

Università degli Studi di Ferrara

XXII° CICLO

ANNI 2007 - 2009

DOTTORATO DI RICERCA IN
MATEMATICA E INFORMATICA

COORDINATORE DOTT . GAETANO ZANGHIRATI

THE BI-OBJECTIVE TRAVELLING
SALESMAN PROBLEM WITH PROFITS AND

ITS CONNECTION TO COMPUTER NETWORKS

DOTTORANDA TUTORE
DOTT.SSA ELISA STEVANATO PROF. CARLO FILIPPI

To my grandmother Elda,
always in my heart.

Abstract

This is an interdisciplinary work in Computer Science and Operational Research. As it is
well known, these two very important research fields are strictly connected. Among other
aspects, one of the main areas where this interplay is strongly evident is Networking. As far
as most recent decades have seen a constant growing of every kind of network computer con-
nections, the need for advanced algorithms that help in optimizing the network performances
became extremely relevant. Classical Optimization-based approaches have been deeply stud-
ied and applied since long time. However, the technology evolution asks for more flexible and
advanced algorithmic approaches to model increasingly complex network configurations. In
this thesis we study an extension of the well known Traveling Salesman Problem (TSP): the
Traveling Salesman Problem with Profits (TSPP). In this generalization, a profit is associ-
ated with each vertex and it is not necessary to visit all vertices. The goal is to determine
a route through a subset of nodes that simultaneously minimizes the travel cost and maxi-
mizes the collected profit. The TSPP models the problem of sending a piece of information
through a network where, in addition to the sending costs, it is also important to consider
what “profit” this information can get during its routing. Because of its formulation, the
right way to tackled the TSPP is by Multiobjective Optimization algorithms. Within this
context, the aim of this work is to study new ways to solve the problem in both the exact
and the approximated settings, giving all feasible instruments that can help to solve it, and
to provide experimental insights into feasible networking instances.

iii

Sommario

Questa tesi tratta argomenti che riguardano l’Informatica e la Ricerca Operativa. Come
è noto, questi importanti campi di ricerca sono strettamente collegati fra loro. Uno dei
principali settori in cui questa interazione è fortemente evidente è il Networking. Negli ultimi
decenni si è vista una costante crescita di ogni genere di connessioni informatiche di rete, e
la necessitá di algoritmi avanzati che aiutino ad ottimizzare le prestazioni di rete è diventata
estremamente rilevante. Approcci classici di ottimizzazione sono stati ampiamente studiati
e applicati da tempo. Tuttavia, l’evoluzione tecnologica richiede procedure piú flessibili e
algoritmi piú avanzati per far fronte a configurazioni di rete sempre pi complesse. In questa
tesi studiamo una estensione del Problema del Commesso Viaggiatore (TSP): il Problema
del Commesso Viaggiatore con Profitti (TSPP). In questa generalizzazione, ad ogni vertice
è associato un profitto e, a differenza del classico TSP, non è necessario visitare tutti i
vertici. Si vuole determinare quei percorsi che contemporaneamente minimizzano il costo
di viaggio e massimizzano il profitto raccolto. Il TSPP modella il problema di inviare un
pacchetto di informazioni attraverso un rete in cui, oltre ai costi di invio, è anche importante
considerare il “profitto” che queste informazioni possono accumulare durante il percorso. A
causa della sua formulazione, il modo migliore di affrontare il TSPP è mediante procedure
di ottimizzazione multiobiettivo. In questo contesto, l’obiettivo è di studiare nuovi modi per
risolvere il problema sia in maniera esatta che approssimata, fornendo tutti gli strumenti
possibili che contribuiscano alla sua risoluzione, e introducendo nuovi spunti sperimentali in
istanze di networking.

v

Acknowledgments

First of all, I would like to thank my two supervisors: Gaetano Zanghirati (University of
Ferrara) and Carlo Filippi (University of Brescia), for their continuous support in the devel-
opment of this work during these three years.

I would also like to thank Professor J.J. Salazar (University of La Laguna, Tenerife,
Spain), for his kindness in accepting me twice in Tenerife and for the stimulating and ex-
tremely valuable discussions on the thesis topics. Many thanks also to Prof. D. Trystram
(University of Grenoble, France) for his relevant suggestions and the thesis review.

Special thanks go to Salome Rodriguez, for her help during and after my stay at the
University of La Laguna.

Part of this work was done in collaboration with Prof. F.C.R. Spieksma and with Ms.
S. Coene, Ph.D. (University of Leuven, Belgium), so I would like to thank them too for
everything I learnt with their help.

A remind also to Nievez Luz Rodriguez, that helped me during my stay in La Laguna,
she is a real good friend.

A big thanks to the friends that shared with me the office in the Ferrara University,
Block B, Third floor (the only place in the world where the postcards don’t arrive): Ambra,
Mimma, Silvia and Elisa M. (and the three omnipresent boys: Ric, Nicola and Marcello).
Thanks for these wonderful years together. I hope to spend many more years with you!

I want also thank my parents for everything they have done for me so far. If I reached this
objective, I owe it to the fact that they always encouraged me to achieve new goals, leaving
me always free to follow my ambitions, supporting me emotionally and ... economically. A
thought also to men of my life: my boyfriend Michele and my little brother Luca. I want to
thank Michele because he always left me free to decide, although my work sometimes took
me away from him. I thank Luca for being Luca because, even if he is already 24 years old,
and he took the degree cum laude in nuclear physics, he continues to be my little brother
and I am very lucky to have him by my side (remember me when you will win the Nobel).

A thought also goes to all my relatives: my beloved grandfather, a real power of nature, my
uncles: Barbara, Ivan, Loris, Nicoletta, my favorite (and one) cousin Marzia, my godfather:
the legendary Marco, unique and inimitable, my sister-in-law Enrica and finally, last but not
in importance, Lela and Claudia, who live far away but are always present in the important
moments of my life.

Thank also to my two friends of always: Erica and Orietta, because over the years you
were present near me. Thank to all!

vii

Contents

Introduction 1

1 Mathematical Background 3
1.1 Graph Theory . 3

1.1.1 Paths and Cycles . 4
1.1.2 Trees . 5
1.1.3 Graph representation . 6

1.2 Computational Complexity . 7
1.2.1 Complexity measures . 7

1.3 Polyhedral combinatorics . 9
1.4 Some basic optimization problems . 12

1.4.1 The Assignment Problem . 12
1.4.2 Orienteering Problem . 13
1.4.3 Prize Collecting Traveling Salesman Problem 14
1.4.4 The Cycle Problem . 14
1.4.5 Profitable Tour Problem . 15
1.4.6 The 0–1 knapsack problem . 16

2 Multicriteria Optimization 19
2.1 Basic Principles . 20
2.2 MOCO Properties . 22
2.3 Solution methods for multi-objective programming 23

2.3.1 Exact methods . 23
2.3.2 Approximation methods . 25

3 The Traveling Salesman Problem with Profits 29
3.1 Integer Linear Programming Formulation for TSPP 31
3.2 Complexity of the TSPP . 32

3.2.1 Complexity of the efficient frontier . 32
3.3 Applications . 34

3.3.1 Scheduling Problems . 34
3.3.2 Orienteering events . 35
3.3.3 Vehicle Routing Problem with an inventory component 35
3.3.4 Vehicle-routing cost allocation and other problems 35

3.4 Exact Solution Approaches . 36
3.4.1 The Assignment Problem relaxation 36
3.4.2 Shortest Spanning 1-Tree relaxation 38
3.4.3 Lagrangean Decomposition Approach 39

ix

x CONTENTS

3.4.4 Two phases method . 39

3.4.5 The knapsack bound for the OP . 39

3.4.6 ǫ-constraint method . 40

3.5 Classical Heuristic Procedures . 41

3.5.1 Approximation algorithm with a performance guarantee 41

3.5.2 Main principles in Heuristic Procedures 42

3.5.3 Adding a node to the route . 43

3.5.4 Delete a node from the route . 43

3.5.5 Resequencing the route . 43

3.5.6 Replacing a node . 43

3.6 Heuristic procedures . 44

3.7 Metaheuristic Procedures . 44

3.7.1 Ejection chain local search method . 44

3.7.2 Tabu Search . 45

3.7.3 Genetic algorithm . 45

3.7.4 Deterministic annealing . 46

3.7.5 Neural Network approach . 46

4 Computer Science applied to Medicine 47

4.1 Diagnostic Imaging . 48

4.2 International network of hospitals . 48

4.3 An example . 50

5 The TSPP on trees 55

5.1 The bicriteria TSP with profits on trees: three problems 56

5.2 Problem 1 on trees . 59

5.2.1 Complexity . 59

5.2.2 A dynamic programming algorithm for Problem 1 on trees 60

5.2.3 A FPTAS for Problem 1 on trees . 62

5.2.4 Some special cases . 66

5.3 Problem 2 on trees . 68

5.4 Conclusions . 71

6 The bi-objective approach to the TSPP 73

6.1 Introduction . 73

6.2 The TSPP Branch-And-Cut Algorithm . 74

6.2.1 Initial Efficient Points . 76

6.3 Branch-and-Cut procedure . 77

6.4 Improvement methods . 78

6.4.1 Lin-Kernighan heuristic . 79

6.4.2 Improving the starting solution . 80

6.5 Approximate Pareto front . 80

6.5.1 Equal Distance Approximation . 81

6.5.2 Sub-Area search . 85

6.5.3 Other approximation approaches . 90

6.6 Computational results . 91

6.6.1 Branch and Cut implementation . 91

6.6.2 Computational Results . 92

CONTENTS xi

6.7 Conclusions . 94

7 TSPP with Time Windows on trees 99
7.1 TSPPTW formulation . 100
7.2 The line . 101

7.2.1 TSPP on a line: NP-hardness . 103
7.2.2 TSPPTW on a line: return to the source 104

7.3 TSPP with Time Windows on a cycle . 107
7.4 TSPP with Time Windows on a star . 108
7.5 Conclusions . 109

8 Dynamic Programming approach to the TSPP 111
8.1 The Dynamic Programming Approach . 111

8.1.1 Dynamic Programming for Cycle Problem 111
8.1.2 Dynamic Programming for TSPP . 112

8.2 Implementation . 113
8.2.1 The Tree library . 114
8.2.2 The myNode class . 115
8.2.3 Handling the comparison among subcycles 116
8.2.4 Architectural choices . 119

8.3 Computational Results . 121
8.4 Conclusions . 123

Bibliography 127

Introduction

This is an interdisciplinary work between Computer Science and Operational Research. As it
is well known, these two very important research fields are strictly connected. Among other
aspects, one of the main areas where this interplay is strongly evident is Networking. As far
as most recent decades have seen a constant growing of every kind of network computer con-
nections, the need for advanced algorithms that help in optimizing the network performances
became extremely relevant. Classical Optimization-based approaches have been deeply stud-
ied and applied since long time. However, technology evolution asks for more flexible and
advanced algorithmic approaches to model increasingly complex network configurations. This
thesis will use the tools and the language of Operational Research to study the difficult sit-
uations where, in addition to the cost of sending a piece of information through a net, it is
also important to consider what “profit” this information can get during its routing. One
would clearly like to minimize the former and maximize the latter, but these are usually two
conflicting goals. Profits and costs do not have to be necessarily meant as money amounts,
but in real life they are ultimately related to money, of course. It will be clear very soon that
the modelling will generate Combinatorial Optimization problems. Combinatorial Optimiza-
tion is a field extensively studied by many researchers. Due to its potential for application
in many real-world problems (not only in Computer Science) it has prospered over the last
few decades. But as far as real-world decision making is concerned, it is also well known that
decision makers have to deal with several, usually conflicting objectives. The growth in the
interest of theory and methodology of multicriteria decision making (MCDM) over the last
thirty years is witness of this fact. However, it is somewhat surprising that multi-objective
(or multicriteria) combinatorial optimization (MOCO) has not been widely studied yet. Only
in recent years, approximately since 1990, a profound interest in the topic is evident. Since
then several PhD thesis have been written, specific methodologies have been developed, and
the number of research papers in the field has grown considerably.

In this work we study a particular multi-objective problem: the Traveling Salesman
Problem with Profits (TSPP) and its bi-objective counterpart. It is a generalization of the
well known Travelling Salesman Problem. In particular, we analyze the problem from both
the theoretical and the practical points of view, developing algorithms that solve the problem
both in exact and in approximated ways.

Furthermore, we analyze the topologies under which the TSPP is solvable in polynomial
time. The results have been collected in a paper submitted to Networks [35], which is cur-
rently under revision. Preliminary results were presented at the XXXIX Annual Conference
of the Italian Operational Research Society (Ischia, Italy, 2008), and other advances were pre-
sented in the VI ALIO/EURO Workshop on Applied Combinatorial Optimization (Buenos
Aires, Argentina, 2008).

This work is organized as follows. The first chapter gives an introduction to most of
the concepts used in the thesis. These topics are Graph Theory, Computational Complex-

1

2 CONTENTS

ity, Polyhedral Theory. In addition, some basic optimization problems appearing in the
description of the proposed algorithms are also described in this chapter.

Chapter 2 gives an overview of the state-of-the art of multi-objective optimization. It
describes the basic mathematical principles needed to formally define the multi-objective
theory and the main properties of multi-objective problems. In the last part of the chapter,
the most relevant multi-objective combinatorial optimization problems are depicted, together
with their main features.

Chapter 3 gives a general description of the TSPP through an exhaustive dissertation of
the state-of-the-art. A specific part of the chapter accurately describes a large set of real-life
applications of this problem. Furthermore, the complexity of the problem is analyzed, and
both lower and upper bounds on the size of the Pareto-efficient frontier are given.

In Chapter 4 we describe a feasible application of the TSPP in the Medical Area. We
show as a local network of hospitals that needs to share informations about clinical data or
feasible treatements for some particular deseases, can be seen as a graph with edge costs that
represent the time needed to send-receive the requested information, and a nodes profit that
represents the quality of the service obtained. We created a specific instance and we solve it
analyzing the obtained results.

In Chapter 6, the TSPP is studied from a bi-objective point of view, focusing on the case
where the underlying graph is a tree. In particular it is developed a so-called FPTAS to find
an ǫ-approximate Pareto curve for the problem. The TSPP is also analyzed under simple
metrics, such as a cycle, or a star, and some algorithms are developed to find the exact set
of efficient solutions.

In Chapter 7 we introduce an algorithm based on cutting planes within a branch-and-
bound approach, typically named branch-and-cut in single-objective optimization. It gener-
ates all (supported and non-supported) efficient points in the objective space with respect to
both criteria. Here are also presented some heuristic approaches that use the branch-and-cut
resolution idea to find an ǫ-approximation of the Pareto-efficient frontier.

Chapter 8 deals with an extension of TSPP, studying the problem with the time window
restriction on the nodes. In particular, feasible resolution approaches are analyzed when the
underlying metric is a line. It is interesting to see how different can be the computational
complexity for small changes in the starting hypotheses.

Finally, in the last chapter we describe an exact approach that build the efficient Pareto
frontier for the TSPP. The algorithm we propose derives from a dynamic programming
approach for the Cycle Problem. The iteration formula is linear and simple: even if the
method is inefficient from a computational viewpoint, its simplicity suggests that we could
use it to develop some heuristic approaches to solve the TSPP.

The contributions contained in the chapters 6, 7, 8 are parts of works currently in prepa-
ration.

Chapter 1

Mathematical Background

The aim of this chapter is to give a gentle and concise introduction to most of the concepts
used later in this thesis. Anyway, only a brief overview about the main contents is given.
For a deeper treatments of the topics we refer to the bibliography.

Section 1 offers a brief summary of the basic definitions in Graph Theory: we chose to
not focus on these definitions more than clarity requires; they want to be only a reference
for later topics. Section 2 gives an overview about the complexity theory, focusing on the
analysis of the complexity function, used later to evaluate algorithms. Section 3 contains a
dissertation about Polyhedra Theory, that we will use in Chapter 6 in the development of a
Branch and Cut approach. Finally, in the last section of the chapter, we describe some basic
optimization problems, mentioned later in the thesis as parts of developed algorithms.

1.1 Graph Theory

Graph theory is a way to modeling and studying a very large set of mathematical problems.
In this section we describe only the main concepts that we use later in this thesis. For a
more accurate description we refer the reader for instance to [52].

A graph is a pair G = (V, E), where V = {v0, . . . , vn} is a nonempty set of elements
called nodes or nodes, and E contains nodes couples (vi, vj) called edges or arcs, such that
E ⊆ V × V . Let v0 ∈ V be designated as the source node.

If a specific orientation is assigned to each arc (vi, vj), so that it can be crossed only in one
direction, then we have a directed graph, or digraph; otherwise the graph is undirected. The
order in the couple is meaningful: (vi, vj) means that the arc connecting vi and vj is traversed
from vi to vj . Hence, in an undirected graph we always have (vi, vj) ∈ E ⇔ (vj , vi) ∈ E, while
this is not necessarily true in a directed graph. In this thesis we consider only undirected
graphs.

In a graph G = (V, E), the degree d(v) of a node v is the number of edges incident in v.
If all the nodes of G have the same degree k, then G is said to be k-regular or simply regular.

Proposition 1.1 The number of nodes of odd degree in a graph is always even.

Two nodes vi, vj ∈ G are adjacent, if (vi, vj) is an edge of G. Two edges are adjacent if
they have a common endpoint. If all the nodes of G are pairwise adjacent, then G is complete.
It follows that, in a complete graph of cardinality N , there are exactly N − 1 edges incident
in each node.

3

4 CHAPTER 1. MATHEMATICAL BACKGROUND

Let S ⊆ V be given. Then the edge set:

δ(S) := {(vi, vj) ∈ E | vi ∈ S, vj ∈ V \ S}

is defined to be the cut induced by S. In other words, δ(S) contains the edges of the graph
G that have an endpoint in the set S and the other endpoint in V \ S. In particular, we
indicate with δ+({S}) and δ−({S}) the set of edges exiting and entering, respectively, in the
set S.

In a similar way, we define the:

E(S) := {(vi, vj) ∈ E | vi, vj ∈ S, i < j}

to be the set containing edges that have both endpoints in the set S. If E(S) is empty, then
S is an independent set.

Consider two subgraphs G1, G2 ⊆ G = (V, E), where G1 = (V1, E1) and G2 = (V2, E2)
with V1, V2 ⊆ V and E1, E2 ⊆ E. We recall that G1 ⊆ G2 if and only if V1 ⊆ V2 and E1 ⊆ E2.

If G′ ⊆ G and G′ contains all the edges (vi, vj) ∈ E with vi, vj ∈ V , then G′ is an induced
subgraph of G.

1.1.1 Paths and Cycles

In a graph G = (V, E), a path is a sequence of nodes P = (v0, v1, . . . , vk) such that (vi, vi+1) ∈
E. The nodes v0 and vk are the starting and the ending points of the path, respectively,
and P is called a path from v0 to vk (see Fig. 1.1). The number of edges of the path P is its
length. Note that k is allowed to be zero.

Two or more paths are independent if they do not share any internal node. An elementary
path is a path in which all nodes are different.

G

elementary path

 non−elementary path non−indipendent paths

Figure 1.1: Examples of different kind of paths in the graph G.

A cycle is a path (v0, v1, . . . , vp) of length p > 1 having vi 6= vj for i, j ∈ {1, . . . , p − 1}
and v0 = vp. To emphasize its length p, it can be denominated as a cycle of length p. An
edge that joins two nodes of a cycle but is not itself an edge of the cycle is called a chord.

1.1. GRAPH THEORY 5

A cycle in an undirected graph which visits each node exactly once and also returns to the
starting node is known as a Hamiltonian cycle.

An induced cycle in G, i.e. a cycle in G generating an induced subgraph, is one that has
no chords. If a graph contains no cycles is called acyclic graph.

The distance dG(vi, vj) in G between two nodes vi and vj is the length of the shortest
path in G from vi to vj ; if no such path exists then we set d(vi, vj) = ∞.

An undirected graph G = (V, E) is connected if any two of its nodes are linked by a path
in G; otherwise it is disconnected.

Definition 1.1 A connected component of a graph G is a connected subgraph that is not
contained in a larger one.

Note that a component, being connected, is always non-empty (see Figure 1.2); the empty
graph, therefore, has no components.

Figure 1.2: A graph with three connected components, and a minimal spanning connected
subgraph in each component.

A graph G = (V, E) is called bipartite if ∃V1, V2 ⊆ V such that V1 ∪ V2 = V , V1 ∩ V2 = ∅
and each edge links a node in V1 with a node in V2. The graph is a complete bipartite graph
if each node in V1 is linked to all nodes in V2. Clearly, a bipartite graph cannot contain an
odd cycle, i.e. a cycle of odd length. The following statement characterizes this property:

Proposition 1.2 A graph is bipartite if and only if it contains no odd cycle.

1.1.2 Trees

A tree is a graph in which any two nodes are connected by exactly one elementary path.
In other words, it can be seen as an undirected graph G = (V, E) that satisfies any of the
following equivalent conditions:

• G is a tree;

• G contains no cycles and |E| = |V | − 1;

• G is minimally connected, i.e., G is connected but G \ {e} is disconnected for every
edge e ∈ E;

• any two nodes of G are linked by a unique path in G.

Figure 1.3 shows a general tree T .
A rooted tree is a graph with a node singled out as the root, in which case the edges have

a natural orientation, towards or away from the root. In this case, any two nodes connected

6 CHAPTER 1. MATHEMATICAL BACKGROUND

ROOT

LEAVES

Figure 1.3: A tree.

by an edge inherit a parent-child relationship. A parent of a node is the node connected to
it on the path to the root; every node except the root has a unique parent. A child of a
node v is a node of which v is the parent. A leaf is a node without children. Rooted trees,
often with additional structure such as ordering of the neighbors at each node, are a key data
structure in Computer Science.

A subtree T ′ of a tree T is a tree including a node of T and all its descendants in T . The
subtree corresponding to the root node is the entire tree; the subtree corresponding to any
other node is called a proper subtree.

An n-ary tree is a rooted tree for which each node which is not a leaf has exactly n
children. The 2-ary trees are sometimes called binary trees.

Every connected graph G admits a spanning tree, which is a tree that contains every node
of G and whose edges are edges of G. Figure 1.2 shows a spanning tree in each of the three
components of the depicted graph.

For a deeper analysis on trees see [52], while for a dissertation about their role in Computer
Programming see for instance [110].

1.1.3 Graph representation

The typical way to represent a graph, from a mathematical point of view, is through a
matrix. The adjacency matrix and the incidence matrix are the structures most often used
to represent the relation between edges and nodes in a graph. In particular, the adjacency
matrix describes the relation between nodes and edges, while the incidence matrix represents
the connections between couples of nodes in a graph G. In this thesis we chose to describe
our problems through incidence matrices.

Let G = (V, E) be a graph with n nodes: then the incidence matrix is a n × n matrix
A = [aij] defined by

aij =

{
1 if (vi, vj) ∈ E

0 otherwise.

With this representation it is simple to check if a given edge belongs to the graph or not.
Unfortunately, the time needed to obtain the adjacency set of an edge is always O(n) because
it is necessary to check the full row to search for the non-zero entries. Moreover, the memory

1.2. COMPUTATIONAL COMPLEXITY 7

needed to store this type of matrix is O(n2), and the time needed to explore all edges is
O(n2) even if the matrix is sparse.

If the graph is weighted, the incidence matrix weights are used instead of the binary
elements. If pij is the weight of edge (vi, vj), then the matrix becomes:

aij =

{
pij if (vi, vj) ∈ E,

∞ otherwise.

In this way we save memory during the storing of data related to graph G, even if the time
needed to store and explore the matrix remains the same.

The choice of the structure for the representation of a graph determines, in most cases,
the efficiency of the resolution algorithm. In Chapter 7 we can observe how the adoption of a
new policy of graph representation took a great improvement of the algorithm performances.

1.2 Computational Complexity

The Computational Complexity Theory is a branch of the theory of computation in Com-
puter Science that study the intrinsic difficulty of problems. It is based on a mathematical
structure developed on Logic and Computer Science. Here, a problem is understood in
the narrow sense of a task that is in principle amenable to be solved by a computer. The
complexity theory gives a way to classify problems according to the resource request, by
introducing mathematical models of computation, and casting computational tasks math-
ematically known as decision problems. The degree of difficulty can be quantified in the
amount of resources needed to solve these problems, such as time and storage. In particular,
the theory seizes the practical limits on what computers can and cannot do. Problems are
the central objects in computational complexity theory. Normally, a problem is conceived
as a formal language. The objective is to decide, with the aid of an algorithm, for a given
input word if it is member of the formal language under consideration; this kind of problem
is known as decision problem. In other words, a decision problem is a particular formulation
of a problem for which the possible solution is a yes-no answer. An input word for a decision
problem is referred to as problem instance, and should not be confused with the problem
itself. In computational complexity theory, a problem refers to the abstract question to be
solved. In contrast, an instance of this problem is a specification of its parameters, and
can serve as input word for a decision problem. The way to represent instance problem is
through a word over an alphabet. Usually, the alphabet is taken to be the set {0, 1}, since
this corresponds to the information representation in modern computers.

To classify the computation time (or similar resources, such as space consumption), one
is interested in proving upper and lower bounds on the minimum number of steps required
by the most efficient algorithm that can solve the problem. The running time of a particular
algorithm is measured as a function of the length ‖x‖ of the input x. Since the running time
may greatly vary among different inputs of the same length n, the running time in terms of
input length n is defined as the maximum number of steps carried out by the algorithm on
each of the possible inputs of length n.

1.2.1 Complexity measures

To treat concepts related to the computational resource consumption, we need to introduce
the important concept of Turing Machine.

8 CHAPTER 1. MATHEMATICAL BACKGROUND

Definition 1.2 Turing machines are basic abstract symbol-manipulating devices which, de-
spite their simplicity, can be adapted to simulate the logic of any computer algorithm.

From this definition, we can define the time required by a Turing machine M on the input x
as the total number of transitions, or steps, that the machine takes before to halt and return
the answer. Hence, if we introduce the concept of complexity function f(n), we can say that
a Turing machine M operates within time f(n), if the time required by M on each input of
length n is at most f(n). Similarly, a decision problem A can be solved in time f(n) if there
exists a Turing machine operating in time f(n) which decides A.

A non-deterministic Turing machine is a computational model that differs from deter-
ministic Turing machine because it can branch out to check many different possibilities at
once instead of only one. The non-deterministic Turing machine has very little to do with
how we physically want to compute algorithms, but its branching exactly captures many
of the mathematical models we want to analyze, so that non-deterministic time is a very
important resource in analyzing computational problems.

A complexity class is a set of problems of related complexity. A typical complexity
class contains the set of problems solvable by a Turing machine within time f(n). Many
complexity functions have been studied, but the main distinction between them is based on
the asymptotic amount of operations. So, we distinguish between:

• polynomial function, if f(n) = O(nk);

• exponential function, if f(n) = O(kCn);

with C and k constant.

Definition 1.3 The complexity class P contains decision problems for which exists an algo-
rithm that solve them in polynomial time.

Thus, P can be seen as a mathematical abstraction modeling of those computational tasks
that admit an efficient algorithm.

Definition 1.4 The complexity class NP is the set of decision problems that can be solved
by a non-deterministic Turing machine in polynomial time.

All the problems in the NP class have the property that their solutions can be checked effi-
ciently. Since deterministic Turing machines are special non-deterministic Turing machines,
it is easily observed that each problem in P is also a member of the class NP.

Definition 1.5 The complexity class #P is the set of the counting problems associated with
the decision problems in the set NP.

Definition 1.6 A problem A is NP-hard if the entire class of problems in the NP class can
be reduced to it in polynomial time.

Definition 1.7 NP-complete is a subset of NP, the set of all decision problems whose solu-
tions can be verified in polynomial time.

Definition 1.8 A problem is #P-complete if and only if it is in #P, and every problem
in #P can be reduced to it by a polynomial-time counting reduction, i.e. a polynomial-time
Turing reduction relating the cardinalities of solution sets.

1.3. POLYHEDRAL COMBINATORICS 9

Generally, to prove that a problem is NP-complete, two thing must be showed:

• the problem must belong to the NP class;

• all problems in the NP class must be transformable in polynomial time in the given
problem.

Thus, we can state that if any single problem in the NP-complete class can be solved quickly,
then every problem in NP can also be quickly solved. Because of this, it is often said that
the NP-complete problems are harder or more difficult than NP problems in general. Figure
1.4 shows a scheme of complexity classes.

 NP

 P NP−complete

Figure 1.4: Complexity classes.

Whether P ∩ NP-complete is empty or not is unknown.

1.3 Polyhedral combinatorics

In this section we summarize some concepts relative to Polyhedral Theory, necessary to deeply
understand the procedure described in Chapter 5. A detailed treatment of the Theory of
Polyhedra can be found in Bachem and Grotschel [7], Grunbaum [86], Rockafellar [150], as
well as in some book on Integer Linear Programming, such as Nemhauser and Wolsey [129]
or Schrijver [156].

The Polyhedral Combinatorics is the research area in which polyhedra arise from com-
binatorial optimization problems. Connections between Combinatorial Optimization and
continuous zero-one Linear Optimization can be established as follows.

Definition 1.9 Given a finite set E, let I ⊆ 2E be a collection of feasible solutions, and let
c : E → R be the so called objective function. For each set F ⊆ E let c(F) :=

∑
e∈F c(e). A

linear combinatorial optimization problem consists in finding a set I⋆ ∈ I with:

c(I⋆) = min{c(I) | I ∈ I}

and it is denoted by (E, I, c).

Definition 1.10 Given a finite set E, and a set F ⊆ E, the incidence vector xF ∈ R
E is

defined as:

xF
e =

{
1 if e ∈ F

0 if e /∈ F

Incidence vectors are exactly the nodes of the polytope PI :

PI = conv{xI | I ∈ I}

10 CHAPTER 1. MATHEMATICAL BACKGROUND

If we associate with the function c : E → R of a combinatorial optimization problem a vector
c ∈ R

E , we can solve the combinatorial optimization problem by solving:

min{cT x | x ∈ PI}

where the solution space is defined as the convex hull of an implicitly described set of points.
Actually, there are no efficient algorithms that solve an optimization problem of this kind.
However, there exists a finite set of inequalities Ax ≥ b, such that PI = {x |Ax ≥ b}. Thus,
we could transform the combinatorial optimization problem (E, I, c) in the linear program:
min{cT x |Ax ≥ b}. There are finite algorithms that transform one representation of the
polytope PI into the other for small problem instances.

The main problem arises when the number of constraints is too large to be represented
in a computer and solved by an LP-solver. In this cases we developed an approach described
in [116]. The method consists in selecting a small subset of constraints, used to compute
an optimal initial solution. At this point, it checks if some of the constraints, belonging to
the starting model but not to the current one, are not satisfied. When these constraints
are identified, they are added to the current linear model and it is solved again. If no other
constraints are violated, the optimal solution found is also an optimal solution for the starting
problem, otherwise the violated constraint must be added, and the procedure restarts. This
is the basic principle of the so called cutting plane approach, whose name derives from the
fact that constraints added to the current linear model cut off the current solution that is
infeasible for the original combinatorial problem. Thus, it is not needed to know the full set
of starting constraints, but it is sufficient to have a procedure that identify only the violated
ones.

Definition 1.11 Given a bounded rational polyhedron PI ⊆ R
n and a rational vector v ∈ R

n,
the separation problem is either conclude that v belongs to PI or find a rational vector w
∈ R

n such that wT x > wT v for all x ∈ PI .

Hence, the equivalence between solving an optimization problem and solving the equivalent
separation problem follows.

Definition 1.12 For any proper class of polyhedra, the optimization problem is polynomially
solvable if and only if the separation problem is polynomially solvable.

An algorithm that solves the general separation problem is called exact separation algorithm.
A generic cutting-plane algorithm to solve the Mixed Integer Linear Programming (MILP)
problem

min{cT xI | AxI ≥ b, xI integer for all I ∈ I}

is outlined in Alg. 1 The cutting plane algorithm uses specific cutting planes, called facets,
that define inequalities, but it not always stops with an optimal solution.

Branch-and-bound is an another technique used to solve hard mixed integer optimiza-
tion problems. Branch and bound is a divide-and-conquer approach that try to solve the
original problem by splitting it into smaller problems, for which lower and upper bounds are
computed. The computation of these bounds is the most important part of the branch and
bound approach, and impacts on the performance and the goodness of the solution.

Definition 1.13 Let F = {xI |AxI ≥ b, xI integer for all i ∈ I} be the set of feasible solu-
tions of a mixed integer optimization problem: min{cT x |x ∈ F}. A minimization problem

min{r(x) |x ∈ R}

1.3. POLYHEDRAL COMBINATORICS 11

Algorithm 1 Cutting plane algorithm for MILP problems

• Initialize the constraints system (A′, b′) with a small subset of the constraints system
(A, b).

• Repeat

– Compute a solution x̄ of the problem: min{cT x |A′x ≥ b′, x ∈ R}

– If (x̄ is not feasible for (A, b) then

∗ Generate a cutting plane (f, f0), f ∈ R
n with

· fT x̄ ≤ f0

· fT x̄ > f0 for all y ∈ {x |Ax ≥ b, xi integer for all i ∈ I}

∗ Add the inequality fT x > f0 to the constraint system (A′, b′)

– Endif

• Until (x̄ is feasible)

is a relaxation of the mixed integer optimization problem if

F ⊆ R and cT x ≥ r(x), for all x ∈ F.

In this way, the solution of the relaxed problem gives a lower bound for the objective function
value of the original problem it was derived from.

A basic relaxation in the cutting plane context is obtained by dropping the integrality
constraints. Obviously, adding inequalities produces a tightening of the relaxation.

A branch-and-bound algorithm generates a list of subproblems deriving from the starting
one. At each step, the algorithm solves one of these subproblems, computing a lower bound
for it, and uses this bound to improve the lower bound of the original problem. If the lower
bound computed for one subproblem is greater than the global one, then the subproblem
is fathomed, (that is, it will not longer be considered) because its solution and the solu-
tions of problems deriving from it cannot be better than the best known feasible solution.
Consequently, no other subproblems can be derived from it. Otherwise, the solution of the
relaxed subproblem is checked, to see if it is a solution for the original problem. In this case,
the problem was solved, and thus, it is fathomed. Most often, the list of branch-and-bound
subproblems is managed as a tree.

If the local lower bound exceeds the global lower bound and no feasible solutions were
found for the active sub-problem, it is necessary to perform a branching step, to split the
active subproblem in a collection of new ones, whose union of feasible solutions corresponds
exactly to the feasible solution of the active subproblem. The easier way to perform this
step, is to change the bounds of the variables. Suppose i ∈ I has a fractional value x̄i in the
LP-solution. Then, we can set to ⌈x̄i⌉ the new lower bound of the i-th variable in the first
new subproblem, whereas its upper bound remains unchanged, and to ⌊x̄i⌋ the new upper
bound of the second problem, whereas the lower bound remains unchanged.

When all subproblems are fathomed, and so the list of them is empty, the solution is the
optimal solution for the original problem.

A branch-and-cut algorithm is a branch-and-bound algorithm in which cutting planes
are generated throughout the branch-and-bound tree. This implies some differences in the

12 CHAPTER 1. MATHEMATICAL BACKGROUND

procedure to find a solution. In fact, instead of re-optimizing each node, the branch and cut
method tries to get the most tight lower bound for each subproblem. The aim is to reduce
the number of required branching in the tree through cuts and improved formulations, and
use each possible technique (i.e., heuristic or preprocessing) that can be useful to improve
the results.

1.4 Some basic optimization problems

In this section we introduce some well-known optimization problems, used later in this thesis,
describing their mathematical model, and their importance in the combinatorial optimiza-
tion context. In particular, we focus our attention on the possible relations between these
problems and the well known Traveling Salesman Problem (TSP), in order to find solving
approaches applicable to an extension of TSP like the Travelling Salesman Problem with
Profits (TSPP) that we will study in the following chapters.

We start with the Assignment Problem, that will appear in Chapter 6 as a relaxation
of a subproblem deriving from the TSPP. The Orienteering Problem, the Prize Collecting
Travelling Salesman Problem and the Profitable Tour Problem, are all mentioned in Chapter
5 to analyze the complexity of our problem. Finally, the Cycle Problem, appearing in Chapter
8, is used in the formulation of a Dynamic Programming approach to TSPP.

1.4.1 The Assignment Problem

Let us consider n workers (such as persons or machines) available to carry out n jobs. Each
job has to be assigned to exactly one worker. Some workers are better suited to particular
jobs than others, so there is an estimated cost cij assigned to the subject i if it performs the
job j. The objective consists in finding an assignment worker-job with minimum cost. The
variables used are the following:

xij =

{
1 if the worker i does the job j

0 otherwise.

The mathematical model is:

min
n∑

i=1

n∑

j=1

cijxij (1.1a)

subject to
n∑

j=1

xij = 1, for i = 1, . . . , n (1.1b)

n∑

i=1

xij = 1, for j = 1, . . . , n (1.1c)

xij ∈ {0, 1}. (1.1d)

The total unimodularity of the constraint matrix guarantees than an optimal integer solution
can be found by Linear Programming methods. This does no longer hold true in the multi-
objective case.

The first algorithm to solve a mono-objective Assignment Problem was developed by
Easterfield in 1946 [55], and consists in a non-polynomial time approach based on iterated

1.4. SOME BASIC OPTIMIZATION PROBLEMS 13

application of a particular class of feasible transformations; but the first polynomial-time
method was presented in 1950 by Kuhn [113] with his famous Hungarian algorithm.

From a multi-objective point of view, the approaches studied in literature are focused
on the determination of supported efficient solutions, computed through the use of methods
based on convex combinations of objectives or on Goal Programming. For a complete state-
of-the-art survey on this subject see [59].

1.4.2 Orienteering Problem

The Orienteering Problem (OP) is a generalization of the TSP. One possible formulation is
the following: let G = (V, E) be a graph of |V | = n nodes, each one representing a city, with
node v0 representing a depot. Each node vi is associated a profit pi, while each edge (vi, vj)
is associated a value cij that represents the cost to pass through the edge. The OP searches
a route starting and ending in the depot that maximizes the profit, having a total cost non
exceeding a fixed upper bound C.

A mathematical formulation of this problem uses the following variables:

xij =

{
1 if the edge (vi, vj) is visited,

0 otherwise,

and

yi =

{
1 if the node vi is visited,

0 otherwise.

We can then formulate the OP as the following 0-1 Integer Linear Programming problem:

max
∑

vi∈V

piyi (1.2a)

subject to
∑

e∈δ(vi)

cexe ≤ C (1.2b)

c(δ(vi)) = 2yi for all vi ∈ V (1.2c)

x(δ(S)) ≥ 2yi for all S ⊂ V with ∅ 6= S 6= V, v0 /∈ S and vi ∈ S (1.2d)

y0 = 1 (1.2e)

xe ∈ {0, 1}, yi ∈ {0, 1} for all vi ∈ V and e ∈ E. (1.2f)

The constraint (1.2b) imposes that the total cost cannot exceed the bound C. The degree
equation (1.2c) imposes that a feasible solution must contain each visited node exactly. The
constraints (1.2d), called generalized subtour Elimination Constraints force each visited node
vi ∈ V \ {v0} to be reachable from the node v0 through two paths sharing no edges. Finally,
the constraint (1.2e) imposes that the depot must be visited.

This problem appeared in several routing and scheduling applications, and it was demon-
strated that it is NP-hard. Many approaches were developed to compute its solutions. Tsili-
girides [168], Golden, Levy and Vohra [82], Golden, Wang and Liu [83] and Chao, Colgen and
Wasil [29] developed heuristic approaches, while Laporte and Martello [115] proposed exact
methods. Ramesh, Yoon and Karwan [144], Leifer and Rosenwien [119] studied an LP-based
bounding procedure. A branch-and-bound approach was developed by Gendreau, Laporte
and Semet [71]. Fischetti, Salazar and Toth [66] introduced a branch-and-cut approach to
solve it.

14 CHAPTER 1. MATHEMATICAL BACKGROUND

1.4.3 Prize Collecting Traveling Salesman Problem

The Prize Collecting Traveling Salesman Problem (PCTSP) was introduced by Balas[11] in
1989. It is an extension of the well known TSP but with some restrictions in the profit
accumulation. We formulate the problem as follows: a traveller have to visit a set V =
{v0, v1, . . . , vn} of clients. A profit pi is associated with the visit to the client vi ∈ V , and
a cost cij > 0 is associated with each edge (vi, vj) ∈ E : if the traveller decides to visit the
clients vi and vj , in this order, he must pay the cost. We assume that the traveller route
starts and ends in the depot, that is always served. The PCTSP consists in finding a subset
S ⊆ V of clients to serve such that the total cost is minimum and the total profit accumulated
is at least a given lower bound L.

The variables used in the formulation are the same as for the Orienteering Problem (see
the previous subsection). The mathematical formulation of the problem is the following:

min
∑

e∈E

cexe (1.3a)

subject to
∑

vi∈V

piyi ≥ L (1.3b)

c(δ(v)) = 2yi for all v ∈ V (1.3c)

x(δ(S)) ≥ 2yi for all S ⊆ V with ∅ 6= S 6= V, v0 /∈ V and vi ∈ S (1.3d)

y0 = 1 (1.3e)

xe ∈ {0, 1}, yi ∈ {0, 1} (1.3f)

The constraint (1.3b) imposes that the sum of profits associated to the visited nodes be at
least a fixed positive value L. Constraints (1.3c) impose that each visited client vi, have a
predecessor and a successor in the tour. Otherwise, if vi is not served, then it is not an extreme
of any edge in the tour. Constraints (1.3d) are the well known generalized subtour elimination
constraints, and impose the presence of no multiple subtour in the solution. We can easily
note that the number of these type of constraints is very high, and this makes the problem
intractable. To overcame this difficulty some approaches has been developed. Fischetti and
Toth [67] presented an additive approach based on a branch-and-bound technique to obtain
solutions through a progressive generation of lower bounds, while Balas [11, 13] obtained
some polyhedral results.

1.4.4 The Cycle Problem

Let G = (V, E) be a undirected graph with ce the cost associated to the edge e ∈ E. The
cycle problem consists in finding a cycle of minimum cost that pass through each node at
most once. If negative cost circuits are allowed, this problem is NP-hard: this easily follow
by reducing the TSP to the cycle problem by subtracting a large positive constant from each
edge. Balas [12] and Bauer [19], among others, studied the facial structure of a directed and
undirected polytope respectively associated with the problem.

A mathematical description for the undirected cycle problem is given below. For the
binary variables xe we have xe = 1 if and only if the edge e belongs to the solution. The
variable yi is set to 1 if node vi is visited, otherwise it is set to 0.

1.4. SOME BASIC OPTIMIZATION PROBLEMS 15

min
∑

e∈E

cexe (1.4a)

subject to
∑

e∈δ(vi)

xe = 2yi for all vi ∈ V (1.4b)

∑

e∈δ(S)

xe ≥ yi + yj − 1 for vi ∈ S vj /∈ S (1.4c)

xe ∈ {0, 1} for all e ∈ E (1.4d)

yi ∈ {0, 1} for all vi ∈ V (1.4e)

The constraints set is similar to that of TSP one. Constraints (1.4b) impose that if an edge
incident to a node vi is included, then the node vi must be visited. The constraints (1.4c),
(1.4d) and (1.4e) are the generalized subtour constraints, and the integrality bounds for the
variables, respectively.

In the literature we can find many resolution approaches for this kind of problem. Bauer
[19] and Balas and Oosten [16] studied the undirected and directed cycle polytope, while
Salazar [152] gave a polyhedral study for the Cycle Polytope with loop variables in the
undirected case. Finally, a polynomial algorithm was developed by Coullard and Pulleyblank
[41] in the case of edge with nonnegative-costs.

1.4.5 Profitable Tour Problem

The Profitable Tour Problem (PTP) was introduced for the first time by Dell’Amico et al.
[48]. It is related to both the constrained flow problems and the vehicle-routing problems.

It is an extension of the well known TSP in which the objective function maximizes a
profit function obtained by the difference between two terms:

• the sum of the profits associated to the visited nodes;

• the cost associated to the total distance covered.

A possible illustration of the problem is the following: a traveller can visit a set V =
{v0, v1, v2, . . . , vn} of clients, where v0 represents the depot. The profit associated to the
visit of each client vi ∈ V is a positive value pi. The main difference with respect to the TSP
is that the traveller is not forced to visit all clients: he can decide to visit only a subset of
them. The distance cuv > 0 is the cost that the traveller pays if he decides to visit the clients
u and v in this order. It is assumed that the traveller route starts and ends in the depot,
that is always served. The PCTSP consists in finding a subset S ⊆ V of clients to serve and
an ordering of elements of S, such that the total profit accumulated is maximum.

16 CHAPTER 1. MATHEMATICAL BACKGROUND

The mathematical formulation of the problem is the following:

max
∑

vi∈V

piyi −
∑

e∈E

cexe (1.5a)

subject to
∑

e∈δ(vi)

xe = 2yi for all vi ∈ V (1.5b)

∑

e∈E(S)

xe ≤
∑

u∈S\v

yu for all S ⊆ V \ {v0} and all v ∈ S (1.5c)

y1 = 1 (1.5d)

xe ∈ {0, 1} (1.5e)

yi ∈ {0, 1}. (1.5f)

In the objective function (1.5a) the contributions given by the cost and by the accumulated
profit are clearly recognizable. The constraints (1.5b) impose that each visited client vi (i.e.,
such that yi = 1) has a predecessor and a successor in the tour. Otherwise, if u is not served,
then it is not an extreme of any edge in the tour. Thus, the generalized subtour elimination
constraints, defined by (1.5c), imposes the presence of no multiple subtour in the solution.

A branch-and-bound algorithm to find the exact solution of PTP is described in Feillet et
al. [64], while some meta-heuristic were proposed by Gendreau, Herts, Laporte [70] and by
Mladenovic and Hansen [127]. Finally, new heuristic approaches were presented by Archetti
et al. [2].

1.4.6 The 0–1 knapsack problem

Knapsack problems have been intensively studied, both from a theoretical and a practical
point of view. The theoretical interest arises mainly from the simple structure of the problem
that allows to exploit a number of combinatorial properties. From the practical point of view,
these problems describe many real-life situations: cutting stock, cargo loading or capital
budgeting. For a full description of all variants of the knapsack problem with the main
resolutive algorithm see Martello and Toth [124].

The aim of the ordinary 0–1 knapsack problem is to find the optimal combination of
items to pack in a knapsack under a single constraint on the total allowable resource, where
all coefficients in the objective function and in the constraint are positive. Formally, we have
a set of N items, each one with a weight wi and an utility ci. Let W be the maximum weight
that can be put in the knapsack. Then, we want to choose the best combination of items
in order to maximize the utility, subject to the capacity constraint. If we assume that the
variable xi is set to 1 if the object i is put into the knapsack and is set to 0 otherwise, we
can formulate the problem as follows:

max
N∑

i=1

cixi (1.6a)

subject to
N∑

i=1

wixi ≤ W (1.6b)

xi ∈ {0, 1}. (1.6c)

The knapsack problem is one of the fundamental NP-hard combinatorial optimization prob-
lems. Thus, it is not surprising that many of the proposed algorithms to solve it are based on

1.4. SOME BASIC OPTIMIZATION PROBLEMS 17

either implicit enumeration methods (such as dynamic programming) or branch and bound
or heuristic (or meta-heuristic) procedures.

From this problem a variety of knapsack-type problems can be derived in which a set of
different entities are given, each one having an associated value and a size, and the goal is
to select one or more disjoint subsets so that the sum of the sizes in each subset does not
exceed a given bound, and the sum of the selected values is maximized.

In this thesis we consider a specific variant of the knapsack problem: the partially ordered
knapsack problem. This problem differs from the standard one because it takes precedence
relations between items into accounts. These precedence relations are modeled using a graph
where each node corresponds to a specific item. Then, item i is a predecessor of item j if
(vi, vj) ∈ E. An item can be selected if all items that precede it in the graph have been
included. The graph that model the precedence relations is an out tree i.e., a directed tree
where all arcs are oriented away from a distinguished root node. More insights into the solu-
tion approaches for this problem are given by Johnson and Niemi [99] and by Samphaiboon
and Yamada [153].

Chapter 2

Multicriteria Optimization

Combinatorial Optimization is a field extensively studied by many researchers. Because of
its strong potential for real world applications, it has received increasing attention over the
last few decades. A state-of-the-art survey can be found in [50].

The main difficulty that can be encounter in Combinatorial Optimization is the limitation
in the modeling of problems. In fact, sometimes, decision maker have to deal with several,
usually conflicting, objectives. Multi-Objective Optimization allows a degree of freedom which
is lacking in mono-objective optimization. Indeed, it aims to simultaneously optimize two
or more conflicting objectives subject to certain constraints. Thus, it is surprising that the
scientific interest for this field became evident only in recent years. A few paper in the area
have been published in the seventies, while the classical problem have been investigated in
the eighties. Only since 1990 the interest for this matter has grown, and the number of
research papers increased considerably.

Multi-objective optimization problems (MOP) arise in various situations: product and
process design, finance, aircraft design, oil and gas industry, automobile design, network,
scheduling problems and in general all those situations where optimal decisions need to
be taken in the presence of trade-offs between two or more conflicting objectives. Some
example of multi-objective optimization problems can be the maximization of profit and
minimization of the product cost, or the maximization of performances and minimization of
the fuel consumption of a vehicle, or minimization of weight and maximization of strength
for a mechanical component. If a multi-objective problem is well formed, there should not be
a single solution that simultaneously minimizes or maximizes each objective to its fullest. In
each case we are looking for a solution such that each objective is optimized to such an extent
that, if we try to optimize it any further, then the other objective(s) will suffer as a result.
Thus, the goal in the setting up and solving a multi-objective optimization problem is to find
such a solution, and quantifying how better is this solution compared to the others (indeed
it will not be unique, in general). Then, at the end, a single solution must be selected: it will
reflect the tradeoffs set by the user on the various objective functions. The user that selects
one solution instead of another is called decision maker. The decision maker is a ”human”:
so, multi-objective optimization tries to model his preferences and choices. There are many
theories for the modeling of choices, for example the multi-attribute utility theory (see [106])
that does not accept any solution of equal rank, or the multicriteria decision aid theory (see
[151]), that accepts solution of equal rank, trying to reproduce the selection processes of
several decision makers.

To have an overview of the various existing approaches to solve a multi-objective prob-
lems see [149]. In particular, for examples of bi-objective and multi-objective methods in

19

20 CHAPTER 2. MULTICRITERIA OPTIMIZATION

scheduling problems see chapter 9 of [149], Jeannot et al. [98] and Dutot et al. [54].

Based on the decision maker role, the strategy to decide how to proceed are divided in
four categories:

a posteriori optimization methods: the entire optimal solution set is computed and then
shown to the decision maker, that will pick up what he considers to be best solution;

a priori optimization methods: the decision maker specifies his preferences before the
execution of the optimization model, so only those solutions will be generated that will
fit his preferences;

methods without preferences: the decision maker doesn’t have any role in this type of
methods, so any solution satisfies the requirements;

interactive methods: the decision maker specifies his preferences during the execution of
the algorithm. In this way, it is possible to drive the solution towards his preferences.

In all cases, a large part of the solution methods for the multi-objective programming are
based on the reduction of the original problem in a new mono-objective one. The technique
that allows this type of operation is called scalarization.

In this chapter, we want to give an overview of the state-of-the art of multi-objective
optimization. We begin with an introduction on the basic mathematical principles needed
to formally define the multi-objective theory, then we describe the main properties of multi-
objective problems. Finally we depict the most relevant multi-objective Combinatorial Op-
timization problems (MOCO) with their main characteristics.

2.1 Basic Principles

An optimization problem is defined as the search of a optimum (that can be a maximum or
a minimum) for a given function. Mathematically speaking, a multi-objective optimization
problem has the following form:

min
x∈X

(
f1(x), f2(x), . . . , fk(x)

)
(2.1)

where k ≥ 2, fi : R
n → R for i = 1, . . . , k, and X ⊆ R

n represents the feasible set. Typically,
in Combinatorial Optimization the objective functions are of two types:

• sum objective: f(S) =
∑

a∈S w(a);

• bottleneck objective: z(S) = maxa∈S w(a);

where S ⊆ X and w : S → Z is some weight function, where Z is defined in the following:

Definition 2.1 Let f1, f2, . . . , fk be k performance criteria. Then, we define the criterion
space as:

Z = {z ∈ R
k | z = (f1(σ), f2(σ), . . . , fk(σ), σ ∈ I}

where I is the feasible solutions set of an optimization problem.

2.1. BASIC PRINCIPLES 21

At each decision vector x ∈ R
n we can associate a vector z = (f1(x), f2(x), . . . , fk(x))T ∈

R
k, called objective vector in the criterion space.

Since no solution optimizes simultaneously all objectives, one will search for an acceptable
trade-off instead of an optimal solution. This compromise must be such that no strictly better
solutions exists, even if some solutions might be considered as equivalent. This involves a
partial ordering of the objective space, defined by a dominance relation. The latter is used to
characterize the Pareto Efficiency, a concept that replaces that of optimal solution in single
objective optimization problems.

Definition 2.2 Let z1, z2 ∈ R
k be two solution vectors of (2.1). We say that z1 dominates

z2 in a minimization problem when:

z1
i ≤ z2

i ∀i = 1, . . . , k and ∃j ∈ {1, . . . , k} such that z1
j < z2

j

The main difficulties in these type of approaches is due to the fact that most often the
objectives are conflicting. In other words, a solution that minimize an objective generally
does not minimize the others.

Definition 2.3 We define the ideal vector of objectives as the vector that contains the
optimal values of each objective function:

zid
i = fi(x

i∗) = min
x∈X

fi(x) (2.2)

This type of solution is very difficult to reach, but it is used as the goal in many approximation
methods.

So, we can give the definition of Pareto optimality for a multi-objective problem:

Definition 2.4 A decision vector x∗ ∈ X is a Pareto optimum for the problem (2.1) if there
are no other vectors x ∈ X such that

f(x) ≤P f(x∗)

where ≤P is the dominance relationship.

Definition 2.5 The efficient frontier for problem (2.1) is the set of its Pareto optimal points.

Thus, we can see the Pareto points as equilibrium points in the efficient frontier of the set Z.
The efficient set and Pareto frontier contain all the Pareto efficient solutions and all

the non-dominated points in the objective space. Since the efficient set is defined on the
solution space, while the Pareto frontier is defined on the objective space, the cardinality of
the efficient set is always greater than or equal to the cardinality of the Pareto frontier. This
happens because there might be many feasible solutions that correspond to the same point
in the objective space. Multi-Objective optimization can approximate the Pareto frontier to
provide a set of equivalent solutions to the decision maker, who will then be aware of many
equivalent tradeoffs. This should help him to take a decision. In some cases, when the size
of the efficient set is reasonable, it is even possible to provide the exact Pareto frontier to
the decision maker.

Let us consider a particular case: the general bi-objective optimization problem

max f1(σ), min f2(σ)

subject to σ ∈ Ω
(2.3)

where Ω is the feasible region defined by the constraints, then it follows that:

22 CHAPTER 2. MULTICRITERIA OPTIMIZATION

Proposition 2.1 A solution σ∗ is Pareto-optimal if there is not other σ ∈ P such that
f1(σ) ≤ f1(σ

∗) and f2(σ) ≥ f2(σ
∗), where at least one of the inequalities is strict. If σ∗ is

Pareto-optimal then (f1(σ
∗), f2(σ

∗)) is an efficient point.

Solutions belonging to the objective space can be divided in two important sets, defined
in the following:

Definition 2.6 Efficient solutions which are not optimal for any scalarization obtained by
using the weighted sum:

min
x∈X

p∑

k=1

λkfk(x)

are called unsupported efficient solutions. Those that are optimal for some weighted sum
problem are called supported efficient solutions.

Many methods use this distinction to compute the efficient Pareto frontier in two different
phases: in the first one they search supported solutions, while in the second phase they
compute unsupported solutions. We can find some of these approaches in Ehrgott [56], Lee
and Pulat [117], Ramos et al. [145], Ulungu and Teghem [172], Visee et al. [175]).

2.2 MOCO Properties

By its nature, multi-objective optimization deals with discrete problems, although objectives
are usually linear functions. As a consequence of this fact, it is usually not possible to
determinate the entire efficient frontier with an aggregation of objective functions through a
weighted sum. Indeed, there exist efficient solutions that are not optimal for any weighted
sum of the objectives. This remains true also for the special case in which the constraints
matrix is totally unimodular. These solutions are called non-supported efficient solutions
(NE), while the remaining ones are called supported efficient solutions, (SE). The set of non-
supported solutions is very important in the Pareto frontier: in fact, its cardinality is greater
than the cardinality of the supported set. So, the time needed to solve a MOCO problem
grows considerably if we decide to compute all efficient solutions in the non-supported set.

It was demonstrated that the problem of counting the number of supported and non-
supported efficient points is #P-complete, while finding all efficient solutions in the Pareto
frontier is NP-hard, even for these problems having efficient mono-objective solution methods.
Some results on this matter can be found in [57, 61, 159]. Therefore, a lot of heuristics
were implemented in order to reduce the computational time, and the obtained results are
interesting. For example, in [57] we can find some general results on approximating the
efficient set by a single solution, while in [140] it is used the Tchebycheff metric to measure
the error. Another recent example of approximation scheme is given for instance in [98].

Another important aspect of MOCO problems is that the number of efficient solutions
grows exponentially with the problem size. Hence, it is impossible to define a method that
finds all efficient solutions in polynomial time. This result was demonstrated for a lot of
problems, such as for instance the assignment problem [88] or the travelling salesman problem
[161]. Consequently such problems are called intractable. In particular, it was shown for the
knapsack problem [175] that the number of supported solutions grows linearly with the
problem size, while the number of non-supported ones grows exponentially.

2.3. SOLUTION METHODS FOR MULTI-OBJECTIVE PROGRAMMING 23

2.3 Solution methods for multi-objective programming

Usually, in the multi-objective programming (MOP), the resolution methods are chosen
in accordance with role of the decision maker. Thus, the choice of the resolution approach
depends on the method used by the decision maker to select the solutions. The most relevant
approaches are listed in the following:

• the goal programming approach is the better to compute the Pareto set when the
decision maker chooses solutions through an a priori method, i.e. when the preferences
are given before the beginning of the process;

• heuristic methods gives an approximation of the solution set in a reasonable time.
They are generally used when the decision maker selects solutions at the end of their
generation, i.e. with an a posteriori method;

• interactive methods solve the problem through the introduction of computing steps
alternated with dialogue steps to drive the search of solutions in the correct way. They
are generally used when the decision maker introduces his preferences during the search
of solutions. A lot of practical problems are solved in this way.

Thus, the appropriate resolution mode is chosen according to the situation of the decision
process, and it can be exact or approximated.

2.3.1 Exact methods

In this section we describe the main existing resolution methods that compute the entire
Pareto frontier of MOCO problems. A large part of resolution approaches consists in the
combination of all objective functions into a single criterion, i.e. in the scalarization of the ob-
jectives. The combination is then parameterized so that optimal solutions for single-objective
programs correspond to Pareto outcomes for the multi-objective problem. The most popular
method to construct parameterized single objectives is the weighted sum scalarization. The
algorithm proceeds by solving a sequence of subproblems for selected values of the parame-
ters. The objective function:

min
(
z1(x), z2(x), . . . , zn(x)

)

becomes:

min
x∈X

n∑

j=1

λjzj(x)

where 0 ≤ λj ≤ 1 and
∑n

j=1 λj = 1. Hence, it is possible to find all supported efficient
solutions by varying λj (see [75] and [97]). Usually, parametric methods are used to solve
this type of problem for all values of λj . This method was applied to a lot of multi-objective
problems, for example to transportation problems [45], network flow problems [87, 157] or
location problems [123]. The reader can find some example of resolution approaches in case
of sum or bottleneck objectives in [126] and [142].

Another way to solve multi-objective combinatorial optimization problems consists in the
minimization of the distance between the solution and an ideal point (2.2), that represents
the best solution reachable (see [178]). To measure the distance between the ideal point and
the efficient solution is generally used the Tchebycheff norm:

min
x∈X

(
max

j=1,...,n
λj |zj(x) − zI

j |

)

24 CHAPTER 2. MULTICRITERIA OPTIMIZATION

Unfortunately, when we consider sum objectives, this type of problem belongs to the class
of the NP-hard problems hence, even if it is possible to compute the entire efficient set, this
method is not frequently used. Actually there are no approaches solving this problem using
other types of norm.

A special approach is the goal programming (see [96] and [118]), in which the decision
maker decides a target value for each objective function. The aim is to minimize the distance
between the objective value and the target. Sometimes this approach is not considered part
of multi-objective optimization still it is used frequently.

Ranking methods are frequently used for bicriteria optimization problems. These ap-
proaches define a lower and an upper bound on the objective values of efficient solutions.
The ideal point zI = (zI

1 , zI
2), having:

zI
j := min

x∈X
zj(x), j = 1, 2

defines a lower bound, while the Nadir point zN =
(
zN
1 , zN

2

)
, having

zN
j := min

x∈X
{zj(x) | zi(x) = zI

i and i 6= j}

with j = 1, 2, defines an upper bound. This method computes the efficient set starting from
a solution with z1(x) = zI

1 and searching other solutions in order to reach zN
1 . It was used in

the shortest path problem [33] and in the transportation problem [51]. It is not obvious how
to generalize this method to problems with more than two objective functions. The main
difficulty is that it is not clear how to obtain the Nadir point when the number of objective
functions is greater than two [112].

Many approaches use methods taken from single-objective optimization to solve multi-
objective problems. One of these is dynamic programming. Dynamic programming is a gen-
eral recursive decomposition technique for optimization problems. It is numerically feasible
only for special classes of (typically discrete) problems, but when the structure is favorable,
it is often the best method to use. The method solves a sequence of subproblems using a re-
cursion formula. A procedure of this kind can work efficiently with multi-objective problems:
the reader can find applications to the bi-objective travelling salesman problem in [35], or to
shortest path problems in [27] and [90], or to transportation problems in [68] and [148].

Two widely applied methods used to solve MOCO problems are branch-and-bound and
branch-and-cut. Bounds and cuts are computed to delimitate the feasible region where to
search for the solutions. These type of methods combine optimality of returned solutions
(like dynamic programming or greedy algorithms, when the problem fulfills the required
properties) with adaptability to a wide range of problems (like metaheuristics). An efficient
multi-objective branch-and-bound scheme is therefore likely to be useful in many contexts.
In MOCO, during the branch-and-bound procedures, the set Upper Bound(UB) of the best
solutions found so far is kept. To be efficient, the branch-and-bound procedure has also to
manage lower bounds on the sub-problems. In the literature, a large number of proposed
branch-and-bound algorithms use the ideal point of a sub-problem for that goal. We can find
some applications of this procedure to the spanning problem tree in [163], to purchaser prob-
lems in [116] and to the knapsack problem in [171] and [173]. Anyway, most of the algorithms
used to solve multi-objective optimization are modifications of this kind of procedure: see
for example [172] for the assignment problem, [56] and [117] for the network flow problem.

Finally, a general framework to find exact solutions is the two-phase method. In the first
phase supported efficient solutions are computed through the scalarization technique, that

2.3. SOLUTION METHODS FOR MULTI-OBJECTIVE PROGRAMMING 25

reduces the objectives to a single one by a weighted sum. In the second phase, information
about supported efficient solutions computed in Phase 1 are used to reduce the search space
to obtain a restricted area where to search the non-supported solutions. This procedure is
frequently used, mainly in the bi-objective problem. See Section 3.4 for a deeper description
of it.

2.3.2 Approximation methods

The approximation solution methods, called heuristics and metaheuristics, were developed
in the last decades (see Osman and Laporte [131]).

In an optimization context the term heuristic is used in contrast to methods that guaran-
tee to find a global optimum such as, e.g., the Hungarian method for solving the assignment
problem or implicit enumeration schemes such as branch-and-bound and dynamic program-
ming. The interest in this type of solving methods arose from the difficulty to solve some
combinatorial optimization problems.

According with [146], a heuristic is defined as a technique which seeks good (i.e., near-
optimal) solutions at a reasonable computational cost without being able to guarantee either
feasibility or optimality. Often heuristics are problem-specific, so that a method which works
for one problem cannot be used to solve a different one. On the other side, metaheuristic
are very efficient strategies that manipulate subordinate heuristics in order to exploring
the search space (see [131]). Meta-heuristics include, but are not limited to, constraint
logic programming, genetic algorithms, evolutionary methods, neural networks, simulated
annealing, tabu search, non-monotonic search strategies, greedy randomized adaptive search,
colony systems, variable neighborhood search, scatter search, and their hybrids. It can be
applied to a large number of problems.

Such methods give a good tradeoff between the quality of an approximation of the efficient
solution set and the computational time. The first attempt to use these techniques was
made by Schaffer [155] on multiple objective genetic algorithms, while Serafini [160] started
a stream of research on multiple extensions of local-search-based metaheuristics. Recently,
international publishers, as Journal of Heuristics or Foundations of Computing and Decision
Sciences, dedicated special journal issues to these methods.

The two most used approaches are the local search and the population-based-methods.

Methods of local search in objective space start from an initial solution, and then approx-
imate a part of the nondominated frontier corresponding to a given search direction d ∈ R

n.
A procedure to aggregate the objective in a single one through a weighted sum focalizes
the search in a specific part of the non-dominated frontier. The procedure is repeated for
all possible directions in order to explore the entire objective space. The efficiency of these
methods depend strongly on the definition of the direction d.

On the contrary, the population-based methods generate a population of solutions that
contribute to the evolution process toward the non-dominated frontier. Most operational
procedures are based on genetic algorithms: in [34] more than 320 references to papers using
this technique to solve combinatorial problems are reported.

Simulated annealing

The simulated annealing method was introduced in multi-objective optimization by Serafini
[160]. All the other approaches of this type developed since then are closely related to the
original single objective method.

26 CHAPTER 2. MULTICRITERIA OPTIMIZATION

A lot of definitions and acceptance rules were defined in the last years. In this section we
report the two most frequently used.

The first one was developed by Ulungu and Teghem [170]. Their approach is a direct
derivation of the simulated annealing principle for handling multiple objectives. It starts from
a randomly generated solution xn = 0 and a neighborhood structure N(xn) for n = 1, . . . , k,
it computes a neighbor x ∈ N(xn) through a set of weights di defining search directions. If
we consider two solutions x1 and x2, and define ∆zj as the difference between the two values
of the jth objective function evaluated at the solutions x1 and x2, the comparison these k
differences between can give exactly one of three cases:

1) ∆zj ≤ 0 for all j = 1, . . . , k;

2) ∃j, j′ ∈ {1, . . . , k} such that ∆zj < 0 and ∆zj′ > 0;

3) ∆zj ≥ 0 for all j = 1 . . . , k.

At the nth step a neighbor x is accepted if it dominates xn. The main idea consists in the
selection of solutions of type 1, and in the use of a weighted norm component in the acceptance
of a solution of lower quality (Cases 2 and 3). In the first version of this approach, a neighbor
of Case 2 was usually accepted. In the last version of the method the acceptance rule was
revised to include the search direction in the decision.

The difference between two solutions was measured through a scalarizing function S(f(x), λ).
This function makes a “local aggregation” of objectives in order to compute the “weighted
distance” between f(x) and f(xn). The seek of new neighbors can stop after a specific
number of iterations or when a good solutions set is reached.

The second method was developed by Czyzak and Jaszkiewicz [43, 44], and it is a com-
bination between simulated annealing principles and genetic algorithms. They determinate
a set S of starting solutions, and optimize them by iteratively generating neighbor solutions
that can be accepted based on a probabilistic strategy. For each solution x ∈ S, weights
are chosen to increase the probability of moving it away from its closest neighbor in S.
The interaction between generated solutions in the objective space gives information about
the generation of new solutions. This kind of exploration technique leads to a uniformly
generated approximation of the Pareto frontier.

Tabu search

Tabu Search (TS) is a local search guided by a selection function which is used to evaluate
candidate solutions. To avoid being trapped in local optima, a TS heuristic has two impor-
tant features: the move operator and the tabu list. A new solution (candidate solution) is
produced by the move operator slightly perturbing a current solution. The set of all can-
didate solutions produced by the move operator is called the neighborhood of the current
solution. The best candidate solution is the one with the best objective function value in
the neighborhood. To avoid cycling, some aspect(s) of recent moves are classified as forbid-
den and stored in a tabu list for a certain number of iterations. In canonical TS, in each
iteration, the algorithm is forced to select the best move which is not tabu. In some cases,
however, if a tabu move improves upon the best solution found so far, then that move can
be accepted. This is called an aspiration criterion. After the neighborhood of the current
solution is investigated and the best candidate is determined, the tabu list is updated, the
best candidate is assigned to the current solution, and the entire process starts again. The
search continues until a predetermined stopping condition is satisfied.

2.3. SOLUTION METHODS FOR MULTI-OBJECTIVE PROGRAMMING 27

The first attempt to use tabu search to solve a multi-objective combinatorial optimization
problem is due to Gandileaux et al. [69]. They use a scalarizing function and a reference
point, and perform a series of tabu processes guided automatically in the objective space
by the current approximation of the non-dominated frontier. This approach was capable to
generate both supported and non-supported efficient solutions. It uses an ideal point zU

as reference point and a scalarizing functions S(x, λ) to browse the non-dominated frontier.
So, let us consider, at the nth iteration, the solution xn and its sub-neighborhood N(xn)
obtained according to a move xn → x defined according to the structure of the feasible
domain X. The new solution obtained x1

n is selected from the list of neighbor solutions as
the best one according to the current search direction following S(x, λ). A tabu memory is
kept connected with objectives, it contains an improvement measure such as indifference or
weak improvement or strong improvement, used to update the search direction to find the
efficient frontier.

A new tabu search approach was developed by Pires et al. [139]. Their approach includes
two phases: the first one uses a list of tabu moves, while the second one is a diversification
phase. The diversification phase starts from a previously generated solution, and tries to
generate new solutions that embody different features, searching for them in regions not
yet explored. To do this, it uses a frequency memory collected from data since the process
beginning. This memory stores the number of times each variable takes a value different
from 0. Each variable can change its value if the move is not tabu, and if its frequency is
smaller than a threshold initialized as the average frequency of variables.

Genetic algorithms (population-based methods)

Genetic algorithms (GA) are popular metaheuristic methods. The concept of genetic algo-
rithm was inspired by the evolutionist theory explaining the origin of species. In fact, GA
operate with a collection of randomly generated solutions, called a population. From these
solutions GA iteratively generate new solutions in two different ways: crossover and mu-
tation. Crossover takes the best existing solutions to generate a new one, while mutation
generates new solutions randomly.

The importance of genetic algorithms in multi-objective optimization derives from the
ability of these algorithms to simultaneously explore different regions of a solution space.
They make possible to find a set of solutions for difficult problems with non-convex, discon-
tinuous, and multi-modal solution spaces.

The vector evaluated genetic algorithm (VEGA) [155], was the first genetic algorithm
used to approximate the Pareto optimal set by a set of non-dominated solutions. In VEGA
the population is divided in equal sized sub-populations. New solutions are searched in the
sub-populations using proportional selection for crossover and mutation.

An example of the ranking type approach is SPEA [180]. It uses a ranking procedure to
assign better fitness values to non-dominated solutions at under-represented regions of the
objective space. In SPEA, an external list E of fixed size stores non-dominated solutions that
have been investigated thus far during the search. This kind of procedure was proposed by
Goldberg and Richardson [79] in the investigation of multiple local optima for multi-modal
functions.

One of the most important things in the search of new solutions is the maintenance
of different populations to obtain solutions uniformly distributed over the Pareto frontier.
Fitness sharing promotes the search in unexplored sections of the Pareto frontier by reducing
fitness of solutions in densely populated areas.

28 CHAPTER 2. MULTICRITERIA OPTIMIZATION

The crowding distance approaches aim to obtain a uniform spread of solutions along the
best-known Pareto frontier without using a fitness sharing parameter. NSGA-II [46] uses
this type of approach: this crowding distance measure is used as a tie-breaker in a selection
technique called the crowded tournament selection operator.

The reader is referred to [111] for a good explanation of existing genetic algorithm pro-
cedures to solve multi-objective optimization problems.

Chapter 3

The Traveling Salesman Problem

with Profits

In this chapter we give a general description of the Traveling Salesman Problem with Profits
(TSPP) through a dissertation over the state-of-the-art. We start with a overview on works
available in the literature, then we give a deep description of the real-life applications of
TSPP. Finally we briefly analyze some related problems, that will be studied and further
discussed in the next chapters.

The TSPP is a generalization of the well known Travelling Salesman Problem (TSP). It
can be described as follows: let us consider the situation in which a set of customer is given,
but only a subset may be selected and served. This kind of situation is becoming frequent,
for example in the cases in which shippers post demands on the web, and so the carriers
have to decide to which demand offer the service. The decision has to be taken starting
from the study of two different parameters: the profit and the cost. In fact, a specific profit
is associated to each customer and this profit will be gained if that customer is serviced,
while reaching a customer from another one has a known cost. Considering a given starting
point (generally referred to as the source or the depot), the service carrier must decide which
customers have to be serviced to maximize the accumulated profit and minimize the costs,
supposing to finally closing the service to the starting point again. Actually, we assume that
the tour between customers that the carried decides to visit is elementary, which essentially
means that the profits are available only once. A recent survey by Feillet, Dejax, Gendreau
(2005) defines those problems as Traveling Salesman Problem with Profits (TSPP). The
objective function may be:

• the maximization of the collected total profit and the minimization of the total traveling
cost, or

• the optimization of a combination of both (Profitable Tour Problem).

Hence, the TSPP can be seen as the bi-criteria version of the TSP, where two opposite
objectives need to be optimized: one pushing the salesman to travel (to collect the profits
associated with nodes) and the other inciting him to minimize the travel costs (with the
right to drop nodes). In this light, solving the TSPP should result in finding a set of feasible
solutions such that neither objective can be improved without deteriorating the other.

Many approaches developed to find solutions of this problem, address the model to a
single-objective one. At the time this work is written, only very few approaches are known
to solve the TSPP from a bi-objective point of view. One of these is due to Keller [107],

29

30 CHAPTER 3. THE TRAVELING SALESMAN PROBLEM WITH PROFITS

and Keller and Goodchild [109], who call it the multi-objective vending problem: it consists
of sequentially solving single-criterion versions of the problem. Recently, Jozefowiez et al.
[100] proposed a metaheuristic method to build up an approximate description of the efficient
solution set and Bérubé et al. [21] developed an exact approach. For an overview on multi-
objective routing problems we refer the reader to Ehrgott [57] and Jozefowiez et al. [101].

In general, the TSPP derives from three different kind of problems, in which the two
objective functions are addressed in one of these ways:

1) two objectives are combined in a single one, so the aim becomes the search of a route
that minimize the difference between total travel cost and the collected profit;

2) the profit maximization becomes the unique objective while the travel cost is stated as
a constraint, so that the traveller has to accumulate the larger profit not exceeding a
well defined value of cost Cmax;

3) the objective becomes the minimization of the accumulated cost, with the constraint
that the profit must be at least a fixed quantity Pmin.

These problems appeared many times in the literature. The first one is known as Profitable
Tour Problem and was introduced by Dell’Amico et al. [48]. In most cases, it is solved as
an elementary shortest path problem between two copies of the depot. A recent study about
this problem was made by Archetti et al. [2]; they proposed some metaheuristics based on
the tabu search algorithm to solve it.

The second problem is known as Orienteering Problem (OP). Other names under which
OP can be found in literature are Selective TSL (see Laporte and Martello [115]), or Maxi-
mum Collection Problem (see Katakoa and Morito [104]). Many resolutions approaches were
developed in the last years for the OP. In particular, two exact approaches were studied: the
first is a branch-and-bound approach, developed by Arnd et al. (see [3]), the second one is a
branch-and-cut approach developed by Fischetti et al. [66]. The first Fully Polynomial Time
Approximation Scheme (FPTAS) for OP was presented by Chen and Har-Peled in 2006 [31],
while a genetic approach was developed by Tasgetiren [165], and by Tasgetiren and Smith
[166].

The third problem is known as Prize Collecting TSP (PCTSP), and in its first definition
due to Balas [11], penality terms for unvisited nodes are also added to the objective function.
Most of the authors who have worked on this problem, however, have null penalty terms in
their applications. An additive approach for the optimal solution of PCTSP was developed
by Fischetti and Toth [67], while a Lagrangean heuristic is explored by Dell’Amico et al.
[47], and a hybrid heuristic is considered by Chaves and Lorena [30].

In our TSPP definition we assume that the route must start and finish at the source.
Several problems have similar features, except that all circuits are searched in the graph.
While it would be easy to enforce the visit of any particular node, the opposite is not true:
finding a circuit in a graph is a more general problem than finding a circuit linked to a given
source. In particular, it is not possible to simply introduce a dummy node representing the
source. In our definition and throughout this thesis, we restrict ourselves to problems with
exactly one source.

This chapter is organized as follows: in the Section 3.1 we give a general formulation
for the undirected TSPP. In the Section 3.2 we study the complexity of TSPP and in
particular, we show that exists a corrispondence among the starting data and the cardinality
of the efficient frontier. In the 3.3 we describe several applications of the TSPP in real-life

3.1. INTEGER LINEAR PROGRAMMING FORMULATION FOR TSPP 31

situations. Finally, in the Sections 3.4,3.5,3.6,3.7 we give an overview of the exact, heuristic
and metaheurisitc approaches developed in the last years for TSPP.

3.1 Integer Linear Programming Formulation for TSPP

In this section we describe the Integer Linear Programming (ILP) formulation for the undi-
rected TSPP. This formulation uses the notation introduced in the Graph Theory section
(see Chapter 1).

Let G = (V, E) a complete undirected graph, with V = {v0, v1, . . . , vn} the set of nodes,
and E the set of edges. Let pi be the profit of node vi, and ce the cost of edge e ∈ E. To
model the TSPP we use two different set of variables. The first one, associated to the edges
is the following:

xij =

{
1 if edge (vi, vj) belongs to the solution,

0 otherwise.

The second one is associated to nodes:

yi =

{
1 if node vi is visited,

0 otherwise.

For an easier notation, when we want to emphasize the dependence of a variable x on a given,
yet unspecified edge e ∈ E, we write xe in place of xij , with the meaning that xe = xij where
e = (vi, vj) ∈ E

We can formulate the TSPP as the 0–1 ILP problem as follows:

max
∑

vi∈V

piyi, min
∑

e∈δ(vi)

cexe (3.1a)

subject to x(δ(vi)) = 2yi,∀vi ∈ V (3.1b)
∑

e∈δ(S)

xe ≥ 2yi ∀S ⊆ V with ∅ 6= S 6= V, v0 ∈ S and vi /∈ S (3.1c)

xe ∈ {0, 1} ∀e ∈ E (3.1d)

yi ∈ {0, 1} ∀i = {0, 1, . . . , n}. (3.1e)

The objective function consists in the maximization of the sum of collected profits (i.e. the
sum of profits belonging to the solution), and simultaneously the minimization of the sum of
accumulated routing cost, given by the sum of the cost associated to the edges belonging to
the solution.

The constraints (3.1b) are called the degree constraints: they ensure that the degree of
each node is 2 if node is visited, or 0 if node is not visited. This means that a node can be
visited at most one time.

The constraints (3.1c), called the subtour elimination constraints, they impose that no
subtours are allowed inside the solution. They can be written also in this way:

∑

e∈E(S)

xe ≤
∑

vj∈S\{vi}

yj ,∀S ⊆ V ∀vi ∈ S

These constraints ensure that each subset of visited nodes must be connected to the remaining
ones by at least two edges, in order to avoid unconnected subcycles. It is easy to note that

32 CHAPTER 3. THE TRAVELING SALESMAN PROBLEM WITH PROFITS

the number of these inequalities is 2n, that is exponential in the size of the problem. This
becomes a difficulty in searching the solutions: so, some approaches have been developed
to overcame the difficulty by separating the set of inequalities and by selecting only those
necessary to the construction of the optimal route.

The constraints (3.1d) and (3.1e) impose bounds and integrality conditions on the vari-
ables.

3.2 Complexity of the TSPP

The TSPP complexity can be easily derived from the complexity of TSP, because we can
transform an instance of the TSP in an instance of TSPP by simply adding large profits to
every node of the graph. It follows that:

Lemma 3.1 The Travelling Salesman Problem with Profits belongs to the class of NP-hard
problems.

We prove this result by using some literature references. As we already mentioned, the TSPP
is related to some known problems: the Prize Collecting TSP (PCTSP), the Orienteering
Problem (OP), and the Profitable Tour Problem (PTP). We can easily note that an algorithm
which is able to compute all efficient TSPP solutions can be used to solve both OP and
PCTSP and, with some little modifications, it can be used also for PTP. So, it follows that:

Lemma 3.2 If either OP or PCTSP are NP-hard, then TSPP is NP-hard.

Golden et al. [82] gave a formal proof about the NP-hardness for OP using a recognition
version of the TSP. They consider an instance of the recognition TSP, then they assign a
unit profit to each node, one of which is chosen as the source, and set the time limit to Cmax.
So, they claim that solving the OP problem on this instance gives an answer to the following
question:

Given a set of nodes, is there a tour of length less or equal than Cmax through all the nodes?

If the total score is equal to the number of nodes, then the answer is yes, otherwise is no. A
similar proof was proposed by Laporte and Martello in [115], using the Hamiltonian circuit
problem.

In the literature we can find some studies about polynomially solvable instances. Balas
[14] introduces ordering constraints for which the PCTSP becomes polynomially solvable. In
the same way, Kabadi and Punnen [102] extend results on polynomially solvable cases of the
TSP to the PCTSP.

3.2.1 Complexity of the efficient frontier

As explained in the previous sections, the cardinality of the efficient frontier for a multi-
objective combinatorial optimization problem can be exponential. So, in this section we want
to show, through an example, that the Pareto-optimal set for TSPP may have exponential
size.

Let G = (V, E) be a complete undirected graph on the node set V = {v0, v1, . . . , vn}. We
may describe the edge set as E = {(vi, vj) : i, j ∈ {0, 1, . . . , n}, i < j}.

Let us define the node profits and edge costs as follows:

• pi = 2i−1 for all i = 0, 1, . . . , n;

3.2. COMPLEXITY OF THE TSPP 33

• cij = 2j−1 for all (vi, vj) ∈ E with i < j.

The input size of the above instance is O(n2), whereas the size of the efficient frontier is
O(2n). In order to better understand the problem, we can analyze its structure more deeply.
In this specific instance, the cost and profit values are dependent on the node index they are
associated to. In fact, the profit associated to the node vi is exponential in the value of index
i, while the cost associated to the edge (vi, vj) is determined by the largest index of the two
connected nodes. To find solutions of this problem we must find all the couples (profit,cost)
that satisfy the constraints. The efficient solutions are the set of non-dominated solutions,
i.e., pairs (pi, ci) for which:

(
(pj ≤ pi) ∧ (cj > ci)

)
∨
(
(pj < pi) ∧ (cj ≥ ci)

)
∀j = 1, . . . , n, ∀i < j .

We can search all solutions of this problem by building a list of possible profits values. A
profit is determined by the specific combination of nodes that we decide to visit: we can then
define vectors containing list of nodes, and in this way enumerate all possible combinations
of nodes. We can assign at each vector a profit and a cost computed as the sum of profits
and costs of the nodes that belong to the vector. If we decide not to visit any node, the
corresponding vector will contain only the node v0, with total profit Ptot = 0 and total cost
Ctot = 0. Instead, if we decide to visit all nodes, the total profit will be the sum of all profits:

Ctot =
n∑

i=0

2i−1 = 2n − 1

If we represent all the existing subsets of nodes with row vectors containing the list of nodes
in lexicographic order, we can see that at the kth vector it corresponds profit k and cost k.
We can observe this behaviour in the specific case of a graph with 4 nodes:

Vector of visited nodes Ptot Ctot

(v0) 0 0
(v0, v1) 1 1
(v0, v2) 2 2
(v0, v1, v2) 3 3
(v0, v3) 4 4
(v0, v1, v3) 5 5
(v0, v2, v3) 6 6
(v0, v1, v2, v3) 7 7
(v0, v4) 8 8
(v0, v1, v4) 9 9
(v0, v2, v4) 10 10
(v0, v1, v2, v4) 11 11
(v0, v3, v4) 12 12
(v0, v1, v3, v4) 13 13
(v0, v2, v3, v4) 14 14
(v0, v1, v2, v3, v4) 15 15

In this case, all feasible couples (pi, ci) belong to the Pareto-efficient frontier, because each
one is not dominated by any other. So, the size of the efficient frontier is maximal: 24 = 16.
This example can help to deduce the following lemma:

34 CHAPTER 3. THE TRAVELING SALESMAN PROBLEM WITH PROFITS

Lemma 3.3 The efficient frontier of the TSPP has polynomial size if the number t of distinct
profits is fixed.

To better understand this concept we can proceed as follows. We divide the nodes in subsets
S1, . . . , St, each one containing nodes that have the same profit. In the simple case of 2
possible profit values p1 and p2 (i.e. t = 2), we have only two sets: S1 and S2, where S1

contains nodes with profit p1 and S2 contains nodes with profit p2. If the graph contains n
nodes, we can suppose that k nodes belong to the set S1 and n − k nodes belong to the set
S2. The efficient frontier of the Pareto set will contain, at most, the maximum number of
different total profits. In fact, as we have seen in the previous example, the cardinality of the
set of non-dominated efficient solutions can contain, at most, all the feasible solutions of the
problem, in the hypotesis that no solution dominates any other. In the case just described of
an instance with only 2 profit values, we have at most (k + 1) possible choices in the set S1

and (n − k + 1) choices for S2. Hence the number of solution in the Pareto-efficient frontier
is smaller or equal than:

max
k∈{1,...,n}

(k + 1)(n − k + 1) (3.2)

The bound is tight for k = n/2. Then, complexity in the case t = 2 is O(n2/2). We can
generalize the reasoning to the case of t possible profit values, where there are t different
sets: S1, . . . , St, each one containing ki nodes with

t∑

i=1

ki = n.

In this general case, the maximum cardinality of the Pareto-efficient frontier bounded by:

max
k1,...,kt∈{1,...,n}

(k1 + 1)(k2 + 1) · · · (kt + 1) (3.3)

Given that the right-hand side of (3.3) reaches its maximum for ki = n/t, i = 1, . . . , t, in the
worst case the size of the efficient frontier is O(nt/t).

3.3 Applications

The TSPP can be applied to many situations in real-life problems. In this section we describe
several applications in the scheduling context, in the orienteering events and in the vehicle
routing problems.

3.3.1 Scheduling Problems

A typical TSPP application can be found in the scheduling context. Consider a simple
scheduling application, in which there are n jobs to be processed sequentially on a machine.
Let cij be the set up cost required for processing job j immediately after job i. To each job
is assigned a profit pi, that describe the successful completion of the job. In these type of
situations some constraints can enforce a specific selection of the job to be processed. We
can find this type of application for instance in the steel context in the work of Gensch [74],
or in chemical firm context in the work of Pekny et al. [134].

Another well known application of TSPP described in the work of Balas and Martin [15],
it is the scheduling of daily operations of a steel rolling mill. This type of context gives rise

3.3. APPLICATIONS 35

to complex production scheduling problems. A steel hot rolling mill subjects steel slabs to
high temperatures and pressures to form steel coils. Let Cij be the cost of processing order
j just after order i, and pi the weight of a slab assigned to order i. From an inventory,
schedulers have to choose a set of slabs and order them to minimize the global cost of the
sequence. This commercial system is currently in use in several steel mills worldwide. It
gives rise to a PCTSP with penalty terms in the objective function. A recent contribution in
this area has been given by Cowling [42]. It describes the model and heuristics used to solve
the PCTSP, and considers the impact on existing planning and production systems and the
quality improvements resulting from the system’s implementation.

Useful general references on machine scheduling problems include the books by Conway
et al. [39], Backer [9, 10]), Coffman [37], Blazewicz et al. [23], Brucker [24] and Pinedo
Graham [138]. For a full review on TSP-based approaches to scheduling problems see Bagchi
et al. [8].

3.3.2 Orienteering events

Another famous application of TSPP are orienteering events, introduced by Tsiligirides [168]
in 1984. Orienteering is a sport that takes place in mountainous or forested areas. Each
competitor starts from a control point, and is provided with a topographic map marked with
a course consisting of a series of terrain or man-made features to be visited. The competitors
on each course are started individually at two-minute intervals and navigate through a series
of checkpoints until a finish line. They are not forced to visit intermediate checkpoints, but
if they decide to visit some of them, they accumulate score. The winner is the competitor
ending with the shortest elapsed time and the maximum score. Solutions of this problem are
obtained by solutions of the OP. The aim to maximize the score can be seen as the second
objective function in the model formulation.

3.3.3 Vehicle Routing Problem with an inventory component

Golden et al. [81] apply the same modeling to a vehicle routing problem with an inventory
component. The Inventory Routing Problem (IRP) involves the integration and coordination
of two components of the logistics value chain: inventory management and vehicle routing.

The IRP is concerned with the distribution of a single product from a single facility to
a set of n customers over a given planning horizon of length T , possibly infinite. Customers
consume the product at a rate ui and can maintain an inventory of the product up to a level
Ci. A fleet of m homogeneous vehicles of capacity Q are available for the distribution of
the product. A first step of the solution procedure is to determine which customers to serve
each day. The objective is to minimize the distribution costs during the planning period.
This can be done through the resolution of an OP. Many different industries are currently
involved with this kind of problems: some of them are from the chemical area, other work on
electronic assembly, or on metal fabrication, or in the aerospace field. Works on this topic
are due to Campbell et al. [26] and to Houssaine et al. [60].

3.3.4 Vehicle-routing cost allocation and other problems

TSPP appears also as a subproblem in solution procedures devoted to different kinds of
problems. For example, we can find it in the vehicle-routing cost allocation problems. In
these types of problems the aim is to find a good cost-allocation method, i.e., a method that

36 CHAPTER 3. THE TRAVELING SALESMAN PROBLEM WITH PROFITS

according to specified criteria allocates the cost of an optimal route configuration among cus-
tomers. Cost-allocation methods can be based on different concepts concerning cooperative
game theory, such as the core and the nucleolus (see Engevall et al. [62] and Gothe-Lundgren
et al.[84]).

Noon et al. [130] propose an heuristic procedure for the resolution of the vehicle routing
problem based on an iterative solution of TSPP.

Helmberg [91] faces a problem that he calls the m-asymmetric TSP. This problem arises
from the necessity to study a scheduling problem on m non-identical machines with sequence
dependent setup times. It consists in an asymmetric TSP in which there are m different
salesmen. The travel cost of each salesman is different from the cost of the others, thus the
costs are distinct. A TSPP can be derived from the one-machines subproblem that comes
out from it.

3.4 Exact Solution Approaches

The aim of this section is to give an overview about the exact solution approaches that
were developed in the last years for TSPP. Most of them are related with branch-and-
bound procedures, often taken from TSP solution approaches. The main difference between
resolution methods for TSP and TSPP resides in the bounding schemes, that we describe in
the rest of this section.

3.4.1 The Assignment Problem relaxation

A first way to solve TSPP consists in the relaxation of some constraints to make the solution
search easier. A typical way to relax a TSP problem consists in dropping subtour elimina-
tion constraints. Then, the remaining constraints define the well-known Linear Assignment
Problem, that can be easily solved by one of the existing algorithm [25]. In many resolution
approaches for TSPP the relaxation of the subtour elimination constraints was used for the
simplicity of the approach. To this purpose, the constraints are re-written with a trick to
eliminate the variables yi: the variable xii is used to replace yi in describing the nonvisited
nodes, that is:

xii = 1 − yi.

Then, xii = 1 if node i is left unrouted, and xii = 0 otherwise. With these definitions, a valid
formulation of the TSPP constraints is:

∑

vj∈V

xij = 1, vi ∈ V

∑

vi∈V

xij = 1, vj ∈ V

x11 = 1

xij ∈ {0, 1} for all i, j ∈ {1, . . . , n}

Many authors changed the model using this substitution: see for example Gensh [74], and
Fischetti and Toth [67]. So, every feasible solution gives a family of disjoint subtours, each
one visiting the source and covering all nodes. The difficulty that arises in some TSPP
solution approaches consists in the presence of a constraint involving some resource, that

3.4. EXACT SOLUTION APPROACHES 37

can be the profit or the cost. This constraint usually belongs to the generalized covering
constraints class, as in the case of PCTSP problem

∑

vi∈V

pixii > P,

or in the knapsack constraint class, as in the case of OP:
∑

vi,vj∈V

cijxij < C

This type of constraints modifies the structure of relaxation, and the problem becomes a linear
constraint assignment problem. To solve it, many resolution approaches were developed, the
most famous being the following:

• using inequality to strengthen the lower bound. For example, Fischetti, Salazar, and
Toth [66] developed an algorithm to find the exact solutions of the OP based on sev-
eral families of valid inequalities. Similar approaches were developed by Leifer and
Rosenwein in [119] and Gendreau et al. in [71];

• using Lagrangean relaxation. This kind of approach was developed by Gensch [74] in
the study of an industrial application of the TSP. In this problem, a time constraint
restricts the salesman to visit a small subset of his total customers for each planning
period. Hence, the solution requires the simultaneous selection of the proper subset and
the identification of the calling order. The problem is formulated as a maximization
of the expected sales subject to the time constraint; when the Lagrangean relaxation
is used the problem is solved by a bisection method, and gaps are taken into account
by taking advantage of the underlying transportation structure of the problem, thus
providing a tight upper bound for the optimizing branch and bound routine in the
algorithm. The operator theory developed by Srinivasan and Thomson [164] is used to
catch the optimal integer solution near the end of the procedure;

• using a relaxation of the integrality constraints, so that the problem becomes easier to
solve with standard algorithms. Anyway, there exist approaches, like that by Fischetti
and Toth [67], where the lower bound is computed by using a Lagrangean relaxation
of the resource constraints. They use the addition of bounding procedures yielding
sequences of increasing lower bounds. These bounds are computed by relaxing in a
Lagrangean fashion, that is by embedding constraint on the resource in the objective
function, and by solving the corresponding Lagrangean dual problem. Finally, it was
developed a special algorithm to solve the resulting assignment problem.

The bounding procedure just described allows to find an efficient lower bound for the Asym-
metric Travelling Salesman Problem with Profits. Obviously, the complexity of these proce-
dures for the computation of bounds leads to an increment of computation time. This is an
advantageous when the number of nodes in the graph is very large, and when the graph is
asymmetric. In case of a small number of nodes or of a symmetric instance, many efficient
and very fast algorithms are available in the literature, so that the computation of a bound
becomes useless. Actually, it is possible to solve OP symmetric instances with up to 300
nodes in less than 3 hours, and instances with up to 500 nodes in a few more hours. In
the asymmetric case, instances that actually can be solved are of moderate size. Moreover,
the computation time is generally longer when the problems of selection and ordering of the
nodes are non-trivial.

38 CHAPTER 3. THE TRAVELING SALESMAN PROBLEM WITH PROFITS

3.4.2 Shortest Spanning 1-Tree relaxation

The relaxation method just described, based on the assignment problem, works in symmetric
and in asymmetric cases, even if in the former case it has not very good performances. A
different type of relaxation, developed by Fischetti and Toth in the PCTSP context [67], is
obtained excluding the following constraints:

∑

vj∈V \{vi}

xij = yi ∀vi ∈ V

It states that each node must have a successor and removing it gives better results in terms
of computational time.

A dummy node v0 is introduced, and each node of the graph is connected to this node,
V ′ = V ∪ {v0}. To eliminate the variables yi, the variables x0,i are set to 1 − yi, so that x0,i

holds 1 if node i is left unrounted, and x0,i = 0 otherwise. In addition the costs of edges
entering in the node v0 are set to 0, while c0,0 = c1,0 = ∞. So, the TSPP constraints become:

∑

vi∈V ∪{v0}

xij = 1, for all vj ∈ V ′

subtour elimination constraints

xij ∈ {0, 1} ∀i, j ∈ V ′.

This formulation gives the Shortest Spanning 1-Arborescence Problem (1-SSAP). Every solu-
tion of this problem is a collection of |V ′|−1 edges defining a directed spanning tree rooted at
node v0, plus an arc entering the source v0. This relaxation can be used to calculate a lower
bound for the TSPP. However, Fischetti and Toth point out that it would not be effective,
because by removing the artificial node v0 it could produce a solution given by a family of
disconnected branchings. This impossibility to get from node v0 to nodes with profit greater
than 1 could result in a poor lower bound. So, they propose a relaxation in a Lagrangean
fashion to obtain a better lower bound.

Kataoka et al. [105] proposed a similar approach to solve the OP. They used the mini-
mum directed 1-subtree problem as a new relaxation of the OP and developed two methods
to improve its lower bound: a cut and dual simplex method and a Lagrangean relaxation
method. Then, they constructed an algorithm that combines these two methods in an ap-
propriate way. In particular, they added for each arc (vi, vj) the following constraints:

xij + x0i ≤ 1

With these, every node descendent from v0 that is not visited can not have a descendent
node, which strongly enhances the quality of relaxation. The resulting problem is NP-hard,
and it is not possible to compute effective lower bound for it. Anyway, it is proved that this
kind of relaxation is superior to the ordinary assignment one.

In any case, relaxation based on the 1-arborescence problem does not enable to solve
instances as large as those that branch-and-cut methods can solve.

Another approach is described by Dell’Amico et al. [48] to solve the PTP problem.
They first transform the problem in an asymmetric TSP and then apply a classical bounding
scheme to the resulting problem. Unfortunately, the computed bound is not very effective.

3.4. EXACT SOLUTION APPROACHES 39

3.4.3 Lagrangean Decomposition Approach

The Lagrangean Decomposition approach allows to obtain a bound when resource constraints
are present.

Haouari et al. [89] presented a new approach of this kind to calculate a lower bound. The
lower bound is derived by formulating the problem as a minimum spanning tree problem with
additional packing and knapsack constraints. The Lagrangean decomposition is then used
to construct a Lagrangean dual problem that is solved by using the volume algorithm. This
newly developed algorithm was found to consistently outperform the well-known subgradient
algorithm. The upper bound is based on an enhanced genetic approach. The main feature is
that it uses both primal and dual informations produced during the lower bound computation.

Gothe-Lundgen et al. [85] propose a similar approach: they duplicate the resource con-
straint and insert it in the subtour elimination constraints. Furthermore, they duplicate
the variables yi into new variables zi, and introduce matching constraints yi = zi, for ev-
ery vi ∈ V relaxed in the Lagrangean fashion. To compute the Lagrangean multipliers two
different problems are used: an assignment problem and a knapsack problem. The differ-
ence between the optimal solutions of these problems gives the lower bound searched for the
original problem. Computational results show that this method performs well especially for
symmetric instances. However, the computing time is rather long and the duality gap is still
too large to consider it suitable for solving large instances.

3.4.4 Two phases method

The two phases method is a general resolution scheme for multi-objective Combinatorial
Optimization problem (see Ulungu and Teghem [172]), and it has been used, until now,
to solve bi-objective problems. The main idea is to use efficient algorithms for the single
objective problem related to the starting one and compute efficient solutions of this. As
efficient algorithms for single objective problems are specific for them, it is necessary to
preserve the constraint structure of the problem throughout the solution procedure.

In the first phase, supported efficient solutions are computed by using the statement given
by Geoffrion’s theorem [75].

In the second phase, information from the first phase are used to reduce the space in
which the non-supported efficient solutions must be searched. In the implementation, the
second phase is generally enumerative.

In particular, in the bi-objective case, the second phase explores the triangle defined by
two consecutive supported efficient solutions in the objective space (Fig. 3.1). The search
of new efficient points inside the triangle can be done in several ways, and depends on the
problem. This kind of procedure was applied to a lot of bi-objective problems, for example:
bi-objective assignment problems (see Przybylski, Gandibleux, Ehrgott in [141]), network
flow problems (see Lee and Pulat in [117] and Sedeño-Noda and González-Mart́ın in [158]),
knpasack problems (see Ulungu in [169] and Visee et al. in [175]), and spanning tree problems
(Ramos et al. in [145]).

3.4.5 The knapsack bound for the OP

Laporte and Martello [115] proposed a method to find a bound for the OP. The bound is
computed as the solution of the corresponding knapsack problem, with:

40 CHAPTER 3. THE TRAVELING SALESMAN PROBLEM WITH PROFITS

z

z 1

2

z

z r

s

Figure 3.1: the triangle defined by solutions zr and zs gives the space where to search non-
supported efficient solutions

• a similar objective function ∑

vi∈V

piyi

• the OP constraint ∑

(vi,vj)∈A

cijxij ≤ Cmax

that can be seen as the capacity constraint of the knapsack.

This bound is valid in both directed and undirected cases. To compute it, weights wj are
defined for each node vj ∈ V in this way:

wj = α min
i6=j

ci,j + (1 − α)min
k 6=j

cj,k

with 0 ≤ α ≤ 1. Hence, the length of a route is greater or equal than the sum of the weights
of its nodes. Thus, the optimal solution of a 0-1 knapsack problem, applied to all nodes
except v0, that collects maximum profit with cost at least Cmax − c1, is an upper bound for
the OP. This method was proved to be very efficient, it solved instances of up to 90 nodes in
less than 100 seconds. However, it must be noticed that in the solved instances, the knapsack
constraint is very tight. This procedure could be applied to the TSPP, as long as a resource
constraint strongly limits the maximal number of visited nodes.

3.4.6 ǫ-constraint method

In the scalarization methods context, we can find an approach based on the ǫ-constraint
method, efficiently used to solve the TSPP.

Here, one objective function is retained as a scalar-valued objective while all the other
objective functions generate new constraints. The k -th ǫ-constraint problem is formulated

3.5. CLASSICAL HEURISTIC PROCEDURES 41

as:

min fk(x) (3.4a)

subject to fi(x) ≤ ǫi, i = 1, . . . , p, i 6= k (3.4b)

x ∈ X (3.4c)

Hence, upper bounds of these constraints are given by the ǫ-vector and varying it, the ex-
act Pareto frontier can theoretically be generated. In practice, this method has mostly be
integrated with heuristic and interactive approaches, because the number of subproblems to
solve is very large and it is very difficult to find an efficient variation scheme for the ǫ-vector.

Bérubé et al. [21] developed an approach that generates the Pareto frontier for TSPP
by solving ǫ-constraint problems. Their idea was to construct a sequence of ǫ-constraint
problems based on a progressive reduction of ǫj . They compute the ideal point and the
Nadir point that define lower and upper bounds on the value of the efficient solutions, and
then solved a sequence of problems through branch-and-cut, adding the optimal solution
returned to the set of feasible solutions F.

Region prefered
 to z

Region dominated
 by z

z

z

z

N
z *z I

I

z *

N

111

2

2

2

Nadir Point
z

Ideal Point z

N

I

*

*

z *

Figure 3.2: Dominance relation in the objective space

Throughout the algorithm, ǫj is decreased by a constant value ∆ at each iteration. The
algorithm solves problems of 150 nodes for easy instances, and up to about 100 nodes for
harder instances.

3.5 Classical Heuristic Procedures

In this section we describe the main approximation procedures to solve the TSPP. Then, we
explain the basic principles of heuristic approaches, and give some examples.

3.5.1 Approximation algorithm with a performance guarantee

Awerbuch et al. [6] gave the first approximation algorithm with poly-logarithmic performance
guarantee for PCTSP and OP problems. The approach derives from an approximation
algorithm from the k-minimum spanning tree problem (k-MST). The problem consists in

42 CHAPTER 3. THE TRAVELING SALESMAN PROBLEM WITH PROFITS

z

z

z

N
z *z I

I

z *

N

111

2

2

2

Nadir Point
z

Ideal Point z

N

I

∆

z s

 s−1z *

*

2ε s

Figure 3.3: Illustration of two consecutive points computed by the algorithm

finding a tree of least weight that spans k ≤ n nodes in a undirected n-graph with non-
negative edge weights. Each node vi ∈ V is replaced with pi copies of itself at the same
location, and the solution of k-MST on this graph with k = pmin is computed. In other
words they describe an algorithm that achieves an approximation ratio O(log2(k)) from the
k-MST problem on general graphs, improving previous results for the case of points in the
Euclidean space. Then, they extend the results to PCTSP by concatenating the tour found by
their algorithm to a 2-approximation algorithm by Goemans and Williamson [78], achieving
a factor of O(log2(min(n, pmin))).

Bienstock et al. [22] proposed another approximation algorithm with a factor of 2.5
performance guarantee based on Cristofides algorithm to solve the PCTSP. The heuristic is
based on three steps. In the first step they solve the Linear Programming relaxation of the
whole problem for each node in the graph using the ellipsoid method. Then, they transform
the obtained solution into a feasible solution of PCTSP, and construct |V | feasible solutions
to it, each corresponding to a different relaxed problem. Finally, they choose the best of
the feasible solutions obtained, whichever yields the better cost. The algorithm was called
Modified LP relaxation heuristic, and its worst case performance is 2.5.

3.5.2 Main principles in Heuristic Procedures

The most important difference between the standard TSP problem and the TSPP resides in
the fact that in the TSPP it is not necessary to visit all the nodes. So, routes limited to
the source as well as routes visiting all nodes are allowed. These two extreme solutions are
optimal for both objective functions but, during the search of other solutions, we can notice
that a good value for one of the objectives can yield to a bad value for the other. The aim of
heuristic procedures is to find a balance between the objectives. Then, to modify an existing
solution by transforming the associated route, four operation can be used:

• adding a node to the route;

• delete a node from the route;

• resequencing the route;

• replacing a node of the route with a node outside the route.

3.5. CLASSICAL HEURISTIC PROCEDURES 43

An important question is how to manage these four operations to improve the quality of
solutions. In fact, the use of these procedures generally yields to an improvement of one ob-
jective and a worsening of the other ones. This point is analyzed in the following subsections,
where we describe each of the four previous operations.

3.5.3 Adding a node to the route

Adding a node to a route yields obviously to an increment of both the profit and the cost,
supposing that costs and profits values are positive. The increment of the profit corresponds
to the profit of the added node pi. The best node that can be added to a route corresponds to
a node vk for which the added cost to visit vk instead of its current successor vs, is minimum.
The standard criterion for choosing the node to add consists in the selection of the node that
maximize the ratio between the added profit and the added cost.

Golden et al. [82] proposed other criteria to decide the node to add to the route, such as
the distance from the center of gravity, or the distance from destination. The aim of these
methods is to attract the route toward nodes that seem promising for future modifications.
Other ideas are described in Ramesh and Brown [143].

3.5.4 Delete a node from the route

The deletion of a node yields to a decrement of both the profit and the cost. The way to select
the node to remove is the same explained for the adding operation: the standard procedure
searches the node that minimize tha ratio between the lost profit and the lost cost. Ramesh
and Brown [143] propose the deletion of every node followed by some 2-opt interchanges.
The node deleted minimize the profit-to-savings ratio. The same approach can be applied to
the adding procedure.

3.5.5 Resequencing the route

Starting from a given solution for a TSP problem, it may be possible to search a way to
visit nodes in order to reduce the cost. This procedure is often used in routing problems,
and aims to iteratively improve the result. Procedures built for TSP, and generally used for
TSPP are 2-opt and 3-opt of Lin [29, 143], or the Lin-Kernigham method [92]. The 2-opt
and 3-opt algorithms are special cases of the λ − opt algorithm, where in each step λ edges
of the current tour are replaced by λ edges in such a way that a shorter tour is obtained. In
other words, in each step λ links are deleted, and a new shorter path is created reversing one
or more of them.

Actually, attention focuses on these methods even if it is not so clear, how much looking
for of a good solution with a series of resequencing procedures deteriorate performances.

3.5.6 Replacing a node

Another possibility to obtain better tours is to swap two nodes, more precisely to substitute
one node that belongs to the current tour with a node outside the tour. In the context
of TSPP, the procedure improves a solution if it causes to an increment of the profit and a
decrement of the cost. To obtain always new non-dominated solutions, the simplest procedure
can be the substitution of a node with one that has a larger profit. Keller [108] extends this
scheme by allowing the deletion of two consecutive nodes, while Dell’Amico et al. [49] propose
the deletion of a chain.

44 CHAPTER 3. THE TRAVELING SALESMAN PROBLEM WITH PROFITS

3.6 Heuristic procedures

The operations just described are often combined together in the classical heuristic methods.
However, mixing these components may induce some difficulties, in particular, cycling. Some
procedures that we present below iteratively apply the basic steps described above, with
a descent strategy. The most famous heuristic is the greedy procedure, that consists in a
sequence of insertion-deletion steps. The insertion step consists in iteratively adding nodes
in a route until no more ones can be added (OP case), or the solution is feasible (PCTSP
case), or no improvements are possible (PTP case). The insertion of a node can be combined
with the swap of two or more nodes or the resequencing of the route, to reach better solution
values. The greedy procedure can use also the deletion operation. In this case it starts from
a TSP solution and searches, at each step, the best node to delete to reach a non-dominated
solution.

Based on these approaches, Dell’Amico et al. [49], propose two heuristics for the PCTSP.
They use some relaxation of the model to obtain a starting solution that can be improved
with the procedures just described. In particular, they iteratively use extension and collapse
operations, until no further improvements are possible. Extension applies insertion as long
as insertions exceed a computed average ratio, while collapse replaces a chain with a single
node.

Based on these heuristics, other approaches were developed to solve the TSPP. For
example, the Path-extension procedure, that is very similar to the greedy procedure, extends
a path until no more nodes can be added.

Tsiligirides [168] selects nodes to be randomly added in a probabilistic fashion. He also
proposed an approach based on the sweep procedure. The geographic area is divided into
sectors determined by two concetric circles and an edge of given length. Other approaches
with the same computational time give clear inferior results.

Finally, in the partitioning-based procedure the nodes are partitioned in several set of
feasible routes [29]. Then, nodes belonging to a route can be moved in an another route
through local search procedures, so that the movement result in an increment to the largest
profit among the sets. An important point is that the best route might change during the
process.

3.7 Metaheuristic Procedures

Metaheuristic procedures provide solutions that avoid cycling problems. Several types of
metaheuristic have been developed for the TSPP. In this section we describe the most
frequently used.

3.7.1 Ejection chain local search method

Jozefowiez, Glover and Laguna [100] proposed a hybrid metaheuristic based on an ejection
chain local search method combined with a multi-objective evolutionary algorithm to generate
diversified starting solutions in the objective space for the TSPP. The first step of their
algorithm is the definition of a neighborhood search process. To do that, two problems have
to be solved:

• the resolution of many TSP on different set of nodes;

• the selection of different subset of nodes to visit.

3.7. METAHEURISTIC PROCEDURES 45

These problems are faced by using two sets of neighborhood moves in an ejection chain
process. To provide starting solutions for the ejection chain process, a multi-objective evo-
lutionary algorithm has been developed. The combination of Multi Objective Evolutionary
Algorithms (MOEA) and Ejection Chain (EC) processes gives a mean for both exploring and
approaching the optimal Pareto set: in fact, while EC process can bring solutions towards
the optimal Pareto set, MOEA can provide solutions in the objective space thanks to its
population, and so it can diversify the search.

3.7.2 Tabu Search

Tabu Search (TS) is a local (neighborhood) search guided by a selection function which
is used to evaluate candidate solutions (see [76] and [77]). See Section 2.3.2 for a general
description of the TS.

Ramesh and Brown [143] propose an heuristic for the OP problem, that makes use of
a tabu list to avoid that the algorithm cycles. Their procedure consists of four phases. At
the beginning, the nodes are iteratively added to build a route, until no other insertions are
possible. Then, for each pair of edges is carried out the 2-opt or the 3-opt improvement. If
the total improvement has gone beyond another threshold, the algorithm returns to the first
phase. Finally, there were attempts to achieve a decrease in the length of the path in such a
way that one point is removed and another is inserted.

The stopping criterion is included in the phases. It is based on the improvement between
two successive iterations and their total number. When the stopping criterion is met, then
the final phase can begin. Due to the deletion phase, the algorithm may cycle, so routes are
stored in a tabu list to avoid them in the following iterations.

Gendreau et al. [72] propose an approach consisting in the deletion of a part of the route
or in the insertion of nodes cluster. A parameter, that indicates the importance of travel cost
and profit of a route, is introduced to balance insertion and deletion. It is updated at each
iteration, to favor the insertion or deletion procedures. This local search scheme is embedded
in a tabu search approach to avoid cycling. When a node in removed, a tabu status for a
randomly selected number of iterations is assigned. This procedures yields optimal or near
optimal solutions, with computational times that never exceeds a couple of minutes. This is
one of the most effective heuristic approaches.

3.7.3 Genetic algorithm

The Genetic Algorithm (GA) is an adaptive heuristic search method based on population
genetics, developed by Holland [93]. See Section 2.3.2 for a brief description of GA.

Tasgetiren and Smith [165] developed a genetic algorithm to solve the OP. They consider
a chromosome as a sequence of visited nodes. The offspring are generated by a classic order-
based crossover operator. Mutations are obtained with procedures described in the previous
sections. Non-feasible solutions are accepted with a penality, computed on the distance from
feasibility. In Genetic Algorithms the search is carried on from a population of solutions.
This is an advantage with respect to the heurstic approaches: in fact, they start from an
initial solution and rely on a point-to-point improvement on it. The results provided by
genetic algorithms are comparable to other metaheuristics, but with a longer computational
time.

46 CHAPTER 3. THE TRAVELING SALESMAN PROBLEM WITH PROFITS

3.7.4 Deterministic annealing

The Deterministic annealing mathod [179] arose in Statistical Physic. It has been applied
with varying degrees of success to a variety of image matching and labeling problems. Fur-
thermore, the deterministic annealing has been applied to a variety of combinatorial op-
timization problems multiclass labelling based on winner-take-all (WTA) criterion, linear
assignment, quadratic assignment (including the traveling salesman problem), graph match-
ing and graph partitioning, clustering (central and pairwise), the Ising model etc. and to
nonlinear optimization problems as well, with alternate success.

In the TSP context, Chao et al. [29] developed a procedure based on the record-to-record
approach. The procedure is based on a partition of vertices. A nearest neighbor procedure
is used to find the starting solution, and at each step a new node is added and a new route
is computed until all graph nodes are covered. The procedure keeps the set of routes that
contain the route with the highest score. At this point the record-to-record procedure is
applied. Thus, the 2-opt operator is used on the current solution and tries to improve it. A
deterioration of the solution is allowed, if it is not larger than a given percentage. After a
fixed number of iterations, or when there is no improvements on the solution, the procedure
stops and returns the best result obtained.

3.7.5 Neural Network approach

Neural Network are network of simple elements and of their gerarchic organization, intercon-
nected in a parallel way. They interact with objects of the real world, in an analogous way
that the biological neural system.

Wang et al. [176] apply the neural network method to solve the OP problem. The neural
network consists of a matrix, whose rows correspond to nodes and columns correspond to a
specific position in the path. The energy function is built in order to penalize columns with
more than one activated node, solutions with fewer than n nodes and solutions exceeding
the travel cost limit. The edge weights are not constant, each weight become the second
partial derivative of the energy function with respect to the state. The method contains also
a route-insertion procedure and a 2-opt improvement routine, that are very important for
the success of the procedure.

This approach is very competitive with other solutions procedures for the resolution of
OP problems.

Chapter 4

Computer Science applied to

Medicine

In recent decades, the boundary line separating Mathematics and Computer Science from
Medicine and Biology has been gradually whittled away, and new research areas were created,
that use computer tools and mathematical models to study and facilitate the solution of a
number of different problems and needs, that occur in the medical and the biological fields.

Early in the Eigthies the Medical Informatics appeared, a science that provides a wide
range of knowledge and tools to improve many aspects of the medicians professional activity:
among those, one the most relevant contributions are the computer-aided systems, that
help for instance in planning optimal diagnostics and therapeutic decisions (see [38] and
[174]). Even if the limits of this discipline are still indistinct, it is established that Medical
Informatics comprises most of the technologically oriented fields (Information Technology
, I.T., and Computer Science), but includes another vast field that studies the creation,
the training, the management and the dissemination of information for medical purposes.
The study and the understanding of this discipline strongly affected the way information
is processed and converted into knowledge; this allowed in turn the creation of intelligent
machines, programmed to mimic some human processes, and able to assist the decision-
makers.

The information also plays a big role in the interpretation of data. The task of Medical
Informatics is to fully evaluate how much the data are reliable, how the information is
derived from the data, what kind of knowledge is needed to interpret the data and how best
the knowledge, as well as the data, can be stored in computers.

The clinical decision support always includes the use of information to help the clinician to
diagnose and/or treating a health problem of the patient, while a system for decision support
(DSS), applied to the clinic can be defined as a system that consists of a knowledge database
and an inference engine, and that is able to use the data to generate recommendations on
specific cases.

It is worth to remember that a knowledge database refers to a body of knowledge sys-
tematically organized and stored in a computer to make decisions or solve problems. A DSS
can also be defined as any software designed to directly or indirectly help to make clinical
decisions in a situation where the characteristics of a particular patient are matched with
a computerized database or knowledge base, in order to generate a specific assessment for
that patient or to produce specific recommendations for the clinician’s advice. It can also
be defined as a system of information and planning with the ability to enquire computers

47

48 CHAPTER 4. COMPUTER SCIENCE APPLIED TO MEDICINE

on an ad-hoc basis, analyze information and predict the impact of decisions before they are
taken, or as a cohesive set of integrated programs that share data and information (not just
a single application). These systems should be kept separate from decision support systems-
operative, which are only data archives (albeit well-structured), mostly used for statistical,
managerial, or financial purposes. Some patient data can be captured by diagnostic and
monitoring tools, bypassing human errors in entering data. Using relational database with
query strings, I.T. allows also a quicker, easier and targeter documents recovery. These
technologies are increasingly liked to the clinician is practice.

4.1 Diagnostic Imaging

The terms ”imaging”, or ”biomedical imaging”, or ”diagnostic imaging” [162, 137], refer
to the general process by which it is possible to observe a non-visible area of an organism:
examples of such a process are the ultrasound technique, spectroscopy technique, X-ray tech-
nique... The production of radiology images strongly increased with the introduction of new
diagnostic equipments, this technological evolution has brought the research to the design of
more interactive and easy to use visualization systems, that make it possible to simultane-
ously display data from different sources, with high processing power and transmission speed.
In last-generation medical equipments, diagnostic images are automatically scanned by the
machine, and the problem that now arises concerns the transfer of data through networks.
These images are usually stored in an hospital-owned database, and can be locally used as
comparison in the analysis of other similar clinical cases. Currently some tools have been
developed to support medical decisions: they analyze medical data and provide automatic
diagnosis by comparing the clinical data of the patient concerned with the clinical data of
previously treated patients. It would be a great improvement if one could compare patient’s
data with those stored in the databases of other hospitals around the world. Moreover, it
would also be worth to have a medical opinion from specialized medical teams of other hos-
pitals. The usefulness of this type of support is evident in the case of very rare diseases,
studied in only a few structures, for which to have some advices from people who really
have treated similar cases can be of vital importance. The main problem in this type of
operation resides in the time needed to send a request and receive an answer. Indeed, the
size of diagnostic images can be very large, and therefore the identification of a preferential
path through the network that minimizes the time that the packet data need to get to the
destination, could be very important. For this reason, the development of a software that
decides a priori which channel is the best in terms of time optimization, could contribute to
improving the performance of such a tool.

4.2 International network of hospitals

Let us suppose to represent the connection between the various hospitals in Western Europe
through a graph. Each node in the graph represents the main hospital in each European
Union capital, while the different edges represent data network connecting the nodes (see
Figure 4.1).

Let us suppose to send a packet containing data related to diagnostic images and clinical
data of a patient through this network. Each hospital can be considered as the source of the
graph, and all other nodes as possible destinations of the data. While sending files of small
size can be very fast, sending high resolution images, or data of considerable size, may take

4.2. INTERNATIONAL NETWORK OF HOSPITALS 49

Madrid

Bruxelles

Amsterdam

Copenhagen

Paris

Prague

Dublin

London

Lisbon

Rome

 Berne

 Berlin

Warsaw

Wien

Figure 4.1: Hospital connections in the Western Europe

a longer time, that depends on various parameters such as the network speed, the average
number of applications asking for the network, etc. This does not happen for the send
operation only: indeed, we must consider also the fact that the request for advice or for a
medical opinion in a wide structure may require more time than a search in a small hospital.
Let us consider for instance the case where a computerized comparison is required between
patient data and similar data contained in the databases of other hospitals: we can reasonably
expect that the diagnosis made by comparing against a database containing a large number
of tests will produce a substantially more accurate output, but in a considerably larger time.
Hence, we have conflicting goals: on one side obtaining a very accurate medical advice or
computerized diagnosis and, on the other side, obtaining a diagnosis as quickly as possible.
That is to say: accuracy as against to speed.

We can use these considerations to associate profits to each node and costs to each edge
of the graph. For a given disease, the profit can be one of the following parameters:

• the number of known cases in the hospital database;

• the number of cases that the hospital treats every day, on average;

• the number of specialized personnel available to the structure;

• the percentage of cases successfully resolved in the hospital;

• . . .

One could also consider as the profit a combination of the previous, depending on the
type of the required consultation. Similarly, the cost of each edge joining two hospitals can
be for instance:

• the time needed to send a packet of given size through that edge;

• the time needed to complete the consultation procedure and send back the answer;

50 CHAPTER 4. COMPUTER SCIENCE APPLIED TO MEDICINE

• the average number of packets that pass through the edge in a time unit;

• the cost for a consultancy from a highly ranked specialist;

It is easy to recognize the analogy between this problem and the Travelling Salesman
Problem with Profit. The ”traveler” is the medical information to send to one or more
hospitals (not necessarily all), by maximizing profits and minimizing costs. So, to solve this
TSPP is equivalent to find the path through which to send the medical data to obtain best
answers in a reasonable time.

In this thesis we analyzed the TSPP from multiple points of view. The main objective
has been to identify information that help in the resolution of the problem. We therefore
sought approaches that compute the whole set of solutions, we studied the various metrics
that make the problem easy to solve, and we studied some extensions, such as time windows,
immediately identifiable in real-life cases. The latter are meaningful for medical experts (as
well as in many other office-related situations), where a timetable is set for consultations,
outside of which it is not possible to send or receive any type of communication.

The set of exact TSPP solutions gives a series of pairs (profit, cost), represented by a
diagram, which describe all possible ways to gain a specific value of profit with a minimal
cost. In this way, each solution represents the best way to send information in a subset
of structures, with the smaller possible cost. If we find all TSPP solutions on the graph
obtained from the initial data of the problem just described, we obtain one scheme of all
possible ways to optimally send information. Thus, a hospital that needs a quick but not
too detailed consultation, can choose the solutions with a cost suitable to its needs, while a
clinical case on a very rare disease, for which it is necessary to obtain all possible information
from all the possible structures, can choose the solution that correspond to the maximum
profit.

4.3 An example

Let us consider the network of hospitals described in the Fig.4.1. For simplicity we suppose
that only 3 different types of department are present in each hospital: Oncology, Cardiology,
Neurology. For the profit function we choose to consider the percentage of cases successfully
resolved in each hospital, that are documented in each structure’s database (see Table 4.1).

The considered data are entirely fictitious and do not correspond to any real situation.
A profit value of 0, means that the hospital does not have such a department and therefore
no cases have been studied. Ficticious cost values for the edges are shown in Table 4.2.

We can assume that the cost cannot change quickly, and therefore it is possible to update
them once a year without loss of information. We cannot make the same consideration for
values associated with profits: in fact, in any hospital, new cases can appear, and therefore
any feasible value associated to the cases treated by the structure often changes: for this
reason, one could think to update the profit value of each hospital once a month. Each
time the data on costs and profits are modified, it is necessary to solve a new TSPP for
each department of every hospital. In our example, we should solve a TSPP by considering
as the profits the values associated with the Department of Oncology, another TSPP by
considering as the profits the Cardiology scores, and a final one by considering as the profits
the Neurology scores. In this way, we find a set of solutions for each one of the three instances.
Each hospital will solve these three problems by considering itself as the source node and
all the others as possible destinations. As an example, if we consider Lisbon as the source

4.3. AN EXAMPLE 51

Oncology Cardiology Neurology

Lisbon 70 50 50

Madrid 60 70 50

Dublin 80 65 0

Copenhagen 60 80 40

Warsaw 0 50 90

Prague 85 70 0

Wien 70 80 50

Rome 60 90 70

Berne 0 80 80

Paris 80 70 80

London 70 60 60

Bruxelles 80 70 0

Amsterdam 0 80 80

Berlin 70 0 80

Table 4.1: Feasible Profits for West Europe Hospital

hospital i.e., the node from which the request is sent, all feasible ways to obtain information
are described in the graphics 4.2, 4.3 and 4.4.

0

100

200

300

400

500

600

0 50 100 150 200 250 300

P
ro

fit
s

Costs

Neurology

Figure 4.2: Efficient frontier for Neurology values

Hence we can see that, if the Neurology department needs a medical counceling of profit
at least 500, the minimum implied cost is 205. Analogously, if the department of Oncology
requests a case history of at least 600, the minimum cost is 260.

Thus, once the efficient set is computed, it is immediate to receive informations about
the best ways to have a specific medical counceling of a given level from foreign departments.

52
C

H
A

P
T

E
R

4
.

C
O

M
P

U
T

E
R

S
C

IE
N

C
E

A
P

P
L
IE

D
T

O
M

E
D

IC
IN

E

Lisbon Madrid Dublin Copenhagen Warsaw Prague Wien Rome Berne Paris London Bruxelles Amsterdam Berlin

Lisbon - 20 30 - - - - 40 - - - - - -

Madrid 20 - 50 - - - - 30 20 30 - - - -

Dublin 30 50 - 40 - - - - - - 20 - - -

Copenhagen - - 40 - 10 - - - - - - - - -

Warsaw - - - 10 - 30 - - - - - - 20 -

Prague - - - - 30 - 15 - - - - - - 40

Wien - - - - - 15 - 65 60 - - - - 50

Rome 40 30 - - - - 65 - 25 - - - - 70

Berne - 20 - - - - 60 25 - 30 - - - 30

Paris - 30 - - - - - - 30 - 10 10 - -

London - - 20 - - - - - - 10 - 20 30 -

Bruxelles - - - - - - - - - 10 20 - 10 20

Amsterdam - - - - 20 - - - - - 30 10 - 20

Berlin - - - - - 40 50 70 30 - - 20 20 -

Table 4.2: Feasible Costs for West Europe Hospital

4.3. AN EXAMPLE 53

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300

P
ro

fit
s

Costs

Cardiology

Figure 4.3: Efficient frontier for Cardiology values

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300

P
ro

fit
s

Costs

Oncology

Figure 4.4: Efficient frontier for Oncology values

54 CHAPTER 4. COMPUTER SCIENCE APPLIED TO MEDICINE

It is clear from this artificial example that real situations can be made extremely more
complex, so that optimization tools like those studied in this thesis can provide meaningful
improvements.

Chapter 5

The traveling salesman problem on

trees: balancing profits and costs

In this chapter we study the TSP with Profits from a bi-objective point of view, focusing
on the case where the underlying graph is a tree. It is clear that trees are fundamental
network topologies, and many practical problems feature a tree as the underlying graph.
More in particular, vehicle routing problems on trees have been discussed in, for instance,
Labbé et al. [114], Averbakh and Berman [5], Muslea [128], Lim et al. [120], Chandran and
Raghavan [28], and the references contained therein. Motivation for the tree topology comes
usually from transportation contexts where the underlying network is a railway network (in
pit mines, for instance), a river network, or a sparse road network (in rural areas). Karuno
et al. [103] study the problem of scheduling and routing a vehicle, such as an automated
guided vehicle, in a building with a simple structure of corridors (each floor corresponds to
a subtree and each room to a leaf node). In the works mentioned above it is required to
visit each location. In this work, we relax this requirement and assume that a given profit is
incurred when a client is visited. Notice further that we deal here with a bi-objective problem
featuring a single vehicle with unbounded capacity, i.e., featuring a traveling salesman.

We notice that finding all efficient points is NP-hard. In a quite general context, ap-
proximating the set of efficient solutions (also known as the Pareto curve) has been dealt
with by Papadimitriou and Yannakakis [132]. They assert that an FPTAS for constructing
an approximate Pareto curve for a linear optimization problem A exists if there is a pseu-
dopolynomial algorithm for the exact version of A. This immediately implies the existence
of a so-called FPTAS to find an ǫ-approximate Pareto curve for our problem. In fact, after
exploiting the analogy between our problem and a precedence constrained knapsack problem
studied by Johnson and Niemi [99], we revise a pseudopolynomial dynamic programming ap-
proach proposed in [99] and we adapt it to our problem. Then, we develop a simple FPTAS
for our bi-objective problem, using ideas from Erlebach et al. [63] for the multi-objective
knapsack problem. For finding the set of extreme supported efficient points we propose
a O(n2) algorithm, and we show that no algorithm can exist with complexity lower than
O
(
n log(n)

)
, where n is the number of nodes in the tree. Finding one supported efficient

point, corresponding to a given combination of the two objectives, takes only linear time.
Thus, we prove that, when the graph is a tree, computing the set of all efficient solutions is
more difficult than computing the set of all extreme supported efficient solutions (assuming
P 6= NP), which in turn is proven to be more difficult than computing a single supported
efficient point.

55

56 CHAPTER 5. THE TSPP ON TREES

The chapter is organized as follows: in Section 5.1 we define the three problems studied
and we give some theoretical background on bi-objective optimization. In Section 5.2 we
study the complexity of finding all efficient points (referred to as Problem 1) and we develop
a FPTAS for this problem. Some polynomially solvable special cases are also analyzed. In
Section 5.3, a polynomial time algorithm is developed for finding the set of extreme supported
efficient points (Problem 2), thereby also settling complexity of finding only one supported
efficient point (Problem 3). We finish with a conclusion and an overview of our results in
Section 5.4.

5.1 The bicriteria TSP with profits on trees: three problems

Let T = (V, E) be a tree where V = {0, 1, 2, . . . , n} is a set of n + 1 nodes and E is a set
of edges. We consider node 0 (the depot) as the root. Let a profit pi be associated with
each node i ∈ V and a cost cij be associated with each edge (i, j) ∈ E. We will assume
that profits and costs are strictly positive, with the only exception that p0 = 0. A feasible
subtour S = (V (S), E(S)) of T is a circuit that starts and finishes at node 0, visits each
node of V (S) ⊆ V exactly once, and consists of the resulting edges E(S) ⊆ E. Notice that
we distinguish between visiting a client and passing a client. A client is only visited when
the server collects profit at that client and profit can only be collected once at every client.
Feasible subtours are then identified by subtrees containing node 0, where every subtree T ′

corresponds to a family of equivalent subtours, characterized by the order in which its nodes
are visited. In every subtour corresponding to T ′, each edge is traversed twice, so the cost of
the subtour is twice the sum of the costs of the edges of T ′ and the profit is the sum of the
node profits. Notice further that we assume a given position of the salesman; this is relevant
since, in contrast to the ordinary TSP, one does not need to visit all nodes. However, all
results we state also hold for the case where one is allowed to choose the salesman’s position
(at the expense of a factor n in the running times).

The cost of a feasible subtour S is then

c(S) = 2
∑

(i,j)∈E(S)

cij ,

whereas the profit of S is

p(S) =
∑

i∈V (S)

pi.

The goal is to find a feasible subtour that minimizes the total length of the tour and simul-
taneously maximizes the profit gained. We refer to Ehrgott [58] and Hoogeveen [94] for an
introduction into multicriteria optimization. Here, we review basic terminology.

A feasible subtour S is Pareto optimal if there exists no feasible subtour S′ such that
c(S′) ≤ c(S) and p(S′) ≥ p(S), and at least one inequality is strict. A point (γ, π) ∈ R

2 is an
efficient point if there exists a Pareto optimal subtour S such that c(S) = γ and p(S) = π.
Let E denote the set of efficient points. In Fig. 5.1 every point represents a feasible solution
associated with a subtour S. The bold dots correspond to efficient points.

An efficient point (γ, π) ∈ R
2 is supported if there exists a scalar λ ∈ [0, 1] and a feasible

subtour S such that S maximizes λp(S)− (1− λ)c(S) and c(S) = γ, p(S) = π. A supported
efficient point that is an extreme point of the convex hull of all solution points, is called an
extreme supported efficient point (Ehrgott [58]). Let SE denote the set of extreme supported
efficient points (see Figure 5.2). Clearly, SE ⊆ E .

5.1. THE BICRITERIA TSP WITH PROFITS ON TREES: THREE PROBLEMS 57

profit P

cost C0
r

r

r

r

r b

r

b

b

b

r

Figure 5.1: Pareto optimality.

profit P

�
�
�
��

cost C0
r

r

r,
,

,
,

,,

r

r������

b

r

b

b

b

r

Figure 5.2: Supported set.

58 CHAPTER 5. THE TSPP ON TREES

The goal of our work is to investigate the difficulty of the bi-criteria TSP with profits on
trees. We distinguish the following three problems:

Problem 1 (E): find all efficient points and, for each of them, a corresponding Pareto op-
timal subtour.

Problem 2 (SE): find all extreme supported efficient points and, for each of them, a cor-
responding Pareto-optimal subtour.

Problem 3: for a given value of λ ∈ [0, 1], find an associated extreme supported efficient
point and a corresponding Pareto-optimal subtour. Note that this is a mono-objective.
problem.

Although the topology of our setting is restricted, the questions are ambitious since Problems
1 and 2 are not aiming for a single solution, but instead for a set of solutions. Of course, in
order to do so in polynomial time, the number of points in the set should be polynomial in
the input size. Notice that the above problems are sorted by decreasing complexity. Indeed,
computing a single supported efficient point is not harder than computing the set of extreme
supported efficient points that contains it, which in turn is not harder than computing the
set of efficient solutions. We prove that there is, from a complexity point of view, a true
difference among the three problems since it turns out that, assuming that P 6= NP , Problem
1 is more difficult than Problem 2. Also, we show that Problem 2 is in fact more difficult
than Problem 3.

Problems 1, 2, and 3 are inherently related to some well-known problems in literature.
The following three optimization problems with single objective are usually considered (see
also Feillet et al. [65]).

Orienteering Problem (OP): find a feasible subtour of maximum profit among those with
cost at most C, see, e.g., Golden et al. [82].

Prize-Collecting TSP (PCTSP): find a feasible subtour of minimum cost among those
with profit at least P . This problem is originally defined by Balas [11].

Profitable Tour Problem (PTP): find a feasible subtour S maximizing the difference
p(S) − c(S). This problem is defined as PTP by Dell’Amico et al. [48].

Note that solving the PTP is equivalent to finding the supported efficient point correspond-
ing to the combination of the two objectives with λ = 1/2. Thus Problem 3 is a slight
generalization of PTP.

An algorithm for Problem 1 can be used to solve both OP and PCTSP. An algorithm
for Problem 3 can be used to solve PTP. We then have the following.

Lemma 5.1 If either OP or PCTSP are NP-hard then Problem 1 is NP-hard. If PTP is
NP-hard then Problem 3 is NP-hard.

The inverse connection between Problem 1 on the one hand and OP and PCTSP on the
other hand is given through the following procedure. The Mono-Bi-Objective algorithm 2
builds up the set of efficient points by solving |E| instances of PCTSP and |E| instances of
OP. We thus have:

Theorem 5.1 Suppose that all of the following conditions hold true:
i) the number of efficient points is polynomial in the size of the input,

5.2. PROBLEM 1 ON TREES 59

Algorithm 2 Mono-Bi-Objective algorithm

1. initialize the list of Pareto optima with S = ∅ and the list of efficient points with
{(0, 0)}; set Ptot =

∑
i∈V pi and P = 1;

2. find an optimal subtour S′′ for the PCTSP with profit at least P ;

3. find an optimal subtour S′ for the OP with cost at most c(S′′);

4. append S′ to the list of Pareto optima, and (c(S′), p(S′)) to the list of efficient points
(note that c(S′) = c(S′′)); if p(S′) < Ptot then set P = p(S′) + 1 and go to step 2, else
return the list of Pareto optima and the list of efficient points.

ii) problem OP is polynomially solvable,
iii) problem PCTSP is polynomially solvable.
Then Problems 1 and 2 are polynomially solvable.

5.2 Problem 1 on trees

5.2.1 Complexity

We show here that, on trees, computing the set of Pareto optimal points (i.e., Problem 1)
is NP-hard (Theorem 5.2), and that OP on a tree is equivalent to a generalized knapsack
problem with precedence constraints on the items.

Theorem 5.2 Problem 1 on a tree T is NP-hard, even if T is a star.

Proof. We show this by proving that the OP on a tree is NP-hard. It then follows
from Lemma 5.1 that Problem 1 is NP-hard. Consider the knapsack problem, defined by a
set of n elements and a knapsack with capacity B. Each element i ∈ {1, 2, . . . , n} has an
associated weight wi and value vi. The problem consists in finding a subset S ⊆ {1, 2, . . . , n}
of maximum value

∑
i∈S vi among those with total weight

∑
i∈S wi not exceeding capacity

B.
Now consider an instance of OP on a tree consisting of n+1 nodes and n edges such that

each edge connects the origin (node 0) with a node i, 1 ≤ i ≤ n, where each node (except the
origin) represents a client. Note that the resulting graph is known as a star. Assign to each
edge (i, 0) a cost ci0 := 1

2wi, and associate with each node i 6= 0 a profit pi := vi. Here the
problem consists in finding a subtour maximizing the total profit among those with total cost
not greater than B. One easily verifies that there is a one-to-one correspondence between
the solutions of the knapsack problem and the solutions of OP. �

The proof of the above result suggests in fact an equivalence between the knapsack prob-
lem and OP on a star. Thus, by using a dynamic programming approach for the knapsack
problem, we can solve Problem 1 on a star in pseudo-polynomial time. It is then natural to
ask if the latter is true also for a general tree.

In order to give an answer, we resort to the partially ordered knapsack problem (POK), see
also Johnson and Niemi [99] and Samphaiboon and Yamada [154]. POK is a generalization
of the knapsack problem that takes into account precedence relations between items. These
precedence relations are modeled using a graph where each node corresponds to an item.

60 CHAPTER 5. THE TSPP ON TREES

Then, item i is a predecessor of j if there is an arc from i to j. An item can only be
selected in the knapsack if all its predecessors have been included. In particular, if the graph
representing the precedence relations is an out-tree, i.e., a directed tree where all arcs are
oriented away from a distinguished root node, then we have an out-tree knapsack problem.

More precisely, let T = (V (T), A(T)) be an out-tree, and let a nonnegative value aj and a
nonnegative weight wj be associated with every node j ∈ V (T). Furthermore, let a positive
capacity B be given. A node subset V ′ ⊆ V (T) is called closed under predecessor if j ∈ V ′

and (i, j) ∈ A(T) imply i ∈ V ′. The out-tree knapsack problem consists in finding a subset
V ′ ⊆ V (T) which is closed under predecessor, such that

∑
j∈V ′ wj ≤ B, and

∑
j∈V ′ aj is

maximized.
Johnson and Niemi [99] proposed an efficient dynamic programming procedure that solves

the out-tree knapsack problem in O(nA⋆) time, where n = |V (T)| and A⋆ is the optimal value
of a solution. We observe the following.

Proposition 5.1 The OP on a tree is equivalent to the out-tree knapsack problem.

Proof. Consider the OP on a tree. There is a node for each client j with an associated
profit pj and there is a depot, node 0. Each edge has a cost cij , and is oriented away from
the root. Finally, there is a maximum cost C. The corresponding out-tree knapsack problem
has an item j with value aj := pj and weight wj := 2cij , where i is the unique predecessor of
j in the oriented tree. The budget B is equal to C. It is clear that a solution to the out-tree
knapsack problem is equivalent to a solution of OP on the original tree and vice versa. �

A brute force approach for the solution of Problem 1 on trees is the following. First, solve
an instance of OP, for every value of cost (capacity) between 1 and Ctot = 2

∑
(i,j)∈A cij , by

using Johnson and Niemi’s algorithm. This results in a list of feasible solutions ordered in
C. From this ordered list we can easily select the efficient points as follows. Go through the
list in increasing order of C. Consider two neighboring points (γ′, π′) and (γ′′, π′′), with cost
γ′ < γ′′. Note that the resulting feasible solutions all have different costs. Then, if π′′ ≤ π′,
eliminate (γ′′, π′′) and move to the next element in the list. If π′′ > π′ immediately move to
the next element in the list. Only the efficient points remain. Total time complexity is then
O(nCtotPtot), which is pseudopolynomial. However, we can do better as is explained in the
following section.

5.2.2 A dynamic programming algorithm for Problem 1 on trees

In this section we review the “left-right” dynamic programming algorithm by Johnson and
Niemi [99] for the out-tree knapsack problem, revised to fit Problem 1 on a tree.

Let 0, 1, 2, . . . , n be a depth first ordering of the nodes of tree T = (V, E), starting with
the depot (the root). Let d(i) be the number of children of node i, going away from the
depot. Obviously, if the node i is a leaf then d(i) = 0.

For each i ∈ V and 0 ≤ s ≤ d(i), we define T [i, s] as the subtree of T induced by i, the
first s children of i taken in order of index, all their successors, and all nodes in V with index
lower than i (see Figure 5.3)

We order the trees so that:

(a) T [i, s] precedes T [i, s + 1] for all i ∈ V and s ∈ {1, . . . , d(i) − 1};

(b) if j is the sth child of i then T [i, s − 1] precedes T [j, 0] and T [j, d(j)] precedes T [i, s].

5.2. PROBLEM 1 ON TREES 61

2

3 4 6

5

8

1

11

9 10

7

T[2,2]

T[8,1]

Figure 5.3: Example of subtree in left-right approach.

We define as ”Left-Right” this way to order the trees. Note that with the above ordering,
every subtree contains all the subtrees that precede it. From the initial tree T [0, 0] = {0} we
gradually expand first down the left edge of the tree and then across the tree to the right.
Note further that some trees may be identical. More precisely, if j is the sth child of i then
T [j, d(j)] = T [i, s]. In other words, each time we have to backtrack while searching the tree
in depth-first order, we replicate the same tree. Anyway, we consider all defined trees as
distinct objects. As a consequence, the total number of considered subtrees is exactly 2n−1.

A q-subtour for T [i, s] is a feasible subtour that starts and ends at node i, visits only nodes
of T [i, s] (at most once), and has total profit equal to q. Note that, in the previous example,
although T [j, d(j)] = T [i, s], a q-subtour for T [j, d(j)] must contain j, while a q-subtour for
T [i, s] needs not.

Let again Ctot = 2
∑

(i,j)∈E cij and Ptot =
∑

i∈V pi. For each triple [i, s, q] with i ∈
{0, 1, . . . , n} and s ∈ {0, 1, . . . , d(i)} we define C[i, s, q] as the minimum cost of a q-subtour
for T [i, s]. If there is no q-subtour for T [i, s] then we define C[i, s, q] = ∞. This obviously
happens for q < 0 and q > Ptot.

We compute function C by the following algorithm, which is a restatement of the left-
right approach in [99]. In step 2(a), i is the largest element in the subtree and, by definition,
i will be visited. Thus, the cost of this state is equal to the cost of a subtour with profit q
in the largest subtree of T not containing i, increased with the extra cost of visiting i (5.1).
In 2(b), the largest element in the subtree is either the subtour with profit q + pi visits the
s-th child of i, client j, or it does not. If j is not visited the cost of this subtour will be
equal to the cost of a subtour with the same profit in a subtree not containing j. If client
j is visited, the cost of this subtour is equal to the cost of a subtour (with the same profit)
that by definition contains j. The minimum of both determines the cost of (5.2).

The advantage of algorithm LR-DP with respect to more intuitive dynamic programming
procedures, based on a “bottom-up” search strategy of the tree, is that the evaluation of every
entry of the array C takes a constant time. As a consequence, the complexity of LR-DP is
linear in the number of entries in C, which is (2n − 1)Ptot.

It is easy to verify that the values C[i, s, q] returned by algorithm LR-DP satisfy the

62 CHAPTER 5. THE TSPP ON TREES

Algorithm 3 LR-DP algorithm

1. (Initialization) C[0, 0, 0] = 0; C[0, 0, q] = ∞ for q = 1, 2, . . . , Ptot;

2. (Recursion) For all subtrees T [i, s] considered in the Left-Right order:
for all q = 0, 1, . . . , Ptot:

(a) if s = 0 then
C[i, 0, q + pi] = C[k, t − 1, q] + 2ck,i (5.1)

where i is the t-th child of k;

(b) if s ∈ {1, . . . , d(i)} then

C[i, s, q + pi] = min{C[i, s − 1, q + pi], C[j, d(j), q + pi]} (5.2)

where j is the sth child of i.

definition. As a consequence, the collection of ordered pairs

(C[0, d(0), 0], 0), (C[0, d(0), 1], 1), . . . (C[0, d(0), Ptot], Ptot),

contains the efficient set E . As in the previous section we can easily select the efficient points
from this ordered list.

In order to reconstruct the Pareto-optimal subtours associated with the efficient points
just computed, we keep track of the computations done in algorithm LR-DP by using a new
function W with the same domain as C. More precisely, in step 2(a) of algorithm LR-DP, after
computing the value of C[i, 0, q+pi], we set W [i, 0, q+pi] = (k, t−1, q), where i is the t-th child
of k; in step 2(b), after computing the value of C[i, s, q+pi], if C[i, s, q+pi] = C[i, s−1, q+pi]
then we set W [i, s, q + pi] = (i, s − 1, q + pi), if C[i, s, q + pi] = C[j, d(j), q + pi], where j is
the sth child of i, then we set W [i, s, q + pi] = (j, d(j), q + pi). For example, since the value
of C[1, 0, p1] derives from C[0, 0, 0], we set W [1, 0, p1] = (0, 0, 0).

At the end of algorithm LR-DP, starting from an entry of W corresponding to an efficient
point (γ, π), we initialize a node subset V ′ = {0}. Then, we backtrack on the entries of W
until we reach the entry equal to (0, 0, 0). At each step, if we find an entry (i, 0, q), then we
add i to V ′; if we find an entry (j, d(j), q) then we add j to V ′. When we reach (0, 0, 0), V ′

contains the nodes that form the Pareto optimal subtour corresponding to (γ, π).

This procedure takes at most O(n) steps for every efficient point; this implies that, in the
worst case, we can compute all Pareto optimal subtours in O(nPtot).

We summarize the above discussion by the following statement.

Theorem 5.3 Problem 1 on trees can be solved in O(nPtot) time.

5.2.3 A FPTAS for Problem 1 on trees

It is well-known that the existence of pseudopolynomial dynamic programs lead, under cer-
tain conditions, to the existence of polynomial time approximation schemes, see Woeginger
[177]. From Papadimitriou and Yannakakis [132] we know that such a polynomial time ap-
proximation scheme must exist for our bi-criterion setting. In this section we investigate how
to approximate the efficient set in an effective way. We start with a few definitions.

5.2. PROBLEM 1 ON TREES 63

For ǫ ≥ 0, a pair (γ, π) is called an ǫ-approximation of a pair (γ⋆, π⋆) if γ ≤ (1+ ǫ)γ⋆ and
π ≥ π⋆/(1 + ǫ). A set E ′ of points in the cost-profit space is called an ǫ-approximation of the
efficient set E if, for every (γ⋆, π⋆) ∈ E there exists a point (γ, π) ∈ E ′ such that (γ, π) is an
ǫ-approximation of (γ⋆, π⋆). Note that the closer ǫ is to zero, the better the approximation
of the efficient set.

An algorithm that runs in polynomial time in the size of the input and that always
outputs an ǫ-approximation of the efficient set is called an ǫ-approximation algorithm. A
polynomial time approximation scheme (PTAS) for the efficient set is a family of algorithms
that contains, for every fixed constant ǫ > 0, an ǫ-approximation algorithm Aǫ. If the running
time of Aǫ is polynomial in the size of the input and in 1/ǫ, the family of algorithms is called
a fully polynomial time approximation scheme (FPTAS).

In this section we develop a FPTAS for Problem 1 on trees. We use the standard idea
for developing a FPTAS for a knapsack problem, i.e., we scale the profits and apply an exact
dynamic programming approach with the scaled profits. A FPTAS for the out-tree knapsack
based on this idea is suggested in [99]. However, such a scheme does not translate directly to
a FPTAS for Problem 1 on trees. Indeed, in [99] a classical partitioning of the profit space
into intervals of equal size is used, that guarantees a bound on the absolute error on every
generated point. The bound is chosen so that when the maximum admissible cost (weight)
is reached, the relative error ǫ is guaranteed. However, in order to get an ǫ-approximation
of the efficient set, we require an algorithm that computes a feasible solution with a relative
error ǫ for every possible cost and profit value. To this end, we use the partition of the profit
space suggested by Erlebach et al. [63] for the multi-objective knapsack problem.

We partition the profit space in u intervals:

[1, (1 + ǫ)1/n), [(1 + ǫ)1/n, (1 + ǫ)2/n), [(1 + ǫ)2/n, (1 + ǫ)3/n), . . . , [(1 + ǫ)(u−1)/n, (1 + ǫ)u/n)

with u := ⌈n log1+ǫ Ptot⌉. Note that the union of all interval generates the whole profit range
[1, Ptot), and that u is of order O

(
n · (1/ǫ) log Ptot

)
1, hence polynomial in the length of the

input and in 1/ǫ. We can see that in every interval, the upper end-point is (1 + ǫ)1/n times
the lower endpoint. Then, we adapt algorithm LR-DP to the new interval profit space. We
consider as profits the value 0 and the u lower endpoints of the intervals. For convenience,
we denote by ℓw the lower endpoints, with w = 1, 2, . . . , u, and we define ℓ0 = 0.

A scaled q-subtour for T [i, s] is a feasible subtour that starts and ends at node i, visits
only nodes of T [i, s] (at most once), and has total profit q or more.

Instead of C, we consider a different function, denoted C̃. For each triple [i, s, ℓw] with
i ∈ {0, 1, . . . , n}, s ∈ {0, 1, . . . , d(i)}, and w ∈ {0, 1, . . . , u}, we define C̃[i, s, ℓw] as the
minimum cost of a scaled ℓw-subtour for T [i, s]. If there is no scaled ℓw-subtour for T [i, s],
then we define C̃[i, s, ℓw] = ∞.

In order to obtain the feasible subtours corresponding to the returned points in the cost-
profit space, we may use the array W already described for algorithm LR-DP. Notice that in
Scaled-LR-DP we directly return the last row of the array C̃, containing only efficient points
(in every state we calculate the cost when profit is equal or larger than ℓw).

Theorem 5.4 Algorithm Scaled-LR-DP is a FPTAS for Problem 1 on trees with time com-
plexity O(n2(1/ǫ) log Ptot).

Proof. This proof follows the lines used in Erlebach et al. [63].

1Recall that loga(b) = log(b)/ log(a) and limx→0 log(1 + x) = x.

64 CHAPTER 5. THE TSPP ON TREES

Algorithm 4 Scaled LR-DP algorithm

1. (Initialization) C̃[0, 0, ℓ0] = 0; C̃[0, 0, ℓw] = ∞ for w = 1, 2, . . . , u;

2. (Recursion) For all subtrees T [i, s] considered in the Left-Right order:
for all w = 0, 1, . . . , u:
let r = max{j : ℓj ≤ ℓw + pi} (i.e., ℓr is the largest lower endpoint not greater than
ℓw + pi);

(a) if s = 0 then
C̃[i, 0, ℓr] = C̃[k, t − 1, ℓw] + 2ck,i (5.3)

where i is the tth child of k;

(b) if s ∈ {1, . . . , d(i)} then

C̃[i, s, ℓr] = min{C̃[i, s − 1, ℓr], C̃[j, d(j), ℓr]} (5.4)

where j is the sth child of i.

3. (Output) Return the points

(γw, πw) = (C̃[0, d(0), ℓw], ℓw) (w = 0, 1, . . . , u).

Let the subtrees be numbered according to the Left-Right ordering, i.e.,

T0 = T [0, 0], T1 = T [1, 0], . . . , T2n−1 = T [0, d(0)].

We show that algorithm Scaled-LR-DP returns an ǫ-approximation of the efficient set. More
precisely, we show the following claim.

Claim 5.1 For every m ∈ {1, 2, . . . , 2n−1}, let Tm = T [i, s], and let h be the largest index of
a node belonging to Tm. After performing all update operations, for the optimal cost function
C and the approximate cost function C̃ there exists, for every entry C[i, s, q + pi] an entry
C̃[i, s, ℓr] with:

(a) C̃[i, s, ℓr] ≤ C[i, s, q + pi],

(b) (1 + ǫ)h/nℓr ≥ q + pi.

where r = max{j : ℓj ≤ q + pi} and w = min{j : ℓr ≤ ℓj + pi}.

Note that when m = 2n−1 then T [i, s] = T [0, d(0)], h = n, and conditions (a) and (b) above
imply that the point set returned by algorithm Scaled-LR-DP is an ǫ-approximation of the
efficient set.

We prove the claim by induction on the tree index m.
The basis of the induction is given by T1 = T [1, 0], where h = 1. We distinguish between

two cases:
Case q = 0. We have:

C[1, 0, p1] = C[0, 0, 0] + 2c0,1 = 2c0,1 = C̃[0, 0, 0] + 2c0,1 = C̃[1, 0, ℓr]

This proves that property (a) holds with equality.

5.2. PROBLEM 1 ON TREES 65

Property (b) follows from the fact that p1 and ℓr are in the same interval, hence:

(1 + ǫ)1/nℓr ≥ p1

Case q ≥ 1. We have:

C[1, 0, q + p1] = C[0, 0, q] + 2c0,1 = ∞

and

C̃[1, 0, ℓr] = C̃[0, 0, ℓw] + 2c0,1 = ∞.

Then property (a) trivially holds with equality. Also in this case we note that ℓr and q + pi

are in the same interval, so that:

(1 + ǫ)1/nℓr ≥ q + p1

This ends the basis of the induction.

Assume that the claim is true for any m, 1 < m < 2n − 1 and consider Tm+1 = T [i, s].
Again, we distinguish between two cases.

Case s = 0. In this case the highest index in Tm+1 = T [i, 0] is given by node i, then h = i.
Property (a) follows from (5.1) and (5.3):

C[i, 0, q + pi] = C[k, t − 1, q] + 2ck,i ≥ C̃[k, t − 1, ℓw] + 2ck,i = C̃[i, 0, ℓr]

where the inequality holds for the inductive hypothesis.

Now we consider property (b). By the induction hypothesis, the claim holds with h = i−1,
then:

(1 + ǫ)(i−1)/nℓw ≥ q.

Hence we have:

ℓw + pi ≥ q/(1 + ǫ)(i−1)/n + pi ≥ (q + pi)/(1 + ǫ)(i−1)/n

and as ℓr and ℓw + pi are in the same interval, with ℓr as lower bound, it holds that

(1 + ǫ)1/nℓr ≥ ℓw + pi ≥ (q + pi)/(1 + ǫ)(i−1)/n.

From these relations property (b) follows immediately:

(1 + ǫ)i/nℓr ≥ q + pi

Case s > 0. In this case it holds that h ≥ i. From (5.2) it follows that C[i, s, q + pi] =
C[i, s − 1, q + pi] or C[i, s, q + pi] = C[j, d(j), q + pi]. By the induction hypothesis we have
C[i, s − 1, q + pi] ≥ C̃[i, s − 1, ℓr] and C[j, d(j), q + pi] ≥ C̃[j, d(j), ℓr]. Property (a) follows
then immediately:

C[i, s, q + pi] ≥ min{C̃[i, s − 1, ℓr], C̃[j, d(j), ℓr]} = C̃[i, s, ℓr].

Property (b) is proven as in Case s = 0.

From Theorem 5.3 and the bound on the number of different values of ℓw it follows that
the complexity of Scaled-LR-DP is O

(
n2(1/ǫ) log(Ptot)

)
. �

66 CHAPTER 5. THE TSPP ON TREES

5.2.4 Some special cases

In this section we analyze some special cases of trees or cost/profit structures where Problem
1 is polynomially solvable.

Trees with equal profits or equal costs

We have proven that Problem 1 is hard, even on a star. However, Theorem 5.3 implies that
in the special case where the sum of the all the profits Ptot is polynomial in n, Problem 1 is
polynomially solvable.

If all node profits are equal (but the edge costs are arbitrary), we may assume pi = 1 for
all i ∈ V \ {0}, so that Ptot = n. In this case, algorithm LR-DP solves Problem 1 in O(n2)
time.

If all edge costs are equal (but the node profits are arbitrary), we may assume cij = 1 for
all (i, j) ∈ E. In this case, the cost of a feasible subtour is twice the number of visited nodes.
Hence there are at most n + 1 efficient points (exactly n + 1 if all node profits are strictly
positive). For all i ∈ V \ {0}, let ı∗ denote the parent of i along the unique path from i to 0.
Let M = maxi{pi} + 1. We modify the edge costs and the node profits as follows:

c′ı∗i = −pi + M for all i ∈ V \ {0},
p′i = 1 for all i ∈ V \ {0}.

With the modified costs and profits we are back to the case of general costs and equal
profits considered above. It easy to see that there is a one-to-one correspondence between
the efficient points (and corresponding feasible subtours) in the modified problem and the
original one. Thus Problem 1 in the case of equal costs and arbitrary profits on a tree can
still be solved in O(n2) time by algorithm LR-DP.

The line

Let T = (V, E) be a path, let the edge costs be arbitrary positive and let the node profits be
arbitrary positive (except p0 = 0). Results for the line with a latency objective are found in
Coene and Spieksma [36]. We distinguish between two cases.

The source is an extreme node If the source is an extreme point, we may assume that
the nodes are numbered from left to right, so that the depot 0 is the leftmost node. Then it is
easy to see that there are exactly n+1 feasible subtours (from the void subpath to the whole
path) and they are all Pareto optimal. Furthermore, every feasible subtour corresponds to a
different efficient point. A feasible subtour is identified by its rightmost node i.

In this situation, both OP and PCTSP can be solved in O(n) time. And in fact, the more
general Problem 1 can also be solved in O(n2) by Mono-Bi-Objective algorithm. However,
the following algorithm solves Problem 1 in O(n) time.

Algorithm 5 Extreme Path algorithm

1. set E = {(γ0, π0)} = {(0, 0)};

2. for all i = 1, . . . , n do: set γi = γi−1 + 2ci−1,i and πi = πi−1 + pi; append (γi, πi) to E .

5.2. PROBLEM 1 ON TREES 67

The Extreme Path algorithm returns the ordered list of efficient points

E = {(γ0, π0), (γ1, π1), . . . , (γn, πn)},

where the Pareto-optimal subtour associated with (γi, πi) is simply the subpath from 0 to i
and back (i = 0, 1, . . . , n).

The source is an internal node If the source is not an extreme point then Problem 1 is
a little less straightforward to solve. We start by defining a lower bound on any algorithm
solving this problem:

Theorem 5.5 Problem 1 on the line with the source as an internal node can have O(n2)
efficient points.

Proof. Consider the following instance of Problem 1 on the line. We are given a set of n
nodes on the line and one server positioned at the origin. n/2 nodes are positioned to the
left of the origin and n/2 nodes are positioned to the right of the origin. For all consecutive
nodes i and j to the left of the origin it holds that cij = 1 and pi = 1. Let us define di as the
distance from a right client i to the furthest left client. For all clients j to the right of the
origin it holds that cij > di, where i is an immediate predecessor of j. The profit of client j,
pj , is larger than the sum of the profits of all clients on the left side of j. In this instance,
every combination of a left client and a right client yields a pareto optimal solution. �

We now describe an algorithm solving this problem. Let the source 0 be positioned in
any point of the path, so in general there are nL nodes on the left of the depot and there are
nR nodes on the right of the source, with nL + nR = n. In this case, any feasible subtour S
is just a subpath, containing node 0, and traversed twice, from 0 to a left node i, then from
i to a right node j, and finally from j back to 0.

The total number of such subpaths becomes nL ·nR ≤ n2/4 = O(n2). We may distinguish
three types of feasible subtours: those where the source is the leftmost node, those where the
source is the rightmost node, and those where the source is an internal node. Every subtour
of the third type is obtained by gluing a subtour of the first type and a subtour of the second
type.

In order to solve Problem 1, we then proceed as follows. In a first step we evaluate the
costs and profits of all feasible subtours of the first type and of the second type. In a second
step, we use this information to evaluate all feasible subtours of the third type. In a third
and final step, we build up the set of efficient points by sorting the feasible subtours and
eliminating non-Pareto ones.

The first step can be carried out by applying twice the Extreme Path algorithm and thus
it can be done in O(nL + nR) = O(n) time. The second step is carried out by summing
up the evaluation of every subtour of the first type with the evaluation of every subtour of
second type. Thus the second step requires O(nL · nR) = O(n2) elementary operations.

We propose to solve Problem 1 by the following algorithm: Step 1 requires O(nR) = O(n)
time, step 2 requires O(nL) = O(n) time, step 4 requires O(nR · nL) = O(n2) time; step 5
requires O(n2 log n2) = O(n2 log n) time. Hence algorithm Internal Path solves Problem 1
in O(n2 log n) time. Recall that any algorithm solving Problem 1 on the line needs at least
O(n2) time.

68 CHAPTER 5. THE TSPP ON TREES

Algorithm 6 Internal Path algorithm

1. call the Extreme Path algorithm to generate the list ER of points corresponding to
feasible subtours of the first type;

2. call the Extreme Path algorithm to generate the list EL of points corresponding to
feasible subtours of the second type;

3. set P = ∅;

4. for all (γ′, π′) in ER and (γ′′, π′′) in EL: insert in P points (γ′, π′), (γ′′, π′′), and (γ′ +
γ′′, π′ + π′′) (the subtour correponding to the third point is obtained by gluing the
subtours corresponding to the first and second points);

5. sort all the points in increasing order of γ and go through this list, eliminating non-
efficient points (as explained in the end of Section 3.1).

Problem 1 on a cycle

In case G = (V, E) is a cycle, we assume that E = {(0, 1), (1, 2), . . . , (n − 1, n), (n, 0)}. We
traverse the cycle clockwise if we go from 0 to 1, then from 1 to 2, and so on. There are four
types of feasible subtours:

1. tours going from 0 to i (≥ 0) clockwise and then coming back counter-clockwise;

2. tours going from 0 to i (> 0) counter-clockwise and then coming back clockwise;

3. tours going from 0 to i (> 0) clockwise, coming back counter-clockwise beyond 0 up to
j (> i) and finally going back to 0 again clockwise;

4. the whole cycle.

Note that in cases 1, 2 and 3 it is not necessary to travel further than half the total cost of
the cycle, otherwise it would be better to visit the whole cycle. It is then possible to evaluate
all tours and to build up the efficient set by modifying algorithm Internal Path.

5.3 Problem 2 on trees

In this section, we consider the identification of extreme supported efficient points. Problem
3 (i.e., finding just one supported efficient point corresponding to a given weighted sum of the
objectives) can be solved in O(n) time. We show here that Problem 2 (i.e., finding all extreme
supported efficient points) can be done in O(n2) time by solving a parametric linear program
with a very special structure. A similar result is obtained by Hoogeveen [95] who gives an
example of a bicriteria problem where the number of efficient points is not polynomially
bounded, but the number of supported solutions is. We also show that Problem 2 contains
sorting. This implies that any algorithm for Problem 2 needs at least O(n log n) operations.

Let T = (V, E) be a tree, rooted at node 0 (the depot). For all i ∈ V \ {0}, let i⋆

denote the parent of i along the unique path from i to 0. For all i ∈ V , let δ(i) ⊆ V be
the set of children of i; if i is a leaf then clearly δ(i) = ∅. We associate with every node i a
binary variable xi, which equals 1 if and only if i belongs to a subtour. Notice that xi = 1

5.3. PROBLEM 2 ON TREES 69

implies xi⋆ = 1. Problem 2 on a tree corresponds to the following parametric program, where
λ ∈ [0, 1] is the parameter:

max
∑

i∈V \{0}(λpi − 2(1 − λ)cii⋆)xi

subject to x0 = 1
xi − xi⋆ ≤ 0 (i ∈ V \ {0})
xi ∈ {0, 1} (i ∈ V)

(5.5)

nodes are selected such that the sum of the weighted differences between the profits and
costs is maximized. A feasible solution consists in a set of connected nodes which are also
connected to the depot. This is enforced in the constraints in (5.5). The coefficient matrix
of problem (5.5) is TUM, since it is the transpose of the node-arc incidence matrix of tree
T , where all edges are oriented to the root. Thus we may relax the integrality constraints to
nonnegativity constraints. The dual of the relaxed problem is the following:

min y0

subject to y0 ≥
∑

j∈δ(0) yj

yi ≥ (λpi − 2(1 − λ)cii⋆) +
∑

j∈δ(i) yj (i ∈ V \ {0})

yi ≥ 0 (i ∈ V \ {0})

(5.6)

Notice that minimizing y0 is equivalent to minimizing the yi. Thus, an optimal solution of
problem (5.6) can be described as follows:

yi(λ) = max{0; (λpi − 2(1 − λ)cii⋆) +
∑

j∈δ(i)

yj(λ)} (i ∈ V \ {0}) (5.7)

For any fixed value of λ, the unique solution of equations (5.7) can be computed in O(n)
time going backward from the leaves to the root. By fixing λ = 1/2 we get an algorithm for
PTP. However, we need to enumerate the solutions for all λ ∈ [0, 1].

If y0(λ) = 0 then the optimal subtour is empty. Otherwise, by complementary slackness,
an optimal subtour visits all nodes i where yi(λ) > 0 and yj(λ) > 0 for all ancestors of i.
More precisely, consider the set-valued function E⋆ : [0, 1] 7→ 2E , where E⋆(λ) = {(i, i⋆) ∈
E : yi(λ) > 0}, and let T (λ) = (V, E⋆(λ)). For any given λ, an optimal subtour visits the
nodes belonging to the connected component of T (λ) containing the depot (node 0). Thus,
in order to enumerate all supported subtours, it is sufficient to record the different values of
function E⋆.

Suppose to increase parameter λ continuously from 0 to 1. By expanding equation (5.7)
recursively, one can see that yi(λ) is a nondecreasing, piecewise linear and convex function of
the parameter λ, for all i. As a consequence, if λ′ < λ′′ then E⋆(λ′) ⊆ E⋆(λ′′). Furthermore,
E⋆(0) = ∅ (corresponding to the trivial empty tour) and E⋆(1) = E (corresponding to the
complete tour of all nodes). Thus, E⋆ changes its value in only K ≤ n − 1 breakpoints,
0 < λ1 < λ2 < . . . < λK < 1.

In order to compute the breakpoints of E⋆, we proceed as follows. For any given λ′ ∈
(0, 1), let R(λ′) ⊂ V \ {0} be the set of the roots of the connected components of T (λ′),
excluding the depot. For all i ∈ R(λ′), let Vi(λ

′) be the nodes of the corresponding connected
component. Finally, let λ′′ > λ′ be sufficiently close to λ′. By expanding equation (5.7)
recursively, we see that

yi(λ) = max{0;
∑

j∈Vi(λ′)

(λpj − 2(1 − λ)cjj⋆)} for all λ ∈ [λ′, λ′′] (5.8)

70 CHAPTER 5. THE TSPP ON TREES

If we set αi(λ
′) =

∑
j∈Vi(λ′) pj and βi(λ

′) = 2
∑

j∈Vi(λ′) cjj⋆ then we may write (5.8) as

yi(λ) = max{0; [αi(λ
′) + βi(λ

′)]λ − βi(λ
′)} for all λ ∈ [λ′, λ′′] (5.9)

It follows that equations (5.9) are valid as long as

λ′′ ≤ min
i∈R(λ′)

{
βi(λ

′)

αi(λ′) + βi(λ′)

}

The right hand side of the above inequality is the next breakpoint.
We search for all breakpoints and the corresponding supported subtours by the following

algorithm.

Algorithm Extreme Supported Efficient Points

1. (Initialization)

(a) SE = {(0, 0)} (list of extreme supported efficient points), S = {{0}} (list of the
node sets covered by the supported subtours), R = V \ {0} (set of roots), flag =
FALSE (if flag = TRUE then a new supported subtour has been found);

(b) for all i ∈ R: set αi = pi and βi = 2cii⋆ , and set Vi = {i};

2. (Breakpoint computation) for all i ∈ R:

(a) set λi = βi/(αi + βi);

(b) let λmin = mini∈R{λi} and Rmin = {i ∈ R : λi = λmin};

3. (Connected components updating) for all i ∈ Rmin:

(a) set αi⋆ = αi⋆ + αi, βi⋆ = βi⋆ + βi, and Vi⋆ = Vi⋆ ∪ Vi;

(b) for all j ∈ δ(i): set j⋆ = i⋆;

(c) remove i from R and from δ(i⋆);

(d) if i⋆ = 0 then set flag = TRUE;

4. (Optimal subtour storing) if flag = TRUE then

(a) append (β0, α0) to SE and append V0 to S;

(b) flag = FALSE;

5. (Termination test) if R 6= ∅ then go to Step 3, else return SE and S.

Theorem 5.6 Algorithm Extreme Supported Efficient Subtours solves Problem 2 on a tree
in O(n2) time.

Proof. Correctness follows from the previous discussion. Indeed, it holds that (a) nodes
are labeled with an increasing value for λ and (b) if a subtour is feasible for a value λ, it is
also feasible for any λ′ ≥ λ (see above). In particular, let λ′

min and λ′′
min be two values of

λmin computed in two successive iterations of the algorithm. By construction, the node set
V ′

0 appended to S after the computation of λ′
min corresponds to an optimal subtour for all

λ ∈ [λ′
min, λ

′′
min], where λ′

min < λ′′
min. Hence, V ′

0 corresponds to a node of the convex hull of
the efficient points.

Concerning complexity, at every iteration at least one node is removed from the set of
roots, hence the iterations are at most n. The complexity of every iteration is O(n). �

5.4. CONCLUSIONS 71

Theorem 5.7 Problem 2 is at least as hard as sorting.

Proof. We will prove this theorem by showing that an algorithm solving Problem 2 can
be used to sort a set of n numbers. Given n (distinct) numbers vi to be sorted, we now
build an instance of Problem 2. Consider an instance of Problem 2 on a star. There are n
spokes and on each spoke i ∈ {1, . . . , n} a client is positioned at a distance c0i = vi from
the origin. Each client has a profit pi = 1. A solution to this instance of Problem 2 consists
of a set of supported efficient points. Each supported efficient point represents a set, say S,
of visited clients corresponding to a certain value λmax = max{i ∈ S|λi}, with λi = 2c0i

1+2c0i
.

Note that c0i > c0j if λi > λj . Now for each pair of supported efficient points S1 and S2,
with |S1| < |S2|, it must hold that S1 ⊂ S2. There is one point i in S2 that is not in any
S1, S1 ⊂ S2, and for such a point i it holds that λi > λj for all j ∈ S1. Hence, since all
elements in S1 have a smaller value for λ, and thus for c, and since no larger set S will
contain a new element with lower c, it holds that the index of i in the ordered set must be
equal to |S2|. Thus, given a solution of Problem 2, find for each supported efficient point S
the maximal element in the set of clients visited and set the index of this element equal to
|S|. In this way, all numbers vi can be ordered, which proves the theorem. �

Notice that sorting, in general, takes at least O(n log n) (Cormen et al. [40]), but if values
to be ordered are integers, it can be done in linear time. Thus Theorem 7 implies that any
algorithm solving Problem 2 in which costs and profits are strictly positive values takes at
least O(n log n). Notice also that we can solve Problem 2 on the line in O(n). On a line it
holds that if you visit a node i, you also visited all clients between i and the origin. Thus,
λi must be at least equal to 2c0i

P

0≤j≤i pj+2c0i
, for all 0 ≤ i ≤ n. Now, at each side of the origin

it holds that if c0i > c0j and λi < λj , then client j will only be visited in an efficient subtour
if client i is visited as well. Thus, those clients can be merged into one client with λ = λi.
Finally, select the remaining clients in increasing order of λ in order to form the supported
efficient subtours.

5.4 Conclusions

In this chapter we studied the traveling salesman problem with profits from a bi-objective
point of view on graphs with a tree metric. We have considered three problems: finding all
efficient points (Problem 1); finding all extreme supported efficient points (Problem 2); find-
ing one efficient point, corresponding to a given combination of the two objectives (Problem
3). For every problem, we have developed efficient algorithms. Moreover, we have analyzed
some special cases, including problems on a path.

The following table summarizes our results:

Tree Line
LB UB LB UB

Problem 1 > nk(unless P=NP) FPTAS O(n2) O(n2 log n)
Problem 2 O(n log n) O(n2) O(n) O(n)
Problem 3 O(n) O(n) O(n) O(n)

There are some interesting extensions that could be studied in future research. When
service times are added to the clients, it no longer holds that all predecessors of a client i

72 CHAPTER 5. THE TSPP ON TREES

are visited when i is visited. It follows that Algorithm LR-DP can not be applied directly.
A similar argument holds when a visit consists in a trip for the client visited (pickup and
delivery), or when time windows are added. In these cases it can happen that a client is not
visited the first time the server passes by, but it is visited later on in the tour.

Chapter 6

The bi-objective traveling salesman

problem with profits: a

Branch-and-Cut approach

6.1 Introduction

The purpose of this chapter is to describe a new type of procedure to solve the Bi-Objective
Traveling Salesman Problem with Profits (BOTSPP).

We introduce an algorithm based on cutting planes within a branch-and-bound approach,
typically named branch-and-cut in single-objective optimization, that generates all (sup-
ported and non-supported) efficient points in the objective space with respect to both crite-
ria.

The developed procedure recalls the algorithm proposed by Ledesma and Salazar [116]
for the bi-objective Traveling Purchaser Problem. Our method embeds a cutting plane gen-
eration in a branch-and-bound scheme to find a Pareto optimal solution in the decision space
for each efficient point in the objective space of the bi-objective combinatorial optimization
problem. As in the method presented by Alves and Cĺımaco in [1], our approach makes use
of cutting planes to help in solving each single-objective problem, taking advantage of com-
putations previously performed that produced other Pareto-optimal solutions in the decision
space.

To our knowledge, only Bérubé et al. [21] studied the BOTSPP from an exact point of
view. They proposed an efficient variant of the ǫ-constraint method for bi-objective com-
binatorial problems, where exactly one ǫ-constraint problem is solved for each point on the
Pareto front. In other words, they solved a series of ǫ-constraint single-objective subprob-
lems, obtained by transforming one of the objectives in a constraint, generating in this way a
set of feasible points that can be dominated or not. For this reason, at each step they check
if the computed solution belongs to the efficient set. They also provide some improvement
heuristics based on the exploitation on information gathered from previous problems, devised
to speed up the resolution process. The instances solved derive from a TSP library and are
with up to 150 nodes. An advantage of our approach with respect to this one is that each
solution found by our algorithm is non-dominated, hence the Pareto frontier can be directly
built up, step by step.

The chapter is organized as follows. In Section 6.2 and 6.3 we describe the algorithm and
report the cut pool procedures used to solve the problem. In the section 6.4 we describe how

73

74 CHAPTER 6. THE BI-OBJECTIVE APPROACH TO THE TSPP

the Lin-Kernighan heuristic can be used to improve the performances of our algorithm. In
Section 6.5 we introduce some procedures based on the exact branch-and-cut approach that
compute an approximation of the Pareto frontier. Finally, Section 6.6 reports information
about the tools chosen to implement the algorithm, and gives computational results obtained
by running the procedure on several TSPP instances.

6.2 The TSPP Branch-And-Cut Algorithm

In this section, we want to give a general description of the algorithm developed to generate
supported and non-supported solutions for BOTSPP(see Section 3.1 for the mathematical
formulation of the problem).

The underlying idea is based on an approach that uses the weighting method with addi-
tional constraints. It combines linearly the two objective functions introducing a weighting
factor for each of them. If these weights, here w1 and w2, are considered as parameters, this
method can be seen as a linear weighting method. To work with a unique parameter w, we
make the normalization w1 + w2 = 1. This procedure is contained in a binary search that
explores specific regions of the decision space, through the use of constraints that restrict
the objective space to defined sub-areas. This allows us to generate both supported and
non-supported points.

The initial step of the algorithm computes the ideal point (f I
1 , f I

2) defined by

f I
1 = min

σ∈F
f1(σ)

f I
2 = max

σ∈F
f2(σ)

and the Nadir point (fN
1 , fN

2) defined as

fN
1 = min

σ∈F

{
f1(σ) | f2 = f I

2

}

fN
2 = max

σ∈F

{
f2(σ) | f1 = f I

1

}

They define lower and upper bounds on the value of efficient solutions, respectively. From
these points we derive the first two efficient points of the problem:

(f I
1 , fN

2), (fN
1 , f I

2)

that delimit the criterion space area where Pareto-efficient solutions have to be searched. The
algorithm TSPP Branch-And-Cut initializes the efficient set SE with these points, defining
in the meantime the first zone in R

2 that has to be explored. Then, it stores these points in
the list of pending intervals L. The algorithm iterates on intervals contained in L, searching
efficient points in the criterion area delimited by the selected data. To do this, it solves the
related mono-objective problem and gives (if it exists) a new efficient point to put in the
efficient set SE and two new intervals to explore. The TSPP Branch-And-Cut algorithm
continues until all intervals in L are successfully explored. Figure 6.1 shows an example of
intervals obtained after the first optimization step.

We can notice that each search area is a rectangle defined by two efficient points, the first
located in the lowest-left side, the second in the uppest-right side of the area. In the following
sections we will name with [(f1

1 , f1
2) . . . (f2

1 , f2
2)] the area in the objective space delimited by

the points of coordinates (f1
1 , f1

2) and (f2
1 , f2

2).

6.2. THE TSPP BRANCH-AND-CUT ALGORITHM 75

f

 f

f

2

2

2

f 2
1

3

2

 area

1
 1

1 3 2

 1 f f f f
 1

 Search

Search area

Figure 6.1: First step of the TSPP branch-and-cut algorithm.

The single-objective problem, that here we call TSPP1, related to the area [(f1
1 , f1

2) . . . (f2
1 , f2

2)]
has the following formulation:

min f1(σ) − wf2(σ) (6.1a)

subject to σ ∈ P (6.1b)

f1(σ) > f1
1 (6.1c)

f2(σ) < f2
2 (6.1d)

where w =
(
f1
1 − f2

1

)/(
f1
2 − f2

2

)
. We assume that the profits are integer numbers, so we can

replace the constraints (6.1c) and (6.1d) with the following:

f1(σ) ≤ f1
1 − 1 (6.2)

f2(σ) ≥ f2
2 + 1 (6.3)

The pseudo-code of the TSPP branch-and-cut algorithm is shown in Algorithm 7. In (6.4)-
(6.7) we compute starting efficient points, used in (6.8) to initialize the list L of pending
intervals, and we store them in the efficient set SE in (6.9). Then, in (6.10) we iterate on
the intervals contained in L: at each step, in (6.12) we remove an interval from L and in
(6.14) we solve a TSPP1 on the criterion area defined by it. If a solution does exists, then
it is added to the efficient set SE in (6.16) and the point found is used to generate two new
intervals to study in (6.17).

In the following sections we analyze the algorithm just described in more detail. In
particular, we briefly depict the computation of the starting efficient points, then we linger
on the branch-and-cut procedure chosen to solve each TSPP1 subproblem.

76 CHAPTER 6. THE BI-OBJECTIVE APPROACH TO THE TSPP

Algorithm 7 TSPP branch-and-cut algorithm

f1
1 := min

σ∈F
f1(σ) (6.4)

f1
2 := max

σ∈F
{f2(σ) | f1(σ) ≤ f1

1 } (6.5)

f2
2 := max

σ∈F
f2(σ) (6.6)

f2
1 := min

σ∈F
{f1(σ) | f2(σ) ≥ f2

2 } (6.7)

LI :=
[
(f1

1 , f1
2) . . . (f2

1 , f2
2)
]

(6.8)

SE :=
[
(f1

1 , f1
2), (f2

1 , f2
2)
]

(6.9)

while LI 6= ∅ (6.10)

select one interval
[
(f1

1 , f1
2), (f2

1 , f2
2)
]

from LI (6.11)

LI = LI \
[
(f1

1 , f1
2), (f2

1 , f2
2)
]

(6.12)

w =
(
f1
1 − f2

1

)/(
f1
2 − f2

2

)
(6.13)

σ∗ := TSPP1(w, f1
1 , f2

2) (6.14)

if σ∗ 6= ∅ (6.15)

SE := SE ∪
(
f1(σ

∗), f2(σ
∗)
)

(6.16)

LI := LI ∪

{[
(f1

1 , f1
2) . . . (f1(σ

∗), f2(σ
∗))
]
,
[
(f1(σ

∗), f2(σ
∗)) . . . (f2

1 , f2
2)
]}

(6.17)

6.2.1 Initial Efficient Points

The computation of the first two efficient points is immediate: this is due to the particular
structure of the problem. As explained before, they are computed from the Ideal and the
Nadir points. The Ideal values are defined as the maximum criterion values over the efficient
set, and they are obtained by simply optimizing each objective function individually over
the feasible region. Thus, considering that there are no restrictions about the visit of any
node, the minimum cost corresponds to the visit of no nodes and for this reason its value is
0, while the maximum profit corresponds to the visit of all nodes, and its value is the sum
of all profit nodes:

(
f I
1 , f I

2

)
=

(
0,

n∑

i=1

pi

)

The Nadir points are the minimum criterion values over the efficient set. They can be
obtained optimizing each objective function with the restriction that the other objective
must be constrained by the Ideal value. Also in this case, it is easy to see that the maximum
profit reachable when the cost is 0 is equal to 0, while the minimum cost needed to visit all
the nodes is the solution of a TSP on the whole graph. Thus:

(
fN
1 , fN

2

)
= (TSP, 0) .

6.3. BRANCH-AND-CUT PROCEDURE 77

Hence, for each instance of the BOTSPP problem, we need only to find a TSP solution to
obtain the two starting points

(f1
1 , f1

2) = (0, 0) and (f2
1 , f2

2) =

(
TSP,

n∑

i=1

pi

)

that define the criterion area where the entire Pareto-efficient set is contained. It could be
possible that the TSPP branch-and-cut algorithm stops with no feasible tours: the meaning
in this case is that the solutions are the two starting points only.

6.3 Branch-and-Cut procedure

To generate cuts for solving the TSPP1, we chose to use the common procedures for cuts
generation (see Algorithm 8). So, we relax the subtour elimination constraints from the
BOTSPP problem and then we generate at each iteration the cuts needed to eliminate all
subtours.

We start with an ILP model for the TSPP:

min
∑

e∈E

cexe − w
∑

vi∈V

piyi (6.18a)

subject to
∑

e∈δ(vi)

xe = 2yi, for all vi ∈ V (6.18b)

∑

e∈δ(S)

x(e) ≥ 2yi, for all S ⊆ V with ∅ 6= S 6= V, v0 ∈ V \ S and vi ∈ S (6.18c)

xe ∈ {0, 1} (6.18d)

ye ∈ {0.1} (6.18e)

Clearly, the presence of the subtour elimination constraints (6.18c) makes the problem dif-
ficult to solve: in fact, they are exponential in the number of nodes, so it is not possible to
generate and add all of them to the model. Thus, we chose to solve the problem obtained by
dropping these constraints. The subtour obtained has the following properties:

• the objective function value is a lower bound for the optimal value of the problem;

• the solution probably contains subcycles.

This type of problem is known as separation problem. The input of the separation problem is
a solution vector x∗

e. A separation routine checks if the solution vector satisfies all constraints.
If it does not, a specific routine returns violated constraints and adds them to the model.
Obviously, it is impossible to check one by one all subtour elimination constraints to find those
violated by the solution, but there is a property, based on the max-flow min-cut theorem,
that allows to directly find the violated constraints.

Theorem 6.1 (Max-flow min-cut theorem (Ford-Fulkerson, 1956)) In any network,
the value of a max flow equals the capacity of a minimum cut.

The theorem states that the maximum flow in a network is dictated by its bottleneck. In
other words, the quantity of material flowing between any two nodes cannot be greater than
the weakest set of links somewhere among them.

78 CHAPTER 6. THE BI-OBJECTIVE APPROACH TO THE TSPP

So, if we compute the minimum cut between every couple of nodes in the graph, we
obtain the violated cuts for TSPP1. To do this, we set up a capacitated network by giving
capacity x∗

e to edge e, where x∗
e is the solution of the relaxed problem. We fix v0 as the

source node and we consider as the destination each other node of the graph, iteratively.
Then, we compute the minimum cut either by a network flow or by a min-cut algorithm.
If the obtained minimum cut violates one of the subtour elimination constraints (this can
be easily checked substituting the cut value inside the constraints (6.18c)), then it must be
added to the model. To avoid the repeated computation of the same cut, when a violated
cut is found, the nodes it contains cannot be further considered as feasible destinations.

The computation of a minimum cut has a worst-case running time of O(nm log n).

Algorithm 8 Cut Pool procedure

• Compute the solution x∗ of TSPP1 without subtour elimination constraints;

• do

– construct a complete undirected capacitated graph G′ with a number k of nodes
equal to the number of nodes visited in the solution found, and capacity of the
edge e equal to x∗

e;

– fix v0 as the source node s;

– for each destination node t = v1, . . . , vk:

∗ solve a min cut problem on graph G′, with source s and destination t, and
return cut value;

∗ if (cut value < 2yt)

· add the cut to TSPP1;

· drop from the destination set the nodes belonging to the cut just found;

∗ compute the solution x∗ of TSPP1 with the new cut;

while x∗ does not contain subtours;

• Return the optimal solution x∗.

6.4 Improvement methods

The sequence of subproblems that must be solved to obtain the Pareto efficient frontier have a
structure similar to the TSP. As explained before, to reach each efficient point it is necessary
to optimize several time the same problem, adding at each iteration those cuts needed to
avoid subcycles inside the optimal path. This is done by a special macro given by CPLEX
(see Section 6.6.1). To handle the creation/addition of new cut, CPLEX creates a branch-
and-cut search tree. The nodes of the branch-and-cut search tree correspond to intermediate
solutions, (i.e., solutions containing subcycles) that need to be further optimized. New cuts
generated from a solution belonging to a given tree node give rise to children nodes. Thus,
the computational time depends on the number of generated cuts, and consequently on the
width of the branch-and-cut search tree. This suggests that a feasible way to improve the
performances is to reduce the size of the branch-and-cut search tree, by trying to reduce

6.4. IMPROVEMENT METHODS 79

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

����

Figure 6.2: A 3-opt move.

the number of cuts needed to reach the solution. CPLEX gives the possibility to suggest a
feasible starting solution, which is used to speed up the computational time.

For this reason, we decided to use the Lin-Kernighan heuristic (see the next section) to
compute a feasible starting solution, and we suggest it to the branch-and-cut-search tree
during the first step of the Cut Pool procedure (Alg. 8).

6.4.1 Lin-Kernighan heuristic

The Lin-Kernighan heuristic [122] is considered to be one of the most successful approaches
for generating optimal or near-optimal solutions for the symmetric Traveling Salesman Prob-
lem. It can be seen as a generalization of 2-opt and 3-opt methods: it involves swapping pairs
of sub-tours to make a new tour. The 2-opt and 3-opt algorithms are special cases of the
λ-opt algorithm [121]: here, at each step, λ links of the current tour are replaced by other λ
links in such a way that a better tour is achieved. In other words, in each step a shorter tour
is obtained by deleting λ links and putting resulting paths together in a new way, possibly
reversing one or more of them. Figure 6.2 shows an example of 3-opt exchange.

The λ-opt algorithm is based on the λ-optimality concept:

Definition 6.1 A tour is said to be λ-optimal if it is impossible to obtain a shorter tour by
replacing any λ of its links by any other set of λ links.

Unfortunately, the number of operations to test all λ-exchanges increases rapidly as the
number of nodes increases. In a naive implementation, the testing of a λ-exchange has a
time complexity of O(nλ). Furthermore, there is no nontrivial upper bound on the number
of λ-exchanges. Thus, it is difficult to know what λ to use to achieve the best compromise
among running time and quality of the solution.

To overcome this problem, Lin and Kernighan introduced the variable λopt in their ap-
proach. The value of λopt changes during the execution of the algorithm, each time getting its
best value. Thus, given a feasible tour, the algorithm repeatedly performs λ-exchanges that
reduce the length of the current tour, until a tour is reached for which no exchange yields
an improvement. This process may be repeated many times from initial tours generated in
some randomized way.

The solution found by the Lin-Kernighan heuristic is 1.3% above the optimum [92].
In our algorithm, we use a modified and extended version of Lin-Kernighan algorithm,

presented by Helsgaun in [92]. The new algorithm is a considerable improvement of the
original one. The most noticeable difference is found in the search strategy: the new heuristic

80 CHAPTER 6. THE BI-OBJECTIVE APPROACH TO THE TSPP

uses larger, and more complex, search steps. Also, new is the use of the sensitivity analysis
to direct and restrict the search.

Computational experiments have shown that this new version of the heuristic is highly
effective. Even though the algorithm is approximate, optimal solutions are produced with
an impressively high frequency.

6.4.2 Improving the starting solution

We choose to use the Lin-Kernighan heuristic to suggest a feasible starting solution to each
branch-and-cut search tree. This step has to be performed before the do-while iteration in
the Cut Pool procedure. All the needed operations are reported in Alg. 9.

Algorithm 9 Starting Solution procedure

• Compute the solution (x∗) of TSPP1 relaxed of subtour elimination constraints;

• if solution (x∗) contains subtours

– select from starting graph only nodes visited by the solution found, and create a
new graph G′;

– invoke Lin-Kernighan on G′, obtaining a solution (z∗);

• suggest (z∗) as starting feasible solution to the branch-and-cut procedure.

Hence, each time that we approach to solve an instance of TSPP1 we apply the Lin-
Kernighan heuristic to the graph G′ obtained with the set of nodes visited in the solution of
the relaxed problem. This gives us a feasible tour containing no cycles that minimizes the
cost to visit all the nodes of G′. Thus, supposing that the final optimal efficient solution
associated with TSPP1 contains most of the nodes visited in the solution of the relaxed
instance, we hope to reduce the branch-and-cut tree, getting to the optimal solution in a
shorter time.

6.5 Approximate Pareto front

The sequence of TSPP1 problems solved by our procedure leads to the computation of the
exact efficient Pareto frontier. As explained in Section 3.2.1, the cardinality of efficient
frontier can be exponential in the number of nodes, thus the Pareto set can be composed by
points very close to each other, and the computation of all of them can take a considerable
time.

To improve the performances, we developed two different approximation algorithms for
the TSPP. The first, that we called Equal Distance Approximation, computes each new
solution starting from the previous computed one. Thus, starting from a fixed approximation
value, we are able to find the minimum number of efficient points that give an ǫ approximation
of the efficient frontier.

The second type of approach, that we called Sub-Area search, divides the objective space
in sub-areas. Each sub-area is explored at most one time, in order to find one efficient point
contained in it, if it exists. Also in this case, starting from a fixed approximation value, we
know in which way the objective space must be divided in order to obtain an ǫ−approximation

6.5. APPROXIMATE PARETO FRONT 81

of the efficient frontier. For both procedures, we gave a lower and an upper bound on the
number fo iterations needed to reach the solution.

Finally, we briefly describe some simple approaches that return particular subsets of the
Pareto efficient frontier.

6.5.1 Equal Distance Approximation

This type of approach derives directly from the branch-and-cut procedure just described.
The idea arises from some real-life applications, when it is often not useful to have hundreds
of solutions very close to each other, obtained after a long computational time: but it is
preferable to get a representative sample of them in a reasonable time, instead. In fact, as
we mentioned before, the cardinality of the efficient frontier grows exponentially with the
number of graph nodes, and for large graph instances most of the efficient points differ from
each other for few units only, even if both the cost and the profit have values in the order of
thousands.

For these reasons, we decided to generate only a representative subset of the efficient
frontier, so that each point in the frontier is computed starting at a distance δ from the
others. We then obtain an homogeneous set of exact solutions, each one representing a
particular area of the criterion space.

To get an efficient set of this kind, we use the branch-and-cut procedure developed for
the exact frontier, incrementing the cost and the profit gaps among adjacent efficient points.
This can be easily done by modifying those TSPP constraints that define the delimitation
intervals in which the solutions are searched. Thus, each time we compute a new point we
need the cost and the profit values of the two points delimiting the current search area,
in order to set the constraints needed to model the new search area. Then, we apply the
branch-and-cut procedure to find the solutions inside this new area.

The set of solutions obtained in this way is an ǫ-approximation of the exact Pareto efficient
frontier. Before to proceed, we recall the definition of ǫ-approximation:

Definition 6.2 A couple (γ, π) is an ǫ-approximation of (γ∗, π∗) if:

i) γ ≤ (1 + ǫ)γ∗;

ii) π ≥
π∗

1 + ǫ
.

See section 5.2.3 for a deeper description of this topic.

Thus, if we set the value of ǫ a priori, i.e., the maximum error that we want to obtain
on the solution set, we can compute at each iteration the maximum gap δ that can be set
between each couple of solutions.

The pseudocode of the procedure differs from that of Alg. 7 only in the instructions from
(6.10) to (6.17), that are replaced as it is shown in Alg. 10.

Theorem 6.2 The Heuristic Equal Distance algorithm returns an ǫ-approximation of the
exact efficient frontier for the Traveling Salesman Problem with Profits.

Proof. Let us consider the first two efficient points computed by the algorithm: (γ0, π0)
and (γ1, π1) (see Section 6.2.1). The new criterion-space area where a new efficient solution

82 CHAPTER 6. THE BI-OBJECTIVE APPROACH TO THE TSPP

Algorithm 10 Heuristic Equal Distance

Same lines (6.4)–(6.9) as in Alg. 7

while LI 6= ∅

select one interval
[
(f1

1 , f1
2), (f2

1 , f2
2)
]

from LI

LI = LI \
[
(f1

1 , f1
2), (f2

1 , f2
2)
]

compute δ1 = ǫf1
2

compute δ2 = ǫf2
1 /(1 + ǫ)

if
(
(f2

1 − f1
1) > δ2 and (f2

2 − f1
2) > δ1

)

w =
f1
1 − f2

1

f1
2 − f2

2

σ∗ := TSPP1(w, f2
1 − δ2, f

1
2 + δ1)

if σ∗ 6= ∅

SE := SE ∪ (f1(σ
∗), f2(σ

∗))

LI := LI ∪
{[

(f1
1 , f1

2) . . . (f1(σ
∗), f2(σ

∗))
]
,
[
(f1(σ

∗), f2(σ
∗)) . . . (f2

1 , f2
2)
]}

must be searched is obtained from these points, adding a fixed constant δ1 to the profit value
π0 and subtracting δ2 from the cost value γ1, where (see Figure 6.3):

δ1 = π0ǫ and δ2 =
γ1ǫ

1 + ǫ
.

New efficient solutions are recursively searched until one of the following conditions happens:

Case 1: the difference between the profit values of points delimiting the new searching area
is less than δ1;

Case 2: the difference between the cost values of points delimiting the new searching area is
less than δ2;

Case 3: there are no efficient points in the new search area of the criterion space.

To prove that the efficient set found by the Heuristic Equal Distance algorithm is an
ǫ-approximation of the exact Pareto-efficient frontier, we must show that for every point
(γ∗, π∗) in the dotted areas of Fig. 6.4 (i.e., for every point not found by Alg. 10), it exists
a point (γ, π) found by the algorithm for which the following conditions hold true:

i) γ ≤ (1 + ǫ)γ∗;

ii) π ≥
π∗

1 + ǫ
.

Consider the case depicted in Fig. 6.4. Let (γ, π) be the point computed by the algorithm.
The horizontal line that defines the new search area differ from π by the quantity:

δ1 = πǫ .

Thus all the efficient points (γ∗, π∗) in the dotted area will not be computed. It’s easy to
show that all these points are an ǫ-approximation of (γ, π):

6.5. APPROXIMATE PARETO FRONT 83

��
��
��

��
��
��

�
�
�

�
�
�

����������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

P

C

δ
(γ ,π)

(γ ,π)

0 0

1 1

δ 1

 2

Figure 6.3: the Heuristic Equal Distance algorithm searches new efficient points in the marked
area.

���
�
�
�

�
�
�
�

��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

δ

 (γ,π)

1

Figure 6.4: The marked area can contain efficient points that are not computed by the
Heuristic Equal Distance algorithm.

84 CHAPTER 6. THE BI-OBJECTIVE APPROACH TO THE TSPP

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

δ

(γ ,π) 1 1

2

Figure 6.5: The marked area can contains efficient points that are not computed by the
Heuristic Equal Distance algorithm.

• the property (i) follows immediately from γ ≤ γ∗;

• for property (ii) we have

π∗ − π ≤ δ1 ⇒ π∗ − π ≤ πǫ ⇒ π ≥
π∗

1 + ǫ
.

Thus, (γ, π) is an ǫ-approximation of each efficient point (γ∗, π∗) belonging to the dotted
area of Fig. 6.4.

Consider now the case depicted in Fig 6.5. Let (γ1, π1) be the point computed by the
algorithm. The vertical line that defines the new search area differs from γ1 by

δ2 =
γ1ǫ

1 + ǫ
.

All Pareto-efficient points (γ∗, π∗) belonging to the dotted area will not be computed by the
algorithm. Again, we can easily show that all these points are an ǫ-approximation of (γ1, π1):

• property (ii) follows immediately from

π1 ≥ π∗ ⇒ π1 ≥
π∗

1 + ǫ
;

• for property (i) we have

γ1 − γ∗ ≤ δ2 ⇒ γ1 − γ∗ ≤
γ1ǫ

1 + ǫ
⇒ γ1 ≤ (1 + ǫ)γ∗ .

Thus, it follows that the efficient frontier computed by Heuristic Equal Distance algorithm
is an ǫ-approximation of the exact efficient frontier of the TSPP. �

6.5. APPROXIMATE PARETO FRONT 85

P

C

 quadrantpartitions of cost axis

partitions of
profit axis

Figure 6.6: Fixed the starting efficient points, the grid is computed by dividing the area in
sub-areas.

6.5.2 Sub-Area search

The idea behind the procedure that we describe here comes from the Equal Distance Approx-
imation heuristic. In this approach the decision maker decides a priori the approximation
error on the efficient frontier that will be generated. The difference with respect to the Equal
Distance Approximation algorithm is that in the sub-area procedure each solution is searched
in a specific part of the objective space, defined by the beginning phase of the algorithm.

The first step is the computation of the starting efficient points (0, 0) and (γN , πN) (see
Section 6.2.1). Then, the x-axis is divided in k intervals

[
0,

γN

(1 + ǫ)k

)
,

[
γN

(1 + ǫ)k
,

γN

(1 + ǫ)k−1

)
, . . . ,

[
γN

(1 + ǫ)
, γN

)
(6.19)

with k = log(1+ǫ) γN and, analogously, the y-axis is divided in u intervals

[0, 1), [1, (1 + ǫ)), [(1 + ǫ), (1 + ǫ)2), . . . , [(1 + ǫ)u−1, (1 + ǫ)u) (6.20)

with u = log1+ǫ(πN). Note that the union of all intervals, both in the x-axis and the y-
axis, gives the whole objective space delimited by the efficient points (0, 0) and (γN , πN).
Note further that k is of the order O

(
ǫ−1 log(γN)

)
which is polynomial in 1/ǫ and in the

starting solutions values. The same happens for u, which is of order O
(
ǫ−1 log(πN)

)
, thus

it is polynomial in 1/ǫ and in the starting solutions values. We will call quadrants the new
sub-areas obtained intersecting all these intervals. In Fig. 6.6 we show an objective space
partitioned in this way.

To find one efficient point for each sub-area, we create and solve the single objective
problem described in (6.1a)–(6.1d), where f1

1 and f2
2 are the lower and the upper endpoints

of intervals defining the selected sub-area, respectively. Thus,

f1
1 =

γN

(1 + ǫ)r
(6.21)

f2
2 = (1 + ǫ)s (6.22)

with 0 ≤ r ≤ k and 0 ≤ s ≤ u. For convenience, in the rest of this section we will refer to
lower endpoints of 6.19 as ℓr and to upper endpoints of 6.20 as us, with ℓ0 = 0 and u0 = 1.

86 CHAPTER 6. THE BI-OBJECTIVE APPROACH TO THE TSPP

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�����
�����
�����

�����
�����
�����

P

C

’

A

B

Figure 6.7: Example of Case 2

The algorithm can be obtained from Alg. 7 by replacing the lines from 6.10 to 6.17 with
the new instructions shown in Alg. 11, where the EPHorLayer procedure is outlined in Alg.
12.

The Sub-Area Searching algorithm starts searching a solution in the first vertical partition,
in the area immediately on top of that containing the point (1, 1). We do not consider the
quadrant containing the point (0, 0) because there are no other solutions between (0, 0) and
(1, 1) for the integrality hypothesis on cost and profit values. Thus, we set the number of
intervals in (6.25)–(6.26) and we iterate on them (see the while-do loops at (6.29) and (6.31)).
When a solution is found, either it can coincide with a solution previously found or it can
belong to one of the quadrants of the horizontal layer defined by ℓr and us. In the first case
(6.48) no solution is found in the quadrant, so a new search begins in the same vertical layer,
but in the quadrant immediately on top of that just analyzed (see (6.49)). In the second
case, we must distinguish two possibilities:

1) the solution belongs to the first quadrant defined by ℓr and us (6.38);

2) the solution belongs to an other quadrant of the horizontal layer defined by ℓr and us

(6.42).

In the situation (1) the algorithm searches new efficient points in the quadrants belonging to
the horizontal layer immediately on top of that containing the solution just found (6.41). In
the situation (2), we must explore quadrants between those containing the current solution
and the last computed solution. In Fig. 6.7 we show with dotted lines those quadrants
between efficient points A and B: they represent the region of the objective space that is
explored by the EPHorLayer procedure in Alg. 12.
When an entire vertical layer is explored, then the search is moved to the quadrant placed
in the right-hand side of that containing the last solution found.

In Fig. 6.8 we numbered the criterion space quadrants in the order they are analyzed by
the algorithm in a particular instance.

We now prove a relevant result.

Theorem 6.3 The Sub-Areas Searching algorithm generates an ǫ-approximation of the Pareto-
efficient frontier for the TSPP.

Proof. To prove this statement we must show that, in each sub-area of the objective space,
the efficient point computed is an ǫ-approximation of all other efficient points belonging to
that area and not computed by the algorithm. Let us consider a generic sub-area, as the one
represented in Fig. 6.9.

6.5. APPROXIMATE PARETO FRONT 87

Algorithm 11 Sub-Areas Searching

Same lines (6.4)–(6.9) as in Alg. 7 (6.23)

compute (γN , πN); (6.24)

u = log(1+ǫ)(πN); (6.25)

k = log(1+ǫ)(γN); (6.26)

r = 0; s = 1; (6.27)

LastS = s; LastR = 1; (6.28)

while (r ≤ k) (6.29)

r = r + 1; (6.30)

while (s ≤ u) (6.31)

f1
1 = ℓr; f

2
2 = us; (6.32)

w =
ℓr+1 − ℓr

us − us−1
; (6.33)

σ∗ = TSPP1(f1
1 , f2

2 , w); (6.34)

if σ∗ 6= ∅ (6.35)

let (ℓr∗) be the greater endpoint lower than σ∗; (6.36)

let (us∗) be the lower endpoint greater than σ∗; (6.37)

if
(
(ℓr∗ = f1

1) and (us∗ = f2
2)
)

(6.38)

SE := SE ∪ σ∗; (6.39)

LastS = s∗; LastR = r∗; (6.40)

s = s + 1; (6.41)

else if (ℓr∗ > f1
1) (6.42)

SE := SE ∪ σ∗; (6.43)

EPHorLayer(r∗, LastS, LastR, SE) (6.44)

r = r∗; (6.45)

s = s∗ + 1; (6.46)

LastR = r∗; LastS = s∗; (6.47)

else if (u∗
s < us) (6.48)

s = s + 1; (6.49)

if (σ∗ = ∅) (6.50)

s = s + 1; (6.51)

88 CHAPTER 6. THE BI-OBJECTIVE APPROACH TO THE TSPP

Algorithm 12 EPHorLayer(r∗, LastS, LastR, SE)

f2
2 = uLastS ; r = LastR + 1;

do

f1
1 = ℓr;

w =
ℓr+1 − ℓr

us − us−1
;

σ∗ = TSPP1(f1
1 , f2

2 , w);

if σ∗ 6= ∅

let ℓk be the greater endpoint lower than σ∗;

r = k + 1;

while
(
σ∗ 6= ∅ and r ≤ r∗

)

P

C

’
2

3

4

2

4 4

5 5 6

7

1

Figure 6.8: Exploration order of the quadrants

������
������
������

������
������
������

���
���
���

���
���
���

N N
γ ,π

 (γ,π)

Figure 6.9: Efficient solution in a specific quadrant of the objective space.

6.5. APPROXIMATE PARETO FRONT 89

Let us suppose that the lower-left endpoint of the quadrant in Fig. 6.9 has coordinates(
γN/(1+ǫ)ℓ, (1+ǫ)s

)
and the upper-right endpoint has coordinates

(
γN/(1+ǫ)ℓ−1, (1+ǫ)s+1

)
.

Let (γ, π) be the efficient point found by the Alg. 11 in this area. Then:
γN

(1 + ǫ)ℓ
≤ γ ≤

γN

(1 + ǫ)ℓ−1
(6.52)

(1 + ǫ)s ≤ π ≤ (1 + ǫ)s+1 (6.53)

Let (γ∗, π∗) be an efficient point belonging to this sub-area and not computed by Alg.
11. This point can only be in one of the two dropped areas depicted in Fig. 6.9. Indeed, if it
would not belong to these areas, then (γ∗, π∗) would dominates (γ, π), which is not possible
because (γ, π) is efficient. We then look at what happens in the two dotted areas of Fig. 6.9:

Case 1: let us suppose that (γ∗, π∗) belong to the lower-left dropped area. Thus:
γN

(1 + ǫ)ℓ
≤ γ∗ < γ and (1 + ǫ)s ≤ π∗ < π .

To prove that (γ∗, π∗) is an ǫ-approximation of the efficient point (γ, π), we show that
the properties of Def. 6.2 hold true. For the property (i) we have

γ ≤
γN

(1 + ǫ)ℓ−1
⇒ γ ≤

γN

(1 + ǫ)ℓ−1
·
1 + ǫ

1 + ǫ
⇒ γ ≤

γN (1 + ǫ)

(1 + ǫ)ℓ
≤ γ∗(1 + ǫ) .

Then the property (ii) follows immediately:

π∗

1 + ǫ
≤ π∗ ≤ π .

Case 2: let us suppose that (γ∗, π∗) belong to the upper-right dropped area. Thus:

γ ≤ γ∗ ≤
γN

(1 + ǫ)ℓ−1
and π ≤ π∗ ≤ (1 + ǫ)s+1 .

Again, the property (i) follows immediately by

γ ≤ γ∗ ≤ (1 + ǫ)γ∗ .

Hence, the property (ii) holds true because

π < (1 + ǫ)s+1 ⇒ π < (1 + ǫ)s(1 + ǫ) ⇒ π ≤ π∗(1 + ǫ) .

We conclude that (γ, π) is an ǫ-approximation of (γ∗, π∗). �

We can give a lower and an upper bound on the number of quadrants that we have to
analyze in order to find an ǫ-approximation of the efficient frontier. This number corresponds
to the amount of TSPP1 problems that have to be solved to cover the entire criterion space.
The lower bound is obtained when all solutions belong to the last vertical layer. In this case
we must iterate only on the u − 1 horizontal layers.

The worst case happens when it is necessary to analyze at least two quadrants of each
layer. In Fig. 6.10 we show two examples of feasible efficient frontiers that need the minimum
and the maximum number of TSPP1, respectively.

Thus, it is easy to see that, when the number of the vertical layers is k and the number
of horizontal layers is u, the number Q of quadrants to visit is bounded by:

u − 1 ≤ Q ≤ k + u − 3

where k and u are polynomial. It is interesting to see that, even if the starting number
of quadrants is given by the product ku, the effective number of quadrants that must be
explored is bounded by the sum k + u (up to a constant term).

90 CHAPTER 6. THE BI-OBJECTIVE APPROACH TO THE TSPP

P

C

’

1

2

3

4

P

C

’

1

2

3

4

5

6
7

Figure 6.10: Example of the minimum and the maximum number of quadrants that must be
explored to find the efficient frontier.

6.5.3 Other approximation approaches

In this section we describe some additional simple approaches, built on the Branch-and-cut
approach just described, that compute an approximation of the efficient frontier. These
methods were implemeted, but the results are not analyzed in this work.

Random generation of exact solutions

This kind of approach generates only a representative sample of exact solutions belonging
to the efficient frontier. The difference with respect to the approximated algorithm just
described is that here we decide a priori the number of points to generate. The reason of
this choice is strictly related to the computational time. In fact, if we have an evaluation
of the average time needed to solve a single instance of TSPP starting from a specific set
of profit values, we can know the cardinality of the efficient frontier generated for each time
interval. So, if we suppose that the available computational time is fixed, then we can know,
a priori, the cardinality of the efficient frontier that will be generated, that is the maximum
number of solutions that can be computed in the specified time. This can be useful when
we need of only a representative sample of the efficient solution set: it is possible to build a
clear corrispondence between the cardinality of the efficient frontier and the time needed to
compute it.

To do this, each time a new efficient point is generated we store in a vector the two
searching areas of the criterion space it defines, and we randomly select in which one to
search for the new solution. In other words, we generate points belonging to the Pareto
frontier by randomly analyzing those intervals delimiting the searching area in the criterion
space generated by the just computed efficient points. Solutions are computed by the branch-
and-cut procedure described in previous sections, hence the subset of the Pareto frontier will
contain exact points.

Local Search

This type of procedure aims to generate efficient points in a specific area of the criterion
space. This could be useful when a traveller needs to know all optimal ways to accumulate
at least a specific profit P by spending no more than a given cost C. In Fig. 6.11 we show a
typical frontier that can be obtained with this procedure.

The local search approach searches all possible exact solutions inside a profit and cost
range specified by the user, through the branch-and-cut procedure described in the sections

6.6. COMPUTATIONAL RESULTS 91

C

 P

1

1

2

 P

P

C C 2

Figure 6.11: Scheme of efficient frontier given by the local search approach.

6.2 and 6.3. It is interesting to investigate how the times can differ if we change the searching
area where to generate exact efficient points. Also in this case, it is possible to evaluate, a
priori, the average time needed to obtain the efficient set knowing the starting data values.

6.6 Computational results

To assess the performance of our algorithms, we implemented a C++ code and ran it on a
AMD Opteron 2.4 GHz processor equipped with CPLEX v. 12.1. Before to proceed with
the analysis of the computational time, we briefly discuss the tools used to develop the code.
First of all, we shortly overview the CPLEX library, underlying the key functions we use
to implement the branch-and-cut procedure. Then we describe the implementation choices
for the minimum-cut problem and for the Lin-Kernighan heuristic. Finally, we describe the
instance set chosen for the tests and show the obtained results for both the exact and the
approximated approaches.

6.6.1 Branch and Cut implementation

CPLEX by ILOG is an optimization software package that solves integer programming prob-
lems, very large linear programming problems, quadratic programming problems, and (re-
cently) problems with convex quadratic constraints. It uses the most modern approaches
combined with the state-of-the-art solution methods, to give a powerful tool able to solve a
wide range of instances.

In the MIP context CPLEX offers control callbacks, that are tools that allow to control
the branch-and-cut solution search during the optimization of a problem. In particular, they
allow to add problem-specific cuts at each node of the branch-and-cut tree search. Callbacks
are implemented as an extension of the diagnostic callback class hierarchy. For each one
CPLEX offers a macro designed to help the programmer during the implementation. In our
code we used the following:

ILOCUTCALLBACK2(CtCallback, IloExprArray, lhs, IloNumArray, rhs)

92 CHAPTER 6. THE BI-OBJECTIVE APPROACH TO THE TSPP

The parameter lhs is an array of expressions, while the parameter rhs is an array of values.
These parameters are the left-hand side and the right-hand side values of the cuts to be
added to model, satisfying

lhs ≤ rhs .

In this way, cuts are added when these constraints are violated at a node of the branch-and-
cut tree. Thus, this callback takes the list of violated cut as a parameter and uses them to
compute the new LP solution.

The cut callback is created and passed to CPLEX by

cplex.use(CtCallback(env, lhs, rhs))

The method CtCallback constructs an instance of the out callback class and returns an
handle object for it. This is directly passed to the method cplex.use.

To generate the array lhs and rhs we used the method makeCuts(). It receives as input
the solution computed by CPLEX in the previous branch-and-cut tree node, and searches
the violated constraints, storing them in lhs and rhs. As we explained in Section 6.3, they
derive from the solution of a max-flow min-cut problem, with a fixed source node and N − 1
feasible destination nodes. To compute the minimum cut we choose to use a function of the
Concorde package.

Concorde is an ANSI C computer code for the Symmetric Traveling Salesman Problem
(STSP) and some related network optimization problems. Its callable library includes over
700 functions allowing the users to solve a wide range of problems related to STSP. In
particular, it contains a function that returns minimum s-t cuts in directed and undirected
graphs. The function is an implementation of the Push-Relabel Flow algorithm described in
Goldberg and Tarjan [80]. The prototype is the following:

int CCcut_mincut_st(int ncount, int ecount, int *elist, double *ecap, int s,

int t, double* value, int ** cut, int *cutcount)

The function receives as input the number ncount of nodes in the graph, the number
ecount of its edges, the list elist of edges in node-node format, the edges capacities ecap,
the source node s and the sink node t. It returns in value the capacity of the minimum cut,
in the appropriately sized array cut the list of nodes in the minimum cut and in cutcount

the number of nodes contained in the cut. So, in the implementation of our makeCuts()

method we invoke the CCcut mincut st function iteratively by passing as sink node each
graph node except the source, thus generating the needed subtour-eliminating cuts.

6.6.2 Computational Results

To analyze the performances of our algorithms we used the same instances used by Bérubé
et al. in [21]. Thus, we took TSP instances from the TSPLIB [147] and we generated profits
in the following three different ways:

• type 1: pi = 1 for each vi ∈ V ;

• type 2: pi = 1 + (7141vi + 73) mod 100;

• type 3: pi = 1 + ⌈99
c1,vi

θ ⌉, where θ = maxw∈V ′ c1,w.

6.6. COMPUTATIONAL RESULTS 93

Instances with profits of type 1 are generally the easier: the cardinality of the efficient frontier
generated is equal to the number of starting points. Instances of type 2 have profits values
between 1 and 100, while instances of type 3 produces hard problems, where the profit values
become larger as their distance from the source increases.

The performances comparison between our approach and the approach developed by
Bérubé et al. was initially very difficult to evaluate. In fact, the time employed by our
procedure to compute all efficient solutions was entirely spent in the generation of cuts
inside the Branch-and-Cut procedure, needed to solve each linear programming model of the
algorithm.

If we analyze the algorithmic structure of the two procedures, we can notice that the
difference between the approaches lies essentially in the structure of the model that must be
solved at each iteration of the algorithm i.e., in the objective function and in the constraints
set, and in the modality of exploration of the objective space. Instead, the optimization
models are solved in both approaches through a branch-and-cut procedure. For this reason,
in order to have a real comparison between performances of our procedure and the approach
of Bétubé et al., we implemented the two methods using the same libraries, the same functions
and the same hardware resources. In this way, we obtained two codes that differ each other
only for the description of each optimization model and the modality of exploration of the
objective space.

Tables 6.1, 6.2 and 6.3 show, respectively, the results obtained by running the TSPP
Branch-and-Cut algorithm with and without the Lin-Kernighan starting procedure on the
TSPLIB instances with profits generated in the three ways just described. In the last two
columns of the tables we reported the time results obtained running the Bérubé et al. ap-
proach in our machine with the same structures and resources used for the implementation
of our algorithm. In the columns the following information are reported:

• |V |: number of nodes considered, including the source.

• EP: number of efficient points in the Pareto front.

• Time: average CPU time in seconds to compute the entire Pareto front.

• TimeA: average CPU time in seconds to solve each TSPP1.

Cells marked by “t.l.e.” indicates that the instance was still unsolved after a time limit
of 72 hours (259200 seconds).

If we compare the performances of the two approaches, we can notice that the compu-
tation time of the Bérubé et al. approach is better than the time needed by our procedure
to compute the solution set. This is due to the difference between the optimization models
that must be solved at each iteration by the two procedures. Indeed, while Bérubé solves a
PCTSP, in our approach we build a model with an objective function given by a weighted
sum of the profit and the cost functions, and a constraints set that contains all constraints
of PCTSP and new ones. This leads to an increment of the average number of cuts needed
to eliminate all subtours, and so to an increasing of the time required to CPLEX to solve
each single model. In fact, from a detailed study of the times, we noticed that in both ap-
proaches, the 95% of the time employed to return the set of solutions is spent by CPLEX in
solving optimization models. For this reason, assuming that the number of models solved on
average by two methods is the same, we can say that the decisive factor that determinates
the effectiveness of the method lies in the time needed to CPLEX to generate the cuts.

94 CHAPTER 6. THE BI-OBJECTIVE APPROACH TO THE TSPP

If we analyze the performances of our approach when a starting solution computed with
the Lin-Kernighan approach is suggested to CPLEX, we note, on average, an improvement
of 10%. This suggests that, perhaps, with an effective heuristic that give a good starting
solution, and a optimized cut generation, our approach could be margin for improvements.

6.7 Conclusions

In this chapter we described a new algorithm based on cutting planes within a branch-and-
bound approach, that computes the entire Pareto efficient frontier for the Traveling Salesman
Problem with Profits. The approach explores iteratively the objective space computing, at
each iteration, a new efficient point. Further, we introduced two approximation algorithms,
built on the same idea of the exact approach, that generate a representive set of the efficient
frontier.

To analyze the performaces of our algorithm, we used the same TSP instances tested with
the ǫ-constraint method of Bérubé et al. [21], and we compare the results. In order to have a
effective comparison between the real performances of the two methods, we implemented the
Bérybé et al. algorithm employing the same structures and libraries used in our approach,
and we run the instances on the both implementations. We notice that, the times obtained
from the resolution of TSPP by the Berubé et al. are, overall, better that ours. This derives
basically from the difference between the two optimization models that must be solved at
each iteration. Anyway, in our opinion, it could be already possible to obtain an improvement
of the performances of our algorithm with a further optimization of the code and better use
of the software resource.

If we consider the two procedure from a practical point of view, we can notice that
the main difference resides in the modality of generation of the efficient frontier. Indeed,
while in the Bérubé approach each efficient point is searched starting from the previous
computed, and for this reason the efficient frontier is created onwards starting from the
point (0, 0), in our approach the generation of new efficient solutions is made through a
uniformed distribution throughout the objective space. This can be useful in the development
of heuristics or approximation schemes in fact, let us suppose to have an instance that needs
of a too high computational time to be solved. In this case, a user can stop the search of
solutions at each moment, consistent with its needs, obtaining always a subset of solutions
that describe the entire Pareto set and with a fixed approximation error respect to the exact
efficient frontier. Obviously, with the increment of the computation time would increase the
density distribution of efficient solutions and descrease the approximation error respect to
the exact solutions. For these reasons, even if the computational time is not competitive,
the contribution of this procedure resides in its intrinsic structure that can be widely used in
the development of approximation algorithms for a large class of bi-objective combinatorial
optimization problems.

6.7. CONCLUSIONS 95

Standard procedure Lin-Kernighan Bérubé et al.

Instance |V | EP Time TimeA Time TimeA Time TimeA

burma14 14 13 1 0.083 0.7 0.053 0.2 0.015
ulysses16 16 15 1 0.0714 0.68 0.0453 0.4 0.0266
ulysses22 22 21 2 0.0952 1.6 0.0761 2 0.0952381
att48 48 47 65 1.354 60 1.276 53 1.125
eil51 51 50 45 0.89 39 0.78 33 0.647059
berlin52 52 51 68 1.33 61 1.196 54 1.05882
st70 70 69 730 10.57 675 0.782 600 8.69505
eil76 76 75 4696 62.613 4486 59.813 3680 48.5921
pr76 76 75 t.l.e. - t.l.e. - t.l.e. -
rat99 99 98 453 4.6224 405 4.132 365 3.6534

kroA100 100 99 14253 141.5 13354 135.34 12619 126.19
kroB100 100 99 18501 186.54 16354 167.4 13667 138.051
kroC100 100 99 4964.3 49.3 4011.3 39.9 3865.3 38.62
kroD100 100 99 27631 276.3 25423 234.1 23509 237.465
kroE100 100 99 14721 148.697 12967 130.01 11648 118.02
rd100 100 99 9121 91.11 8129 82.1 6435.7 64.31
eil101 101 100 29362 299.612 28132 282.45 27942 279.1
lin105 105 104 71536 716.32 66845 669.34 63425 641.8
pr107 107 106 1002.4 10.99 912.4 92.3 835.4 8.34
pr124 124 123 39698 397.67 37566 378.6 32665 324.7
bier127 127 126 9442 74.7778 8112 82.2 7770 61.6667
ch130 130 129 8012 81.01 7341 74.5 6879 65.7
pr136 136 135 t.l.e. - t.l.e. - t.l.e. -
gr137 137 136 31247 313.6 28991 291.2 27684 276.1
pr144 144 143 92045 921.56 89941 900.1 86722 873.1
ch150 150 149 26767 268.34 24775 248.5 21475.3 205.4

Table 6.1: Computational results for TSPLIB instances with profits of type 1. Times are in
seconds. Positions marked with t.l.e. mean that the time for the solution of the corresponding
problem exceeded the lime limit allowed.

96 CHAPTER 6. THE BI-OBJECTIVE APPROACH TO THE TSPP

Standard procedure Lin-Kernighan Bérubé et al.

Instance |V | EP Time TimeA Time TimeA Time TimeA

burma14 14 59 4.1 0.069 3.5 0.0593 2 0.033898
ulysses16 16 102 6.2 0.0607 5.6 0.0549 5 0.04901
ulysses22 22 130 25 0.1923 20 0.153 15 0.147
att48 48 435 3476 7.2416 2997 6.889 1425 3.2758
eil51 51 225 1951 8.761 1798 7.991 1567 6.964
berlin52 52 406 2980 7.339 2672 6.581 1092 2.69067
st70 70 503 20445 40.64 18995 37.763 15500 30.815
eil76 76 386 41410 107.27 36845 95.45 24446.4 63.3329
pr76 76 - t.l.e. - t.l - t.l.e. -
rat99 99 662 56399 85.194 51005 77.046 45243 68.342

kroA100 100 - t.l.e. - t.l.e. - t.l.e. -
kroB100 100 - t.l.e. - t.l.e. - t.l.e. -
kroC100 100 - t.l.e. - t.l.e. - t.l.e. -
kroD100 100 1128 112855 100.04 95762 959.3 92455 926.5
kroE100 100 1068 170088 159.25 159675 159.9 147994 149.1
rd100 100 920 85647 93.09 79967 802.4 72554 736.6
eil101 101 515 71132 138.12 67221 673.4 60034 601.4
lin105 105 - t.l.e. - t.l.e. - t.l.e. -
pr107 107 - t.l.e. - t.l.e. - t.l.e. -
pr124 124 - t.l.e. - t.l.e. - t.l.e. -
bier127 127 - t.l.e. - t.l.e. - t.l.e. -
ch130 130 - t.l.e. - t.l.e. - t.l.e. -

Table 6.2: Computational results for TSPLIB instances with profits of type 2. Times are in
seconds. (“t.l.e.” = time limit exceeded)

6.7. CONCLUSIONS 97

Standard procedure Lin-Kernighan Bérubé et al.

Instance |V | EP Time TimeA Time TimeA Time TimeA

burma14 14 70 3.8 0.055 3.5 0.05 3 0.04285
ulysses16 16 92 6.1 0.0663 5.6 0.0608 3.72 0.04054
ulysses22 22 128 40.4 0.31 35.7 0.278 18 0.1406
att48 48 438 7336 16.748 6451 14.728 3733 8.522
eil51 51 267 5655 21.17 4665 17.471 3762.03 14.0972
berlin52 52 439 6614 15.066 5742 13.079 3090.56 7.0404
st70 70 452 28769 63.6 22576 49.946 14538 32.163
eil76 76 383 8554 22.33 8012 20.919 7211.9 18.83
pr76 76 - t.l.e. - t.l.e. - t.l.e. -
rat99 99 - t.l.e. - t.l.e. - t.l.e. -

kroA100 100 - t.l.e. - t.l.e. - t.l.e. -
kroB100 100 - t.l.e. - t.l.e. - t.l.e. -
kroC100 100 - t.l.e. - t.l.e. - t.l.e. -
kroD100 100 1063 142365 1339.2 135254 1375.3 127998 1299.1
kroE100 100 - t.l.e. - t.l.e. - t.l.e. -
rd100 100 - t.l.e. - t.l.e. - t.l.e. -
eil101 101 499 79995 160.3 71223 714.3 69003 698.4
lin105 105 - t.l.e. - t.l.e. - t.l.e. -
pr107 107 - t.l.e. - t.l.e. - t.l.e. -
pr124 124 - t.l.e. - t.l.e. - t.l.e. -
bier127 127 - t.l.e. - t.l.e. - t.l.e. -
ch130 130 - t.l.e. - t.l.e. - t.l.e. -

Table 6.3: Computational results for TSPLIB instances with profits of type 3. Times are in
seconds.(“t.l.e.” = time limit exceeded)

Chapter 7

TSPP with Time Windows on trees

The Travelling Salesman Problem with Profits and Time Windows (TSPPTW) deals with
finding optimal routes for a traveller that must serve a set of locations, each within a specified
time interval.

Time windows arise in problems faced by business organization which work on fixed
time schedules. TSPPTW can have several practical applications, such as in vehicle routing
problems, bank or postal deliveries, or automated manufacturing environment.

While time constrained routing problems were well studied in last years, research on
the Traveling Salesman Problems with Time Windows (TSPTW) has been scan. Pesant
et al. [136] adapt a constraint programming algorithm for the TSPTW that can handle
multiple time windows, while Gendreau et al. [73] develop a two-phases method based on
an elementary shortest path algorithm to solve a routing problem where the same vehicle
performs several routes to serve a set of customers with time windows.

An integration of local search algorithms within a constraint programming framework for
combinatorial optimization problems was presented by Nuijten et al. [135], in an attempt to
gain both the efficiency of local search methods and the flexibility of constraint programming.
They apply this approach in a TSPTW framework.

A procedure that finds exact solutions for TSPTW was proposed by Christofides, Migozzi
and Toth [32]. They developed a branch-and-bound approach where lower bounds are de-
rived from state-space relaxation of dynamic programming. Their algorithm solved 50-node
problems with moderately large time windows. Dumas et al. [53] proposed a dynamic-
programming approach for the TSPTW that extensively exploits elimination tests to reduce
the state space. More recently, Mingozzi et al. [125] presented a dynamic-programming
approach that embeds bounding functions able to reduce the state space (derived by a
generalization of the state-space-relaxation technique) and can also be applied to TSPTW
problems with precedence constraints. Balas and Simonetti [17] proposed a special dynamic-
programming method that finds an optimal solution if the nodes follow a exact initial order,
otherwise it can be used as a linear-time heuristic to exactly explore an exponentially-sized
neighborhood. Finally, Ascheuer et al. [4] considered several formulations for the asymmet-
ric version of the problem, comparing them within a branch-and-cut scheme. Two complete
surveys of the state-of-the-art can be found in [18] and [167].

The aim of this chapter is to give an overview on polynomially solvable cases for TSPPTW,
describing some algorithms that find the exact solution set. The chapter is organized as fol-
lows. In Section 7.1 we give a TSPPTW formulation. In Section 7.2 we analyze the hypothesis
under which the problem is polynomially solvable on a line metric. In the Sections 7.3 and
7.4 we study the TSPPTW complexity when the graph is a cycle or a star, respectively. We

99

100 CHAPTER 7. TSPP WITH TIME WINDOWS ON TREES

will see how little changes in the starting requirements can take to different computational
complexity.

7.1 TSPPTW formulation

Let G = (V, E) be a graph, where V = {v0, v1, . . . , vn} represents a set of locations and E
is the set of edges. We associate with each edge e ∈ E a cost value ce, that here stands for
the travel time needed to pass it, and to each location vi ∈ V a profit pi. Each location
vi ∈ V is characterized by a time window I = [ai, bi], where ai is the release time and bi

is the deadline. The meaning of these values is the following: the “service” at the node vi

starts at (or after) its release time and ends at (or before) its deadline. Thus the profit can
be collected during that time interval only. The objective is to find a route that allows the
traveller to accumulate the maximum profit in a minimum travel time, serving each location
of V at most once and satisfying the time windows constraints.

To state a feasible formulation of the TSPPTW let us first recall the following notations:

• ti,j := the time needed to travel from node vi to node vj ;

• Ti := the visit time at node vi;

• xi,j := the binary decision variable associated with the edge (vi, vj). It holds 1 if the
edge from node vi to node vj is visited, 0 otherwise;

• yi := the binary variable associated to the node vi. It holds 1 if node vi is visited, 0
otherwise.

We can then give the following TSPPTW formulation:

max
∑

vi∈V

piyi, min
∑

(vi,vj)∈V ×V

ci,jxi,j (7.1)

subject to (7.2)
∑

e∈δ(vi)

xe = 2yi, ∀vi ∈ V (7.3)

∑

e∈δ(S)

xe ≥ 2yi ∀S ⊆ V with ∅ 6= S 6= V, v0 ∈ S and vi /∈ S (7.4)

Tj ≥ Ti + te − M(1 − xe), ∀e = (vi, vj) ∈ E (7.5)

ai ≤ Ti ≤ bi (7.6)

T0 = 0, (7.7)

xe ∈ {0, 1} ∀e ∈ E (7.8)

yi ∈ {0, 1} ∀vi ∈ V (7.9)

The equation (7.3) and (7.4) are the usual TSPP constraints (see Section 3.1). The con-
straints (7.5) enforce the temporal relationship among consecutive nodes, while constraints
(7.6) specify the interval in which it is possible to visit each node.

The main difference between TSPPTW and TSPP is the restriction on the time in which
the traveller can collect the profit at each node. In fact, while in the TSPP we can pick up
the profit during the first visit of the node, in the TSPPTW it can happens that the traveller
passes a node vk, collects profits associated to other nodes and picks up pk during the return.
This makes the search of non-dominated solutions more difficult.

7.2. THE LINE 101

7.2 The line

Let V = {v0, v1, . . . , vn} be a set of nodes on a line. We suppose that a traveller leaves the
node v0, representing the source, and must reach the node vn, that is the destination. To
each node vi ∈ V \ {v0} is associated a time window [ai, bi] that describes the time frame
during which the service at node vi must be executed, and a profit pi that can be taken if the
node is visited within its time window. Each pair of nodes (vi, vj) is connected by an edge
with capacity ci,j , that defines the cost to cross it. We can assume, without loss of generality,
that the profit, travel time and time windows values are all positive.

Lemma 7.1 The TSPP and Time Windows on a line is solvable in polynomial time under
the following hypotheses:

• the traveller cannot pass each edge more than once;

• waiting times inside the nodes are allowed.

This kind of hypotheses can happen, for example, when the sequences of nodes that must be
visited in a general graph is already defined for technical-organizational reasons.

To prove the statement we describe a dynamic programming approach that finds the exact
Pareto frontier for an instance with those features.

We can depict an instance of TSPPTW on a line using a bi-dimensional diagram, as
shown in Fig. 7.1, where the x-axis corresponds to time values and the y-axis represents the
line nodes. In other words, each horizontal lines intersecting the y-axis corresponds to a node
in the line.

v

v

v

v 0

1

v 2

3

4

2

5

7

10

0

Figure 7.1: Pictorial representation of a TSPP with time windows on a line.

The distance between two horizontal lines is the time needed to cross the edges linking
the couple of nodes that they represent, while the highlighted segment of each line indicates
the temporal interval in which it is possible to visit the corresponding node, i.e., the time
window associated to the node. Each feasible subtour in the line can be depicted as an
x-monotone curve starting at the origin and intersecting as many segments as possible. The
outlined lines of Fig. 7.1 are feasible subpaths that go through the nodes in the release time
ai, i = 0, . . . , n.

The intersections between the horizontal line corresponding to node vi and each outlined
line correspond to the instant times t a traveller can get to the node vi, starting from nodes
v0, . . . , vi−1. To save these information, we construct for each node vi a time array Ti of i+1

102 CHAPTER 7. TSPP WITH TIME WINDOWS ON TREES

elements, containing the t times values needed by the traveller to reach the node vi starting
from the nodes v0, . . . , vi−1. The computation of all Ti arrays is performed as follows:

• for each node index i = n, . . . , 0:

– for each node j = i, . . . , 0:

Ti[j] = aj +
i−1∑

k=j

ck,k+1

For each vi ∈ V and 0 ≤ t ≤ Ti we define:

P [i, t] := the maximum profit that can be obtained on the nodes {vi+1, . . . , vn} when at the
time t the current position is the node vi.

The algorithm iteratively builds the solutions starting from the destination node vn and
returning back to the source v0.

Algorithm 13 TSPPTW on a line

1. (Initialization) for all Ti[n], i = 0, . . . , n:

(a) if t ≤ bn then P [n, t] = pn,

(b) if t > bn then P [n, t] = 0.

2. (Nodes Recursion) for all node indices i = n − 1, . . . , 1:

3. (Time Recursion) for all elements in the array Ti[j], j = i, . . . , 0, taken in decreas-
ing order:

(a) if t = Ti[j] > bi then

P [i, t] = P [i + 1, t + c(i, i + 1)] (7.10)

(b) if ai ≤ t ≤ bi then

P [i, t] = pi + P [i + 1, t + c(i, i + 1)] (7.11)

(c) if t < ai

P [i, t] = max{P [i, ai], P [i + 1, t + d(i, i + 1)]} (7.12)

The step (7.10) concerns the case where we arrive in node vi too late: then the profit of
this state is equal to the maximum profit of a tour in the line from node vi+1 to node vn

when we arrive at node vi+1 at the time t + ci,i+1.
The step (7.11) is for the case where we arrive in the node vi according to its time window,

so the profit will be the sum of the maximum profit accumulated in the line from node vi+1

to node vn and the profit of node vi.

The step (7.12) is for the case where we arrive in the node vi before the lower value of
its time window: thus, either we can wait to take its profit, or we cannot wait. If we decide
to wait, then the profit will be equal to the profit of the same line when we arrive in node
vi in the instant ai, otherwise the profit will be the profit gained in the line from node vi+1

7.2. THE LINE 103

to node vn from the instant t + ci,i+1. The maximum of both determines the profit of this
state.

To analyze the number of steps performed by the algorithm we must focus on the two
recursions: the first one iterates on the number of nodes, while the second one iterates on
the elements of the time array Ti, that contains at most n values. Thus, the complexity of
the algorithm is O(n2), i.e., quadratic in the number of nodes.

7.2.1 TSPP on a line: NP-hardness

In the last section we will show a polynomially solvable case of TSPPTW on a line (see
Lemma 7.1), describing a dynamic programming approach able to find the entire Pareto
efficient frontier. Now, we want to show how, by modifying the starting hypothesis, the
complexity of the problem changes. Thus, let us suppose that there are no bounds on the
number of times that each edge can be crossed, and suppose that waiting times on nodes are
not allowed. This means that the traveller can pick up the profit associated to a node only
if he arrives at the node in its time window. In other words, a traveller can choose to pass
through each edge an unlimited number of times, but without possibility to stop until the
arrive to destination.

Theorem 7.1 The TSPPTW on a line, under the hypotheses that:

• the traveller can cross each edge an unlimited number of times;

• the traveller cannot wait the release time of a node, if he arrives too early;

is NP-hard.

Proof. Let KP = (N, C) be an instance of the unbounded knapsack problem, in which
we have n different item types with weights ci, i = 1, . . . , n, and profits pi, i = 1, . . . , n,
each one available an unlimited number of times, and let C be the capacity of the knapsack.
We have to find a combination of items so that the total weight is less than or equal to C
and the total profit is maximum. This problem is NP-hard, as proved in Lueker (1975) by
transformation from subset-sum.

We want to show how an instance of KP can be converted to a particular instance of
TSPPTW. Let T = (V, E) be a line and let the edge costs and the node profits be arbitrary
positive. We can suppose, without loss of generality, that:

• each item i of the KP corresponds to a node vi of the line for TSPPTW;

• each item profit pi of the KP corresponds to the node profit pi for TSPPTW;

• each item weight ci of the KP correspond to the time needed to cross and return the
edge ci−1,i (i.e., 2ci−1,i), for TSPPTW.

In this way, we build an instance of TSPPTW starting from an instance of KP.
In particular, we can suppose that, to each node vi of the line is associated the time

window [ai, ai]: this means that, to take the profit associated to the node vi, we must find a
tour that arrives in it exactly at the instant time ai. So, assuming that the minimum time
needed to reach node vi from the source is c, only one of the following can happen:

• c > a, then we cannot take the profit associated to the node,

104 CHAPTER 7. TSPP WITH TIME WINDOWS ON TREES

• c < a, then to take the profit it is needed to travel through line edges connecting the
source to node vi until the instant ai.

Thus, we must find a possible combination of edge costs values that covers exactly the
remaining ai − c times.

If we set C as the time ai − c for each node vi, we have to find a feasible combination of
edge-cost values that covers exactly C to take the profit pi associated to node vi. For this
reason, an approach able to find the solution of the unbounded KP can find the solution of
TSPPTW. This proves the equivalence of the two problems. Hence, TSPPTW is NP-hard.
�

7.2.2 TSPPTW on a line: return to the source

In the previous sections we considered cases in which the origin and destination nodes are
different. If we suppose that origin and destination nodes coincide, then if a traveller passes
an edge he must pass through the same edge to return to the origin: hence, the profit pi

associated to node vi can be taken in two different instant times. This makes the problem
difficult to solve. In fact, for each node vi in which the traveller arrives too early, i.e., before
the release time, he has to choose whether to wait or not. This choice will bias all future
times, keeping in consideration the possibility that the node can be visited also during the
return to the source. Hence, through a simple computation, it seems that to find all feasible
points we have to consider as solutions for these types of nodes, both possibilities. So, in the
worst case, i.e., when the traveller arrives too early in each node of the line, the number of all
feasible solutions amounts to O(2n) items. By these reasons one could apparently conclude
that the problem is NP-hard.

If we drop the condition allowing to choose whether to wait or not the release time of
each node (that implies that it is not possible to stop during the travel), and we force that a
node can be passed at most 2 times, then the problem becomes solvable in polynomial time.

In this section we describe two simple algorithms that compute the entire efficient frontier
for TSPPTW on a line under these hypotheses. In the first one we consider the source to be
at an endpoint node, in the second one we consider the source to be an internal node of the
line.

Before to proceed, we describe an algorithm needed to solve a preliminary problem:

Given a set of points P = {(γh, πh) |h = 1, . . . , k} ⊂ R
2 whose coordinates are

the cost and the profit of feasible subtours, determine the points that are efficient
and sort them according to the following relationships:

0 = γ0 ≤ γ1 ≤ . . . ≤ γn

0 = π0 ≤ π1 ≤ . . . ≤ πn

An algorithm solving this problem is needed to select non-dominated pairs among feasible
solutions returned by the procedures that we will describe in the following sections. Such an
algorithm is given in Alg. 14. If the list E is maintained as a binary search tree then the step
3 can be carried out in O

(
log(|E|)

)
= O

(
log(|P|)

)
time. The other steps require constant

time. Thus the complexity of the whole Algorithm 14 is O
(
|P| log(|P|)

)
.

7.2. THE LINE 105

Algorithm 14 Efficient Points Algorithm

1. Initialize the list E with the two points

(γ′, π′) = (0, 0) and (γ′′, π′′) =

2

∑

(i,j)∈E

cij ,
∑

vi∈V

pi

 ,

in this order;

2. remove a point (γ, π) from P;

3. let (γ′, π′) be the last point in the list E with γ′ ≤ γ and let (γ′′, π′′) be the first point
in the list E with π′′ ≥ π;

4. if (γ′, π′) 6= (γ′′, π′′), go to Step 5, else go to Step 7.

5. if γ 6= γ′ and π 6= π′′ in E , then remove from E all points between (γ′, π′) and (γ′′, π′′)
and insert (γ, π) between (γ′, π′) and (γ′′, π′′);

6. if γ = γ′, then replace (γ′, π′) with (γ, π); if π = π′′, then replace (γ′′, π′′) with (γ, π);

7. if P is not empty then go to step 2.

The source is an extremal node

If the source is an endpoint of the line, we may assume that nodes are numbered from left
to right, so the source v0 is the leftmost node. It is easy to see that there are at most (n+1)
feasible subtours. We chose to compute optimal paths in two different steps: the first one
computes subpaths from the source to the node vi, the second one takes subpaths generated
in the first phase as starting solutions and returns to the source. Finally, the Efficient Points
algorithm extracts solutions belonging to the Pareto-efficient frontier from the feasible ones
returned by the procedure.

To keep track of the nodes visited in the first phase of the algorithm, we use the array
VN storing the n-dimensional vector VN whose i-th component is set to 1 if the node vi is
visited, 0 otherwise.

Let us also define the structure array T storing the values of the function T (i, VN, c)
giving the maximum profit gained in the path from the origin to the node vi, with cost c,
where VN contains the list of the visited nodes. Finally, let SF be the set of feasible points.
The resolution algorithm, that we call Extreme Path Time Windows Algorithm, is outlined in
Alg. 15. The first part of the algorithm iterates on the number n of graph nodes to compute
the starting values of T , and takes O(n) time. The second part iterates on the values of T
and, for each one, on the nodes between the source and node defined by the current value of
T itself. It follows that for each T at most n steps are needed to reach a feasible solution.
Thus, in the worst case the second phase takes O(n2) time. We then conclude that the
Extreme Path Time Windows (Alg. 15) needs at most O(n2) time to compute the entire
efficient solutions set.

106 CHAPTER 7. TSPP WITH TIME WINDOWS ON TREES

Algorithm 15 Extreme Path Time Windows algorithm

Initialization: VN i = 0, i = 0, . . . , n, c = 0, T (0, VN, 0) = 0;

First Phase: for i = 1, . . . , n

if (ai ≤ c0,i ≤ bi)

VN i = 1;

T (i, VN, c0,i) = T (i − 1, VN, c0,i−1) + pi;

else

T (i, VN, c0,i) = T (i − 1, VN, c0,i−1);

endfor

Second Phase : for each T (i, VN, c) computed in the first phase with VN i = 1:

ṼN = VN ;

for k = i − 1, . . . , 1

if (ṼNk = 0 and ai ≤ c + ci,k ≤ bi)

ṼNk = 1;

T (k, ṼN, c + ci,k) = T (k + 1, ṼN, c + ci,k+1) + pk;

else

T (k, ṼN, c + ci,k) = T (k + 1, ṼN, c + ci,k+1);

SF = SF ∪
(
c, T (0, ṼN, c)

)
;

endfor

endfor

call the Efficient Point algorithm on SF ;

7.3. TSPP WITH TIME WINDOWS ON A CYCLE 107

Source is an internal node

If the source is not an endpoint of the line, then feasible solutions can be obtained in several
ways: visiting only the right-hand side of the line, or only the left-hand side, or both. We then
need to extend Alg. 15 just described to compute all feasible paths: the resulting algorithm
is outlined in Alg. 16.

Algorithm 16 Internal Source algorithm

1. invoke Alg. 15 on the right-hand side of the line and put in SF all the solutions found;

2. invoke Alg. 15 on the left-hand side of the line and put in SF all the solutions found;

3. consider each feasible point (c, p) computed in step 1 as the starting solution and invoke
Alg. 15 on the left-hand side of the line, then add the found solutions to SF ;

4. consider each feasible point (c, p) computed in step 2 as the starting solution and invoke
Alg. 15 on the right-hand side of the line, then add the found solutions to SF ;

5. invoke the Efficient Point algorithm on SF .

The complexity of this algorithm is determined by steps 3 and 4, where it is necessary to
invoke two times the Extreme Path Time Windows (Algorithm 15) starting from the same
point. Thus, the Internal Source algorithm takes at most O(n4) time to find the efficient
solutions set.

7.3 TSPP with Time Windows on a cycle

If G = (V, E) is a cycle, let E = {(v0, v1), (v1, v2), . . . , (vn−1, vn), (vn, v0)} be the edge set.
Let assume also that we traverse the cycle clockwise if we go from node 0 to node 1, then
from node 1 to node 2 and so on. We now show that the TSPPTW on a cycle can be lead
to the case of the TSPPTW on a line.

If we assume that:

• the traveller cannot wait in a node if he arrives before its release time;

• the traveller can visit each node at most two times;

then it exists a polynomial procedure to find the entire efficient Pareto set. Before to describe
such a procedure, we notice that in a cycle we have four types of feasible subtours:

1. tours going from v0 to vi (i ≥ 0) clockwise and then coming back counter-clockwise;

2. tours going from v0 to vi (i > 0) counter-clockwise and then coming back clockwise;

3. tours going from v0 to vi (i > 0) clockwise, coming back counter-clockwise beyond 0
up to vj (j > i) and finally going back to v0 again clockwise;

4. the whole cycle, only if the maximum value of the time windows is greater than the
sum of all costs.

108 CHAPTER 7. TSPP WITH TIME WINDOWS ON TREES

To compute the entire Pareto efficient set we have to find all feasible solutions for each set of
tours, and then invoke the Efficient Point algorithm to select the non-dominated ones among
them. Then, to compute the tours of type 1, 2 and 3 we can simply apply the Internal Path
algorithm, while for paths of type 4 it is sufficient to apply only the first part of Alg. 15,
considering the cycle as a line with an source and a destination node. Obviously, in the latter
case the algorithm has to be run in both the right- and the left-wise of the cycle. Even if the
computation of type 4 paths takes O(n) time, the complexity for the other types of subtours
is O(n4), thus computing the whole Pareto-efficient frontier for a cycle takes at most O(n4)
time.

7.4 TSPP with Time Windows on a star

In this section we analyze the difficulty in searching Pareto-efficient solutions for TSPPTW
when the metric is a star. Also in this case, it is interesting to notice how the complexity
changes by modifying the starting hypothesis on the graph.

Let us consider the TSPPTW on a star, with arbitrary costs, profits and time windows.
Then the following statement holds true:

Theorem 7.2 The TSPPTW on a star is NP-hard.

Proof. To prove the result, it is enough to notice that the TSPP can be seen as a particular
instance of the TSPPTW, where each time window [ai, bi] associated to node vi has release
time equal to 0 and deadline greater than or equal to the longest feasible tour. Then the
thesis directly follows from Theorem 7.1. �

This result changes if we modify the starting assumptions. In fact, if we assume that all the
edge costs c0,i and all the time windows [ai, bi] are equal for all vi ∈ V , then the search of
Pareto-efficient solutions becomes easier.

We may assume, for simplicity, that the time windows are normalized to [ai/c0,i, bi/c0,i]
and the costs are set to 1, i.e., c0,i = 1 for all (vi, vj) ∈ E. In this case, if we create lists
with all possible permutations of nodes, it follows that in each list the traveller can take the
profit associated to nodes with the k index satisfying the relation:

(2k + 1) ∈ [a, b]

or, equivalently, ⌈
a − 1

2

⌉
≤ k ≤

⌊
b − 1

2

⌋
.

Hence, the efficient solutions can be obtained by visiting those nodes with the largest values
of profit. For this reason, it is needed to sort the nodes in decreasing order of profit values,
and the efficient points can be easily obtained in the following way:

E =

{
(0, 0),

(
p1, 2

(
1 +

⌈
a − 1

2

⌉))
,

(
p1 + p2, 2

(
2 +

⌈
a − 1

2

⌉))
, . . .

}
.

The complexity of the procedure is O
(
⌈(b − a)/2⌉

)
, while the complexity of the ordering

phase is O(n) if the numbers to be ordered are integer. Then, it is possible to compute the
entire efficient solution set in O

(
max

{
n, ⌈(b − a)/2⌉

})
time.

We can apply the same procedure on a star with equal profits and equal time windows,
but arbitrary costs. In fact, if we modify the edge costs and the node profits as described in
Section 5.2.4, the instance of the problem can be driven to the case just explained. Hence:

7.5. CONCLUSIONS 109

Lemma 7.2 Let us consider the TSPPTW on a graph for which one the following properties
holds true:

• all the edges have the same costs and all nodes have the same time window;

• all the nodes have the same profit and the same time window.

Then the TSPPTW can be solved in O
(
max

{
n, ⌈(b − a)/2⌉

})
time.

7.5 Conclusions

In this chapter we analyzed the complexity in the search of Pareto efficient solutions for
the TSPPTW on simple metrics. We showed that the difficulty of the problem changes
significantly with the starting hypothesis. In particular, we showed that the TSPPTW on
a line is polynomially solvable if both the source and the destination nodes do not coincide
and if each of the nodes in the graph can be visited at most once.

The complexity changes if the traveller starts and ends its travel to the source node. In
this case, we develop an algorithm that compute the efficient frontier in polynomial time
under the hypothesis that the traveller cannot wait the release time of a node if he arrives
there too early and he can visit each node at most 2 times. If we relax the restriction on the
maximum number of times that it is possible to visit a node, the problem becomes NP-hard.

If the metric is a cycle, then we showed that the problem can be driven to the line and the
complexity is the same. Finally, in the case of a star we showed that the problem is NP-hard
in general but, under some assumptions on the profits, the costs and the time windows, the
efficient frontier can be computed in pseudo-polynomial time. All the results are summarized
in the following tables:

Origin node 6= Destination Node

Line, internal source O(n2)
Line, external source O(n2)

Origin Node = Destination Node

No Waiting Times No Waiting Times
Unlimited Time Passing

Line, internal source O(n2) NP-hard
Line, external source O(n4) NP-hard
Cycle O(n4) NP-hard
Star, same TW and Costs O

(
max{⌈(b − a)/2⌉, n}

)
O
(
max{⌈(b − a)/2⌉, n}

)

Star, same TW NP-hard NP-hard
Star NP-hard NP-hard

Chapter 8

A dynamic programming approach

to the TSPP solution

Dynamic programming is a general approach used to solve problems in many areas of Math-
ematics and Computer Science. Basically, it can be applied whenever a problem has an
optimal substructure, so solutions to the whole problem can be obtained from solutions of
its subproblems. The book by Bellman [20] gives an extensive introduction into the field and
can still be seen as the most useful general reference.

In this chapter we describe an exact approach to build the efficient Pareto frontier for the
TSPP. The algorithm proposed derives from a dynamic programming approach for the cycle
problem. It recursively searches efficient solutions by exploring subsets of nodes in the graph
G, and associates each found subtour to a node in a search tree T . In this way, the search of
non-dominated solutions can be simply done by comparing values associated to tree nodes.

The chapter is organized as follows. We begin by describing the Cycle Problem and
the procedure used to construct the recursion formula. Then, we depict the code developed
lingering on the basic data structures chosen to model the problem. Finally, we show the
obtained results, and propose some possible future works.

8.1 The Dynamic Programming Approach

The aim of this section is to give a brief description about the recursion procedure developed
to solve the problem. The main idea under the construction of the method derives from a
dynamic programming approach developed for the cycle problem.

The Cycle Problem consists in finding a cycle of minimum cost that passes through every
node of a graph G at most once. A deeper description of the problem can be found in Section
1.4.4. We will show that a procedure that solve the Cycle Problem can be modified to find
solutions for the TSPP.

Therefore, we start with a description of a general dynamic programming approach for
the Cycle Problem, and we extend it to a procedure to solve the TSPP.

8.1.1 Dynamic Programming for Cycle Problem

Let G = (V, E) be a graph, where V = {v0, v1, . . . , vn} is the set of nodes and E the set
of edges. Let ce be the cost associated to each edge e ∈ E. We want to find the cycle of

111

112 CHAPTER 8. DYNAMIC PROGRAMMING APPROACH TO THE TSPP

minimum cost that starts from the source node v0, passes through some nodes exactly once
and returns to the source.

Let S be a node subset in the graph G. We define:

Z(S, i) := the minimum cost of a path that starts from the source v0 and passes through
each nodes in S ⊆ V \ {v0} exactly once, ending in the node vi /∈ S.

Thus, the solution of the cycle problem can be reached through the following recursion:

Initialization: Z(∅, 0) = 0; Z(∅, i) = c0,i for all vi ∈ V

Recursion: Z(S, j) = mini∈S{Z(S \ {i}, i) + ci,j}, for each S ⊆ V and for each vj ∈ V \ S.

In the initialization phase the cost to visit an empty set of nodes is set to 0, while the cost
to visit one node vi is set to the cost of the edge linking the source with vi. The recursion
procedure computes the minimum cost to visit a subset S of the nodes where the last node
that must be visited is fixed. The cost of the state Z(S, j) is equal to the cost of a path that
visits all nodes in S ending in the node vi, increased by the cost of passing through the edge
linking the final node vi to the new ending node vj . In other words, to compute the value
Z(S, j) we have to find a final node vi ∈ S that minimize the sum of Z(S \ {i}, i) and ci,j .

Hence, the optimal solution for the cycle problem can be obtained as follows:

min
S

{Z(S, 0)} for all S ⊆ V \ {v0}

that is, the minimum cost to visit all nodes of the set S where the last visited node is vj ,
added to the cost of returning to the source from vj .

This procedure needs an exponential number of steps to reach the optimal solution value.
The complexity derives from the need to analyze every subset S of the nodes set V . This
makes the approach very inefficient, even for small values of n.

8.1.2 Dynamic Programming for TSPP

The procedure just described can be extended to find all feasible solutions of the TSPP. To
better understand the iterative step and the dominance relationships, we save the information
on the subtours computed during several algorithm iterations in a state. Each state K
contains four parameters:

K := (S, j, p, c)

whose meaning is the following:

• S ⊆ V is the subset of nodes visited in the state;

• j is the index of the last node visited in the optimal path relative to the node set S;

• p is the profit of S, i.e. the sum of profits associated to nodes belonging to S;

• c is the value of the minimum cost needed to visit exactly once all nodes in S.

Thus, each state represents a different path built on a sequence of previous choices. The visit
of a new node in the graph G generates a state transition.

We say that a state K = (S, j, p, c) dominates a state K ′ = (S′, j′, p′, c′) if:
1) the set of destinations S′ is a subset of S;
2) the index j of the last node visited is equal to j′;

8.2. IMPLEMENTATION 113

3) p ≥ p′;
4) c ≤ c′;

and one of the two inequalities 3 and 4 holds strictly. This means that one state K ′ dominates
a state K if there is a path visiting a subset of the nodes in K, ending at the same node,
but with minor cost and larger profit. The possibility to find dominated solutions is clearly
restricted to graph with non-Euclidean metric. Otherwise, the minimum cost associated to
a set of nodes is always greater than the cost of visiting any one of its subsets.

The dynamic programming procedure recalls those explained in the previous section for
the cycle problem. Let us define:

Z(S, j, p) := the value of the minimum cost needed to visit the nodes contained in S with
the restriction that the last node to be visited must be vj ,

where the value of p is simply the sum of profits of nodes in S. It is clear that there
exists a one-to-one relation between each state K and Z(S, j, p). We can describe a state
K = (S, j, p, c) as a function of Z by simply substituting the cost value with that returned
by the function.

The recursion procedure is:

Initialization: Z(∅, 0, 0) = 0;

Recursion: Z(S, j, p) = mini∈S\{j}

{
Z(S \ {j}, i, p − pj) + ci,j

}

The Pareto set will contain all non-dominated pairs of solutions given by:
(
Z(S, j, p), p

)
,

computed during the whole search. The algorithm we use is described in Alg. 17.

Algorithm 17 Dynamic Programming algorithm

• (Initialization) Z(∅, 0, 0) = 0; card = 1;

• while (card ≤ N)

(Recursion)
for each subset S ⊆ V with |S| = card:

Z(S, j, pS) = mini∈S\{j}

{
Z(S \ {j}, i, pS − pj) + ci,j

}
;

end for
card = card + 1;

end while

In the first step the algorithm initializes the value of Z and card, then it iterates on the
cardinality of S. So, for each value from 1 to n, where n is the total number of nodes in the
graph G, the recursion formula is applied to each subset S of V with cardinality equal to
card.

8.2 Implementation

The simplicity of the dynamic programming formulation does not implies an easy implemen-
tation. Furthermore, besides the computational complexity of the approach, the algorithm
performance is strongly determined by the implementation choices.

114 CHAPTER 8. DYNAMIC PROGRAMMING APPROACH TO THE TSPP

Head

node node

node node node node
 next sibling

 previous sibling

 first child last child

Figure 8.1: Structure of a tree in the tree.hh library header.

The generation of a new path depends basically on the solutions previously generated,
so the main difficulty arises from the necessity of handling the relation among the subtours
generated during the several phases of the algorithm.

It is easy to note that the simplicity in computing the pair (cost, profit) associated to a
subtour P derives from the knowledge of the better (cost, profit) values of each subtour that
visits every subset of permuted nodes of P . Hence, the difficulty in the implementation phase
arises from the difficulty of maintaining a link among optimal (cost, profit) values associated
to each subtour and the best pair of solutions (cost′, profit′) related to its subset of nodes.

To simplify the modeling of the problem, we have chosen to describe the several states
generated in the construction of the efficient frontier through a tree structure, where a one-
to-one relation between states and tree nodes is immediately clear. In the next subsections
we accurately describe the tree and the node classes we have developed, their fields, and the
basic methods implemented to efficiently visit the search tree.

8.2.1 The Tree library

In this section we give a brief overview of the C++ library used to create the search tree.
See [133] for a deeper description about the library functionalities.

The tree class in tree.hh is a templated container class in the spirit of the C++ Standard
Template Library (STL). The essential difference between a container with the structure of a
tree and the STL containers is that the latter are linear. Thus, while in the STL containers
one has essentially one possible way to iterate over their elements, this is no longer true for
trees. The tree class organizes the data in form of so-called n-ary trees. In Fig. 8.1 we can
see a tree that can be built through this library. Nodes at the same level of the tree are
called siblings, while nodes that are below a given node and are linked to it through an arc
are called its children. At the top of the tree, there is a set of nodes characterized by having
no parents. The collection of these nodes is called the head of the tree. In our work we
consider a unique node in the tree head, called the root node.

The tree.hh library provides four different iteration schemes, giving the possibility to
visit the tree nodes in five different orderings. To describe these types of ordering, we consider
the tree scheme in Figure 8.2. Possible ways to visit the nodes of this tree are the following:

pre-order: root, A, C, D, B, E, F;

post-order: C, D, A, E, F, B, root;

sibling: for example A, B;

8.2. IMPLEMENTATION 115

ROOT

A B

C D E F

Figure 8.2: Tree scheme

fixed-depth: for example A, B;

leaf: C, D, E, F;

The pre-order and post-order iterators are the default ones, usually defined as Iterator.
The fixed-depth iterator iterates on all nodes at a fixed depth of the tree, while the sibling
iterator iterates on the children of a given node on a fixed depth of the tree. Finally, the leaf
iterator iterates over all leaves (bottom-most) nodes of the tree.

One can also convert an iterator of any type into one of every other kind through a copy
constructor. Moreover, a set of very useful methods allow to append child nodes, or to insert
a node at a given depth of the tree, or to determine indices in a sibling range. These methods
add many functionalities to our algorithms.

8.2.2 The myNode class

To maintain a clear structure of the several states in the dynamic programming approach,
we chose to directly map each subtour visiting a subset of nodes of the graph G, to each
node of the search tree T . In this way, it is easy to maintain a link connecting each state
with those generated from it. The myNode class contains the following fields:

class myNode {

private:

bool removed;

int level;

double cost, profit;

int *S;

int N;

}

The flag removed indicates whether the node is dominated or not by other ones. If the node
is not dominated, then removed is set to false and it must be considered in the search of
new states, otherwise the flag removed is set to true: in this case, the node in the tree T is
fathomed and it will no longer be considered during the search of new solutions belonging to
the efficient frontier. The level field indicates the node depth in the tree T . The field S is
a pointer to an integer array containing the list of nodes belonging to the starting graph G
visited in the current solution. It is important to notice that the number of nodes contained
in the array S is equal to the value contained in the level field; this fact happens because
each level of the search tree corresponds to subtours of the starting graph G with a prefixed
length. The cost and profit values indicate to best reachable values one can get by visiting

116 CHAPTER 8. DYNAMIC PROGRAMMING APPROACH TO THE TSPP

S={0,1} S={0,2} S={0,3}

 S={0}

 S={0,1,2} S={0,1,3} S={0,2,1} S={0,2,3} S={0,3,1} S={0,3,2}

Figure 8.3: field structure S for a tree T .

the nodes contained in the S array. Finally, N represents the total number of nodes in the
starting graph G.

The root node is the first point generated; its fields are initialized in the following way:

removed = false;

level = 0;

cost = 0;

profit = 0;

S = v[0];

where v[0] = v0. The root node corresponds to the first efficient point belonging to the
Pareto frontier. The other nodes in the tree T are recursively generated from it by the
following constructor:

myNode(int level, int *Sparent, int N, double profit, double cost)

The fields of a node K in the tree T are obtained from the fields of its father K ′. Thus, the
level of K is computed by adding 1 to the level of K ′, the S array of node K is initialized
with the S values of K ′, and the same happens with the profit and cost fields. The new
node represents the best way to visit the subgraph considered by the father node plus a new
node not yet visited. Thus, children of a given node in the search tree T cover all nodes of
graph G not yet visited by father node. In Fig. 8.3 we show the field S in the first three
levels of a search tree associated to a complete graph G with N = 4. It is easy to note that
the field S of each node is equal to the field S of its father node plus a new node of graph G
not yet considered in the subpath.

8.2.3 Handling the comparison among subcycles

The main problem in the implementation of the algorithm is the difficulty to maintain a
certain relationship among nodes of the tree T corresponding to the same set of nodes of the
graph G. In fact, at each step of the algorithm, when we must compute the cost associated
to a new node, we have to find the minimum cost of a path visiting those nodes of the graph
G contained in the field S of the considered node. To do this, we need to know the costs
associated to each subpath visiting all subsets of S, to update their cost with the new added
node, and then to compare them to find the cheapest one. This means that we must find, in
the previous level of the tree, the nodes of the search tree corresponding to these subsets of
S. This operation can take exponential time because the number of non-fathomed nodes in
level k can be, in the worst case:

n(n − 1)(n − 2) · · · (n − k + 1).

8.2. IMPLEMENTATION 117

v v

1 2

24

4

2

P=0

P=1

P=2

P=4

0

v
1

2

v
3

Figure 8.4: the graph G.

Hence, in building the level (k + 1) of the tree T , we should perform:

(k + 1)n(n − 1) · · · (n − k + 1)

comparisons just to find the nodes corresponding to the subsets of S. The following example
shows what happens.

Example

Consider the graph G in Fig. 8.4 with N = 4. We proceed with the construction of the tree
T associated to the graph G, through the execution of the dynamic programming algorithm
of section 8.1.2. The root node of tree T corresponds to Z(∅, 0, 0) and its value is 0. From
this node, we can build the first level of the tree T . Nodes of first level correspond to paths
in graph G connecting the source to all the other nodes:

- Z({0, 1}, 1, 1) = 1

- Z({0, 2}, 2, 2) = 2

- Z({0, 3}, 4, 4) = 4

The nodes in the second level of the tree can be easily obtained from the nodes of the first
level:

- Z({0, 1, 2}, 2, 3) = Z({0, 1}, 1, 1) + 2 = 3

- Z({0, 1, 3}, 3, 5) = Z({0, 1}, 1, 1) + 4 = 5

- Z({0, 2, 1}, 1, 3) = Z({0, 2}, 2, 2) + 2 = 4

- Z({0, 2, 3}, 3, 6) = Z({0, 2}, 2, 2) + 2 = 4

- Z({0, 3, 1}, 1, 5) = Z({0, 3}, 4, 4) + 4 = 8

- Z({0, 3, 2}, 1, 6) = Z({0, 3}, 4, 4) + 2 = 6

We cannot fathom any node at this level: in fact, there are no sets S in Level 1 that are
also subsets of S′ at Level 2 with the same ending node. At this point the tree T has the
structure shown in Fig. 8.5.

To build the third level of the tree T we need to compute the following values of the
function Z:

118 CHAPTER 8. DYNAMIC PROGRAMMING APPROACH TO THE TSPP

S={0,1}

S={0}

S={0,2}
S={0,3}

C=0

P=4

 P=3 P=5

C=2 C=4

 P=3 P=6C=3 C=5 C=4 C=4

 P=2 P=1 C=1

 P=0

S={0,1,2} S={0,1,3} S={0,2,1} S={0,2,3} S={0,3,1} S={0,3,2}

 P=5 C=8

P=6 C=6

Figure 8.5: Fields of the first two levels in the tree T .

- Z({0, 1, 2, 3}, 3, 6) = min{Z({0, 1, 2}, 2, 3) + 2, Z({0, 2, 1}, 1, 3) + 4} = 5

- Z({0, 1, 3, 2}, 2, 6) = min{Z({0, 1, 3}, 3, 5) + 2, Z({0, 3, 1}, 1, 5) + 4} = 7

- Z({0, 2, 1, 3}, 3, 6) = min{Z({0, 2, 1}, 1, 3) + 4, Z({0, 1, 2}, 2, 3) + 2} = 5

- Z({0, 2, 3, 1}, 1, 6) = min{Z({0, 2, 3}, 3, 6) + 4, Z({0, 3, 2}, 2, 6) + 2} = 8

- Z({0, 3, 1, 2}, 2, 6) = min{Z({0, 3, 1}, 1, 5) + 2, Z({0, 1, 3}, 3, 5) + 2} = 7

- Z({0, 3, 2, 1}, 1, 6) = min{Z({0, 3, 2}, 2, 6) + 2, Z({0, 2, 3}, 3, 6) + 4} = 8

Thus, to compute the Z-value of each node in Level 3 we found the tree nodes in Level 2
corresponding to the subsets of their S field, we updated them with the new node and we
compared the obtained costs. The final tree is represented in Fig. 8.6.

S={0,1}

S={0}

S={0,2}
S={0,3}

C=0

P=4

 P=3 P=5

C=2 C=4

 P=3 P=6C=3 C=5 C=4 C=4

 P=2 P=1 C=1

 P=0

 P=5 C=8

P=6 C=6

S={0,1,2} S={0,1,3} S={0,2,1} S={0,2,3} S={0,3,1} S={0,3,2}

S={0,1,2,3} S={0,1,3,2} S={0,2,1,3} S={0,2,3,1} S={0,3,1,2} S={0,3,2,1}

 P=7 C=5 P=7 C=7 P=7 C=8 P=7 C=10 P=7 C=10 P=7 C=8

Figure 8.6: Fields of the first three levels in the tree T .

At this point it is possible to compare the set of feasible pairs (cost, profit) computed in
Level 3 and the corresponding ones in Level 2, in order to remove those nodes corresponding
to dominated solutions. In this specific case, we can remove two nodes in Level 2: in fact,
checking the (profit,cost) solutions corresponding to the following S:

- S = {0, 1, 3} compared to S = {0, 1, 2, 3};

- S = {0, 3, 1} compared to S = {0, 3, 2, 1}.

8.2. IMPLEMENTATION 119

We can notice how a different cost is related to an equal value of the profit. So, it is
convenient to choose the path that, visiting the same nodes, gains better results. Even in
this small problem instance, a high number of comparison are needed in the several phases
of the algorithm. It is clear that they grows exponentially with the size of the problem. To
limit them, we developed an approach to generate and classify tree nodes.

In the next section we will describe this approach, showing also the great difference in
terms of performances against the basic procedure.

8.2.4 Architectural choices

As we mentioned before, the complexity in the implementation of the algorithm depends,
among other things, on the difficulty to find tree nodes corresponding to different permuta-
tions of the nodes contained in S. A good improvement of the performances can be obtained
if we are able to find such a connection during the tree building phase. So, to keep track of
the S fields during the construction of the tree, we decided to handle the different permuta-
tions of the nodes belonging to a specific path through a matrix, called PermInd. The role
of this matrix is to make easier the computing of the recursion procedure for each subset
S of the graph nodes. Each row of PermInd contains pointers to nodes of the search tree
T that correspond to paths visiting the same subset S of the graph nodes. The use of this
matrix allows to compute the optimal value of Z(S, j, p) in linear time. In fact, it is enough
to consider the corresponding row of PermInd just once, computing the costs associated to
each possible solution and then take the minimum.

A new PermInd matrix is allocated at each level of the search tree T and deallocated
at the end of its construction. When a new tree node is built, i.e., when the constructor is
invoked, the pointer to the node is stored in PermInd. This operation takes a large amount
of time when the number of children in a given level becomes considerable, but the time
required to fill this matrix is anyway shorter than the time needed to search each time the
nodes of the tree T corresponding to a subset of the given set S.

The total number of rows of the PermInd matrix will be the number of possible different
permutations of k nodes in the graph G, where k represents the level of the search tree that
must be analyzed. So, in each level k the number of PermInd rows will be:

(
N − 1

k

)
k

where N − 1 counts all nodes in the graph G except the source. Thus, each row of PermInd
will contain a pointer to the tree nodes corresponding to permutations of the nodes in subsets
of S \ {j} with ending node vj , while the number of columns of the PermInd matrix will be
k − 1.

The simpler way to fill PermInd is the following: when a new tree node is generated, a
search in the PermInd matrix begins. The first element of each row in PermInd is checked
and values contained in S relative to the newly created node are compared to the node list
S pointed by the entry of the matrix. Then, if the two subsets are different permutations
of the same graph nodes with an equal final node, then the pointer to the node is copied
in the first free column position of the PermInd row selected; otherwise, the search through
the matrix continues. If there are no rows containing permutations of the given set of nodes,
then the pointer to the node is copied in the first available free row.

We can notice that the time needed to fill the matrix with pointers to the children at level
k in the search tree T can be exponential. An upper bound to the number of comparisons

120 CHAPTER 8. DYNAMIC PROGRAMMING APPROACH TO THE TSPP

to make before to fill the entire matrix can be computed by assuming to visit each time the
entire matrix before to find the exact permutation of the values in S. The maximum number
of children that could be created at level k is:

(
n

k

)
k!

and so, the maximum number of comparisons becomes:

(
N − 1

k

)
kn(n − 1) · · · (n − k + 1)

that is exponential. It must be observed that a mathematical law that would give an exact
connection among the several ways to visit the nodes could avoid the direct search of these
correspondences in the PermInd matrix, thus reducing the computational time.

We haven’t found such a type of law, yet, but we noticed that by organizing the pointers
insertions in the PermInd matrix, the number of comparisons reduces considerably. For that,
we worked on the main characteristic of nodes contained in S, i.e. the final index; in fact, in
each row of the structure S we find the permutation of the same nodes, with the same ending
node. Hence, if the graph G contains N nodes, (N − 1 if we do not count the root), we have
at most N −1 possible final nodes. So, we decided to sort the PermInd rows by the final node
of S. In this way, we have pointers to subpaths ending with node 1 in the first rows, followed
by pointers to subpaths ending with node 2, and so on. Thus, when we encounter subpaths
S ending with node vk, and we must search PermInd rows corresponding to it, we have to
look for the possible permutations only in the subset of rows pointing to fields S ending with
the node vk. The number of PermInd rows corresponding to each possible final node at level
z is:

n!

(n − z)!
.

Another little trick consists in keeping track of the number of nonzero elements in each
row of PermInd. This can be important to reduce the time needed to find the exact column
position where to copy the pointer once the row is found. So, in place of scanning the elements
of each PermInd row until the first free position is found, we create a matrix IndRowCol, with
N − 1 rows and as many columns as those of PermInd: it gives the column position where a
new element can be inserted once the row is selected and we update it when it happens.

Moreover, we observed that all children of a given tree node are inserted in the same
column of the PermInd matrix. This fact derives from a specific rule that correlates the
permutation number. We show this in the next example.

Example

Let G = (V, E) be a complete graph with 5 nodes. To build the Pareto-efficient frontier we
have to construct and explore the tree T , that at the end will be composed of four levels.
Following what is explained in the previous discussion, to each tree level is associated a
different PermInd matrix, assembled during the initialization of the nodes. In Fig. 8.7 we
can see the four PermInd matrices generated for a particular instance of the problem.

In each row of the four matrices we can find the S fields of the pointed nodes, that
represent the node paths in graph G associated to tree nodes. Thus, each row contains
feasible candidates for the efficient frontier. Once PermInd is created, the computation of the
values of Z can be easily performed by a search of the better path in each row of the matrix.

8.3. COMPUTATIONAL RESULTS 121

0 1
0 2
0 3
0 4

0 2 1 0 2 3 1 0 3 2 1
0 3 1 0 2 4 1 0 4 2 1
0 4 1 0 3 4 1 0 4 3 1

0 3 4 0 2 3 4 0 3 2 4
0 2 4 0 1 3 4 0 3 1 4
0 1 4 0 1 2 4 0 2 1 4
0 4 3 0 2 4 3 0 4 2 3
0 2 3 0 1 4 3 0 4 1 3
0 1 3 0 1 2 3 0 2 1 3
0 4 2 0 3 4 2 0 4 3 2
0 3 2 0 1 4 2 0 4 1 2
0 1 2 0 1 3 2 0 3 1 2

0 2 3 4 1 0 2 4 3 1 0 3 4 2 1
0 1 3 4 2 0 4 1 3 2 0 4 3 1 2
0 2 1 4 3 0 2 4 1 3 0 4 1 2 3
0 2 1 3 4 0 2 3 1 4 0 3 1 2 4

 LEVEL 1

 LEVEL 2 LEVEL 3

 LEVEL 4

 connections between parents and children nodes

Figure 8.7: Example of S fields pointed by the PermInd matrix in a graph with 5 nodes.

Let us suppose that the first two levels of the search tree T have been created. Then let
us consider the tree node corresponding to the set S = {0, 1, 3}. The children of this node,
stored in the fields S, are the following:

• 0, 1, 3, 2;

• 0, 1, 3, 4.

We noticed that, once the column position of the first child in the PermInd matrix is found,
the position of the other children follows easily. For example, the pointer to the child corre-
sponding to S = {0, 1, 3, 4} will be in the same column of the child pointer corresponding to
{0, 1, 3, 2}, but in the row containing permutations ending with node 4. This behaviour can
be observed in Fig. 8.7: in the third level of PermInd, we can see that children associated to
each node of level 2 are always placed in the same column. This considerably reduces the
computational time: in fact, if we know that the pointer corresponding to S = {0, 1, 3, 4} is
in column 2 and that the first w rows corresponding to permutations with final node 4 are
already filled, then we can begin the search of the position where to store the new datum
from the row w + 1.

With these tricks, the computational time is reduced by factor of n.

8.3 Computational Results

To evaluate the performances of the dynamic programming approach, we implemented the
algorithm in C++ and we ran it on a AMD Opteron processor at 2.4 GHz.

We chose to analyze randomly generated instances with different numbers of nodes and
the smaller instances analyzed in section 6.6.2. This choice is because the CPU time needed
to solve a particular instance depends only on the dimension of the starting graph and not
on the costs and profits values. This happens because the computations required inside the
procedure consist in elementary operations (sums, differences, comparisons) among numerical
values, that take constant time, and the number of these operations depends linearly on the

122 CHAPTER 8. DYNAMIC PROGRAMMING APPROACH TO THE TSPP

dimension of the graph. Hence, the key factor is not the order of magnitude of costs and
profits, but rather the dimension of the graph G.

The first type of instances considered in our tests have the following features:

1. point coordinates are generated in the square [0, 500] × [0, 400] according to a uniform
distribution, and the routing cost are defined by the Euclidean distances among these
points;

2. profits are randomly generated in the interval [1, 50].

The same instances are studied in the case of unitary profits. We consider graphs with
number of nodes ranging from 10 to 20. In the tables we report the average time to solve the
problem instances. We computed the average over 10 instances. In the columns we report
the following information:

N : the number of nodes in the graph;

|SE |: the number of computed efficient points;

CPU time: the average CPU time needed to compute the entire Pareto frontier, with the
procedures described in section 8.2;

CPU time basic: the average CPU time needed to find the entire Pareto frontier, computed
in the simplest way, i.e., without any tricks during the filling of the PermInd matrix.

Times are expressed in CPU seconds.

Unitary Profits

N |SE | CPU time CPU time basic

10 10 0 1.8
12 12 3 7
14 14 95 157
16 16 1815 3583
18 18 21402 40623
20 20 42347 69935

Random Profits

N |SE | CPU time CPU time basic

10 25 0 2
12 30 3 8
14 40 92 156
16 58 1806 3540
18 80 21315 40750
20 126 42430 70024

In the first table we show the results computed when the profits are unitary, in the second
one we solved the same instances with random profits. It is interesting to note the meaningful
difference between the time needed to solve the instances when the accesses to the PermInd

matrix are optimized and when they are not. This is important because it shows how much
little devices in the procedure implementation can improve the performances. We can also
notice that profits values do not overload the CPU time and thus the computational time

8.4. CONCLUSIONS 123

depends only on the cardinality of the graph nodes set. This derives from the structure of
the procedure. This is important because it allows to estimate in advance the time needed to
find the entire Pareto-efficient frontier for every instance, independently on both the profits
and the costs values.

In the following table we report the results related to some TSP library instances analyzed
in Chapter 6.

instance profit type |SE | CPU time CPU time basic

1 14 103 165
burma14 2 59 101 164

3 70 102 165

1 16 2001 3602
ulysses16 2 102 2005 3601

3 92 1998 2999

It is important to see how the computational time remains invariant with all profit sets, even
if the performances are considerably worse with respect to those obtained with the branch-
and-cut approach. Thus, each improvement to the procedure takes to a constant reduction
of the computational time for every instance of the same size.

8.4 Conclusions

In this chapter we presented a dynamic programming approach to find the entire Pareto-
efficient frontier for the TSPP. If we analyze the procedure just described from a computa-
tional point of view, we can notice that the performances are considerably worse with respect
to the branch-and-cut approach. The benefit of this type of method consists in the simplicity
of the iteration formulas. In fact, as we showed before, all operations required inside the code
are elementary. The long time needed to reach the solution is motivated by the large number
of elementary operations to do: thus, the performances are proportional to the number of
nodes of the starting graph. Anyway, the time improvement we get by optimizing the data
handling is evident and allows us to expect that additional code optimization can further
improved the procedure performances.

Moreover, the proposed approach can be modified to be used as a heuristic approach.
For example, if we drop the dominated nodes at each level of the search tree, comparing
only cost and profit fields and not considering the set S, we obtain an upper bound of the
Pareto-efficient frontier. On the contrary, if we create tree nodes by always choosing the
shortest path in the graph, thus allowing to visit each node more than once, and at the end
we drop the cycles inside the paths found, we obtain a lower bound of the Pareto-efficient
frontier. In this way, it could be possible to exploit the simplicity of the recursion formula
and develop a procedure that find an approximated solution subset in a reasonable time.

Conclusions

In this dissertation we analyzed, under several points of view, the Traveling Salesman Prob-
lem with Profits, that is a generalization of the well known Travelling Salesman Problem.
The inspiring idea behind this problem was the search of flexible and advanced algorithmic
approaches to model increasingly complex network configurations. In particular this prob-
lem can be immediately applied to the problem of optimizing the ways to send medical data
through a local network (see Chapter 4).

We decided to study the problem from a bi-objective point of view. At the time this
work is written, only very few approaches are known to solve the TSPP from a bi-objective
point of view, in particular only one work solves exactly the problem, while the remaining
literature adresses the topic through different types of heuristic.

We started by giving in the first three Chapters, an overview of the state-of-the-art about
multiobjective optimization and on the available resolution approaches for the TSPP. Then,
in the chapters from 4 to 8 we analyzed the TSPP under several points of view, developing
exact and approximated algorithms.

In particular, in Chapter 4 we describe a feasible application of this problem in the
Medical field. In fact, thanks to modern information technology, the need to share medical
informations about clinical cases between different hospitals is emerging. For this reason, if
we consider the network that links together the various hospitals’ departments as a graph,
then an optimal solution of the Traveling Salesman Problem with Profits is the best path on
which to send informations requests to get the best medical responsed as soon as possible.
This type of study could lead to the development of new techniques for consultations and
medical diagnoses.

In Chapter 5, the Traveling Salesman Problem with Profits is studied from a bi-objective
point of view on graphs with a tree metric. We considered three problems: finding all
efficient points; finding all extreme supported efficient points; finding one efficient point,
corresponding to a given combination of the two objectives. For each problem, we developed
efficient algorithms. Moreover, we analyzed the problem on some simple metrics.

In Chapter 6 we developed an algorithm that compute the entire exact efficient frontier for
the TSPP problem using cutting planes inside a branch-and-cut approach. We implemented
this algorithm and we analyzed its performances. The feature of our approch is in the way
the points are generated. In fact, we compute the efficient frontier in a distributed way,
and it can be useful in the development of approaches that search an approximation of the
efficient frontier. In the last part of the chapter we introduced some algorithms of this type,
built on the same idea of the exact approach, that return an ǫ-approximation of the efficient
frontier.

In Chapter 7 we analyzed the complexity of the search of Pareto-efficient solutions for
the TSPPTW on simple metrics. In particular we studied how little changes in the starting
hypotesys of the problem can significantly change its complexity. For all studied metrics we

125

126 CHAPTER 8. DYNAMIC PROGRAMMING APPROACH TO THE TSPP

developed algorithms that find the exact efficient frontier.
Finally, we presented a Dynamic Programming approach to find the entire Pareto-efficient

frontier for the Traveling Salesman Problem with Profits. If we analyze the procedure just
described from a computational point of view, we can notice that the performances are
considerably worse with respect to the branch-and-cut approach. The benefit of this type of
method consists in the simplicity of the iteration formulas. The interest that can arise in this
kind of procedure is on its feasible extensions. In fact, the simplicity of the iteration formula
lends itself to be used, with some modifications, as a heuristic approach or as an internal
part of an another procedure.

Bibliography

[1] M.J. Alves and J. Cĺımaco. Using cutting planes in an interactive reference point
approach for multi-objective integer linear programming problems. European Journal
of Operational Research, 117:565–577, 1999.

[2] C. Archetti, D. Feillet, A. Hertz, and M.G. Speranza. The capacitated team orienteering
and profitable tour problems. Journal of the Operational Research Society, 60:831–842,
2009.

[3] Br. Arnd, T. Rheinisch-Westfalische, and A. Hochschule. Solving the orienteering
problem through branch-and-cut. INFORMS Journal on Computing, 1998.

[4] N. Ascheuer, M. Fischetti, and M. Grötschel. Solving asymmetric travelling salesman
problem with time windows by branch-and-cut. Mathematical Programming, 90:475–
506, 2001.

[5] I. Averbakh and O. Berman. A heuristic with worst-case analysis for minimax routing
of two traveling salesmen on a tree. Discrete Applied Mathematics, 68:17–32, 1996.

[6] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. New approximation guarantees for
minimum-weight k-trees and prize collecting salesmen. SIAM J. Comput., 28(1):254–
262, 1998.

[7] A. Bachem and M. Grotschel. New aspects of polyhedral theory. Modern Applied
Mathematics,Optimization and Operations Research, pages 51–106, 1981.

[8] T. Bagchi, J. Gupta, and C. Sriskandarajah. A review of TSP based approaches for
flowshop scheduling. European Journal of Operational Research, 169:816–854, 2006.

[9] K.R. Baker. Introduction to sequencing and scheduling. Addison-Wesley, Reading,
MA, 1974.

[10] K.R. Baker. Elements of sequencing and scheduling. Amos Tuck School of Business
Administration, Dartmouth College, Hanover, NH, 1992.

[11] E. Balas. The prize collecting traveling salesman problem. Networks, 19:621–636, 1989.

[12] E. Balas. On the cycle polytope of a directed graph. GSIA, Carnegie Mellon University,
Pittsburg, 1993.

[13] E. Balas. The prize collecting traveling salesman problem: II. Polyhedral results.
Networks, 17:1001–1018, 1995.

127

128 BIBLIOGRAPHY

[14] E. Balas. New classes of efficiently solvable generalized traveling salesman problems.
Annals of Opererations Research, 86:529–558, 1999.

[15] E. Balas and G. Martin. Roll-a-round: Software package for scheduling the rounds of
a rolling mill. Balas and Martin Associates, 1985.

[16] E. Balas and M. Oosten. On the cycle polytope of a directed graph. Networks, 36:34–46,
2000.

[17] E. Balas and N. Simonetti. Linear time dynamic programming algorithms for new
classes of restricted TSPs: a computational study. INFORMS Journal on Computing,
13:56–75, 2001.

[18] M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser. Network routing. Hand-
books in Operations Research and Management Science, 8, 1995.

[19] P. Bauer. The cycle polytope: Facets. Mathematics of Operations Research, 22:110–
145, 1997.

[20] R. E. Bellman. Dynamic programming. Dover Publications, 2003.

[21] J. Bérubé, M. Gendreau, and J. Potvin. An exact epsilon-constraint method for bi-
objective combinatorial optimization problems: Application to the traveling salesman
problem with profits. European Journal of Operational Research, 194:39–50, 2009.

[22] D. Bienstock, M. Goemans, D. Simchi-Levi, and D. Williamson. A note on the prize
collecting traveling salesman problem. Mathematical Programming, 59:413–420, 1993.

[23] J. Blazewicz, K. Ecker, G. Schmidt, and J. Weglarz. Scheduling in computer and
manufacturing systems. Springer-Verlag, Berlin, 1993.

[24] P. Brucker. Scheduling algorithms. Springer, Berlin, Germany, 1998.

[25] R. Burkard, M. Dell’Amico, and S. Martello. Assignment problems. SIAM, 2009.

[26] A. Campbell and M. Savelsbergh. A decomposition approach for the inventory routing
problem. Transportation Science, 38:488–502, 2004.

[27] R.L. Carraway, T.L. Morin, and H. Moskovitz. Generalized dynamic programming for
multicriteria optimization. European Journal of Operational Research, 44:95–104, 1990.

[28] B. Chandran and S. Raghavan. Modeling and solving the capacitated vehicle routing
problem on trees. In B. Golden, S. Raghavan, and E. Wasil, editors, The Vehicle
Routing Problem, pages 239–261. Springer, 2008.

[29] I.M. Chao, B.L. Golden, and E.A. Wasil. A fast and effective heuristic for the orien-
teering problem. European Journal of Operational Research, 88(3):475–489, 1996.

[30] A.A. Chaves and L.A. Nogueira Lorena. Hybrid heuristics with detection of promising
areas for the prize collecting travelling salesman problem. Computer Science, 4972:123–
134, 2008.

[31] K. Chen and S. Har-Peled. The orienteering problem in the plane revisited. Proceedings
of the twenty-second annual symposium on Computational geometry, Sedona, Arizona,
USA, pages 247–254, 2006.

BIBLIOGRAPHY 129

[32] N. Christofides, A. Mingozzi, and P. Toth. State space relaxation procedures for the
computation of bounds to routing problems. Networks, 11:145–164, 1981.

[33] J.C.M. Climaco and Martins E.Q.V. A bicriterion shortest path algorithm. European
Journal of Operational Research, 11:399–404, 1982.

[34] C.A. Coello. List of references on evolutionary multi-objective optimization.
http://www.lania.mx/ ccoello/EMOO/EMOObib.html, 2000.

[35] S. Coene, F. Spieksma, C. Filippi, and E. Stevanato. The traveling salesman problem
on trees: balancing profits and costs. under submission, 2009.

[36] S. Coene and F. C. R. Spieksma. Profit-based latency problems on the line. Operations
Research Letters, 36:333–337, 2007.

[37] E.G. Coffman. Computer and job-shop scheduling theory. Wiley, New York, 1976.

[38] E. Coiera. Guida all’informatica medica, internet e telemedicina. Il Pensiero Scientifico
Editore, 1999.

[39] R.W. Conway, W.L. Maxwell, and L.W. Miller. Theory of scheduling. Addison-Wesley,
Reading, MA, 1967.

[40] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
Second Edition. MIT Press and McGraw-Hill, 2001.

[41] C. Coullard and W.R. Pulleyblank. On cycle cones and polyhedra. Linear Algebra
Applied, 114/115:613–640, 1989.

[42] P. Cowling. A flexible decision support system for steel hot rolling mill scheduling.
Computers and Industrial Engineering, 45:307–321, 2003.

[43] P. Czyzak and A. Jaszkiewicz. A multi-objective metaheuristic approach to the lo-
calization of a chain of petrol stations by the capital budgeting model. Control and
Cybernetics, 25:177–187, 1996.

[44] P. Czyzak and A. Jaszkiewicz. Pareto simulated annealing - a metaheuristic technique
for multiple objective combinatorial optimization. Journal of Multi-Criteria Decision
Analysis, 7:34–47, 1998.

[45] H.M. Dathe. Zur lsung des zuordnungsproblems bei zwei zielgr en. zeitschrift fur.
Operations Research, 22:105–118, 1978.

[46] Deb, Pratap, Agarwal, and Meyarivan. A fast and elitist multi-objective genetic algo-
rithm. NSGA-II, IEEE Trans Evol Comput., 6(2):182–97, 2002.

[47] M. Dell’Amico, F. Maffioli, and A. Sciomachen. A lagrangian heuristic for the prize
collecting travelling salesman problem. Annals of Operations Research, 81(0):289–306,
1998.

[48] M. Dell’Amico, F. Maffioli, and P. Värbrand. On prize-collecting tours and the asym-
metric traveling salesman problem. International Transactions in Operational Research,
2:297–308, 1995.

130 BIBLIOGRAPHY

[49] M. Dell’Amico, F. Maffioli, and P. Värbrand. A lagrangian heuristic for the prize-
collecting travelling salesman problem. Annals of Operation Research, 81:289–305,
1998.

[50] M. DellAmico, F. Maffioli, and S. Martello. Annotated bibliographies in combinatorial
optimization. Wiley, Chichester, 1997.

[51] J.A. Diaz. Solving multi-objective transportation problems. Ekonomicko Mathematicky
Obzor, 14:267–274, 1978.

[52] R. Diestel. Graph theory. Springer-Verlag Heidelberg, new York, 2005.

[53] Y. Dumas, J. Desrosiers, E. Gelinas, and M. M. Solomon. An optimal algorithm for
the travelling salesman problem with time windows. Operations Research, 43:367–371,
1995.

[54] P.F. Dutot, L. Eyraud, G. Mounié, and D. Trystram. Bi-criteria algorithm for schedul-
ing jobs on cluster platforms. SPAA, pages 125–132, 2004.

[55] T. E. Easterfield. A combinatorial algorithm. J. London Math Soc., 21:219–226, 1946.

[56] M. Ehrgott. Integer solutions of multicriteria network flow problems. Investigacao
Operacional, 19:229–240, 1999.

[57] M. Ehrgott. Approximation algorithms for combinatorial multicriteria optimization
problems. International Transactions in Operational Research, 7:5–31, 2000.

[58] M. Ehrgott. Multicriteria Optimization. Springer, 2005.

[59] M. Ehrgott and X. Gandibleux. Multi-objective combinatorial optimization. Ehrgott,
M. Gandibleux, X.(Eds.), Multiple Criteria Optimization:State of the Art Annotated
Bibliographic Surveys, Kluwer’s International Series in Operations Research and Man-
agement Science, 52:369–444, 2002.

[60] A. El-Houssaine, R. Birger, and H. Van Landeghem. Modeling inventory routing prob-
lems in supply chains of high consumption products. European Journal of Operational
Research, 169:1048–1063, 2006.

[61] Emelichev and Perepelitsa. Complexity of vector optimization problems on graphs.
Optimization, 22:903–918, 1991.

[62] S. Engevall, M. Göthe-Lundgen, and P. Värband. The heterogeneous vehicle-routing
game. Transportation Science, 38:71–85, 2004.

[63] T. Erlebach, H. Kellerer, and U. Pferschy. Approximating multi-objective knapsack
problems. Management Science, 48:1603–1612, 2002.

[64] D. Feillet, P. Dejax, and M. Gendreau. The profitable arc tour problem: Solution with
a branch-and-price algorithm. Transportation Science, 39:539–552, 2005.

[65] D. Feillet, P. Dejax, and M. Gendreau. Traveling salesman problems with profits.
Transportation Science, 39:188–205, 2005.

BIBLIOGRAPHY 131

[66] M. Fischetti, J.J. Salazar, and P. Toth. Solving the orienteering problem through
branch and cut. Informs Journal on computing, Spring, 10(2):133–148, 1998.

[67] M. Fischetti and P. Toth. An additive approach for the optimal solution of the prize
collecting traveling salesman problem. In B. L. Golden, A. A. Assad, (eds.) Vehicle
Routing: Methods and Studies, Elsevier Science Publishers, pages 319–343, 1988.

[68] R.J. Gallagher and O.A. Saleh. Constructing the set of efficient objective values in
linear multiple objective transportation problems. European Journal of Operational
Research, 73:150–163, 1994.

[69] X. Gandibleux, N. Mezdaoui, and A. Freville. A tabu search procedure to solve multi-
objective combinatorial optimization problems. In: Caballero R., Ruiz F. and Steuer
R. (eds.), Advances in Multiple Objective and Goal Programming, Lecture Notes in
Economics and Mathematical Systems, Springer Verlag, 455:291–300, 1997.

[70] M. Gendreau, A. Hertz, and G. Laporte. A tabu search heuristic for the vehicle routing
problem. Management Science, 40:1276–1290, 1994.

[71] M. Gendreau, G. Laporte, and F. Semet. A branch-and-cut algorithm for the undirected
selective traveling salesman problem. Networks, 32:263–273, 1998.

[72] M. Gendreau, G. Laporte, and F. Semet. A tabu search heuristic for the undi-
rected selective traveling salesman problem. European Journal of Operational Research,
106:539–545, 1998.

[73] M. Gendreau, J.Y. Potvin, and A. Nabila. An exact algorithm for a single-vehicle rout-
ing problem with time windows and multiple routes. European Journal of Operational
Research, 178:755–766, 2007.

[74] D. H. Gensch. An industrial application of the traveling salesman subtour problem.
AIIE Trans., 10(4):362–370, 1978.

[75] A. M. Geoffrion. Proper efficiency the theory of vector maximization. Journal of
Mathematical Analysis and Application, 2:618–630, 1968.

[76] F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers, Boston, MA,
1997.

[77] F. Glover, E. Taillard, and D. de Werra. A user guide to tabu search. Annals of
Operations Research, 41:3–28, 1993.

[78] M. Goemans and D. Williamson. General approximation technique for constrained
forest problems. 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages
307–315, 1992.

[79] Golberg and Richardson. Genetic algorithm with sharing for multimodal function op-
timization. In: Genetic algorithms and their applications: proceedings of the second
international conference on genetic algorithms, Camridge, MA, USA:Lawrence Erl-
braum Associates, 1987.

[80] A. Goldberg and R. Tajan. A new approach to the maximum flow problem. Journal
of the Association for Computing Machinery, 35(4):921–940, 1988.

132 BIBLIOGRAPHY

[81] B. L. Golden, A. Assad, and R. Dahl. Analysis of a large scale vehicle routing problem
with an inventory component. Large Scale Systems, 7:181–190, 1984.

[82] B. L. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval Research
Logistics, 34:307–318, 1987.

[83] B.L. Golden, Q. Wang, and Liu. Multifaceted heuristic for the orienteering problem.
Naval Research Logistic, 35:359–366, 1988.

[84] M. Göthe Lundgen, K. Jornsten, and P. Värbrand. On the nucleolus of the basic vehicle
routing game. Mathematical programming, 72:83–100, 1996.

[85] M. Göthe-Lundgen, F. Maffioli, and P. Värbrand. A lagrangian decomposition approach
for a prize collecting traveling salesman type problem. Technical Report LiTH-MATH-
R-1995-10, Linköping Institute of Technology, Sweden, 1995.

[86] B. Grunbaum. Convex polytopes. Wiley, London, 1967.

[87] H.W. Hamacher and G. Ruhe. On spanning tree problems with multiple objectives.
Annals of Operations Research, 52:209–230, 1994.

[88] P. Hansen. Bicriterion path problems. In: Fandel G, Gal T (eds) Multiple criteria
decision making theory and application, Lecture Notes in Economics and Mathematical
Systems, Springer, Berlin Heidelberg New York, 177:109–127, 1979.

[89] M. Haouari, Chaouachi J., and Siala. A hybrid lagrangian genetic algorithm for the
prize collecting steiner tree problem. Computers and Operations Research, 33:1274–
1288, 2006.

[90] R. Hartley. Vector optimal routing by dynamic programming. In: Serafini P (ed.),
Mathematics of multi-objective optimization, CISM International Centre for Mechani-
cal Sciences - Courses and Lectures, Springer, Wien, 289:215–224, 1985.

[91] C. Helmberg. The m-cost atsp. Lecture Notes Comput. Sci., 1610:242–258, 1999.

[92] K. Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman
heuristic. European Journal of Operational Research, 126:106–130, 2000.

[93] J.H. Holland. Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor, 1975.

[94] J. A. Hoogeveen. Single-machine bicriteria scheduling. Doctoral Thesis, 1992.

[95] J. A. Hoogeveen. Multicriteria scheduling. European Journal of Operational Research,
167:592–623, 2005.

[96] J.P. Ignizio. Goal programming and extensions. Lexington Books, Lexington, KY, 1976.

[97] H. Isermann. Proper efficiency and the linear vector maximum problem. Operations
Research, 22:189–191, 1974.

[98] E. Jeannot, É Saule, and D. Trystram. Bi-objective approximation scheme for
makespan and reliability optimization on uniform parallel machines. EuroPar 2008,
Las Palmas, Spain, pages 877–886, 2008.

BIBLIOGRAPHY 133

[99] D. S. Johnson and K. A. Niemi. On knapsacks, partitions, and a new dynamic pro-
gramming technique for trees. Mathematics of Operations Research, 8:1–14, 1983.

[100] N. Jozefowiez, F. Glover, and M. Laguna. Multi-objective meta-heuristics for the trav-
eling salesman problem with profits. Journal of Mathematical Modeling and Algorithms,
7:177–195, 2008.

[101] N. Jozefowiez, F. Semet, and E. Talbi. Multi-objective vehicle routing problems. Eu-
ropean Journal of Operational Research, 189:293–309, 2008.

[102] S. N. Kabadi and A. Punnen. Prize-collecting traveling salesman problem. INFORMS
Washington Conf., Washington, D.C., 1996.

[103] Y. Karuno, H. Nagamochi, and T. Ibaraki. Vehicle scheduling on a tree with release
and handling times. Annals of Operations Research, 69:193–207, 1997.

[104] S. Kataoka and S. Morito. An algorithm for the single constraint maximum collection
problem. J. Oper. Res. Soc. Japan, 31(4):515–530, 1988.

[105] S. Kataoka, T. Yamada, and S. Morito. Minimum directed 1 subtree relaxation for
score orienteering problem. European Journal of Opererational Research, 104:139–153,
1998.

[106] R. Keeney and H. Raiffa. Decision with multiple objectives. New York: Cambridge
University Press, 1993.

[107] C. P. Keller. multi-objective routing through space and time: The mvp and tdvp
problems. Unpublished doctoral dissertation Department of Geography, The University
of Western Ontario, London, Ontario, Canada, 1985.

[108] C. P. Keller. Algorithms to solve the orienteering problem: a comparison. European
Journal of Operational Research, 41:224–231, 1989.

[109] C. P. Keller and M. Goodchild. The multi-objective vending problem: A generalization
of the traveling salesman problem. Environ. Planning B: Planning Design, 15:447–460,
1988.

[110] D. Knuth. The art of computer programming: Fundamental algorithms. Third Edition.
Addison-Wesley, pages 308–423, 1997.

[111] A.A. Konaka, W. David, A. Coitb, and C. Smith. Multi-objective optimization using
genetic algorithms: A tutorial. Reliability Engineering and System Safety, 91:992–1007,
2006.

[112] P. Korhonen, S. Salo, and R.E. Steuer. A heuristic for estimating nadir criterion values
in multiple objective linear programming. Operations Research, 45(5):751–757, 1997.

[113] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistic Quarterly, 2:83–97, 1955.

[114] M. Labbé, G. Laporte, and H. Mercure. Capacitated vehicle routing on trees. Opera-
tions Research, 39:616–622, 1991.

134 BIBLIOGRAPHY

[115] G. Laporte and S. Martello. The selective traveling salesman problem. Discrete Appl.
Math, 26:193–207, 1990.

[116] J.R. Ledesma and J.J. Salazar. The bi-objective travelling purchaser problem. European
Journal of Operational Research, 160:599–613, 2005.

[117] H. Lee and P.S. Pulat. Bicriteria network flow problems: Integer case. European
Journal of Operational Research, 66:148–157, 1993.

[118] S.M. Lee. Goal programming for decision analysis. Auerbach, Philadelphia, PA, 1972.

[119] A. C. Leifer and M. B. Rosenwein. Strong linear programming relaxations for the
orienteering problem. European Journal of Opererational Research, 73:517–523, 1994.

[120] A. Lim, F. Wang, and Z. Xu. The capacitated traveling salesman problem with pickups
and deliveries on a tree. Proceedings of ISAAC05, Lecture Notes in Computer Science,
pages 1061–1070, 2005.

[121] S. Lin. Computer solutions of the traveling salesman problem. Bell System Tech. J.,
44:2245–2269, 1965.

[122] S. Lin and Kernighan B. W. An effective heuristic algorithm for the traveling salesman
problem. Operation Research, 21:498–516, 1973.

[123] J. Malczewski and W. Ogryczak. The multiple criteria location problem. a generalized
network model and the set of efficient solutions. Environment and Planning A, 27:1931–
1960, 1995.

[124] A. Martello and P. Toth. Knapsack problems, algorithms and computer implementa-
tion. John Wiley and Sons, 1990.

[125] A. Mingozzi, L. Bianco, and S. Ricciardelli. Dynamic programming strategies for the
travelling salesman problem with time windows and precedence constraints. Operations
Research, 45:365–377, 1997.

[126] M. Minoux. Solving combinatorial problems with combined min-max-min-sum objec-
tive and applications. Mathematical Programming, 45:361–372, 1989.

[127] N. Mladenovic and P. Hansen. Variable neighborhood search. Computers and Opera-
tions Research, 24:1097–1100, 1997.

[128] I. Muslea. The very offline k-vehicle routing problem on trees. Proceedings of the In-
ternational Conference of the Chilean Computer Science Society, pages 155–163, 1997.

[129] G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial optimization. John Wiley
and Sons, 1999.

[130] C. E. Noon, J. Mittenthal, and R. Pillai. A TSSP plus 1 decomposition strategy for
the vehicle routing problem. European Journal of Operational Research, 79:524–536,
1994.

[131] I. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of Operations
Research, 63:513–623, 1996.

BIBLIOGRAPHY 135

[132] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and
optimal access of web sources. In Proceedings of the 41st Annual Symposium on Foun-
dations of Computer Science, pages 86–92, 2000.

[133] Kasper Peeters. tree.h documentation. http://www.damtp.cam.ac.uk/user/kp229/tree/,
2008.

[134] J. F. Pekny and D.L. Miller. An exact parallel algorithm for the resource constrained
travelling salesman problem with application to scheduling with an aggregate deadline.
ACM 18th Annual Comput. Sci. Conf. ACM Press, New York, pages 208–214, 1990.

[135] G. Pesant, M. Gendreau, and W. Nuijten. A constraint programming framework for
local search methods. Journal of Heuristics, 5:255–279, 1999.

[136] G. Pesant, M. Gendreau, J.Y. Potvin, and Rousseau J.M. On the flexibility of con-
straint programming models: From single to multiple time windows for the traveling
salesman problem. European Journal of Operational Research, 117:253–263, 1999.

[137] P. Pili, R. Scateni, P. Zanarini, and G. Zanetti. Visualizzazione volumetrica in ambiente
medico. Proc. of the Annual AICA Conference, 1993.

[138] M. Pinedo. Scheduling: Theory, algorithms and systems. second ed. Prentice-Hall,
Englewood Cliffs, NJ, 2002.

[139] Pires, Antunes, and Martins. A multi-objective model for var planning in radial dis-
tribution networks based on tabu search. IEEE Trans. Power Systems, 2004.

[140] SY. Prasad. Approximation error analysis in bicriteria heuristics. Journal of Multi-
Criteria Decision Analysis, 7(3):155–159, 1998.

[141] Przybylski, Gandibleux, and Ehrgott. Two phase algorithms for the bi-objective as-
signment problem. European Journal of Operational Research, 185(2):509–533, 2003.

[142] A.P. Punnen. On combined minmax-minsum optimization. Computers and Operations
Research, 21(6):707–716, 1994.

[143] R. Ramesh and K.M. Brown. An efficient four-phase heuristic for the generalized
orienteering problem. Comput. Oper. Res., 18(2):151–165, 1991.

[144] T. Ramesh, Y.S. Yoon, and M.H. Karwan. An optimal algorithm for the orienteering
tour problem. ORSA Journal on Computing, 4:155–165, 1992.

[145] Ramos, Alonso, Sicilia, and Gonzales. The problem of the optimal bi-objective spanning
tree. European Journal of Operational Research, 111:617–628, 1998.

[146] C. Reeves. Modern heuristic techniques for combinatorial problems. Advanced topics
in computer science. McGrawHill, London, 1995.

[147] G. Reinelt. A traveling salesman problem library. ORSA Journal of Computing, 3:376–
384, 1991.

[148] J. Ringuest and D. Rinks. Interactive solutions for the linear multi-objective trans-
portation problem. European Journal of Operational Research, 32(1):96–106, 1987.

136 BIBLIOGRAPHY

[149] Y. Robert and F. Vivien. Introduction to scheduling. CRC Press, Chapman and
Hall/CRC Computational Science, 2009.

[150] R.T. Rockafellar. Convex analysis. Princeton University Press, New Jersey, 1970.

[151] B. Roy and D. Bouyssou. Aide multicritére á la décision: Méthodes et cas. Economica,
Paris, 1993.

[152] J.J. Salazar-Gonzalez. On the cycle polytope of an undirected graph. Working pa-
per,DEIOC, Universidad de La Laguna, 1994.

[153] N. Samphaiboon and T. Yamada. Heuristic and exact algorithms for the precedence-
constrained knapsack problem. Journal of Optimization Theory and Applications,
105:659–676, 2000.

[154] N. Samphaiboon and T. Yamada. Heuristic and exact algorithms for the precedence-
constrained knapsack problem. Journal of Optimization Theory and Applications,
105:659–676, 2000.

[155] J.D. Schaffer. Multiple objective optimization with vector evaluated. Genetic Algo-
rithms, Ph.D. Dissertation, Vanderbilt University, 1984.

[156] A. Schrijver. Theory of linear and integer programming. John Wiley and Sons, 1986.

[157] D. Schweigert. Linear extensions and vector-valued spanning trees. Methods of Oper-
ations Research, 60:219–222, 1990.

[158] A. Sedeño Noda and C. González-Mart́ın. An algorithm for the bi-objective integer
minimum cost flow problem. Computers and Operations Research, 28(2):139–156, 2001.

[159] P. Serafini. Some considerations about computational complexity for multi-objective
combinatorial problems. In: Jahn J, Krabs W (eds) Recent advances and historical
development of vector optimization, vol 294. Lecture Notes in Economics and Mathe-
matical Systems. Springer, Berlin Heidelberg New York, 294, 1986.

[160] P. Serafini. Simulated annealing for multi-objective optimization problems. In: Pro-
ceedings of the 10th International Conference on Multiple Criteria Decision Making,
Taipei-Taiwan, I:87–96, 1992.

[161] A. Sergienko and V.A. Perepelitsa. Finding the set of alternatives in discrete multicri-
terion problems. Cybernetics, 27(3):673 – 683, 1991.

[162] ACM SIGGRAPH. Three-dimensional visualization using medical data. Course Notes,
1993.

[163] F. Sourd and O. Spanjaard. A multi-objective branch-and-bound framework: Appli-
cation to the bi-objective spanning tree problem. INFORMS: Journal of Computing,
20(3):472–484, 2008.

[164] V. Srinivasan and G.L. Thompson. An operator theory of parametric programming for
the transportation problem I. Naval Res. Logist. Quart., 19:205–226, 1972.

[165] M. F. Tasgetiren. A genetic algorithm with an adaptive penality function for the
orienteering problem. Journal of Economic and Social Research, 4(2):1–26, 2001.

BIBLIOGRAPHY 137

[166] M.F. Tasgetiren and A.E. Smith. A genetic algorithm for the orienteering problem.
Evolutionary Computation, Proceedings of the 2000 Congress, La Jolia, CA, USA,
2:910–915, 2000.

[167] P. Toth and D. Vigo. The vehicle routing problem. SIAM Monographs on Discrete
Mathematics and Applications, Philadelphia, 2002.

[168] T. Tsiligirides. Heuristic methods applied to orienteering. Journal of the Operational
Research Society, 35:797–809, 1984.

[169] E.L. Ulungu. Optimisation combinatoire multicritere: Determination de l’ensembledes
solutions efficaces et methodes interactives. PhD thesis, Univesite’ de Mons-Hainault,
Faculte de Sciences, 1993.

[170] E.L. Ulungu and J. Teghem. Heuristic for multi-objective combinatorial optimization
problems with simulated annealing. Presented at the EURO XII Conference, Helsinki,
1992.

[171] E.L. Ulungu and J. Teghem. Application of the two phases method to solve the bi-
objective knapsack problem. Technical report, Faculte’ Polytechnique de Mons, Bel-
gium, 1994.

[172] E.L. Ulungu and J. Teghem. The two-phases method: An efficient procedure to solve
bi-objective combinatorial optimization problems. Foundations of Computing and De-
cision Sciences, 20(2):149–165, 1994.

[173] E.L. Ulungu and J. Teghem. Solving multi-objective knapsack problem by a branch-
and-bound procedure. In: Climaco J (ed) Multicriteria analysis, Springer, Berlin
Heidelberg New York, pages 269–278, 1997.

[174] J.H. van Bemmel and M. A. Musen. Handbook of medical informatics. Springer, 1997.

[175] M. Visee, J. Teghem, M. Pirlot, and E.L. Ulungu. Two-phases method and branch-
and-bound procedures to solve the bi-obective knapsack problem. Journal of Global
Optimization, 12:139–155, 1998.

[176] Q. Wang, X. Sun, B.L. Golden, and J. Jia. Using artificial neural networks to solve the
orienteering problem. Annals of Operations Research, 61:111–120, 1995.

[177] G. J. Woeginger. When does a dynamic programming formulation guarantee the exis-
tence of a fully polynomial time approximation scheme (FPTAS)? INFORMS Journal
on Computing, 12:57–74, 1999.

[178] P.L. Yu. Multiple criteria decision making: concepts, techniques and extensions.
Plenum Press, New York, NY, 1985.

[179] A. L. Yuille and J. J. Kosowsky. Statistical physics algorithms that converge. Neural
Computation, 6(3):341–356, 1994.

[180] E. Zitzler and L. Thiele. multi-objective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput., 3(4):257–71,
1999.

