

= βc
L(x, t + ∆t), v < 0 (4.3.42)

and setting

βc(x, t + ∆t) = min(βc
R(x, t + ∆t), βc

L(x, t + ∆t)) (4.3.43)

where the minimum of the ratios above can be computed exactly, being exponen-
tial functions. Moreover (4.3.43) is as close to (4.3.40) as the flow is smooth, it
follows that the proposed estimate seems to be good in the whole computational
domain except near shocks or sharp gradients.

It is possible to think to other strategies to compute βc(x, t). One strategies
could be to compute the moment of the third order, and to compare the results
obtained with different value of βc(x, t), the final value of βc(x, t) will be set
equal to the maximum value that gives the same moment of βc(x, t) = 0. The
method could be much more faster respect to the reconstruction of the distribution
function from samples, we leave the investigation of this aspect to future work.

An algorithm which can be used once βc(x, t) has been computed is the fol-
lowing

Algorithm 4.3.3 (Optimized FSI Hybrid Scheme)

1. Compute the initial velocity and position of the particles {ν0
p,j, j = 1, .., Np}

{p0
p,j, j = 1, .., Np}, {ν0

E,j, j = 1, .., NE} {p0
E,j, j = 1, .., NE} by sampling

them from initial density f0(x, v) = f̃(x, v) + βc(x)Mf (x, v). NE is the
number of particles which represent the equilibrium state while Np is the
number of particles which represent the non-equilibrium state.

2. Points 2-3-4 same as algorithm 2
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3. While t ≤ tf with tf the final chosen time and t the actual time.
Given the samples values {νn

p,j, j = 1, .., Np}, {pn
p,j, j = 1, .., Np}, {νn

E,j, j =
1, .., NE}, {pn

E,j, j = 1, .., NE}, the moments values Un
i = (%n

i , (%u)n
i , E

n
i )

at time t and βn,c
i in the cell i. Consider one spatial cell

(a) Perform the relaxation step

i. with probability e−∆t/ε the Np samples are unchanged, while with
probability e−∆t/ε(1− βn,c

i ) the NE samples are unchanged
• set νn+1

p,j = νn
p,j

• set νn+1
p,j = νn

E,j

ii. with probability 1−e−∆t/ε the Np samples are replaced with equi-
librium samples, with probability (1− e−∆t/ε + e−∆t/ε ∗ βn,c

i ) the
NE samples are replaced with equilibrium samples. Sample only
e−∆t/ε(1− e−∆t/ε)Np and e−∆t/ε(1− e−∆t/ε + e−∆t/ε ∗ βn,c

i )NE

particles.

iii. Compute the effective fraction of equilibrium βE
i = 1− Nnew

p

NT
with

Nnew
p the number of samples which represent the non equilibrium

state after relaxation and NT the total number of samples inside
the cell

(b) Solve the Euler equations for Un
E,i and find Un+1

E,i as specified in Eqs.
(4.3.18)

(c) Transport particles

pn+1
p,j = pn

p,j + νn+1
p,j 4t, ∀j, (4.3.44)

pn+1
E,j = pn

E,j + νn+1
E,j 4t, ∀j, (4.3.45)

(d) Compute the moments of the non-equilibrium part P (f̃MC) using the
advected particles that did not change their velocity during the relax-
ation step

(e) Compute the hybrid solution Un+1
H,i = P (f̃MC) + Un+1

E,i

(f) Compute the updated value of ∆t

(g) Use the new macroscopic value Un+1
H,i to find the new Maxwellian

(h) Compute the updated value of βn+1,c
i in each cell.

end for
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4.4 Domain decomposition method

We saw that the identification of zones far from the thermodynamical equilibrium
is not an easy task to accomplish, domain decomposition techniques are then used
in order to better treat these difficulties and to design suitable numerical schemes.
In fact we do not need to solve the kinetic equations in the whole computational
domain instead it is sufficient to solve the hydrodynamical equations except in
small zones where departure from thermodynamical equilibrium like shock waves
are present. To this aim we have developed a numerical scheme directly derived
from the multiscale hybrid scheme just described, which can be used to obtain
a decomposition of the domain, artificially imposing the value of the Knudsen
number ε equal to zero, where the thermodynamic profiles provided by Euler
equations are sufficiently accurate.

We could view the following domain decomposition technique as a subset of
the FSI hybrid scheme. Thus, the scheme becomes a coupling of a Euler solver
(by MUSCL scheme) in one part of the domain and a BGK solver in the rest of the
domain (by FSI method). In fact, if ε ≡ 0 from the exact solution of the relaxation
step we get at each time step

f(x, v, t) = Mf (x, v, t). (4.4.1)

Thus after transport since we project the entire solution towards the equilibrium,
we are no more interested to the form of the distribution function but only by
their moments. As a consequence P (f̃MC(x, v, t)) ≡ 0 and the hybrid solution
becomes Uh(x, t) = UE(x, t). In order to divide the domain we need to decide
some criteria which permit to detect the zones in thermodynamical equilibrium
with respect to the others, this is still an open problem and it will not be addressed
in the present work, we quote for instance [40] in which the question is considered
in detail. Two consideration about the boundary conditions are necessary

• The deterministic scheme we use to solve the problem in regions where
ε = 0, need a value which is supplied by the hybrid scheme. That value
contains some statistical fluctuation that could be large, thus the full deter-
ministic model could contain some boundary error given by the fluctuation
which propagates in the rest of the domain. In order to avoid the problem
a technique could be to make ε a smooth function of x which gently vary
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from some fixed value towards zero. For instance we could set ε as

ε(x) =





εF , for x ≤ a
0, for x ≥ b
x− b

a− b
εF , for x ∈ [a, b]

(4.4.2)

Where b represent the boundary of the equilibrium zones, a represent the
boundary of the non equilibrium zones in which we use the full hybrid
scheme, while εF represent the value of the Knudsen number for the hy-
brid scheme.

• We need also the boundary value for the MC part of the FSI where ε 6=
0, thus at the boundary between ε ≡ 0 and ε 6= 0 we need to sample
some particles from the Maxwellian. The number of samples we need is
given by (1− βi)βiU

h
i , where i indicate the cell, divided for the mass of the

particles. However the particles velocity have to be sampled from the local
Maxwellian in the cell (i − 1), if we are considering the left boundary, or
from i + 1 if the right boundary is considered.

4.5 Implementation and numerical tests
In principle any finite volume or finite difference numerical scheme can be used to
solve the compressible Euler equations. We choose a finite volume MUSCL type
scheme, which is second order in space, while the time discretization implemented
is first order in ∆t (see [66] for details). We present the scheme once again in one
space dimension, for the sake of simplicity. The system to discretize is (4.2.7),
where u now is a scalar and represent the mean velocity in the x direction, while
m is equal to %u. Let

U =




%
m
E


 , F (U) =




m
%u2 + p
u(E + p)




The system (4.2.7) can be written as

∂

∂t
U +

∂

∂x
F (U) = 0 (4.5.1)

The spatial discretization reads

∂

∂t
Ui +

1

hi

(Fi+1/2(U)− Fi−1/2(U)) = 0 (4.5.2)
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with hi = xi+1/2 − xi−1/2 and

Ui =
1

hi

∫ xi+1/2

xi−1/2

Udx (4.5.3)

F p
i+1/2 =

1

2
(F p(Ui) + F p(Ui+1))− 1

2

√
ap(U

p
i+1 − Up

i )

+
1

4
(hiσ

+
i (Ui)− hi+1σ

−
i+1(Ui)), p = 1, 2, 3 (4.5.4)

where ap are positive constant that need to be greater of the square of the eigenval-
ues of the system to assure the dissipative nature of the solution, and σ±i represent
the slope in the cell i of the piecewise linear reconstruction

σ±i =
1

hi

(F p(Ui+1)±
√

apU
p
i+1 − F p(Ui)∓

√
apU

p
i )φ(θ±i ) (4.5.5)

θ±i =
F p(Ui)±

√
apU

p
i − F p(Ui−1)∓

√
apU

p
i−1

F p(Ui+1)±
√

apU
p
i+1 − F p(Ui)∓

√
apU

p
i

(4.5.6)

while the slope limiter chosen, introduced by van Leer [76], is defined by

φ(θ) =
|θ|+ θ

1 + |θ| (4.5.7)

Finally the integration in time is performed by

Un+1 = Un − 4t

hi

(Fi+1/2(U)− Fi−1/2(U)) (4.5.8)

where the time step is such that

4t ≤ mini(hi)

maxp(ap)
p = 1, 2, 3 (4.5.9)

In the next paragraph we analyze the performances of the Fluid Solver Inde-
pendent Hybrid scheme and of the domain decomposition scheme in comparison
with a classical Monte Carlo scheme. Moreover as reference solution a first order
deterministic discrete velocity model (DVM) for the Boltzmann-BGK equation
will be used in the 1-D tests. We choose an unsteady shock test in one space di-
mension for the hybrid method while for the two dimensional case an ellipse em-
bedded in a flow has been implemented with the odmian decomposition method.
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ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

MCM 3.869 ∗ 10−2 4.206 ∗ 10−2 6.453 ∗ 10−2 6.547 ∗ 10−2

FSI 3.735 ∗ 10−2 4.148 ∗ 10−2 3.637 ∗ 10−2 2.738 ∗ 10−3

FSI1 3.645 ∗ 10−2 3.810 ∗ 10−2 3.061 ∗ 10−2 2.668 ∗ 10−3

Table 4.1: Ratio of computational times for MCM, FSI and FSI1 respect to DVM
scheme for different values of the Knudsen number ε in the unsteady shock test.

In the sequel we report for the DVM scheme only the parameter chosen without
describing the algorithm which is expected to be known, we remind to [84] for
details on this method. For the two dimensional case only comparisons between
Monte Carlo and the hybrid are shown. We recall that our aim is to stress the dif-
ference in fluctuations and in computational time that it is possible to obtain using
our hybrid method respect to a Monte Carlo method or a deterministic discrete ve-
locity model. For this purpose several cases have been treated varying the Knud-
sen number value, showing how the time and the fluctuations decrease together
with it. We also remark that, while estimate the time differences between the hy-
brid scheme and a full Monte Carlo is quite easily (in fact our method is based
on the same stochastic solver), the same comparison with another kinetic solver
are not really straightforward, too many parameters are involved, depending on
the precise solver chosen. For that reason we stress that the computational times
for the 1-D unsteady shock test, reported in Table 1 are just indicative. However,
being undeniable that kinetic deterministic methods are much more expensive that
statistical methods specially in multidimensional situations, we observe that the
hybrid method here developed is in general equal or faster than a Monte Carlo
method. In the sequel we use the shorthand MCM, FSI, FSI1, DDM, DVM and
E to denote the Monte Carlo scheme, the FSI method with βc(x, t) = 0, the FSI
method with βc(x, t) 6= 0, the domain decomposition method, the discrete ve-
locity model for Boltzmann-BGK equation and the second order MUSCL Euler
solver.

4.5.1 1-D Unsteady shock
We start considering an unsteady shock that propagates from left to right, the
shock is produced miming a specular wall on the left boundary, thus for the sto-
chastic component at each time step, particles which escape from the computa-
tional domain on the left side are put back in the first cell with opposite veloc-
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ity in a random position. On the other side particles are injected with the ini-
tial mean velocity and temperature in a number which corresponds to the initial
density. For the macroscopic part the usual specular and inflow boundary con-
dition are used. At the beginning the flow is uniform with mass % = 1, mean
velocity u = −1 and energy E = 2.5. The computations are stopped when
t = 0.065, the number of cells are 200 in space, while the initial number of
particle are 1000 for each space cell, parameters ai, i = 1, 2, 3 are chosen as
a1 = a2 = a3 = max(sup(u − c), sup(u), sup(u + c)) = 5.045 for all t and x
with c the sound speed. For the DVM method, an explicit Euler discretization for
the time derivative and an upwind method for the discretization of the flux has
been implemented, the number of cells in space is set to 2000, while the cells in
velocity space are such that the distance between two discrete velocities is equal
to ∆v = 0.4, with boundary set to [−20, 20]. The Knudsen number is respectively
equal to ε = 10−1, ε = 10−2, ε = 10−3 and ε = 10−4. In each Figure the solution
computed with the Euler scheme and the one computed with the DVM scheme
is reported, moreover the FSI, the FSI1 and the MCM are respectively depicted
for density, velocity and temperature. We observe that for large Knudsen number
FSI, Figure 4.2 left, and MCM, Figure 4.3 furnish the same solution in term of
fluctuations, while FSI1, Figure 4.2 right, is similar to the others only in the non-
equilibrium region and equal to the Euler solver in the equilibrium region. When
ε decrease the non-equilibrium part becomes smaller and both FSI and FSI1 con-
tains less fluctuations than MCM, observe however that the same trend of Figure
4.2 and 4.3 is preserved in Figure 4.5, FSI1 fluctuate only in the non-equilibrium
region. Finally for ε = 10−4 , Figure 4.6, both the hybrid methods furnish a
solution equal to the macroscopic one and at the same computational time. Re-
markable is the behavior of the MCM scheme, Figure 4.4 and 4.7, fluctuations
increase with the decrease of the Knudsen number, which means that the relax-
ation is a source of statistical error, observe finally that the DVM scheme, which
is first order in space and time, slightly overestimate the shock velocity respect
to the other schemes. In Table 1 the ratio of the computational times of the two
hybrid methods and of the Monte Carlo method are reported respect to the de-
terministic discrete velocity scheme, showing how the time dramatically reduce
when the Knudsen number goes to zero, to the other part when it is large MCM
and hybrid scheme has approximately the same performances.
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Figure 4.2: Unsteady Shock: Solution at t = 0.065 for FSI left, FSI1 right, density
top, velocity middle, temperature bottom. Knudsen number ε = 10−1
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Figure 4.3: Unsteady Shock: Solution at t = 0.065 for FSI left, FSI1 right, density
top, velocity middle, temperature bottom. Knudsen number ε = 10−2
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Figure 4.4: Unsteady Shock: Solution at t = 0.065 for MCM with Knudsen
number ε = 10−1 left, MCM with Knudsen number ε = 10−2 right, density top,
velocity middle, temperature bottom.
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Figure 4.5: Unsteady Shock: Solution at t = 0.065 for FSI left, FSI1 right, density
top, velocity middle, temperature bottom. Knudsen number ε = 10−3
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Figure 4.6: Unsteady Shock: Solution at t = 0.065 for FSI left, FSI1 right, density
top, velocity middle, temperature bottom. Knudsen number ε = 10−4
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Figure 4.7: Unsteady Shock: Solution at t = 0.065 for MCM with Knudsen
number ε = 10−3 left, MCM with Knudsen number ε = 10−4 right, density top,
velocity middle, temperature bottom.
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4.5.2 2D flow past an ellipse
In this section we compare the performance of Monte Carlo schemes and of DDM
. We consider an ellipse embedded in a flow with the following characteristic

% = 1, T = 5, M = 10 (4.5.10)

Where M indicates the Mach number, we choose full accommodation boundary
condition with temperature TE = 10. The Knudsen number is ε = 10−4 that
correspond to β = 0.75 if ((x − 2)/1.8)2 + (y − 1)2 < 0.8 while ε = 0 if
((x − 2)/1.9)2 + (y − 1)2 > 0.8 that correspond of course to β = 1. The value
of the Knudsen number shift from the two reported value while we move from
one region towards the other as shown in Figure 4.9. The number of space cell
are 200 × 200, the number of particles are 40 for cell. Since we are computing a
stationary solution we could after some fixed time strongly diminish the fluctua-
tion by averaging in time the solution, however we want to stress the difference of
fluctuations and computational time of our hybrid scheme with respect to Monte
Carlo, for this reason the solution is not averaged. What we could see is the better
accuracy and performance we obtain respect a Monte carlo scheme. In the test
presented we have a computational gain of about 40% which clearly increases in
simulations in which we approach the hydrodynamic limit. In fact if ε → 0 par-
ticles and fluctuations completely disappear and the time we need to perform the
solution is the same of a solver for the compressible gas dynamic equations.

4.6 Conclusion
In this chapter we have considered the extension of the hybrid kinetic methods
to the case of a general solver, microscopic or macroscopic, for the Maxwellian
component, moreover we showed how to construct a domain decomposition tech-
nique starting from that idea. The simplified BGK collision kernel has been used
in this work, however extension to the full Boltzmann kernel it is possible through
the use of time relaxed method [94].

We showed the really encouraging results of this strategies in terms of com-
putational performances respect to traditional methods for kinetic equations like
discrete velocity model or spectral schemes. In addition this algorithm permits
to obtain less fluctuations respect direct simulation Monte Carlo, in relation to
the equilibrium/non equilibrium character of the solution and when the Knudsen
number is sufficiently small, it also permits to compute results faster.
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Figure 4.8: 2D flow: Domain Decomposition Hybrid scheme(left) Monte Carlo
(right). Density (top), temperature (middle), velocity x- direction (middle) and
velocity y-direction (bottom).
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Figure 4.9: Degree of equilibrium in different regions of the domain (β).

Some open questions remain about how to increase the fraction of equilibrium
in order to give a larger improvement to the performances. In any case, it is
possible to round on that problem forcing the Knudsen number to zero in regions
in which it is known that macroscale and microscale models furnish the same
results. It is also interesting, and it is the subject of future work, to measure the
response of the above methods to many others situations from the rarefied gas
dynamic to nanosystem or plasma physics problems.
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Chapter 5

Direct Simulation Monte Carlo
schemes for Coulomb Interactions

This Chapter is based on the work [14] which has to be submitted in 2008, in
collaboration with Prof. Russell Caflisch of the Department of Mathematics of
UCLA CA and Prof. Lorenzo Pareschi of the Department of Mathematics and
Center for Modeling Computing and Statistics (CMCS) of University of Ferrara.

5.1 Introduction

When a gas is far from the thermodynamical equilibrium, the description of the
system through the fluid equation is not satisfactory and its fundamentals proper-
ties depend upon the interactions of the particles. Collisional phenomena can be
distinguished in to long-range interactions and short-range interactions. The lit-
erature on numerical schemes for short-range forces is wide ([3], [7], [16], [17])
and many efficient methods has been developed for these problems. To the other
part, how to deal with long-range interactions like the Coulomb potential field it
is still not clear. The present work is a contribution in this direction.

In the case of Coulomb interactions the field of each particle interact simulta-
neously with a large number of other particles, thus multiple collisions phenomena
are involved adding difficulties to the numerical description. However, this multi-
ple interactions can be seen as a number of simultaneous binary collisions, where
each of these gives a small contribution to the relaxation process through a small
angle scattering between particles.

The Landau-Fokker-Planck equation seems to be a valid substitute respect to
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the Boltzmann operator (and can be derived from it, see for instance [42]) to
describe this type of system, which is simply its asymptotic form in the case of
Coulomb potential field, in which the large angle deflection of a charged particle,
in a multiple Coulomb interaction, is considered as a series of consecutive weak
binary collisions. The classic Boltzmann collision integral is still able to describe
the interactions, but the typical time between two consecutive collisions prohibits
to construct efficient explicit schemes, the resulting time step will be in these
cases too small and an excessive use of the computational resources is needed.
Moreover due to the small effect of a single interaction such detailed analysis is
unnecessary.

In the present work, starting from the approximation derived by Bobylev for
the Boltzmann collision operator, we generalize his approach constructing a se-
ries of direct Monte Carlo methods, showing how the scheme developed can be
inserted in a larger class of numerical schemes, in the same spirit of Monte Carlo
schemes for rarefied gas dynamic. Moreover, keeping separated the discretization
of the time derivative and the approximation of the collision operator, we perform
a series of numerical convergence tests for the approximated collision operator in
order to show that the effective rate coincide with the one hypothesized in [9],
once the time steps is chosen sufficiently small.

The rest of the chapter is organized as follow. In Section 5.2, we introduce the
Boltzmann and Fokker-Planck equations and their properties. In Section 5.3, we
show the approximated Boltzmann operator and the limiting case in which, for
small angle scattering, it converges to an approximated operator for the Landau-
Fokker-Planck equation. Section 5.4 shows direct simulation Monte Carlo meth-
ods for the Coulomb interactions. Several test problems which demonstrate the
capabilities of the method, difference and analogies with BN (Bobylev-Nanbu
scheme), and convergence tests are presented in Section 5.5. Some final consid-
erations are discussed in Section 5.6.

5.2 The Boltzmann and the Fokker-Planck equations
Consider the Boltzmann equation

∂f(x, v, t)

∂t
+ v · ∇xf(x, v, t) + a · ∇vf(x, v, t) = Q(f, f) (5.2.1)

with the initial condition

f(x, v, t = 0) = f0(x, v), (5.2.2)
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where f = f(x, v, t) is a non negative function describing the time evolution
of the distribution of particles which move with velocity v ∈ R3 in the position
x ∈ Ω ⊂ R3 at time t > 0. The vector a represent the acceleration due to the force
acting on particles such as gravity, electric field or magnetic field. In the sequel
the dependence on the variables for the distribution function will be omitted when
it appears to be clear. The bilinear operator Q(f, f) describes the binary collisions
between particles and is given by

Q(f, f) =

∫

R3

∫

S2

B

(
|q|, q · n

|q|
)

[f(v′)f(v′∗)− f(v)f(v∗)]dndv∗ (5.2.3)

where S2 is the unit sphere in R3, q = v − v∗, n ∈ S2 the unit normal. The post
collisional velocity are computed by

v′ =
1

2
(v + v∗ + |q|n), v′∗ =

1

2
(v + v∗ − |q|n) (5.2.4)

The collision kernel B(|q|, q · n/|q|), which characterize the detail of the interac-
tion, is defined as

B(|q|, cos θ) = |q|σ(|q|, θ), (0 ≤ θ ≤ π) (5.2.5)

Here cos θ = q · n/|q| and σ(q, θ) is the collision cross section at the scattering
angle θ, that correspond to the number of particles scattered per unit time, per unit
of incident flux and per unit of solid angle. We introduce also the total scattering
cross section and the momentum scattering cross section that will be used in the
remainder of the paper

σtot(|q|) = 2π

∫ π

0

σ(|q|, θ) sin θdθ (5.2.6)

σm(|q|) = 2π

∫ π

0

σ(|q|, θ) sin θ(1− cos θ)dθ (5.2.7)

In the case of hard sphere molecules the cross section and the collision kernel
takes the form

σ(q, θ) =
d2

4
, B(|q|, θ) =

d2

4
|v − v∗| (5.2.8)

while in the variable hard sphere case we have

σ(q, θ) = Cα|v − v∗|α−1, B(|q|, θ) = Cα|v − v∗|α (5.2.9)
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with Cα and α positive constants. The case α = 1 is referred as Maxwellian
gas while for α = 1 we recover the hard sphere model. In the case of Coulomb
interactions the Rutherford formula holds

σ(|q|, θ) =
b2
0

4 sin4(θ/2)
(5.2.10)

where b0 = e2/(4πε0mr|v−v∗|2), with e the charge of the particle, ε0 the vacuum
permittivity and mr the reduced mass, which corresponds to m/2, if the particles
are of the same species, with m equal to the mass. Observe that from the above
formula follows that the scattering cross section tends to infinity as the angle θ
tends to zero. In order to obtain finite and meaningful values for the total and the
momentum cross section is necessary to introduce a cut-off value for the impact
parameter. The cut-off value is justified by the shielding effect phenomena, lead-
ing to the following values for the total cross section and the momentum cross
section

σtot(|q|) = πλ2
d (5.2.11)

σm(|q|) = 4πb2
0 log Λ (5.2.12)

with λd = ( ε0kT
ne2 )1/2 the Debye length and Λ = 1

sin(θmin/2)
.

In the case of grazing collisions it is possible to derive from the Boltzmann
operator the Landau-Fokker-Planck operator (see [42] for details)

QL(f, f) =
1

8

∂

∂vi

∫

R3

|q|σm(|q|)((|q|2)δij− qiqj)×
(

∂

∂vj

− ∂

∂v∗j

)
f(v)f(v∗)dv∗

(5.2.13)
In the next section we will see how it is possible to construct numerical schemes
starting from the Boltzmann equation which approximate the Landau operator.

5.3 The approximated Boltzmann equation
From now on, we will focus on the space homogeneous equation without force
fields. Once the collision term is solved, the solution of the full Boltzmann equa-
tion can recovered computing the transport and the force term through a time
splitting.

Although the divergence of the collision integral has been solved with the cut-
off of the scattering cross section, the simulation of the Boltzmann equation for
Coulomb interactions still represent a big trouble, due to the too high computa-
tional cost which is necessary to directly simulate the equations with time explicit
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schemes. In fact rewriting Eq. (5.2.1) in the space homogenous case pointing out
the gain and loss term

∂f

∂t
= Q+(f, f)− f(v)L[f ](v), L[f ](v) = σtot(|q|)

∫

R3

|q|f(v∗)dv∗ (5.3.1)

Q+(f, f) =

∫

R3

∫

S2

B

(
|q|, q · n

|q|
)

f(v′)f(v′∗)dndv∗ (5.3.2)

it is easy to observe that the large value of the total collision cross section forces
the time step to be small, thus too many steps become necessary to compute the fi-
nal solution, yielding this schemes useless. In fact discretizing the time derivative
we obtain

f(v, t+∆t) = ∆tQ+(f, f)+f(v, t)

(
1−∆tσtot(|q|)

∫

R3

|q|f(v∗)dv∗

)
(5.3.3)

now if we want to preserve a probabilistic interpretation we need the coefficients
to be positive, thus ∆t has to be extremely small if σtot(|q|) is very large.

Recently an approximated Boltzmann operator has been developed by Bobylev
and Nanbu ([9]), which permits to use larger time steps during the simulation even
in the case of Coulomb collisions. Here we try to generalize this approach in order
to construct Direct Monte Carlo schemes for small particles interactions.

Rewrite equation (5.2.1) in the homogenous case in the following form

∂f

∂t
=

∫

R3

JF (U, q)dv∗ (5.3.4)

where U = (v + v∗)/2 denotes the center of mass velocity, and

F (U, q) ≡ f(U + q/2)f(U − q/2) = f(v)f(v∗) (5.3.5)

while the operator J is defined as

JF (U, |q|ω) =

∫

S2

B(|q|, ω · n)[F (U, |q|n)− F (U, |q|ω)]dn (5.3.6)

with ω = q/|q|. If we approximate the operator J in equation (5.3.4) by

J =
1

τ
(exp(τJ)− Î) (5.3.7)
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where Î is the identity operator and τ are assumed to be small, the equation reads

∂f

∂t
=

1

τ

∫

R3

(exp(τJ)− Î)F (U, q)dv∗ =
1

τ
(Pτ (f, f)− %f) (5.3.8)

with
Pτ (f, f) =

∫

R3

exp(τJ)f(v)f(v∗)dv∗ (5.3.9)

The operator exp(τJ) can be written as

exp(τJ)ψ(ω) =

∫

S2

Bτ (ω · n, |q|)ψ(n)dn (5.3.10)

where ψ(ω) is an arbitrary function and

Bτ (ω · n, |q|) =
∞∑

l=0

2l + 1

4π
exp(−λl(|q|)τ)Pl(ω · n) (5.3.11)

is the Green function, with Pl(ω ·n) the Legendre polynomial and λl(|q|) equal to

λl(|q|) = 2π

∫ 1

−1

B(µ, |q|)(1− Pl(µ))dµ (5.3.12)

where µ = ω · n, −1 ≤ µ ≤ 1 Using the above expression we obtain

Pτ (f, f) =

∫

R3×S2

Bτ (|q|, q · n
|q| )f(v′)f(v′∗)dndv∗ (5.3.13)

Note that ∫

S2

Bτ (ω · n, |q|) = 1 (5.3.14)

5.3.1 A first order approximation for the Landau-Fokker-Planck
equation

Assume now that the scattering cross section σ(|q|, θ) is concentrated at small
angle near θ ≈ 0, thus Bτ (|q|, µ) is concentrated near µ = 1. In that situation it is
possible to derive the following formal approximation

λl(u) ' 2π

∫ 1

−1

Bτ (|q|, µ)(1−Pl(1)+(1−µ)P ′
l (1))dµ = πl(l+1)

∫ 1

−1

Bτ (|q|, µ)(1−µ)dµ

(5.3.15)
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where P ′
l (1) = l(l + 1)/2. The approximate Green function reads

Bτ (µ, |q|) ' BL
τ (µ, |q|) =

∞∑

l=0

2l + 1

4π
Pl(µ) exp

(
− l(l + 1)

2
|q|σm(|q|)τ

)

(5.3.16)
The superscript L in equation (5.3.16) means that equation (5.3.8) with the above
kernel approximate the Landau-Fokker-Planck equation. For a formal proof we
refer to the paper of Nanbu and Bobylev ([9]).

Consider now the case of a Coulomb potential field in a single component gas
or plasma. This choice, with the cut-off of the scattering angle introduced in the
previous section, leads to the following approximated equation of order 0(τ)

∂f

∂t
=

1

τ

(∫

R3×S2

D

(
q · n
|q| ,

τ

2%τ1

)
f(v′, t)f(v′∗, t)dndv∗ − %f(v, t)

)
(5.3.17)

where
1

τ1

= 4π

(
e2

4πε0mr

)2
% ln Λ

|q|3 (5.3.18)

and

D(µ, τ0) =
∞∑

l=0

2l + 1

4π
Pl(µ) exp(−l(l + 1)τ0) (5.3.19)

5.4 DSMC schemes for Coulomb Interactions
Note that is not necessary to work with the collisional kernel D(µ, τ0) computed
above, instead a simpler function D∗(µ, τ0) can be used, preserving the same ac-
curacy 0(τ), if the following condition remain satisfied

D∗(µ, τ0) ≥ 0, 2π

∫ 1

−1

D∗(µ, τ0)dµ = 1 (5.4.1)

lim
τ0→0

D∗(µ, τ0) =
1

2π
δ(1− µ) (5.4.2)

lim
τ0→0

2π

τ0

∫ 1

−1

[D∗(µ, τ0)−D(µ, τ0)]Pl(µ)dµ = 0 (5.4.3)

One possible substitution is represented by

D∗(µ, τ0) =
A

4π sinh A
exp(µA) (5.4.4)
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where A = A(τ) satisfy

coth A− 1

A
= exp

− τ
%τ1 (5.4.5)

It is now clear that it is possible to apply slightly modified versions of the standard
direct Monte Carlo algorithms for Maxwell molecules to the equation

∂f

∂t
=

1

τ
(P ∗

τ (f, f)− %f) (5.4.6)

with

P ∗
τ (f, f) =

∫

R3×S2

D∗
(

q · n
|q| ,

τ

2%τ1

)
f(v′, t)f(v′∗, t)dndv∗ (5.4.7)

The only difference is the way the angle is sampled. In the standard DSMC is sam-
pled uniformly over the sphere, while here is sampled accordingly to D∗(µ, τ0).
Let us discretize the time and denote fn(v) the approximation of f(v, n∆t), the
forward Euler scheme can be used to solve Eq. (5.4.6)

fn+1 =

(
1− %∆t

τ

)
fn +

%∆t

τ
P ∗

τ (f, f) (5.4.8)

This equation has the following probabilistic interpretation: a particle with ve-
locity vi will not collide with probability (1− %∆t/τ) and it will collide with
probability %∆t/τ accordingly to the collision law described by P ∗

τ (f, f). Ob-
serve that the probabilistic interpretation holds till %∆t ≤ τ , otherwise the coef-
ficient in front of fn becomes negative. Note that taking the limit of the above
relation,%∆t = τ , leads to the scheme of Nanbu and Bobylev. The possibility to
take different values of ∆t ≤ τ/% permits to reduce the statistical fluctuations and
to reduce the error due to the time discretization at no additional cost since at vari-
ance with the Variable Hard sphere case, here no acceptance-rejection procedure
is present.

Hence a Monte Carlo algorithm for the solution of the approximated space
homogeneous Landau-Fokker-Planck equations reads as following:

Algorithm 5.4.1 (Nanbu-Babovsky (NB) for Coulomb Interactions)

1. Given N samples v0
k with k = 1, 2, .., N computed from the initial distribu-

tion function f(v, t = 0)
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2. DO n = 1 to nTOT with nTOT = tfinal/∆t

Given {vn
k , k = 1, ..., N}

(a) Set Nc = round(%N∆t/2τ), where the round is statistical

(b) Select Nc pairs (i, j) uniformly among all possible pairs

(c) Perform the collision between i and j particles according to the fol-
lowing collision law

i. Compute the cumulative scattering angle cos θ as

cos θ =
1

A
ln(exp−A +2U sinh A) (5.4.9)

where U is a random number and A = A(τ) is computed trough
the solution of the non linear equation

coth A− 1

A
= exp

− τ
%τ1 (5.4.10)

ii. With the above value of cos θ perform the collision between i and
j and compute the post collisional velocity according to

v′i = vi − 1

2
(q(1− cos θ) + h sin θ) (5.4.11)

v′j = vj +
1

2
(q(1− cos θ) + h sin θ) (5.4.12)

where q = vi − vj , while h is defined as

hx = q⊥ cos ε

hy = −(qyqx cos ε + qqz sin ε)/q⊥

hz = −(qzqx cos ε− qqy sin ε)/q⊥

where q⊥ = (q2
y + q2

z)
1/2 and ε = 2πU1 with U1 a random number

iii. set vn+1
i = v

′
i and vn+1

j = v
′
j

(d) Set vn+1
i = vi for the particles that have not been selected

END DO
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We noticed the structure of the approximate operator analyzed in the previous
section is similar to the structure of the classical Boltzmann collision integral.
Thus is possible to construct, in the same spirit of Maxwell molecules for rarefied
gas dynamic, a Monte Carlo scheme based on the classical Bird method.

From the inspection of the approximated Landau operator, it follows that the
average number of significant collisions in a time step ∆t is given by

Nc =
N

2

%∆t

τ
(5.4.13)

which means that the average time between two collisions is given by

∆t

Nc

=
2τ

%N
(5.4.14)

The Bird method, in the case of Maxwell molecules, can be seen as a NB scheme
in which the smallest possible time step ∆t1 = ∆t/Nc is used, in fact only one
pair collide each ∆t1

fn+1 =

(
1− %∆t1

τ

)
fn +

%∆t1
τ

P ∗
τ (f, f) =

(
1− 2

N

)
fn +

2

N
P ∗

τ (f, f)

(5.4.15)
Hence the Bird algorithm for the approximated Landau-Fokker-Planck equation
reads

Algorithm 5.4.2 (Bird for Coulomb Interactions)

1. Given N samples v0
k with k = 1, 2, .., N computed from the initial distribu-

tion function f(v, t = 0)

2. set time counter tc = 0

3. set ∆tc = 2τ/%N

4. DO n = 1 to nTOT with nTOT = tfinal/∆t

(a) repeat

i. Select a random pair (i, j) uniformly within all possible pairs
ii. perform the collision accordingly to the collision law defined in

the first algorithm and produce v
′
i and v

′
j

iii. Set ṽi = v
′
i and ṽj = v

′
j
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iv. update the time counter tc = tc−∆tc log(ξ) until tc ≥ (n+1)∆t

(b) Set vn+1
i = ṽi, i = 1, ..., N

END DO

The main difference respect to the previous algorithm is that multiple colli-
sions between particles are allowed in ∆t. Moreover in this case the CFL con-
dition can be violated and τ can be grater than %∆t. Thus, as the number of
samples increase to infinity, the Nanbu-Babovsky scheme converge in probability
to the discretized approximated Boltzmann equation. At variance the Bird scheme
converge to the solution of the approximated Boltzmann equation increasing the
number of samples, in fact ∆t1 approach zero. Thus for τ → 0 the first converge
to the discretized Landau-Fokker-Planck equation and the second to the exact so-
lution of the equation.

Remark 5.4.1 Observe that, although in the schemes τ function as the Knudsen
number in rarefied gas dynamic, at variance it has not a clear physical meaning.
Mathematically the parameter in front of the collision operator is measure the
goodness of the approximation. Once it is fixed it furnish a model for the interac-
tions between particles which is so close to the Landau operator as τ is close to
zero. That is, for every value of the above parameter, we solve a different model
for interactions.

Remark 5.4.2 From the above observation it follows that, again from the math-
ematical point of view, given the approximated equation in the form (5.4.6), the
Bird scheme (5.4.15), in which not all the particles collide in one time step ∆t,
furnish a better solution to the problem. It still remains not clear if the method is
also a good physical approximation for system in which particles encounter many
contemporary collisions.

5.5 Numerical Tests
where the Coulomb logarithm value is fixed to log Λ = 0.5. The simulations

are run for most of the relaxation process, because all the schemes reach the same
final equilibrium state and start from the same initial data, our interest is to ana-
lyze the different behaviors of the methods when particles are both far from these
two situations. Thus, fixing tf = 40 with the values above reported we obtain
∆Tf/∆T0 ' 0.2 for the analytic solution, in the rest of the equilibrium process
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Figure 5.1: Relaxation of the velocity distribution function with anisotropic initial
data for different values of τ . Bird scheme.

5.5.1 Test case
The behavior of the DSMC schemes is illustrated through a series of tests in which
the relaxation of the velocity distribution function with anisotropic temperature is
considered. Thus the initial distribution results to be ellipsoidal with Tx 6= Ty =
Tz. The initial values for temperature and density are set to

T = 4 ∗R, % = 0.5 (5.5.1)

where R is the Rydberg constant. The initial difference in the temperature is fixed
to ∆T0 = 0.8. The approximate analytic solution of the Fokker-Planck equation,
in the case of small temperature difference, for ∆T = Tx − Ty is given by [123]

∆T = ∆T0 exp
− 8

5
√

2π
t

τT (5.5.2)

the relaxation time τT corresponds to

1

τT

=
%e4 log Λ

π
√

2ε2
0m

1/2(kT )3/2
(5.5.3)
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Figure 5.2: Pointwise order of accuracy r(τ) = log 2(R(τ)) for the Bird scheme
for decreasing values of the parameter τ .

the schemes and the analytic solution become closer till they coincide. We remark
that although analytic, the solution is still obtained through approximations and
valid for ranges in which ∆T0 is small. This is made more clear by the Figures at
the end of the section, even for very small τ the schemes do not relax at the same
rate of the approximate formula (5.5.2).

5.5.2 Simulations

Our aim is to perform comparisons between the Bird scheme and the Bobylev-
Nanbu (BN) scheme. The curves which describes the behavior of the Nanbu-
Babovsky (NB) scheme with different choices of the time step lie between this
two extremely cases. In the sequel we will analyze

• The deterministic error.

• The statistical fluctuations of the two schemes.
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The sources of errors for the methods are due to

• The approximation of the Boltzmann operator

• The finite number of particles

• The discretization of the time derivative

• The conservative algorithm used for collisions

In order to make a fair comparison of the methods and to stress the capacity to
describe the relaxation phenomena we try to eliminate the common sources of
errors. First we compute the deterministic error due to the substitution of the
original collision operator with its approximation and to the discretization of the
time derivative. To that aim we increase the number of samples and average the
solution of M independent realization removing statistical fluctuations

u(t) =
1

M

M∑
i=1

ui(t) (5.5.4)

where u(t) indicates the average solution at time t and

ui(t) =
Ti(t)x − Ti(t)y

T (0)x − T (0)y

(5.5.5)

with i the realization number. The number of samples used in the convergence
analysis test for each realization is N=2∗106 while the realizations are 5. Observe
however that, using the Bird method together with a large number of particles for
each realization, leads to a very accurate discretization of the time derivative (the
effective time step is a function of 1/N), while with the Babovsky-Nanbu scheme
the increase of the samples number does not effect the treatment of the time deriv-
ative, moreover the two methods has approximately the same computational time,
at the contrary of the rarefied gas dynamic case for variable hard sphere. The
choice of many samples and few realizations, is due to the will to avoid effects of
finite particles number in conservative Monte Carlo methods ([47]).

This behavior can be cleared noticing that while τ → 0 also the time step
∆t → 0 thus the error introduced by the BN scheme in the discretization of
the time derivative disappear. It is also easily noticeable from Figure 5.5 that
the BN scheme lies closer to the analytic solution respect Bird, which means the
error introduced by the discretization of the time derivative, overrelax the solution
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Figure 5.3: Relaxation of the velocity distribution function with anisotropic initial
data for different values of τ . Bobylev-Nanbu scheme.

Summarizing the first test tries to catch the deterministic error measuring the order
of accuracy of the two methods, we expect that for the Bird scheme this is due
only to the approximate collision operator while for BN the error is due both to
the approximation of the operator and to the discretization of the time derivative.
The order of accuracy r at time t is computed as

r(τ) = log2 R(τ), R(τ) =
|u(4τ)− u(2τ)|
|u(2τ)− u(τ)| (5.5.6)

with R the error ratio. Our second purpose is to measure the stochastic fluctuations
of the two methods. We compare the two variances defined as

Σ2(τ, N) =
1

M

M∑
i=1

(ui − u)2 (5.5.7)

Fixing the parameter τ , i.e. the approximation of the Boltzmann operator, the
variances of the two methods are compared for increasing number of samples
starting from N = 100 to N = 3200 each measure is obtained doubling N .
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Figure 5.4: Pointwise order of accuracy r(τ) = log 2(R(τ)) for the Bobylev-
Nanbu scheme for decreasing values of the parameter τ .

In this test the number of realization is chosen equal to M = 1500. We expect the
Bird scheme to have less fluctuations respect to the BN scheme.

5.5.3 Results
Here we report the solution of the tests described in the previous Section. In Figure
5.1 the solution for the relaxation of temperature in the different directions is
showed for the Bird method, while in Figure 5.3 for the BN method. The behavior
of the schemes has been analyzed using six different values for the parameter τ

τ = 2 τ = 1 τ = 0.5 τ = 0.25 τ = 0.125 τ = 0.0625 (5.5.8)

Moreover the solution with τ = 0.03125 with N = 2 ∗ 106 and M = 10 real-
izations has been computed as a reference solution. In both Figures the analytic
and approximated solution is reported (blue line) showing a discrepancy with the
computed solution even with the more accurate one.
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The time step used in the BN scheme is chosen in order to satisfy the relation
%∆t/τ = 1. In Figures 5.2 and 5.4 the convergence rate r is plotted for re-
spectively Bird and BN. Both the schemes approach the value 1 when τ → 0
as expected from the theory. Anyway it is possible to observe from Figure 5.5,
in which the solution of the two methods for the same values of τ (respectively
τ = 2, τ = 1, τ = 0.5 and τ = 0.25) has been compared, that the two algorithms
furnish a different relaxation rate for large values of the approximation parame-
ter of the collision operator, while for small values the two methods in practice
coincide.
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Figure 5.5: Comparison of the Bird and Bobylev-Nanbu method for τ = 2 top
left, τ = 1 top right, τ = 0.5 bottom left, τ = 0.25 bottom right. In each Figure
the Trubnikov (blue line) and the reference solution (black line) are depicted.
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Figure 5.6: Comparison of the Bird and Bobylev-Nanbu variance for τ = 1 and
N = 100 top left N = 200 top right N = 400 middle left N = 800 middle right
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Figure 5.7: Bird (top) and Bobylev-Nanbu (bottom) variance for τ = 1 and N
increasing from 100 to 3200 with M = 1500 realizations. Here the reference
solution u is computed with a fine application of the Bird scheme for the Figure
on the top and of the Bobylev-Nanbu scheme for the Figure on the bottom.
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respect the one furnished by the exact solution of the model (each τ define a
different model for particles interactions, when τ is small this model is close to
the Landau model).

In order to show the different performance in terms of statistical fluctuations
we fixed the parameter τ = 1 and perform several simulations increasing the
number of samples N . In Figure 5.6 a comparison between the two variances,
obtained with Bird and BN, has been plotted. The statistical fluctuations of the
two method are approximately the same for all the initial choices of N , anyway
it is possible to see how the Bird scheme oscillates slightly less respect to the BN
scheme for all the values. This behavior is mainly due to the fact that we compare
the solution of the BN scheme with a fine solution obtained with the Bird scheme.
This is because, in the Bird scheme, the error due to the discretization of the
time derivative is negligible, moreover increasing the number of particles also the
statistical error disappear, making the solution close to the exact one. Thus, if we
compare the BN scheme with a fine solution obtained with the same scheme with
the fixed value τ = 1 and ∆t = τ/ρ, the same behavior of the Bird scheme is
recovered (Figure 5.7 bottom). If, instead of choosing a large value for τ we keep
it small, the variance of the two methods become practically coincide, in fact if
we want a fine approximation of the collision operator with the Bobylev-Nanbu
method, also the time step has to be small, which means we are approaching the
Bird method.

5.6 Conclusion
In this work we have proposed a generalization of the Monte Carlo scheme pro-
posed by Bobylev and Nanbu for the solution of plasma physics problems in which
the predominant collisions are of the Coulomb type [9]. The extension is achieved
through the use of classic algorithm for the rarefied gas dynamic (see: [7], for in-
stance) to the plasma physics phenomena. The main feature of the work is given
by the possibility to obtain a better approximation of the time derivative of the dis-
tribution function without increasing the computational time for the DSMC case
respect the original algorithm of Nanbu. Thus, although non intuitive, an algo-
rithm in which not all particles collide at each time step and some particles collide
more than once, furnish a better solution of the approximate Boltzmann operator,
which has been shown to be an approximation, under some hypothesis of small
angle-scattering between particles, of the Landau-Fokker-Planck operator. From
the physical point of view this results propose something different respect to the
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past, in fact, any other model in literature about Coulomb interactions, provides at
least one collision for any particle present inside the computational domain.

The second part of the paper is centered on the numerical tests in order to
compare performances and results of the methods proposed. In the tests it has
been shown the convergence rate to be of order 1 both for Bird and Bobylev-
Nanbu, while the variance much smaller for the first, with a computational cost
of the same order for the methods. Moreover we could say, although they have
not been showed, that the DSMC schemes perform well with different initial data
for the same test case, but some comparisons with a deterministic scheme for the
Landau equations have to be done in future to better appreciate their behaviors in
different situations.

In future we hope to extend the methods described in [94] for rarefied gas
dynamics to Coulomb interactions, then if the successful use of time relaxed
Monte Carlo methods can be showed, it will open others interesting future devel-
opment. In fact it could become possible to extend the hybrid methods developed
in [17, 44] to plasma physics problems which are close to the thermodynamic
equilibrium. In this methods part of the distribution function (the one in non-
equilibrium) is solved by stochastic methods and part (the part in equilibrium) by
deterministic methods, allowing strong reduction of computational time together
with a reduction of the fluctuations, which are typical of particles simulations.





Chapter 6

A Hybrid Method for Accelerated
Simulation of Coulomb Collisions in
a Plasma

This Chapter is based on the work [15] which is accepted with minor revisions in
SIAM Multiscale Modeling and Simulation, in collaboration with Prof. Russell
Caflisch and Dott. Richard Wang of the Department of Mathematics of UCLA
CA and Prof. Bruce Cohen and Dott. Andris Dimits of the Lawrence Livermore
National Laboratory, Livermore CA, USA.

6.1 Introduction
In many plasma systems, the principal interactions between charged particles
are Coulombic. For inter-particle distance d larger than the Debye length λD,
Coulomb interactions are mediated through electro-magnetic fields governed by a
Vlasov equation. On the other hand, if d < λD, these interactions can be described
as Coulomb collisions, governed by the Fokker-Planck equation.

The Fokker-Planck equation has a time scale tFP , defined by the rate of change
of the particle velocity vector angle. If the characteristic time t0 of interest is large
compared to tFP , then Coulomb interactions will drive the velocity distribution
f(v) to its equilibrium, given by a Maxwellian distribution M , with density nM ,
velocity uM and temperature TM . Further evolution of the system can be de-
scribed by continuum equations for nM , uM and TM . At the other extreme if
t0 << tFP , the plasma can be described as collisionless. In the intermediate
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regime with t0 and tFP of comparable size, then the kinetics of Coulomb colli-
sions are significant for the evolution of the velocity distribution function for the
plasma.

This paper is concerned with Monte Carlo particle methods for simulation of
Coulomb collisions in a plasma using binary collisions. One of the earliest and
most influential Monte Carlo binary collision models was proposed by T. Takizuka
& H. Abe (TA) in 1977 [120] and modified by Nanbu in 1997 [88]. In subsequent
work, Bobylev and Nanbu [9] derived a general time-explicit formulation for the
approximation of the Fokker-Planck equation by a binary collision model. Wang
et al. [127] performed a numerical convergence study for the methods of TA and
Nanbu.

The two methods proposed by TA [120] and Nanbu [88] have been widely
used in the plasma physics community. Simulation of Coulomb collisions can
be a computational bottleneck, however, since the collision times are often very
disparate from the characteristic times of interest. This difficulty is compounded
by the wide range of collision rates for many problems. For example, consider a
velocity distribution in the form of a bump-on-tail; i.e., a near-equilibrium distri-
bution at low velocity with an isolated spike far out on its tail (the “bump”). The
rate of collisions between two particles of velocity v1 and v2 is proportional to
u−3 for u = |v1 − v2|. The average rate of collisions between the particles in the
central distribution f ≈ M is of size T

−3/2
M in which TM is the temperature of the

Maxwellian distribution M . The bump may be concentrated at a velocity differ-
ence uB from the center of M with uB >> T

1/2
M , so that its rate of interaction with

M is of size u−3
B << T

−3/2
M . Direct simulation of the Coulomb collisions for a

bump-on-tail distribution is dominated by collisions between M and itself, which
preserve M but do not affect the evolution of f , and the important interactions of
the bump with M will be rare events. This shows that direct simulation of this
problem is highly inefficient.

The purpose of this paper is to present a hybrid method for accelerating the
simulation of Coulomb collisions. It represents the distribution function as a com-
bination of a thermal component m (a Maxwellian distribution) and kinetic com-
ponent k (numerically represented as a set of particles). Evolution of the thermal
component m is performed using continuum methods based on conservation prin-
ciples; while evolution of the kinetic component k is performed by Monte Carlo
simulation of binary collisions using the method of TA or Nanbu. An interaction
between m and k is performed by sampling a particle from m and selecting a par-
ticle from k, then treating the interaction as a particle collision. In addition, ther-
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malization (particles moved from k to m) and dethermalization (particles moved
from m to k) are performed with probabilities pT and pD respectively.

This hybrid method is motivated by a similar hybrid method for rarefied gas
dynamics (RGD) developed by Pareschi & Caflisch [16]. In the RGD application,
the division between Maxwellian and particle components is performed solely in
physical space x; e.g., the probabilities pT and pD are functions only of x. For
Coulomb collisions, however, the division between the two components must be
performed in phase space (x,v), and pT and pD are functions of x and v.

The remainder of this paper is organized as follows: The Monte Carlo binary
collision methods of TA [120] and Nanbu [88], as well as the general formulation
of Bobylev and Nanbu [9], are presented in Section 6.2, and the hybrid method is
formulated in Section 6.3. Determination of pT and pD is performed in Section
6.4 through a detailed balance requirement and the use of Nanbu’s s parameter.
Computational results are presented in Section 6.5, following by conclusions in
Section 6.6.

6.2 Monte Carlo Simulation of Coulomb Collisions
We first introduce the governing equation for the physical process, and describe
the TA and Nanbu Monte Carlo binary collision models for a spatially homo-
geneous plasma. We consider collisions between N particles consisting of N/2
particles from each of two species α and β.

6.2.1 Governing equation

Coulomb collisions in a plasma can be treated as the simulation of many con-
tinuous small-angle binary collisions [118]. The time evolution of the particle
distribution in a spatially homogeneous, non-equilibrium plasma is described by
the Fokker-Planck equation:

∂fα

∂t
= (

δfα

δt
)c (6.2.1)

in which fα is the distribution function of the α species and ( δf
δt

)c is the collision
operator defined as (MKS units)

(
δfα

δt
)c = −

∑

β

∂

∂vj

e2
αe2

β log Λ

8πε2
0mα

∫
dv

′
[
δjk

u
− ujuk

u3
][

fα

mβ

∂f
′
β

∂v
′
k

− f
′
β

mα

∂fα

∂vk

]. (6.2.2)



188 6.2. Monte Carlo Simulation of Coulomb Collisions

in which we use the notation u = vα−vβ , u = |u| and f
′
β = fβ(v

′
). The equation

for fβ is similar.
Bobylev and Nanbu [9] derived a general formulation for a binary collision

model that approximates the solution of (6.2.1) over a time step ∆t. The resulting
equation (see [9] for further details and definitions) is

fα(v, t + ∆t) =
n∑

β=1

παβ

∫

R3×S2

dvβdnDαβ(
g · n

g
, Aαβ

∆t

g3
)fα(v

′
α, t)fβ(v

′
β, t).

(6.2.3)
They also found a set of conditions on the kernel Dαβ which ensure that f is an
approximate solution of (6.2.1), with error of size O(∆t). As described in the
following, the TA and Nanbu collision models each correspond to Monte Carlo
simulation of the integral (6.2.3) for a specific choice of Dαβ .

6.2.2 The Collision Model of Takizuka and Abe
Although the TA model was not analyzed in [9], we show that the collision model
of TA corresponds to the following formula for D:

DTA(µ, τ) = (2π)−1(2πτ)−1/2e−ζ2/2τ (dζ/dµ) (6.2.4)

in which

τ =< ζ2 >= (
e2

αe2
βnL log Λ

8πε2
0m

2
αβu3

)∆t (6.2.5)

and the scattering angle θ in the frame of the relative velocity is defined by

θ = 2 arctan ζ

µ = cos θ. (6.2.6)

Also eα and eβ are electric charges for the species α and β, nL is the smaller
density of the particle species α and β, Λ is the Coulomb logarithm, u = |vα−vβ|
is the relative speed, ∆t is the time step , and mαβ = mαmβ/(mα + mβ) is the
reduced mass. With the choice D = DTA, the convergence criteria of Bobylev
and Nanbu in [9] is satisfied, as shown in Appendix 6.7.1.

A Monte Carlo algorithm for simulation of the integral (6.2.3) with the kernel
(6.2.4) over a single time interval ∆t consists of performing the following steps
N/2 times:
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1. Randomly select two particles with velocity vα and vβ from the distribu-
tions fα and fβ . This is done by exclusive sampling, so that no particle is
selected more than once. This corresponds to the term fαfβ in (6.2.3).

2. Sample a value of µ = cos(2 arctan ζ), in which ζ is a Gaussian random
variable with mean 0 and variance τ =< ζ2 > and τ is defined by (6.2.5)
using u = |vα − vβ|. Define θ by θ = 2 arctan ζ . This corresponds to the
factor (2πτ)−1/2e−ζ2/2τ (dζ/dµ) in DTA.

3. Choose the azimuthal angle φ randomly and uniformly from the interval
[0, 2π]. This corresponds to the remaining factor (2π)−1 in DTA.

4. The new velocities are v
′
α and v

′
β defined by

v
′
α = vα +

mαβ

mα

∆u

v
′
β = vβ − mαβ

mβ

∆u (6.2.7)

in which

∆ux = (ux/u⊥)uz sin θ cos φ− (uy/u⊥)u sin θ sin φ− ux(1− cos θ)

∆uy = (uy/u⊥)uz sin θ cos φ + (ux/u⊥)u sin θ sin φ− uy(1− cos θ)

∆uz = −u⊥ sin θ cos φ− uz(1− cos θ) (6.2.8)
u = vα − vβ.

u⊥ =
√

u2
x + u2

y.

5. Replace the velocities vα and vβ by v′α and v′β . This corresponds to the
appearance of v′α and v′β as the arguments of fα and fβ in (6.2.3).

These are exactly the steps of the algorithm described in the work of TA [120].
Note that in this algorithm, as well as in the algorithm of Nanbu and the general
formulation of [9], every particle collides exactly once in each time interval.

6.2.3 Nanbu’s Collision Model
As described in [9], the collision model of Nanbu corresponds to the following
formula for D:

DNanbu(µ, τ) =
A

4π sinh A
exp µA. (6.2.9)
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Monte Carlo simulation using this kernel over a single time interval ∆t consists
of performing the following steps N/2 times:

1. Randomly select two particles with velocity vα and vβ from the distribution
f . This is done by exclusive sampling, so that no particle is selected more
than once.

2. Calculate the quantities s and A solving

s = 2τ (6.2.10)
coth A− A−1 = e−s (6.2.11)

with τ defined by (6.2.5), using u = |vα− vβ| in the definition (6.2.5) of τ .

3. Sample a value of the random variable µ from the interval [−1, 1] with prob-
ability density

f(µ) = 2πDNanbu = A(2 sinh A)−1eAµ (6.2.12)

and define θ by µ = cos (θ).

4. Choose the azimuthal angle φ randomly and uniformly from the interval
[0, 2π].

5. The new velocities are v
′
α and v

′
β are defined as in (6.2.7) and (6.2.8).

6. Replace the velocities vα and vβ by v′α and v′β .

These are exactly the steps of the algorithm described in the work of Nanbu [120],
with some minor changes in notation, for consistency with the TA method.

In the remainder of the paper, the collisions are assumed to be between parti-
cles from a single species so that the subscripts α and β are dropped. In addition,
the distribution function will be assumed to be spatially homogeneous, so that
particle position can be neglected.

6.3 The Hybrid Method
The hybrid method is based on representation of the velocity distribution function
f as a combination of a thermal component m and a kinetic component k; i.e.,

f(v) = m(v) + k(v). (6.3.1)
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The thermal component is a Maxwellian distribution

m(v) = nm(2πTm)−3/2 exp (−|v − um|2/2Tm). (6.3.2)

Because of the (expected) slow interaction of the thermal component m with the
kinetic component k, the average density, velocity and temperature nm, um and
Tm of m are not assumed to be those of the full distribution f . This explains the
difference between the notation m and M , since M is assumed to density, velocity
and temperature that are equal to those of f .

Denote nm and nk to be the effective number of particles in the thermal and
kinetic components, respectively, of f . At present these numbers will be kept to
be even integers. The kinetic component will be simulated using a set of discrete
particles; i.e.,

g(v) =

nk∑
i=1

δ(v − vi). (6.3.3)

In each time interval, the simulation steps are the following:

1. Determine the number of collisions of each type; i.e.,

• nmm = n2
m/2(nk + nm) is the number of collisions between 2 m

particles.

• nkk = n2
k/2(nk+nm) is the number of collisions between 2 k particles.

• nmk = nmnk/(nk + nm) is the number of collisions between an m
particle and a k particle.

2. Perform the collisions.

• The m−m collisions do not change the distribution m, so they do not
need to be performed.

• For each k−k collision, select two particles v1 and v2 from k. Perform
a collision between them, as in the method of TA or Nanbu, to get new
velocities v′1 and v′2. In k, replace v1 and v2 by v′1 and v′2.

• For each m − k collisions, sample a particle vm from m and select a
particle vk from k. Perform a collision between them, as in the method
of TA or Nanbu, to get new velocities v′m and v′k. The postcollision
velocity v′k replaces vk in k.

3. Apply thermalization and dethermalization.
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• For each post-collision particle v′ (i.e., v′1, v′2 or v′k from the previous
step), thermalize v′ with probability pT (v′). This is done by removing
v′ from k (in the next step its number, momentum and energy will be
added to m).

• For each post-collision particle v′m, dethermalize v′m with probability
pD(v′m). This is done by adding v′m to k (in the next step its number,
momentum and energy will be subtracted from m).

4. Apply conservation.

• Adjust the number nk of particles in k, due to thermalization and de-
thermalization.

• Adjust the number, momentum and energy of m, due to thermalization
and dethermalization. This is most easily performed by requiring that
the total number, momentum and energy of f = m + k be the same
before and after the collisions.

A possible problem with this algorithm is that sampling velocities vm from
m may remove too much energy from m. This can be avoided by conservative
sampling. First sample all nmk velocities from m and then shift and scale these so
that the average momentum and energy of the sampled particles is the same as the
average momentum and energy of m.

6.4 Choice of pD and pT

6.4.1 Detailed Balance Condition

Consider an equilibrium distribution M represented as

M = m + k = f (6.4.1)

in which m is the continuum component and k is the kinetic component. Note
that m is an equilibrium, but m is not necessarily equal to M . In Appendix 6.7.2,
detailed balance is used to derive conditions on pD and pT , starting from the scat-
tering integral of (6.2.3) with the inclusion of thermalization/dethermalization.
Although this is the theoretically correct approach, it does not lead to explicit
conditions on pD and pT .
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In this section, we adopt a simpler approach by requiring that thermaliza-
tion/dethermalization applied to all of f = m + k does not change m and k,
if f = M is a Maxwellian. This is performed as follows: Apply thermalization to
k with probability pT and dethermalization to m with probability pD. Also define
a projection ΠM onto equilibria, i.e., ΠMf is the Maxwellian with same (ρ,u, T )
as f . The resulting distribution is

f ′ = ΠM((1− pD)m + pT k) + pDm + (1− pT )k. (6.4.2)

Now assume that f = m + k = M and require that the form of f is conserved;
i.e.,

m = ΠM((1− pD)m + pT k) (6.4.3)
k = pDm + (1− pT )k.

It follows that

k = (pD/pT )m (6.4.4)
M = (1 + pD/pT )m. (6.4.5)

Denote
γ = M/m. (6.4.6)

For simplicity assume that
uM = um = 0 (6.4.7)

or more generally that uM = um. This is not generally true, but is a reasonable
assumption if f = M . Then look for

γ(v) = ce|v|
2/2τ (6.4.8)

in which

c = (nM/nm)(Tm/TM)3/2 (6.4.9)
τ−1 = T−1

m − T−1
M . (6.4.10)

Note that m < M for all v, so that

Tm < TM . (6.4.11)

Insertion of (6.4.10) into (6.4.4), shows that the detailed balance requirement for
pD and pT is

1 + pD/pT = ce|v|
2/2τ . (6.4.12)
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6.4.2 Velocity-based choice of pD and pT

Look for pT , pD to satisfy

pT = 1 for |v| < v1 (6.4.13)
pD = 1 for |v| > v2.

in which v1 and v2 are constants with v1 < v2. Define

pD =
√

α(γ − 1) (6.4.14)

pT =
√

α/(γ − 1)

which automatically satisfies (6.4.12). For a given choice of v1, v2, set

c = 1

τ = (4 log 2)−1(v2
1 + v2

2)

γ1 = γ(v1) = ev2
1/2τ

γ2 = γ(v2) = ev2
2/2τ

α1 = α(v1) = (γ1 − 1) (6.4.15)
α2 = α(v2) = (γ2 − 1)−1.

The choice of τ was made so that

0 < α1 < 1, 0 < α2 < 1 (6.4.16)

i.e.
v2

1/2τ < log 2 < v2
2/2τ. (6.4.17)

Since pD(v1) = α1 and pT (v2) = α2, the construction below will ensure that
0 ≤ pD ≤ 1 and 0 ≤ pT ≤ 1.

Equations (6.4.13) and (6.4.14) determine α for |v| < v1 (i.e., for γ < γ1) and
|v| > v2 (i.e., for γ > γ2). Define α in the interval γ1 < γ < γ2 by interpolation
with respect to γ to get

α =





(γ − 1) for |v| < v1

α1 + (γ−γ1)
γ2−γ1

(α2 − α1) for v1 < |v| < v2

(γ − 1)−1 for v2 < |v|.
(6.4.18)

Figure 6.1 shows a typical graph of the probabilities pT and pD as functions of v.
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Figure 6.1: Probabilities pT and pD for thermalization and dethermalization as
functions of v = |v|, in which v1 = 0.1774 and v2 = 0.2031.

Note that the choice c = 1, along with (6.4.9) determines the mass of the
Maxwellian component of m to be

nm = nM(Tm/TM)3/2. (6.4.19)

In addition, the values of pT for |v| < v1 and pD for v2 < |v| could be set to values
p̄T and p̄D that are different than 1 and the formulas above could be modified to
accommodate this change.

6.4.3 s-Based Method

In order to correctly incorporate the time step ∆t into the hybrid method, we base
the thermalization/dethermalization probabilities pT and pD on Nanbu’s parameter
s rather than v. Choose values of s1 and s2 with s1 > s2 > 0. For each value
of ∆t, determine values of v1 and v2 so that s(v1, ∆t) = s1 and s(v2, ∆t) = s2.
Then use the method in Section 6.4.2 with these values of v1 and v2.

The choice of pT and pD described above is somewhat arbitrary; optimizing
this choice subject to the condition (6.4.12) (or some improvement on this condi-
tion, as in Appendix 6.7.2) could lead to an improved hybrid method.
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6.5 Computational Results

6.5.1 Bump-on-Tail and Maxwellian Initial Data
As a test of the hybrid method, we performed a series of computations for initial
data that is a bump-on-tail. As discussed in Section 6.1, this problem involves two
widely separated time scales for Coulomb interactions, so that it is well suited for
the hybrid method: a fast time scale for collisions between particles within the
central Maxwellian and a slower time scale for those between particles from the
central Maxwellian and the bump. We also performed computation for initial data
that is Maxwellian, in order to test the consistency of the hybrid method.

The bump-on-tail initial distribution f0(v) is specified to be a combination of
a Max-
wellian M0(v) and a bump g0(v). The bump is specified to be approximately a
δ-function containing 10% of the mass of the distribution and centered at v =
(vb, 0, 0) with vb = a

√
Te/me. The Maxwellian M0 is centered and scaled so that

the average velocity is 0 and the temperature is Te. The examples presented here
are for two different choices of a: a = 4 in problem BOT4 and a = 3 in problem
BOT3.

The computation is performed in a dimensionless formulation in which the
electron mass is me = 1, and the electron density ne and temperature Te were
chosen to be ne = 0.1 and Te = 0.05065776. For a characteristic time for the
collision process, we use

tc = u3
th

(
q2
e

ε0me/2

)−2 (
ne log Λe/2

4π

)−2

uth =
√

6Te/me (6.5.1)

which has value tc = 5.348275. Unless otherwise state, the number of particles is
N = 128, 000.

Note that in all the simulation examples reported here, the plasma is spatially
homogeneous so that there are no electromagnetic fields and no convection.

6.5.2 Consistency Tests
As a consistency test, we first performed computations for Maxwellian initial data
M(v), with density ne = 0.1, temperature Te = 0.05065776 and zero average
velocity, as stated above.
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Figure 6.2: Comparison of the hybrid method for Maxwellian (equilibrium) initial
data at three different times (t = 0, t = 8.8tc, t = 18.5tc). The plots show
the full distribution function f(vx) (upper curves) and the thermal component
m(vx) (lower curves), as well as the thermal component (circles) predicted from
the theory of Section 6.4.1. The hybrid method parameters are (s1, s2) = (2, 1)
(left) and (s1, s2) = (1, 0.5) (right).

Figure 6.2 shows the result of simulation using the hybrid method with this
initial data for two different values of the hybrid parameters s1 and s2. The hybrid
method parameters are (s1, s2) = (2, 1) on the left and (s1, s2) = (1, 0.5) on
the right; the time step is ∆t = tc/100. The total distribution f = m + k (upper
curves) and the thermal component m (lower curves) of the distribution are shown
as a function of the x-velocity vx at three times t = 0, t = 8.8tc, t = 18.5tc. The
initial data consists of all particles; i.e., k = M and m = 0 for t = 0. The total
distribution f is the same for all t, which is consistent with its Maxwellian initial
data. Although it starts at 0, by time t = 8.8tc (i.e. after an initial transient),
the thermal component m has reached a nonzero steady state which is the same
as its value at t = 18.5tc. This demonstrates the success of the detailed balance
condition (6.4.12). Also shown is the thermal component mtheoretical predicted
from the choice c = 1 for which the density is given by (6.4.9). Although the
theoretical prediction is correct for the hybrid simulation on the left, it is incorrect
for the simulation on the right. A better theory (better than that of Section 6.4.1)
could help to improve the formulation of the hybrid method.

Next we perform a comparison of the s-based and v-based hybrid methods on
the bump-on-tail problem BOT4. Set (s1, s2) = (3, 2) and ∆t = tc/10. The corre-
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sponding values of v1 and v2, satisfying s = 2τ from (6.2.10) with τ = τ(v, ∆t)
defined by (6.2.5), are (v1, v2) = (0.1774, 0.2031). The top row of graphs in
Figure 6.3 shows the results for the v-based method (upper left) and the s-based
method (upper right) with these parameters. Each graph shows a comparison of
results from the hybrid (blue dashed line) and Nanbu (red solid line) methods at
time at time t = 1.3tc. These graphs are identical (and show good agreement
between the hybrid and Nanbu methods) since the values of (v1, v2) were chosen
to be in agreement with the values of (s1, s2).

Now keep the same values of (v1, v2) and (s1, s2), but change the time step
to ∆t = tc/1000. The results (on the lower graphs of Figure 6.3) show that
the accuracy of the v-based method (lower left) deteriorates as the time step is
decreased; whereas the accuracy of the s-based method (lower right) improves.
In addition, the thermal component (green dotted line) for the s-based method
decreases with smaller time step, so that the efficiency of the s-based method
decreases. This gain in accuracy but loss of efficiency for the s-based method is
acceptable dependence on ∆t; while the loss of accuracy with decreased ∆t for
the v-based method is not acceptable.

The reason for this dependence on time step is easily understood. For the v-
based method, the probability of thermalization is independent of the time step
∆t, so that for small ∆t the thermalization is too strong. On the other hand, for
the s-based method, the thermalization per time step decreases as ∆t decreases,
and the function s(∆t) has the correct dependence on ∆t, as well as on density
and temperature.

6.5.3 Simulation for the Evolution of a Bump-on-Tail
Figures 6.4 and 6.5 show a comparison of the solutions computed by the hybrid
(blue dashed line) and Nanbu (red solid line) methods for bump-on-tail problems
BOT4 and BOT3, respectively, at various times between the initial time and a final
time T = 7.2tc. For the hybrid method the parameters are (s1, s2) = (3, 2) and
∆t = tc/10. The thermal component of the hybrid representation (6.3.1) (green
dotted line) is also plotted. Both figures show very agreement between the hybrid
and Nanbu curves, providing a measure of validation for the hybrid method.

For problem BOT4 in Figure 6.4 the parameters are ∆t = tc/10 and (s1, s2) =
(3, 2). The thermal component of the hybrid representation (6.3.1), which con-
tains about 1/3 of the particles.

For problem BOT3 in Figure 6.5 the parameters are ∆t = tc/100 and (s1, s2) =
(1, 0.5). In this problem, the thermal component of the hybrid representation con-
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tains about 1/7 of the particles.

6.5.4 Variation of Parameters ∆t, s1 and s2

In order to understand the effect of the parameters ∆t, s1 and s2 on the solution
of the hybrid method, we performed computation for the bump-on-tail problem
BOT4 of Figure 6.4 with different parameter values. Figures 6.6 and 6.7 show the
solution of BOT4 at t = 1.2tc and t = 3.6tc, respectively. In each figure, the time
step is ∆t = tc/10 for the graphs in the left column and ∆t = tc/100 for those in
the right column. Also, the values of (s1, s2) are (s1, s2) = (1, 0.5) for the graphs
in top row, (s1, s2) = (2, 1) for the middle row and (s1, s2) = (3, 2) for the bottom
row.

A scatter plot of these values of γeff and γacc in the graph on the left in Figure
6.9. This graph shows that these values collapse onto a single curve, so that γacc

is a single-valued function of γeff . This shows that for any level of accuracy there
is a resulting level of efficiency. Further variation of the parameters (s1, s2) does
not change performance of the method. This conclusion holds only within the
context of specific choice of pD and pT . The relationship between accuracy and
efficiency could be changed by considering a wider class of functions pD and pT .
In the graph on the left in Figure 6.9, the values of accuracy γacc appear to taper
off to a finite nonzero value.

The graph on the right in Figure 6.9 shows that statistical fluctuations due to
the finite value N of particles contribute importantly to this residual error. There
may be an additional significant contribution to the total error due to finite ∆t
effects. This graph shows a plot of γacc versus γeff for three values of N : N =
32, 000, N = 128, 000 and N = 512, 000. The values of (s1, s2) are 4 < s2 < 6.2
and s1 = s2 + 2, which are larger than those in Figure 6.8 and the graph on the
left of Figure 6.9.

Comparison of the results for N = 32, 000, N = 128, 000 and N = 512, 000
in this graph shows the errors γacc are smaller for larger values of N . More specif-
ically, for larger values of N , the linear decrease of γacc continues for smaller
values of γeff , and the remaining residual value of γacc is smaller.

6.6 Conclusions
The hybrid method developed above combines continuum and particle descrip-
tions for the evolution of a velocity distribution function through Coulomb inter-
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In Figure 6.6 at an early time, the bump is still distinct but is shifted and diffused
from its original position and shape. In Figure 6.7 at a later time, the bump is no
longer a distinct peak but has been reduced to a shelf in the distribution function.
Comparison of the figures shows that for larger ∆t or smaller s1 and s2 the bump
is overthermalized, with the result that it is shifted too far toward the center and
becomes too wide. As ∆t is decreased and s1 and s2 are increased, the accuracy
of the computation dramatically improves.
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Figure 6.3: Comparison of the v-based and s-based versions of the hybrid method
for different time steps ∆t. The plots show the velocity distribution function
from the hybrid (blue dashed line) and Nanbu (red solid line) method, as well
as the thermal component for the hybrid method (green dotted line), for prob-
lem BOT4 at time t = 1.3tc. The time step is ∆t = tc/10 for the top row and
∆t = tc/1000 for the bottom row. The left column comes from the v-based
method with (v1, v2) = (0.1774, 0.2031), while the right column comes from the
s-based method with (s1, s2) = (3, 2).
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On the other hand, the size of the thermal component, which determines the effi-
ciency of the hybrid method, is larger for larger values of ∆t and smaller values
of s1 and s2. This shows a trade-off between efficiency and accuracy of the hybrid
method.

6.5.5 Accuracy and Efficiency for the Hybrid Method
In order to measure the performance of the hybrid method, we first define quan-
tities γeff and γacc that measure the efficiency and accuracy of the computations,
as
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Figure 6.4: Comparison of the hybrid (blue dashed line) and Nanbu (red solid line)
solutions at different times t = 0 (upper left), t = 1.2tc (upper right), t = 3.6tc
(lower left) and t = 7.2tc (lower right). The computations use ∆t = tc/10 and
(s1, s2) = (3, 2) for the problem BOT4.
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γeff =
1

Tnf

∫ T

0

nmdt (6.5.2)

γacc =
1

Tnf

∫ ∫ T

0

|f − fH |dtdv. (6.5.3)

Efficiency of the method is meant to be the ratio between the computational sav-
ings of the hybrid method and the computational cost of the standard method.
Since the computational effort is roughly proportional to the number of particles
in the simulation, the efficiency measure γeff is the ratio of nm and nf in which
nm and nf are the number of particles in the Maxwellian component m and the
total number of particles in f .
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Figure 6.5: Comparison of the hybrid (blue dashed line) and Nanbu (red solid line)
solutions at different times t = 0 (upper left), t = 0.6tc (upper right), t = 1.2tc
(lower left) and t = 2.6tc (lower right). The computations use ∆t = tc/100 and
(s1, s2) = (1, 0.5) for the problem BOT3.
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Figure 6.6: Comparison of the hybrid (blue dashed line) and Nanbu (red solid
line) solutions for different values of the parameters ∆t, s1 and s2. The values
of ∆t are tc/10 for the left column and tc/100 for the right column. The values
of (s1, s2) are (1, 0.5) for the top row, (2, 1) for the middle row and (3, 2) for
the bottom row. These simulations are for problem BOT4 of Figure 6.4 at time
t = 1.2tc.
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As a measure of accuracy, γacc is the relative size of L1 norm (in v and t) of
the error. We performed a series of computations for parameters in the range
0.2 ≤ s2 ≤ 2 and 0.2 ≤ s1 − s2 ≤ 2, and for time step ∆t = tc/10 and final time
T = 74tc. The resulting values of γeff and γacc are presented in contour plots in
Figure 6.8, which shows them to be constant along (nearly) linear curves in the
(s1, s2) plane.
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Figure 6.7: Same as Figure 6.6 but at later time t = 3.6tc.
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Figure 6.8: Error (left) and Efficiency (right) for the hybrid method applied to the
problem BOT4 of Figure 6.4, as functions of the parameters s1 and s2.

actions. The method includes particle interactions, but since the examples here are
spatially homogeneous, the continuum description is just an equilibrium Maxwell-
lian distribution.

Because of the variation of the interaction rate as a function of particle ve-
locity, the division of f between particles and continuum must be performed as a
function of velocity. In the hybrid method of this paper, the velocity dependence is
effected through velocity dependence of the thermalization and dethermalization
probabilities pT (v) and pD(v).

The specific choice of pT (v) and pD(v) is ad hoc and formulated in terms of
two parameters s1 and s2 (or v1 and v2) as well as ∆t. The simulations show that
for this method the efficiency is a single-valued function of the accuracy of the
method. Therefore the method provides a certain level of efficiency (acceleration)
for prescribed accuracy of the hybrid approximation.

Further development of the hybrid method could include development of al-
ternative formulations and optimization of pT (v) and pD(v), modification of the
method so that that the distribution is completely thermalized as t → ∞ (i.e.,
m → M and k → 0), development of a mathematical foundation for this method,
and improved analysis of the detailed balance properties of the method. Appli-
cations of the method will be carried out for spatially inhomogeneous problems,
especially those having the character of a bump-on-tail.
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6.7 appendix

6.7.1 Analysis of the Scattering Kernel D for the Takizuka &
Abe Method

The convergence criteria from Bobylev and Nanbu (equations (48a)-(48c) in [9])
are that

D(µ, τ) ≥ 0 (6.7.1)

2π

∫ 1

−1

dµD(µ, τ) = 1 (6.7.2)

lim
τ→0

D(µ, τ) = (2π)−1δ(1− µ) (6.7.3)

lim
τ→0

(2π/τ)

∫ 1

−1

dµD(µ, τ)[1− P`(µ)] = `(` + 1) (6.7.4)

in which P` is the Legendre polynomial for positive integers `.
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As written in (6.2.4), the kernel for the TA method is

DTA(µ, τ) = (2π)−1(2πτ)−1/2e−ζ2/2τ (dζ/dµ). (6.7.5)

The analysis of this kernel is similar to the analysis of the kernel for the Nanbu
method presented in [9]. Conditions (6.7.1)-(6.7.3) are easily verified.

To verify (6.7.4), use µ = cos θ and ζ = tan(θ/2) to calculate for small τ

2π

τ

∫ 1

−1

dµDTA(µ, τ)[1− P`(µ)] =
1

τ

∫ ∞

0

e−ζ2/2τ

(2πτ)1/2
[1− P`(cos(2 arctan ζ))]dζ

=
1

τ

∫ ∞

0

e−ξ2/2

(2π)1/2
[1− P`(cos(2 arctan

√
τξ))]dξ

≈ 1

τ(2π)1/2

∫ ∞

0

e−ξ2/2

(2π)1/2
τξ2`(` + 1)dξ

≈ `(` + 1). (6.7.6)

These calculations use the expansion P`(cos(2 arctan
√

τξ)) ≈ 1−2τξ2P ′
`(1) for

small τ and P ′
`(1) = `(` + 1).

6.7.2 Detailed Balance for Binary Collisions with Thermaliza-
tion/Dethermalization

For collisions between particles of a single species, omit the subscripts α and β in
(6.2.3) to obtain

f(v) =

∫

R3×S2

dwdnD(
g · n

g
, Λ

∆t

g3
)f(v

′
, t)f(w

′
, t). (6.7.7)

Using the requirement [9] that
∫

S2 dnD = 1 equation (6.7.7) can be written as the
following equation for the change ∆f in time ∆t

∆f(v) =

∫

R3×S2

dwdnD(
g · n

g
, Λ

∆t

g3
)
{

f(v
′
, t)f(w

′
, t)− f(v, t)f(w, t)

}

(6.7.8)
which will be used in the formulation of detailed balance conditions.

The equation (6.7.7) can be rewritten to include thermalization and dether-
malization. Since it is an equation for f(v), the thermalization/dethermalization
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is only applied to the terms f(v) and f(v′) inside the integral. Using the repre-
sentation f = m + k, the integral on the right side of (6.2.3) becomes∫

R3×S2

dwdnD
{[

m(v
′
)m(w

′
) + (1− pD)m(v

′
)k(w

′
) + pT k(v

′
)f(w

′
)
]

+
[
pDm(v

′
)k(w

′
) + (1− pT )k(v

′
)f(w

′
)
]}

.(6.7.9)

in which
D = D(

g · n
g

, Λ
∆t

g3
). (6.7.10)

Note that dethermalization is not applied to the term m(v
′
)m(w

′
). In the integral

(6.7.9) and in all of the formulas below pD and pT are evaluated at v, since the
thermalization/dethermalization is applied after the collision. The terms in the
first set of square brackets are the terms that contribute to the thermal component;
while those in the second set of square brackets are the terms that contribute to
the kinetic component. The contributions to the thermal component are projected
onto a Maxwellian, so that

m(v, t + ∆t) = ΠM

∫

R3×S2

dwdnD
[
m(v

′
)m(w

′
) + (1− pD)m(v

′
)k(w

′
)

+pT k(v
′
)f(w

′
)
]

(6.7.11)

k(v, t + ∆t) =

∫

R3×S2

dwdnD
[
pDm(v

′
)k(w

′
) + (1− pT )k(v

′
)f(w

′
)
]
.(6.7.12)

The projection in (6.7.11) is equivalent to the following equations for nm, um and
Tm

(nm, nmum, nmTm)(t + ∆t) =

∫

R3×R3×S2

dvdwdnD
(
1,v′, |v′ − um|2/2

)

[
m(v

′
)m(w

′
) + (1− pD)m(v

′
)k(w

′
) + pT k(v

′
)f(w

′
)
]
.(6.7.13)

As in equation (6.7.8), these can be rewritten as equations for the change in k
and in nm, um and Tm; i.e.,

(∆nm, ∆(nmum), ∆(nmTm))

=

∫

R3×R3×S2

dvdwdnD
{(

1,v′, |v′ − um|2/2
) [

m(v
′
)m(w

′
)+

(1− pD)m(v
′
)k(w

′
) + pT k(v

′
)f(w

′
)
]

− (
1,v, |v − um|2/2

)
m(v)f(w) } (6.7.14)
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∆k(v) =

∫

R3×S2

dwdnD{pDm(v
′
)k(w

′
)

+(1− pT )k(v
′
)f(w

′
)− k(v)f(w)}. (6.7.15)

The detailed balance condition says that in equilibrium (f = m + k = M ),
each process and the reverse process exactly cancel. For equations (6.7.14) and
(6.7.15), this says that

0 =
(
1,v′, |v′|2)

[
m(v

′
)m(w

′
) + (1− pD)m(v

′
)k(w

′
) + pT k(v

′
)f(w

′
)
]

− (
1,v, |v|2) m(v)f(w) (6.7.16)

0 =
[
pDm(v

′
)k(w

′
) + (1− pT )k(v

′
)f(w

′
)
]
− k(v)f(w) (6.7.17)

so that the thermalization and dethermalization conserve particle number, mo-
mentum, and kinetic energy. Although these conditions are not used in the hybrid
method formulated above, they may be useful for improving the current hybrid
method.





Appendix A

A remark on the finite number of
particles effect in Monte Carlo
methods for kinetic equations

This Appendix is based on the work [47] published in Submitted to Proceedings
of the 6th International Congress on Industrial and Applied Mathematics in
collaboration with Prof. Lorenzo Pareschi and Dott. Piero Foscari of the Depart-
ment of Mathematics and Center for Modeling Computing and Statistics (CMCS)
of University of Ferrara.

A.1 Introduction

The numerical solution of kinetic equations is usually performed through statisti-
cal simulation methods such as Monte Carlo [28]. The reason for this is twofold,
on the one hand probabilistic techniques provide an efficient toolbox for the sim-
ulation due to the reduced computational cost when compared with deterministic
schemes, on the other hand the evolution of the statistical samples follows the
microscopic binary interaction dynamics thus providing all the relevant physical
properties of the system. Traditionally the methods are considered extremely ef-
ficient when dealing with stationary problems. In such case, in fact, fluctuations
can be eliminated by taking subsequent averages of the solution after then a cer-
tain ”stationary time” has been reached. Here we show, with the help of a simple
one-dimensional system, that this averaging procedure does not guarantee conver-
gence towards the correct steady state due to finite number of particles correlations
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introduced by the microscopic conservation laws. Similar analysis for rarefied gas
dynamics have been done in [115, 102].

A.1.1 The model equation

We will consider a simple one–dimensional kinetic model, where the binary inter-
action between particles obey to the law

v′ = v cos θ − w sin θ, w′ = v sin θ + w cos θ, (A.1.1)

where θ ∈ [−π, π] is a collision parameter. The microscopic energy after the
binary interaction rule is conserved

(v′)2 + (w′)2 = v2 + w2, (A.1.2)

whereas momentum is not.
Let f(v, t) denote the distribution of particles with velocity v ∈ R at time t ≥

0. The kinetic model can be easily derived by standard methods of kinetic theory,
considering that the change in time of f(v, t) depends on a balance between the
gain and loss of particles with velocity v due to binary collisions. This leads to
the following integro-differential equation of Boltzmann type [68],

∂f

∂t
=

∫

R

∫ π

−π

1

2π
(f(v′)f(w′)− f(v)f(w)) dθ dw. (A.1.3)

As a consequence of the binary interaction the second momentum of the solution
is conserved in time, whereas the first momentum is preserved only if initially it
is equal to zero. For this model one can show that the stationary solution f∞(v) is
the Maxwell density

f∞(v) =
1√
2π

e−v2/2. (A.1.4)

A standard Monte Carlo method for this equation can be easily derived using
either Bird’s or Nanbu’s algorithm for Maxwell molecules [7, 89]. The two al-
gorithms differ mainly in the way the time discretization is treated, but not in the
way collisions (sampling from the collision integral operator) are performed. Our
results do not differ for the two methods.
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Figure A.1: Equilibrium states for different finite sets of particles vs Maxwellian
(left) and equilibrium value of the fourth order moment for the different finite sets
of particles.

A.2 Numerical results
The problem we consider here is related to the effect of the finite number of par-
ticles in Monte Carlo simulations. Note that given a set of particles v1, v2, . . . , vN

with energy E = 1
2

∑N
i=1 v2

i , we have the inequality

|vi| ≤ RN =
√

2EN. (A.2.1)

As a consequence of this, any particle dynamic, namely any transformation of the
type

v′i = φi(v1, . . . , vN), i = 1, . . . , N, (A.2.2)

that preserves exactly energy is such that the particle solution remains compactly
supported in [−RN , RN ] at any time. This implies that the distribution of such
particles cannot be Maxwellian (or any other non compactly supported statistics)
unless the particles number goes to infinity. This is exactly what happens if we
use the so-called Nanbu-Babovsky [3] strategy of performing collisions by pairs
so that the Monte Carlo methods are exactly conservative and not conservative in
the mean. We report in Figure 1 (left) the numerical distribution of the finite sets
of particles in the case of the one-dimensional Maxwell model (A.1.3). The results
have been obtained taking initially Maxwellian samples with zero mean and en-
ergy 4 and then averaging in time over the Monte Carlo solutions to the equation.



214 A.2. Numerical results

For very small numbers of particles it is remarkable that the computed distribu-
tion differ considerably from the expected Maxwellian. The different fourth order
moments of the corresponding steady solutions are then plotted in Figure 1 (right)
against the exact fourth order moment of the Maxwellian. We point out that such
small particle numbers can be present is some cells when one consider fully non
homogeneous rarefied gas flow simulations and thus, even if the transport part
can affect the nature of these correlations, a particular care has to be taken when
averaging over such small numbers. Similar conclusion are valid also for differ-
ent kinetic models where the steady state statistics is not compactly supported
like in granular gases, plasma physics, quantum kinetic theory, traffic flows and
economic models.
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