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2.1 Introduction 
 

2.1.1 Mendelian and Complex phenotypes, causal variants and Genome 

Wide Association Studies (GWASs) 

 

One of the most important challenges in human genetics is the identification of polymorphisms and 

variants in the DNA sequence, related to phenotypic traits and/or lead to an increased risk of 

developing diseases. In this context, the multifaceted goals of genetics can be summarised as 

describing, understanding and utilising the relationship between genotypes and phenotypes, or the 

genotype–phenotype map (GPM)
1
. 

 

Generally, human hereditary phenotypes are classified into two primary groups: Mendelian and 

non-Mendelian or multifactorial complex phenotypes. 

Mendelian phenotypes have, as we can derive from the name, a hereditary modality which is 

ascribable to a Mendelian model. Commonly, they are rare, with a frequency in the population less 

than 0.05%. 

In the case of Mendelian diseases, as for example sickle-cell anaemia or cystic fibrosis, the genetic 

association is with a single gene, therefore the genotype-phenotype relationship is easily 

interpretable. 

There exist six main different schemes of heredity for Mendelian characters: 

 Autosomal dominant, 

 Autosomal recessive, 

 X-linked dominant, 

 X-linked recessive, 

 Y-linked, 

 Mitochondrial. 

 

Non-Mendelian phenotypes represent a more serious hazard for public health as they can assume a 

population frequency more than 1%. In fact, the most common human diseases - such as Type 2 

Diabetes (T2D), obesity, Cardio-vascular Diseases (CVD) and schizophrenia - reside in this group. 

From this, it is easy to deduce that understanding risk factors and etiological processes involved in 

the development of complex traits and disorders, in particular of common complex human diseases, 

is one of the biggest challenges of human genetics. A common characteristic of complex phenotypes 

is that they present an increased familiarity without recognising a clear Mendelian model of 

inheritance: for example, generally, in the same family several individuals are affected by the same 

pathology, but this is not attributable to either a dominant model, nor to a recessive one, nor to a 

sex-linked heredity.  

Non-Mendelian complex phenotypes are caused by multiple genetic, but also environmental, 

factors; for this reason, they are labelled as “multi-factorial” phenotypes. One set of traits that are 
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particularly difficult to deal with are those that exhibit continuous or metrical variation. For these 

traits multiple genetic and non-genetic factors contribute to their population-level variability. 

Therefore, the genetic dissection of complex traits and diseases may require study designs and 

research protocols that are various and sophisticated
2
. 

Actually, Mendelian and non-Mendelian characteristics can be imagined as the two extremes of a 

shade of intermediate situations where we can find, for example, genetic heterogeneity 

(polymorphisms in different genes can cause similar clinical profile), clinical heterogeneity (the same 

phenotype, with same genotype, can have different features), incomplete penetrance (when the 

effect of a variant in the DNA is not always manifested) or oligogenic phenotypes (a handful of genes 

are involved). 

The combination of the effects of genetic and environmental factors which augment and diminish a 

quantitative phenotype or the risk of developing a disease determines a curve of distribution of the 

phenotype that has a Gaussian trend (figure 2.1). Central values of the distribution represent the 

most common values for a quantitative trait or a population risk of developing a disease. The left tail 

of the distribution represents extreme lowest values for the quantitative trait or a lower risk of 

developing a disease compared with the normal population or, in other words, a situation of 

protection from the disease.  

On the other hand, if one considers the right tail of the distribution, it contains extreme highest 

values for a quantitative characteristic or an increased risk of developing the disease, therefore it is 

possible to define a threshold beyond which the disease occurs. 

 

The combinations of factors, genetic and non-genetic, determinant for particular multifactorial 

phenotypes, can be represented as complex interactive networks, as shown in figure 2.2. It is 

possible to identify some genes directly connected with the influenced phenotype (B and D and F for 

Phenotype 1; F and H for Phenotype 2; L for Phenotype 3), as well as gene-gene interactions (A, B, C, 

D and E, F for Phenotype 1,; E, F, G, H, I for Phenotype 2; I, J, K, L for Phenotype 3). Some 

environmental factors have a direct influence on the trait (x on Phenotype 1) while others influence 

phenotypes through gene-environment interactions (z with C and F, y with I). A gene can be involved 

Figure 2.1: Gaussian 

distribution of a 

complex phenotype 

determined by all 

influencing (risk and 

protective) factors. 

On the green line 

there are definitions 

referred to a 

quantitative 

phenotype; on the 

pink line there are 

definitions based on 

the evaluation of a 

disease risk. 
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in more than one phenotype (F for Phenotype 1 and 2), and a phenotype can have an effect on 

other traits or diseases (Phenotype 2 on Phenotype 3). 

 

If we consider the only genetic component of susceptibility for a non-Mendelian disease, it has 

already a notable complexity by itself. The allele frequency of variants that contribute to cause a 

common disease and the magnitude of their contribution is subject of debate
3
. In particular, the two 

main hypotheses proposed in literature are: 

 Common Disease/Common Variant (CDCV) hypothesis: on the basis of this theory, the 

genetic component of a complex disease is constituted by a number of variants with low 

penetrance, any of which is rather frequent in the control population (minor allele 

frequency, MAF ≥ 5%). Simultaneous combination of multiple risk alleles at these variants 

leads to a greater susceptibility to the disease. 

 Common Disease/Rare Variant (CDRV) hypothesis: this theory says that a complex disease is 

genetically determined by several low frequency (MAF < 5%) variants with bigger effects 

compared to those of common variants. 

There is evidence from the literature of studies in favour of both theories; however none of these 

studies clarified what is the exact allele-frequency spectrum of risk variants involved, the effect size 

at any disease gene, and hence the total number of risk alleles
3
. 

Nowadays, different approaches for genetic studies demonstrated that complex diseases cannot be 

explained by a small number of rare variants with large effects, but neither by a limited number of 

common variants of moderate effect. Thus, the most accepted hypothesis is a “unifying” one, where 

variants with all combinations of allele frequency and strength of genetic effect, as represented in 

figure 2.3, contribute to the genetic susceptibility of a particular phenotype
4
. 

 

Defining the genetic architecture of a trait or disease means to define its biological and physiological 

Figure 2.2: Complex 

interactive networks 

of genetic (grey 

squares) and 

environmental factors 

(green hexagons) 

involved in the 

determination of 

three different 

complex non-

Mendelian 

phenotypes (coloured 

ovals). For a detailed 

description, see the 

paragraph in the 

main text. 
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characterisation of effects of single genes, of functional gene-gene interactions, and of possible 

influence of environmental factors. An articulate genetic architecture is peculiar for complex 

common phenotypes and its resolution, reconstructing the molecular and physiological mechanisms 

involved, has as the final aim the translation of the findings into clinical practice, for achieving better 

diagnosis and prevention and for the development of more specific treatments. There are two main 

ways through which such translation might be undertaken: in the first, identification of novel causal 

pathways might lead to the characterisation of novel therapeutic targets and/or novel therapeutic 

agents for treatment and prevention. Another positive outcome is the discovery of biomarkers, 

allowing improved disease prediction and monitoring of disease progression and treatment 

response
5
. The second translational route considers using the knowledge of individual patterns of 

disease predisposition (for example, through genetic profiling) to develop more specialised 

approaches to disease treatment
5
. 

 

One widely discussed point is the exact definition of “causal variant” for a disease or a trait. 

Mutations that directly contribute to a particular quantitative trait, or to an increased or decreased 

risk of developing a disease, are associated with other variants in the genome through linkage 

disequilibrium (LD): LD is the non-random association between alleles at different positions in the 

DNA sequence, and is created by evolutionary forces such as mutation, drift, and selection, but it is 

broken down by recombination
3
. Therefore, it is possible that a genotyped variant, robustly 

associated with a disease in multiple samples, is not directly causative in risk predisposition, but 

instead, it is just a mutation lying sufficiently near the causal variant and in LD with it. A ‘‘causal 

variant’’, in fact, is a variant that has a direct functional effect on disease risk, rather than a variant 

that is associated with disease risk through LD; hence, it is the variant that causes the observed 

association signal
3
. It is important to keep in mind this concept when researching genetic variants in 

association with phenotypes, and to remember that, when a polymorphism is detected as 

significantly associated with a disease, it can be just a “tag” of a causal mutation, and not the causal 

mutation itself. 

 

Figure 2.3: Possible 

combinations of 

frequency and genetic 

effect for genetic 

variants of 

susceptibility. The 

majority of published 

genetic studies for 

human traits aims in 

identifying associations 

with the characteristics 

shown within diagonal 

dotted lines. From 

Manolio et al. 2009
8

. 
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Gene mapping through linkage analysis relies on the co-segregation of causal variants with tag 

polymorphisms (also called “markers”) within pedigrees. Because the number of recombination 

events per meiosis is relatively small, tagging a causal variant requires only a few genetic markers 

per chromosome
3
. The use of linkage analysis to map genomic loci -specific locations in the DNA of 

genes, groups of genes, or specific sequences on chromosomes - that have an effect on diseases, or 

on other traits, have been ubiquitous in the last two decades, and they have been extremely 

successful for Mendelian phenotypes, but much less so for common diseases and, in particular, in 

the identification of the underlying causative mutations. 

The most widely used method for studying the genetic component of complex traits and diseases is 

association analysis, which aims to identify genetic variants that are statistically correlated with a 

phenotype in a population-based sample, without distinguishing between real causal variants and 

those in LD with the causative ones. 

In particular, in the context of association analysis, the genome-wide association study (GWAS) 

approach has been an important advance compared to “candidate gene” studies, in which sample 

sizes are generally smaller, and the assayed variants are limited to a selected few, often based on 

imperfect understanding of biological pathways, and often yielding associations that are difficult to 

replicate. 

Genome-Wide Association Studies (GWASs) are based upon the principle of LD at the population 

level: thanks to the ability of accurately genotyping hundreds of thousands of single-nucleotide 

polymorphisms (SNPs) in an automated and affordable manner and to the knowledge of the 

correlation (LD) structure of those markers in the human genome, these studies enable the analysis 

of a list of tag SNPs that capture most of the common genomic variation in a number of human 

populations in association with phenotypes of interest, avoiding the bias of prior biological 

knowledge (or prior beliefs), and of knowledge of genomic location. 

Commercial companies produce dense SNP arrays or “SNP chips” that could genotype many markers 

in a single assay, capturing most, although not all, common variation in the genome. The 

technological advances together with bio-banks of either population cohorts or case-control 

samples, have facilitated the ability to conduct GWASs
3
. 

The underlying rationale for GWAS is the CDCV hypothesis: in fact SNPs that lie on the majority of 

SNP chips have been selected to be common (most of them have a minor allele frequency > 5%). 

 

During the past seven years, GWASs have identified more than 8,500 confirmed associations with 

more than 350 human complex traits and diseases
6
. Published GWASs can be found at the National 

Cancer Institute (NCI)-National Human Genome Research Institute (NHGRI)’s catalog 

(http://www.genome.gov/gwastudies/, figure 2.4)
7
. These findings have considerably surpassed 

early expectations, reproducibly identifying hundreds of variants associated with many dozens of 

traits, and providing valuable insights into the genetic architecture of complex human disease. 

 

Despite the great success of GWASs, we are still far from full comprehension of all the mechanisms 

behind most common human phenotypes and several challenges underlie limitations of this kind of 

studies taken alone: 
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 Follow-up studies are not always able to replicate the discoveries of a previous GWAS. 

 For most of the studied phenotypes, discovered variants explain only a fraction of observed 

familial aggregation. 

 The patterns of association observed in GWAS at individual risk-loci are highly variable. 

 Allelic heterogeneity is often observed for associations within and between phenotypes. 

 GWAS discoveries minimally help in clarification of biological and pathophysiological 

mechanisms underlying particular phenotypes. 

 

However, at the present, there is little consensus about the best approaches and priorities for the 

research of these “dark matter” aspects of GWASs
8
. 

Manolio and colleagues proposed a list of steps to help GWASs in clarifying different aspects of this 

“dark matter”
8
: 

Figure 2.4: Published Genome-Wide Associations through 12/2012 at p-value of significance ≤ 5x10
-8

 for each 

chromosome, for 17 trait categories as they are reported in the legend below. From NHGRI GWA Catalog
7

: 

www.genome.gov/GWAStudies. 
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 Carefully plan the samples to use for the analyses: ensure the ancestry and other possible 

forms of population structure; choose carefully the individuals for follow-up analyses. 

 Increase sample size, for instance thorough meta- and mega-analyses of comparable data: in 

association studies, in fact, the number of discovered variants is strongly correlated with 

experimental sample size, and an ever-increasing discovery sample size is expected to 

increase the number of discovered variants. 

 Possibly expand the studies to non-European samples. 

 Enhance the investigation of the X and Y chromosome. 

 Expand the study to rare variants and copy number variants (CNVs): much of the speculation 

about missing heritability from GWAS has been attributed to the contribution of variants of 

low minor allele frequency, defined as roughly 0.5% < MAF <5%, or rare variants (MAF < 

0.5%); on the other hand structural variation, including CNVs may contribute to the genetic 

basis of human traits and disorders
8
. 

 Investigate gene-gene and gene-environment interactions, including dominance and 

epistasis, since the detection or characterization of any one of the relevant genetic factors 

might be obscured or confounded by the influence of others. 

 Improve phenotypes by expanding to subtypes, or to more quantitative ones, or to more 

precise ones. 

 Explore multi-phenotype effects: there are thousands of quantitative or qualitative traits in 

a complex organism, such as the human, but the number of genes is limited (in the human 

genome it is only around 30,000) and therefore a single gene can simultaneously influence 

multiple characteristics. Considering this may help in the detection of processes that 

elucidate part of the missing heritability because some loci may be detectable only by 

analysing combination of multiple effects on combined phenotypes. 

 

The study of multiple phenotypes simultaneously is becoming more and more relevant: the concept 

of “omics” is in fact gaining enormous importance. Both, clinical and molecular, phenotypes can be 

measured and analysed as part of metabolome, transcriptome, proteome, or other groups of 

“omics” phenotypes (phenome) for a wide spectrum of diseases and quantitative traits. 

Furthermore, systematic and “phenome-wide” association studies (PheWASs), in which a SNP with 

an established association with a phenotype is tested for association with hundreds of other 

phenotypes, have just been published
6
. An example of such an effort is the Population Architecture 

using Genomics and Epidemiology (PAGE) network, a large-scale collaboration that started in 2011 

for harmonizing phenotypes characterisation and for conducting PheWASs on replicated GWAS hits 

across eight epidemiological studies and five ethnic groups
9
. Other efforts aim to analyse a broad 

range of phenotypes extracted from electronic medical records. 

These new sampling and analysis strategies create a need for appropriate methodology for the 

identification of associations between genetic markers and combinations of multiple traits and 

diseases which denote causal relationships between them, and ultimately help in elucidating the 

underlying biological processes
10

. 
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2.1.2 Cross-Phenotype association and definition of pleiotropy 

 

As cited above, GWASs have identified hundreds of variants associated with a wide variety of 

complex human phenotypes. Interestingly, many genetic loci appear to harbour variants that are 

associated with multiple, sometimes seemingly distinct, traits or disorders. We will term such 

associations as “Cross-Phenotype (CP) associations” as proposed by Nadia Solovieff and colleagues 

in their review
6
, or as “multi-phenotype effects”. Evidence of CP associations also comes from less 

recent discoveries for genetic studies, described below. 

 

The most striking examples of CP effects are in monogenic syndromes. For example, the Pallister–

Hall syndrome is caused by a mutation in a single gene encoding the transcription factor Glioma-

Associated Oncogene Family Zinc Finger 3 (GLI3), but it manifests with a wide range of symptoms 

that include extra digits, webbing between digits, shortened limbs, structural abnormalities in the 

central nervous system, and kidney abnormalities
11

. This is because GLI3 acts as a transcription 

factor in several organ systems during foetal development. 

 

Twin and family studies have also provided evidence for genetic correlations among diseases
6
. For 

example a bivariate twin analysis conducted by Kendler and colleagues in 1992 revealed that genetic 

factors were completely shared between major depression and generalized anxiety disorder
12

. 

Another example was reported by Criswell et al. on behalf of the multiple autoimmune disease 

genetics consortium (MADGC) in 2005; by studying 265 families, they discovered that a functional 

SNP in the intracellular tyrosine phosphatase gene (PTPN22) confers risk of four separate 

autoimmune disorders: type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and 

Hashimoto thyroiditis
13

. 

 

Association studies and, especially, GWASs have suggested numerous CP effects. For example a SNP 

on chromosome 8q24 demonstrated association with both prostate
14

 and colorectal cancer
15

. Other 

examples are not only for single SNPs, but also for gene regions; this is the case of the fat mass and 

obesity associated (FTO) locus, where different variants have been associated with body mass index 

(BMI)
16

, melanoma
17

, fasting insulin
18

 and T2D
19

. 

A recent evaluation of genome-wide-significant SNPs listed in the National Human Genome 

Research Institute (NHGRI)’s catalog found that 4.6% of SNPs, and 16.9% of genes known to be 

associated to physiological or disease traits, have CP effects
20

. These numbers can be 

underestimated because of many reasons: for example, many human phenotypes have not been 

extensively studied yet and therefore their associated variants and genes are not known; then, not 

all genes involved in the determination of studied phenotypes are known; in addition, it can happen 

that several SNPs distinctly identified as associated with different traits or diseases may underlie a 

common causal variant that is shared between phenotypes. 

GWASs and other genomic analyses have also identified rare structural variants, such as rare CNVs, 

with CP effects. For example, multiple CNVs across the genome have been demonstrated to be 

associated with a variety of neurodevelopmental disorders
21

. 
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CP associations highlight that phenotypes share common underlying genetic pathways. However it is 

important to be cautious with the inference of their causes and to not wrongly label them as 

“pleiotropic” effects. In fact, we define that a CP association occurs when a genetic locus is 

associated with more than one trait, regardless of the underlying cause for the observed 

association. Pleiotropy, instead, underlies a specific mechanism that leads to multiple effects. 

 

There are several potential genetic mechanisms that can explain loci showing overlapping 

associations for multiple traits, and pleiotropy is just one of the possibilities
6
; we distinguish three 

main mechanisms of CP effects (figure 2.5): 

 Pleiotropy occurs when the same genetic causal element affects more than one phenotype. 

It can appear at the single variant level, where a single causal variant is related to multiple 

phenotypes (figure 2.5a or 2.5d), or at a locus level, that is when multiple variants in the 

same gene or locus are associated with different phenotypes by affecting the same 

functional element (figure 2.5g)
6
. The functional mechanism behind pleiotropy can be 

related to a gene product that is used by different tissues or cell types, or that is targeted to 

different signalling receptors. In general, we will refer to pleiotropy as occurring when a 

genetic variant or a set of variants in LD that constitute a functional unit, are independently 

associated with more than one phenotype, upon reciprocal conditioning on each phenotype 

in single-trait (or disease) analyses preserves the association signal at the other. Therefore 

we can say that multiple associations occur “in parallel”
22

. 

 Mediation or mediated pleiotropy occurs when a genetic variant is directly associated with 

a phenotype and that phenotype is itself causal for a second phenotype (figure 2.5b) or 

more phenotypes (figure 2.5e)
6
. In other words, the multi- trait association is “in series”. 

This mechanism includes also cases of pathophysiological change from healthy variation to 

disease. 

 Multi-phenotype Allelic Heterogeneity is a phenomenon which involves independent 

uncorrelated variants at the same locus which cause changes in multiple phenotypes. It can 

be determined by two causal variants lying in different adjacent genes (figure 2.5c) or 

around the same gene locus, but affecting the two phenotypes through independent paths 

underlied by distinct functional elements of the same locus (figure 2.5f). 

 

Other phenomena can bias multi-phenotype analyses, leading to an erroneous identification of CP 

associations. For example, an ascertainment bias can occur when the recruitment of individuals with 

one phenotype increases the prevalence of a second, unrelated phenotype in the cohort
6
, and this is 

common in clinical samples, as patients suffering from two conditions are likely to seek treatment 

more often than those suffering from only one. Since unaffected control individuals are often shared 

across multiple studies, a biased CP association could also occur if an artefact (such as population 

stratification or batch effects) is present in the shared controls. Furthermore false CP effects can 

also be identified when subjects with a particular phenotype are systematically misclassified with a 

different one, as occurs for some behavioural disorders: for example patients with schizophrenia are 
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sometimes misdiagnosed as affected by bipolar disorder and vice versa
6
. 

The interpretation of CP effects is not simple, but understanding the real mechanisms behind a CP 

effect is important, since the identification and characterisation of real pleiotropic mechanisms is 

crucial for a comprehensive biological understanding of complex traits and disease states, enabling 

better reconstruction of GPM
6
. 

 

The impact of genetic studies of pleiotropy for common complex human diseases has been widely 

recognised and described. However, until now, it has not received sufficient attention, and few 

multi-phenotype analyses of empirical datasets have been undertaken. Recently, the idea of 

Figure 2.5: Different mechanisms which determine overlapping associations for multiple traits. a., d. and g. 

represent real pleiotropic effects; b. and e. represent mediated effects; finally, c. and f. represent multi-trait 

allelic heterogeneity. 
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extending observations of CP effects, by considering a wider range of phenotypes (as described in 

the chapter above), is emerging. These multi-phenotype analysis approaches will improve our 

understanding of the extent of shared genetics between traits and diseases, and our global 

understanding of phenotypes as a range of inter-related manifestations of biological mechanisms, 

and not as isolated events
6,20

. 

An understanding of pleiotropic effects is of key importance for drug development too: for example, 

statins inhibit 3-Hydroxy-3-Methylglutaryl-CoA (HMG-CoA) reductase, but they also have multiple 

other molecular actions with effects beyond cholesterol reduction, and this has been proposed as 

the cause for their efficacy in the reduction of cardiovascular outcomes. If a gene has opposing 

effects on different common diseases, this is likely to greatly complicate drug development and 

marketing. However, at the same time, knowledge of pleiotropic associations could help to improve 

drug efficacy and predict side effects. 

Furthermore, gaining insight into the level of genetic connectivity between different phenotypes will 

provide an opportunity to rethink current classification/categorisation of diseases by considering 

distinctions based on different genetic determinants or whether genetic similarities traverse current 

divisions
20

. 

These issues are likely to gain in importance as the full extent of pleiotropy in the genome becomes 

clear. 

 

 

2.1.3 History of Pleiotropy definition 

 

Pleiotropy is a concept that has evolved over time, also following the advent of ever more modern 

techniques for the study of DNA sequences, and pathological and physiological molecular 

mechanisms; in this section we will retrace the chronological history of definitions and concepts 

related to pleiotropy (for a synthesis see figure 2.6), placing them in the context of historical 

discoveries in genetics and molecular biology. In the following section (2.1.4_Insights into the 

definition of pleiotropy) we will deepen the concepts cited in this chapter. 

 

The first time that the term “pleiotropy” was used in a published manuscript was in 1910, when the 

German geneticist Ludwig Plate used it to indicate some distinct phenotypes that were explicable 

only through the mechanism of a single gene: 

“I call a unit of inheritance pleiotropic if several characteristics are dependent upon it; these 

characteristics will then always appear together and may thus appear correlated”. 

“The more research into Mendelian factors advances, the more examples become known which 

can be explained only under the assumption of pleiotropy”
23

. 

 

In 1925, Haecker described the same mechanism under the name “polyphean”, but “pleiotropy” had 

received more attention and became established in the literature
24,25

. 

 

Fisher, in 1930, proposed the idea of “universal pleiotropy”, which asserts that a mutation at any 
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locus has the potential to affect almost all traits
26

. This idea was then reclaimed and upgraded by 

Wright and Mayr
27

 in 1963. 

 

Gruneberg published an article in 1938 about the study of rat developmental genetics and, in 

particular, about skeletal abnormality. From his experiments, he firstly deduced a theory on the 

mechanism of pleiotropy: he designed the division of pleiotropy into “genuine” and “spurious”. 

Genuine pleiotropy was characterised by two distinct primary products, each arising from a single 

locus. Spurious pleiotropy indicated, instead, two possible mechanisms: a single primary product 

that was utilised in different ways, or a primary product that initiated a cascade of events with 

different consequences for the phenotype
25

. This was the first definition of what we call today “type 

I” and “type II” pleiotropy
1
; but in 1941, Beadle and Tatum proposed their idea of “one gene/one 

enzyme”, that is a single gene codes for a single protein
28

, leaving no room for mechanisms of 

genuine pleiotropy
25

. 

 

In the late ‘50s, after the discovery of the structure of DNA by Watson and Crick, other classifications 

of pleiotropy were defined based on insights in the ways a single gene product could have multiple 

uses. Richard Ernst Hadorn made a useful distinction between two types of pleiotropy that were 

defined as “mosaic” and “relational”: mosaic pleiotropy denotes instances where a single locus 

directly affects two phenotypes; relational pleiotropy describes the action of a single locus that 

initiates a cascade of events impacting multiple independent phenotypes
29

. These two definitions 

better describe the two possible mechanisms of spurious pleiotropy hypothesised by Gruneberg. 

Additionally, it was in those years that the idea of “antagonistic pleiotropy” started to be viewed as 

a well-known application of pleiotropy in evolution and medicine. In particular, Williams suggested 

that genes with antagonistic effects at different life stages could contribute to aging in a way that 

natural selection could not alter: genes that are beneficial prior to reproduction, but negative after 

Figure 2.6: Historical salient steps which contributed to the study and to the modern concept of pleiotropy. 
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reproduction, would be favoured by natural selection over those that increase longevity, but which 

are less favourable to reproduction and survival to reproductive age
30

. This concept will be explained 

better below. 

 

The advent of sequencing techniques in the late ‘70s demonstrated that a single locus can produce 

different primary products at all levels of gene expression and protein processing, for example due 

to multiple or overlapping reading frames (a strand could be read starting at different points 

producing different mRNAs and, thus, different proteins from the same single locus)
31

, or due to 

alternative splicing and alternate start/stop codons
32

, or to mRNA editing in different tissues and 

with differential expression
33

. These discoveries gave plausibility back to Gruneberg’s idea of 

“genuine pleiotropy” (or type I) as a possible molecular pleiotropic mechanism. 

 

After the stabilisation of the “antagonistic pleiotropy” concept, the relationship between pleiotropy 

and evolution was further explored in the ‘90s. In particular, Waxman and Peck (1998) proposed a 

theory about the maintenance of pleiotropy, which asserts that pleiotropic traits under stabilising 

selection are more likely to reach an optimum genetic sequence. This suggests that pleiotropic 

phenotypes are more likely to be favoured by natural selection
34,35

. 

 

In 2000, departing from Fisher’s concept of universal pleiotropy, Orr elaborated the “cost of 

complexity” theory
36

, but also the contrasting view about the extent of pleiotropy, and its 

consequent implications in evolution, has emerged more recently. Following on from Welch and 

Waxman’s idea, organisms can be broken up into modules, and pleiotropy is restricted to the action 

within these modules
37

. Several recent studies have tried to asses if pleiotropy is more universal or 

more modular, and their conclusion is that modular pleiotropy is more likely to represent reality
38-42

. 

 

 

2.1.4 Insights into the definition of pleiotropy 

2.1.4.1 Other types of pleiotropy 

The above mentioned definitions of possible mechanisms of multi-phenotype effects which explain 

CP associations are not the only ones proposed. Several researchers or research groups have tried to 

order and define multi-phenotype genetic effects
1,25,35

. 

Hodgking for example, defined seven different types of “pleiotropic effects”
35

: 

 Artefactual pleiotropy: when adjacent but functionally unrelated genes are affected by the 

same mutation; 

 Secondary pleiotropy: when a simple primary biochemical disorder leads to a complex final 

phenotype (similar to “mediation”); 

 Adoptive pleiotropy: one gene product is used for quite different chemical purposes in 

different tissues; 

 Parsimonious pleiotropy: one gene product is used for identical chemical purposes in 
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multiple pathways; 

 Opportunistic pleiotropy: arises when one gene product plays a secondary role in addition 

to its main function; 

 Combinatorial pleiotropy: when one gene product is employed in various ways, and with 

distinct properties, depending on its different protein partners; 

 Unifying pleiotropy: one gene, or cluster of adjacent genes, encodes multiple chemical 

activities that support a common biological function
35

. 

This classification is rather complicated, and Hodgking’s definitions are not always easily discernible 

from each other. 

 

From the point of view of the molecular basis of a pleiotropic phenomenon, Hans Gruneberg had 

already, in 1938, distinguished two main mechanisms of pleiotropy: “genuine” and “spurious” 

pleiotropy (already defined above)
25

. 

Wagner and Zhang reconsidered Gruneberg’s definitions by defining “type I” and “type II” 

pleiotropy. Type I pleiotropy occurs when a gene product has multiple molecular functions; an 

example is the human serum albumin that maintains osmotic pressure in body tissues, but is also a 

plasma carrier for hydrophobic steroid hormones, a transport protein for haemin and fatty acids, 

and participates to the oxidation of nitric oxide
1,43

. Type II pleiotropy is, instead, characterised by a 

singular molecular function with multiple consequences, for example glutamine amidotransferase in 

yeast, which acts through its function of removal of the ammonia group from a glutamine molecule 

in both histidine biosynthesis and purine nucleotide monophosphate biosynthesis
1,43

. 

From a study about the relationship between yeast gene pleiotropy and gene function, He and 

Zhang discovered that, at a genome-wide level, gene pleiotropy is generally represented by a 

singular molecular function in multiple biological processes, since part of gene products is 

distributed into multiple cellular components or contributes to multiple protein-protein interactions. 

This discovery has not to be taken as a rule because it was found only in yeast: in fact, yeast genes 

do not undergo alternative splicing, and therefore we do not know if this mechanism can 

importantly contribute to pleiotropy in species with prominent alternative splicing; similarly we 

cannot estimate the contribution of pleiotropy that arises from gene expression in multiple tissues 

of a multicellular organism. Anyway, it is important to highlight that this study found no correlation 

between pleiotropy and the number of different molecular functions
43

. 

 

2.1.4.2 The extent of pleiotropy and its relationship with evolutionary processes 

Another important point of discussion is the extent of pleiotropy in relation to different phenotypic 

characters: due to its importance in biology, several mathematical models of pleiotropy have been 

developed, and important theoretical results have been derived from the analyses of these models. 

The oldest hypothesis about the extent of pleiotropy is the “universal pleiotropy theory”, proposed 

by Fisher as part of his geometric model: every mutation affects every trait, and the effect size of 

mutations on a trait is uniformly distributed
26

. 
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The main alternative hypothesis is that of “modular 

pleiotropy”, which is equally important because of a number 

of theories about development and evolution derived from 

it
37

: gene–phenotype relationships can be represented by a 

bipartite network of genes and traits. where a link between 

gene nodes and phenotype nodes indicates that the gene 

affects the phenotype; modular pleiotropy is based on the 

definition of modules, which include limited number of genes 

and phenotypes, and refers to the phenomenon where links 

within a particular module are significantly more frequent 

than those across modules (figure 2.7)
42

. 

Another proposed thesis is that of “rare pleiotropy” - where 

pleiotropic effects are attributable only to a few genes, and 

affect a very limited number of traits or disorders- but it has found little support in the literature. 

 

On the basis of Fisher’s geometric model (FGM), and the assumption that the total effect size of a 

mutation is constant in different organisms, Orr derived the so-called “cost of complexity” 

hypothesis: if the “universal pleiotropy” theory is true, the more traits that are observed in an 

organism (more complexity), the more of its genes are pleiotropic (as every gene affects all traits); 

complex organisms then are inherently less evolvable or adaptable to changing environments than 

simple organisms, because their mutations are more likely to be subject to the action of purifying 

selection
36

. 

In other words, both the fixation probability of a beneficial mutation, and the fitness gain that is 

conferred by the fixation of the beneficial mutation, decrease with organismal complexity because 

there are more possibilities that that the beneficial mutation for a particular phenotype is 

deleterious in its effect on another phenotype
1,42

. 

“The conformity of these statistical requirements with common experience will be perceived by 

comparison with the mechanical adaptation of an instrument, such as the microscope, when 

adjusted for distinct vision. If we imagine a derangement of the system by moving a little each of 

the lenses, either longitudinally or transversely, or by twisting through an angle, by altering the 

refractive index and transparency of the different components, or the curvature, or the polish of 

the interfaces, it is sufficiently obvious that any large derangement will have a very small 

probability of improving the adjustment...”
26

 

 

The modularity reduces the probability that a random mutation is deleterious, because that 

mutation will affect just a set of related traits, rather than all traits. Moreover, Wang et al. found a 

greater per-trait effect size for pleiotropic mutations in more complex organisms with consequent 

greater probability of fixation, and a larger amount of fitness gain when a beneficial mutation 

occurs; through this mechanism, pleiotropy may promote the evolution of complexity. Together, 

these two reflections lead to the conclusion that organisms of intermediate levels of effective 

complexity have greater adaptation rates than organisms of lower levels, and explain why complex 

organisms could have evolved, despite the cost of complexity
42

. 

Figure 2.7: 

Visual 

explanation of 

“modular 

pleiotropy” 

theory from 

Wang et al. 

2010
42

. Genes 

are blue 

hexagons on the 

left; phenotypes 

are violet 

squares on the 

right. 
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From the literature, we can say that the model of universal pleiotropy is not empirically supported. 

For example, in 2008, Quantitative Trait Loci (QTLs) underlying a set of traits that represented all 

major subsystems of the bony skeleton were mapped in inbred mice with increased or reduced body 

size and, on a total of 102 QTLs identified for 70 traits, the median degree of pleiotropy was only six 

traits, or 8.6% of the traits examined
38

. 

Similar work on 54 body-shape traits in sticklebacks identified approximately an average number of 

3.5 traits affected by single QTL
39

. 

Li and colleagues, in 2006, analysed the protein interaction networks of Saccharomyces cerevisiae, 

Drosophila melanogaster, and Caenorhabditis elegans, addressing several aspects of network 

properties. They determined that each gene in the three genomes affects, on average, four or five 

proteins
41

. 

In 2010, Su, Zheng and Gu were able to estimate the number of traits affected by each gene in their 

sample of 321 genes from eight vertebrate species by using comparative data from protein 

sequence and microarray analysis, in conjunction with mathematical modelling: they found that the 

number of traits affected per gene was about six to seven
40

. 

Additionally, in a genome-wide analysis of pleiotropy in yeast (Saccharomyces cerevisiae), nematode 

worm (Caenorhabditis elegans), and mouse (Mus musculus), Wang and colleagues robustly revealed 

a generally low level of pleiotropy for most genes, and a pleiotropic structure that is highly modular, 

with an average of 4.6 trait associations per gene, and larger per trait phenotypic effects of those 

genes affecting more traits
42

. 

Therefore, the conclusion from current studies is that pleiotropic effects per gene involve a limited 

number of phenotypes. Consequently, previous estimates from evolutionary theory of the cost of 

complexity are flawed, since their basic assumptions are not empirically supported
1
. 

 

It is largely thought that pleiotropy causes compromises among adaptations of different 

phenotypes, on the basis that a genetic change beneficial to one phenotype may also be deleterious 

to another. This property should underlie many fundamental principles and phenomena in biology, 

including senescence, trade-off, and cooperation
43

. 

The most popular form to express this idea is the antagonistic pleiotropy theory of senescence: it 

asserts that mutant genes, advantageous to development and reproduction, are deleterious after 

the reproductive age and cause senescence; this may explain why all species have a limited life span 

(Williams 1957). An example that supports this theory is represented by an experiment conducted 

on social amoeba Dictyostelium discoideum: this organism can aggregate during starvation where 

some cells die to form a stalk that holds the other cells aloft as reproductive spores; deleting the 

gene dimA in D. discoideum allows cells to avoid death, but leads to a great reduction in spore 

production and, therefore, in reproduction
39

. Hence, dimA has a pleiotropic effect that stabilises the 

cooperation among amoeba
43

. 
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2.1.4.3 Features of pleiotropic genes 

We have already cited a review by Sivakumaran and colleagues who found that pleiotropy is a 

property of only 17% of genes and 5% of SNPs that are known to be associated with diseases or 

disease-related traits in humans, and that these are likely to be lower-bound estimates
20

 . 

It has also been demonstrated that pleiotropic genes are longer than non-pleiotropic ones: an effect 

that might be caused by: firstly, the fact that longer genes might encode an increased number of 

protein structural domains which might give rise to multiple functions; and secondly, longer genes 

usually contain more variants with a concomitant rise in the opportunity for some to be involved in 

different functions
20

. 

Moreover, it seems more probable that pleiotropic SNPs are mostly exonic and structurally 

functional than non-pleiotropic SNPs. As yet, no data support the hypothesis that pleiotropic SNPs 

would be more likely to be present in regulatory regions
20

. 

From an evolutionary perspective, highly pleiotropic genes are expected to be under stronger 

stabilising selection because they affect multiple traits, and thus are less likely to experience 

beneficial mutations as a result of the interwoven web of genetic and physiological interactions that 

are involved in development and function
35

. To this end, the genome-wide study by He and Zhang, 

published in 2006, found that, testing 21 different phenotypes, the 39.5 ± 0.8% of no-effect yeast 

genes have homologs in the fruit fly D. melanogaster, and that this proportion increases if we 

consider pleiotropic genes: 49.2 ± 2.3% of genes with effects on one or two phenotypes, and 54.7 ± 

3.6% of high pleiotropic genes (with multiple effects on more than two phenotypes) have fruit fly 

homologs. Similarly, 52.6±2.7% of pleiotropic yeast genes have detectable homologs in the 

nematode C. elegans, in comparison to 38.3±1.1% of no-effect genes. In the same study, when the 

fungus S. pombe is compared, 71.7±3.3% of pleiotropic yeast genes have detectable homologs, in 

comparison to 58.4±1.3% of no-effect ones. These findings were all significant, and supported the 

idea that pleiotropy leads to the evolutionary conservation of genes and gene sequences
43

. 
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2.2 State of the art in the study of pleiotropic effects 
 

2.2.1  General introduction 

 

One of the major limitations of association studies and GWASs is that they have tended to focus on 

single phenotypes through “univariate” analyses. 

The complexity in the overlap of associations for different phenotypes observed within univariate 

analyses might be due to several underlying factors: (i) the power of genetic analyses can change 

based on the differences in the magnitude of the observed effects for common signals and 

differences in sample sizes; (ii) on the other hand,  heterogeneity increases when larger number of 

studies is included to maximise the sample size of the meta-analysis, and this has a detrimental 

effect on power; (iii) sometimes there is a non-genetic component of observed phenotypic 

correlations, for instance due to epigenetic effects or environmental impact; (iv) moreover, a limited 

knowledge of the functional physiological role of associated loci, with an impact on different groups 

of phenotypes, may lead to a misunderstanding of the relationships between traits and diseases. 

Over the last few years, it became clear that it is important to dissect the majority of the phenotypic 

and, to this aim, sampled cohorts have been surveyed with a large number of traits, hundreds of 

clinical phenotypes, and genome-wide profiling of gene expression, many of which are correlated
10

. 

The inability to properly dissect this kind of data, due to the absence of appropriate methodology, 

extensively complicates its analysis and interpretation. 

There are two main challenges: the first is to obtain the greatest knowledge from the past and 

future univariate GWASs, by developing strategies to join together single-phenotype analyses to 

identify common determinants not yet discovered; the second is to explore methods to analyse a 

large number of variables at the same time through multivariate analysis. The projects that have 

been developed during my PhD programme, and that will be described in following sections, 

concern both these two challenges. 

 

The analysis of multiple phenotypes enhances the ability to estimate both, the number of loci 

contributing to risk of multiple traits and diseases, and the spectrum of phenotypes that each locus 

influences, thus clarifying genetic relationships between them. 

The biological advantages of performing joint analysis of multiple phenotypes include the ability to 

address the issue of pleiotropy vs. tight linkage or mediation, and the ability to investigate 

intermediate endophenotypes, e.g., serum metabolites, as a step toward understanding how 

biochemical pathways relate to complex traits and disorders
44

. 

A variety of different approaches have been proposed in the last few years to test the relationship of 

genes with multiple phenotypes. These approaches are based on different statistics, some of which 

were applied to linkage studies, and others to case-control studies (see table 2.1 for a summary of 

reviewed methods). 

Based on the reasoning described above, these methods can be broadly classified into two main 

groups: univariate analyses and multivariate analyses. 
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Within all proposed approaches, It is not possible to define a uniformly most powerful test, because 

the most suitable method depends on the circumstances and on the available data
6
. 

 

Another important aspect to highlight is that the majority of proposed methods are able to detect 

co-association with multiple traits, that is CP effects, but this does not mean that they represent real 

pleiotropy. 

In some cases, in fact, the same variants show association with multiple traits, but in other cases, 

although the same overall region is implicated, distinct nearby markers show signals of association 

with different traits: in this situation, it becomes fundamental to be able to distinguish the 

associations that represent genuinely shared effects of single variants from those that represent the 

effects of co-localising, but independent variants (multi-trait allelic heterogeneity, see figure 2.5)
6
. 

Equally important, although more difficult, it is to distinguish real pleiotropy from mediation (where 

the association of a genetic locus with more than one trait is due to a real association with only one 

of them and then to an influence of the gene-associated phenotype on the others). 

 

An important issue to deal with, when you begin to plan a multi-phenotype association analysis, is 

whether the effects of a gene on correlated traits can be counted as independent contributions to 

the degree of pleiotropy. In other words, it is the problem of identifying the basic building blocks of 

the phenotype. 

Just to give an example, a question can be: “are the depth and the width of a bird beak really two 

different characters?”
1
. Maybe the beak depth and width are two different measures of the same 

thing, and any mutation that affects both really has only one effect. 

In fact, different phenotypes can be substantially correlated, and some correlation might be due to 

shared genetic covariance. A detected genetic association for one phenotype might reflect 

associations with other correlated phenotypes, in the sense that some genetic effects are partly or 

totally explained through an association with the other phenotype
45

. 

In addition, as a gene variant might be truly associated with two or more different correlated 

phenotypes, other genes could also have clear pleiotropic effects on phenotypes that are apparently 

clinically uncorrelated
45

. 

In general, ignoring phenotype correlations and relationships leads to an upward bias in estimates of 

pleiotropy. 

This problem can be addressed, for example, by calculating and evaluating the degree of correlation 

between traits, and by detecting an “effective” number of phenotypes before running the analyses.  

Another empirical approach to estimate if two phenotypes are independent is to evaluate the 

presence of mutations that dissociates them, meaning for instance that a mutation affects one 

phenotype but not the other, or that a mutation has same directional effects on the two phenotypes 

and another has opposite effects
1
. 
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2.2.2 Methods for studying cross-phenotype effects 

2.2.2.1 Multiple univariate analyses 

A possible strategy to detect and study CP effects is to combine results from standard univariate 

analyses, such as linkage analyses or association analyses (for example GWASs), across various 

Table 2.1: Summary of proposed approaches for the study of the relationship of genes with multiple phenotypes. 

Method

Linkage or 

association 

studies

Based on p-

values or 

effects

Allows for effect 

heterogeneity

Types of 

phenotype

Accomodate 

overlapping 

subjects

Identification of 

subsets of 

associated 

phenotypes

Variants or 

region 

identification Reference

Simple comparison Both

Both, primarly 

p-value Yes Any Yes

Two traits per 

time Both 46

Fisher's omnibus test Both P-value Yes Any No No Variants 49

CPMA Association P-value Yes Any No No Variants 50

Fixed-effects MA Association Effect No Same No No Variants 45,48

Random-effects MA Association Effect

Yes, not opposite 

effects Same No No Variants 45,48

Subset-based MA Association Effect Yes Same

Offer extension to 

do it Yes Variants 51

Extensions to O'Brien Both Effect Yes Any Yes, only No Variants 52,53

TATES Association P-value Yes Any Yes, only No Variants 54

PRIMe Association P-value Yes Any Yes No Regions 55

Decomposition of 

covariance matrix Both

A priori 

transformation Yes Any Yes, only Yes Variants 56,57

PCA Both

A priori 

transformation Yes Any Yes, only Yes Variants 58

CCA Both

A priori 

transformation Yes Any Yes, only Yes Variants 61,62

Multivariate linear 

regression Both Raw data Yes Quatitative Yes, only

Should test 

different models Variants 47,63-67

Multivariate logistic 

regression Both Raw data Yes Discrete Yes, only

Should test 

different models Variants 44

Log-linear regression Both Raw data Yes Discrete Yes, only

Should test 

different models Variants 68

Bayesian model search Association Raw data Yes Discrete Yes, only Yes Variants 69,70

Variance-components 

method for multipoint 

linkage Linkage Raw data Yes Any Yes, only

Should test 

different models Variants 71

Variations of GEE Both Raw data Yes Any Yes, only

Should test 

different models Variants 72-74

EGEE Association Raw data Yes Any Yes, only

Should test 

different models Variants 75

Multiphen Association Raw data Yes Any Yes, only Yes Variants 62

Non-parametric tests Association Raw data Yes Any Yes, only

Should test 

different models Variants 76

Graph-based methods Association Raw data Yes Any Yes, only Yes Variants 10

Tree-based methods Association Raw data Yes Any Yes, only Yes Variants 77

Bayesian network 

methods Association

Raw or 

summary data Yes Quantitative Yes, only Yes Variants 78

Polygenic score Association Effect Yes Same No

Two traits per 

time None 79

Genetic correlation Both Effect Yes Same No

Two traits per 

time None 81

Polygenic approaches

Multiple univariate analyses

Dimension reduction techniques

Multivariate analyses

Graphical multivariate approaches
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phenotypes, to identify those variants that are associated with multiple traits
6
. 

In the standard univariate approach, when considering a quantitative phenotype, a linear regression 

is usually performed for phenotype, Y, on genotype, X. Yi = [Yi1 ,…, YiK] denotes the phenotype data 

corresponding to K phenotypes for an individual i and Xi = [Xi1 ,…, XiG] denotes their genotype data at 

G SNPs, where, under an additive model, Xig ϵ [0,1,2]. The regression performed at a SNP, g, and a 

phenotype, k, to test for association between the SNP genotype and the phenotype, is thus 

modelled as: 

Yik = αk + βgkXig + εigk 

where εigk is the residual error assumed to be normally distributed. 

The null hypothesis of no association between genotype and phenotype (βgk = 0) can be tested by 

performing a t-test or an ANOVA. 

Studies that used univariate approaches on different phenotypes, not necessarily measured on the 

same individuals, may be combined together as described below; therefore it is clear that they are 

well suited to analysing existing GWAS results, including those already conducted by consortia that, 

moreover, can be organised into cross-disease groups. These methods are especially important for 

rare diseases, which are less likely to be ascertained simultaneously in the same cohort studies. 

Another advantage of univariate approaches is that, unlike multivariate approaches, most of them 

are based on summary statistics, which do not divulge individual-level data. 

Below, several univariate approaches for the detection of CP effects are reported (see also table 

2.1). There is not a single most powerful approach, but the appropriate statistical test should be 

chosen based on study design, the type of phenotypes to be analysed, assumptions on effect 

heterogeneity (do we expect that the effects have different direction and different sizes on different 

phenotypes, or not? Can we define a “prior” of the directionality and of the extent of multiple 

effects?), and other factors
6
. 

Simple comparison of univariate analysis results 

The simplest strategy to analyse genetic relationships with multiple phenotypes is to run a separate 

linkage or association analysis for each phenotype of interest, and to compare the results. 

Alternatively, the set of genome-wide significant SNPs for one phenotype can be tested for 

association with other phenotypes; in this case, the advantage is that the significance level for 

multiple testing is adjusted only for the number of tested SNPs, rather than for all SNPs genome-

wide. 

An example of a similar approach comes from an “expression quantitative trait loci” (eQTL) 

association study in mice by Chen et al. where the authors assembled a co-expression network and 

then applied a clustering algorithm to this network for the identification of subgroups of expressed 

genes whose members participate in the same molecular pathway or biological process. After that, 

within each subgroup of expressed genes, a univariate eQTL analysis was performed between 

genotypes and expression data: if the majority of expressed genes in each subgroup were mapped 

to a same locus in the genome, that locus was considered to be significantly associated with the 

subgroup
46

. 

This kind of approach has two main disadvantages: first, it does not take into account the 

multivariate structure of the data; and second, testing of multiple phenotypes increases the type I 
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error rate (experiment-wise false-positive rate), if not properly accounted for in the analysis
47

. 

Moreover, robust discovery is required as a starting point because these approaches are fairly 

underpowered if we think that known associations are probably only a subset of the possible  true 

associations
6
. 

 

Simple meta-analytical approaches 

A meta-analysis is a statistical method for the combination of summary statistics obtained from 

different studies to provide an overall summary result, with the aim of statistically increasing power, 

reducing false-positive findings, and eventually identifying new, previously unsuspected, associated 

loci
48

. 

Traditional meta-analysis approaches combine evidence for association with the same phenotype 

across numerous studies. Variations on meta-analysis have also been adapted for CP effect 

detection: in these, meta-analytical approaches aggregate summary statistics from individual studies 

of multiple phenotypes into one statistic, and can be applied genome-wide, or on a pre-specified set 

of SNPs. 

These methods can be divided into those which combine p-value and those which combine effect 

estimates. Methods based on association p-values ignore allelic effect direction (positive versus 

negative) and effect heterogeneity (different effect directions and sizes) across phenotypes. 

Methods, based on the effect statistics, instead, are sensitive to allelic effect direction and 

magnitude. 

In GWASs, methods that combine p-values test the null hypothesis of no association in any of the 

combined data sets. The alternative hypothesis is that there is association in at least one data set. 

These methods are easy to compute and have adequate power
45

; for this reason they were widely 

used until the 1980s, but then they became unpopular, and were almost abandoned in biomedical 

sciences, because of several limitations, such as an inability to provide a summary effect, difficulties 

in addressing heterogeneity issues, and dependence on normality assumptions
48

. 

 

The simplest meta-analytical approach aggregates p-values across phenotypes in different studies to 

test the null hypothesis that the genetic variant is not associated with any phenotype. 

An example is Fisher’s method
49

 for combining N p-values (p) in a cumulative association statistic 

Scum trough the Fisher’s Omnibus test: 

 

Scum follows the χ
2
 distribution with 2N degrees of freedom (df)

50
. 

This approach does not explicitly test for CP effects, and a significant association could be driven just 

by one phenotype, as well as by two or more phenotypes
6
. We will better discuss these aspects in 

the sections below, where we applied Fisher’s method as primary simple meta-analysis of our data. 

Cross-phenotype meta-analysis (CPMA) method 

The cross-phenotype meta-analysis (CPMA) was proposed by Cotsapas at al. to investigate the 

genetic commonality in immune-mediated inflammatory and autoimmune diseases
50

. 
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The CPMA uses p-values from univariate analyses for single traits and diseases and assesses 

association across multiple phenotypes by testing whether the observed p-values deviate from an 

expected distribution. 

The expected distribution of association p-values for each SNP across diseases represents the null 

hypothesis of no additional associations beyond those already known: deviations from it are 

indicative of multiple associations. The alternative hypothesis is thus that each independent SNP has 

multiple phenotypic associations. 

The alternative hypothesis includes only models in which two or more of the phenotypes, but not 

necessarily all of them, are associated with the SNP, with the result that this approach explicitly tests 

for CP effects, although it ignores the direction of effect in each disease. 

Under the null hypothesis of no additional associations beyond those already known, we expect 

association values to be uniformly distributed, and hence -ln(p) to decay exponentially with a 

decrease rate λ = 1. 

The likelihood of the observed ( ) and expected (1) values of λ is calculated and expressed as a 

likelihood ratio test: 

 

Because only a single parameter is estimated (the deviation in p-value behaviour), rather than 

performing a meta-analysis, which would detect association with all phenotypes, or test all 

combinations of phenotypes increasing the multiple testing burden, this test is asymptotically 

distributed as a χ
2
 with df = 1. This gives more statistical power to reject the null hypothesis than 

relying on strategies based on combining association statistics that have multiple degrees of 

freedom. This power comes at the price of not knowing which phenotypes the marker is associated 

with
50

. 

Moreover, CPMA assumes that the p-values used for the individual traits and diseases come from 

different non-overlapping cohorts; as such, it cannot be applied in the case of large consortia that 

investigate many phenotypes but usually share the same control samples. Modest overlap of the 

control samples (< 50%) is tolerable, but larger overlaps erode the power of this statistic
48

. 

Meta-analyses of the effects of genetic variants on multiple phenotypes 

Standard meta-analysis based on effect estimates is commonly used to combine evidence of 

association across multiple GWASs for the same phenotype, and has also been adapted to combine 

evidence across multiple phenotypes. 

Effect size meta-analysis methods use information on the effect sizes of the variants, and calculate 

summary effect sizes that can be meaningfully translated; they also allow the between-study 

heterogeneity to be estimated and tested
45

. The widely used approaches are described below. 

 

Fixed-effects meta-analysis is the most popular approach for synthesising GWAS data and the most 

powerful approach for prioritising and discovering phenotype-associated SNPs. 

It assumes that the genetic variant has the same effect on each phenotype, in other words, that the 

true underlying genetic effect in all data sets is the same, and that the observed differences are due 

to chance alone; this assumption is tenuous because of potential differences in phenotype 
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definitions, linkage disequilibrium structure, and many other sources of variation, but has the major 

advantage of maximizing discovery power compared to other methods
45,48

. 

For fixed-effects models, the inverse variance weighting method is widely used. The weighted 

average of the effect sizes can be calculated as: 

 

and the variance is: 

 

where  is the i
th

 study normalised effect (for example, logarithm of odds ratio or β-coefficient for a 

logistic regression of a binary phenotype, or mean difference or standardised mean difference for a 

continuous phenotype), and wi is the reciprocal of the estimated variance of the effect from that 

study
48

. 

 

Random-effects meta-analysis allows the genetic effect to differ across phenotypes. This model 

assumes that each data set has its own underlying effect within a population of possible underlying 

effects. 

Random-effects are not typically used in discovery efforts owing to their limited power compared to 

fixed effects models; however, they are more appropriate when the aim is to consider the 

generalizability of the observed association, and estimate the average effect size of the associated 

variant and its uncertainty across different populations: for example, for predictive purposes
45,48

. 

The most popular method for estimating the between-study variance in random-effects meta-

analysis is the DerSimonian and Laird method, but more sophisticated methods also exist. 

The random effects model incorporates the between-study variance of heterogeneity, and therefore 

the weight for the random-effects model is calculated as: 

 

where: 

 

and Q is Cochran’s Q statistic, which is given by: 

. 

 

Although random-effects meta-analysis incorporates a moderate level of effect heterogeneity, it is 

not well suited for situations in which the genetic variant has opposite effects on different 

phenotypes. In addition, both fixed-effects and random-effects models will have lower power when 

only a subset of analysed phenotypes is associated
6
. 

 

Subset-based meta-analysis extends standard fixed-effects meta-analysis to an agnostic approach 

that allows for opposite effects and to include situations in which association is observed with only a 
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subset of traits, offering an improved power, and more interpretable results when compared to 

traditional methods for the analysis of heterogeneous phenotypes
51

. 

 

This method exhaustively evaluates all possible combinations of all possible subsets of ‘‘non-null’’ 

studies to identify the strongest association signal, and then evaluates the significance of the signal 

while accounting for the multiple tests required by the subset search. An efficient approximation is 

used for rapid evaluation of p-values, bypassing computational problems of multiple testing. A two-

sided extension of the test allows for effects with opposite directions. 

Subset-based meta-analysis was firstly proposed by Bhattacharjee and colleagues in 2012. In their 

paper, they evaluated the evidence of the association for a SNP for any given subset S of the I 

studies on the basis of the Z statistic: 

, 

in which  denotes the sample size for the ith study relative to the total sample 

size for the given subset S. The overall evidence for the association of the SNP is then evaluated on 

the basis of the maximum (in absolute value) of the subset specific Z statistics over the class S of all 

possible 2
i
 - 1 subsets of the I studies. 

The authors evaluated the method through simulations and application to real data, comparing it 

with classical alternative meta-analysis approaches. They demonstrated how subset-based meta-

analysis gains substantial power—sometimes approaching between 100% and 500%—over some of 

the alternatives, and also performs well in distinguishing the subsets of associated phenotypes for a 

specific variant
51

. 

At present, this is the only method that identifies which phenotypes are influenced by a variant, 

although this advantage comes with a multiple testing price: the number of possible non-null 

combinations to be adjusted for increases exponentially with the number of traits selected, so that 

detection power decreases for even moderate phenotype counts
6
. 

O’Brien’s linear combination test and its extensions 

The O’Brien’s linear combination method was proposed by O’Brien in 1984 and consists of a simple 

approach to combine test statistics, from linkage or association studies, of correlated individual 

phenotypes
52

. 

With K correlated phenotypes, T = T
1
, T

2
,…, T

K
 is the vector of K statistics from association analyses; T 

follows a multivariate normal distribution with mean β = (β1, β2, …, βK)
T
 and covariance matrix V. 

The test uses a weighted sum of the univariate test statistics that is a linear combination of T with 

weight e: 

. 

Under the null hypothesis H0 there is no association: β = 0 and U follows the normal distribution 

with variance ; the alternative hypothesis instead is that at least one βk≠0. 

This approach can be readily used to combine univariate GWAS test statistics to create a test of 

pleiotropic effects; for each SNP, U is obtained as a test for the SNP affecting at least one of the 

phenotypes
52,53

. This approach is very useful for analysing multiple phenotypes of any type 

(continuous, dichotomous), obtained on unrelated individuals or families; however the power of this 

method may be less optimal when the βs are heterogeneous. 
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To overcome this problem, several groups have proposed extensions to the linear combination test, 

and in particular Yang and colleagues in 2010 proposed two extensions of O’Brien’s approach that 

allow the weights to differ by phenotype, but which mainly differ in how they arrive at those 

weights: a sample splitting method and a cross-validation method. The sample spitting method first 

splits the sample into two subsets, one for estimating weights, and the other for constructing the 

final test statistic. The test statistic obtained using the estimation set is T�w and using the testing set 

is T. Thus the final statistic becomes: 

 

which is approximately normally distributed with variance  . 

The cross-validation method is a repeated random sample splitting method: it randomly divides the 

data set into training and testing data of a fixed size, the partition is repeated multiple times and the 

resulting statistics from all splits are averaged
53

. 

These two extended approaches can be easily applied to data consisting of unrelated individuals or 

families, and to individual phenotypes that are not of the same type. 

Yang, using simulation studies, demonstrated that O’Brien’s method provides the highest power 

when the means of individual test statistics are homogeneous. However, on the other hand, newly 

proposed approaches outperform O’Brien’s method when the effects are very heterogeneous. 

When the effects are in different directions, O’Brien’s method may have a very low power, whilst 

the new methods (sample splitting method and cross-validation method) gain additional power
53

. 

TATES 

Similar to O’Brien’s test, the “Trait-based Association Test that uses Extended Simes” (TATES) 

procedure was developed to detect associations across correlated phenotypes, but uses the p-value 

for each association instead of the effect
6
. 

TATES combines the p-values obtained in standard univariate GWASs carried out on each phenotype 

to arrive at a minimum global phenotype-based p-value PT, correcting, at the same time, for the 

number of phenotypes and the observed correlation structure between them
54

. 

With m phenotypes measured in the same individual, this test aims to analyse the association 

between all m phenotypes and all n genotyped genetic variants (SNPs); TATES combines within each 

SNP the m phenotype-specific p-values (p (1), …, p(m)) to obtain one overall trait-based p-value PT as 

follows: 

 

where me denotes the effective number of independent p-values of all m phenotypes for a given 

SNP, and mej the effective number of p-values among the top j p-values, where j runs from 1 to m; pj 

denotes the jth p-value in the list of ordered p-values. PT is thus the smallest weighted p-value, 

associated with the null hypothesis that none of the phenotypes is associated with the SNP, and the 

alternative hypothesis that at least one of the phenotypes is associated with the SNP
54

. 

An estimate of the effective number of p-values mej is derived through a correction based on 

eigenvalue decomposition of the m×m correlation matrix between the p-values associated with the 
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m phenotypes. From this derivation, it is clear that if the j phenotypes are all uncorrelated, then all j 

eigenvalues equal 1, and mej = j-0 = j; in contrast, if the j phenotypes are perfectly correlated, then 

the first eigenvalue equals j, and the other eigenvalues equal 0, rendering mej = j-(j-1) = 1. In 

practice, phenotypes show inter-correlations of variable magnitude, so the effective number of p-

values mej will usually be smaller than j, but greater than 1. me results equal to mej for the case that j 

= m, that is when the selection of top phenotypes covers all phenotypes. Note that the m×m 

correlation matrix between the p-values is accurately approximated through the m×m correlation 

matrix between the phenotypes
54

. 

PRIMe 

The methods reported above only consider single nucleotide polymorphism (SNP) level but not 

region-level pleiotropy. 

The “Pleiotropy Regional Identification Method” (PRIMe) searches for regions of the genome that 

contain genetic variants associated with multiple traits, but does not require the same genetic 

variant to be associated with multiple phenotypes
55

. 

Firstly, with PS being the threshold for association significance of SNPs, and r being the correlation 

coefficient between a SNP pair, measured as the square root of the linkage disequilibrium (LD) 

measure r
2
, PRIMe iteratively finds SNPs with the lowest association p-value among all traits and 

defines them as drivers; it then searches for SNPs whose r
2
 with the drivers is above the user-

specified threshold (≥ 0.8 by default), and defines them as passengers. Once a SNP is designated as a 

passenger, it will not be considered again as a new driver or passenger. In this manner, PRIMe 

identifies genomic regions of interest out of the whole genome. 

Subsequently, a pleiotropic index is calculated as the number of traits that have at least one SNP 

with a univariate p-value less than PS at a particular genomic region. 

The significance of the pleiotropic index is then assessed by comparison with its distribution under 

the null hypothesis of no genotype–phenotype association for any of the traits/diseases. For 

uncorrelated phenotypes this is a simple binomial distribution; for correlated phenotypes the 

expected distribution is approximately a multivariate normal distribution and it requires the 

correlation among phenotypes to be taken into account
55

. 

 

2.2.2.2 Dimension reduction techniques 

Another class of approaches that allows for multiple phenotypes considers first performing 

dimension reduction on the phenotypes. These techniques include both principal components 

analysis and linear discriminant analysis, which seek to identify linear combinations of variables that 

explain the most variance in the data (for principal components analysis) or which discriminate 

between classes and disjoint subgroups of the data (for linear discriminant analysis)
44

. 

Decomposition of covariance matrix 

Weller et al. (1996) proposed multiple analysis of univariate, uncorrelated eigentraits, derived by a 

canonical transformation that consists of eigen decomposition of the covariance matrix for the 

original traits/disorders, in order to avoid the complexity of a very large multivariate analysis
56

. 
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More specifically, for a given set of phenotypes with known covariance matrix, a new set of 

phenotypes can be derived by multiplication of the vector of the original phenotypes by a matrix, 

whose columns are the eigenvectors of the phenotypic covariance matrix. This way it is possible to 

obtain linear functions of the original phenotypes that are called “canonical variables” and are 

phenotypically uncorrelated. Canonical variables with very low eigenvalues, relative to the sum of all 

eigenvalues, can be deleted from the analysis because they explain only a minuscule fraction of the 

variance of the original phenotypes. In doing so, marker-linked effects can then be tested on the 

reduced set of canonical variables, rather than on the original one, with the advantage of reducing 

the number of analysed variables. Moreover, since canonical variables are uncorrelated, it is 

possible to exclude the possibility that a significant marker association with two phenotypes is due 

to mediation or to correlation. 

Once significant effects are detected for the canonical variables, the effects on the original 

phenotypes can be derived by the reverse transformation, that is by multiplication of the inverse of 

the eigenvector matrix by the vector of allele effects on the canonical variables
56

. 

This approach can be useful to increase power of detection, and to reduce the number of analyses, 

but anyway the final step consists in a comparison of results from multiple univariate analyses for 

different canonical variables. 

In 2001, Korol et al. proposed a similar eigen decomposition of the phenotypic covariance matrix in 

order to reduce the multiple phenotypes into a single variable only
57

. 

The major limitation of approaches that decompose the covariance matrix is that it is not always 

possible to find a transformation which guarantees that all loci influence only one canonical 

phenotype
44

. 

Principal components analysis 

The best known method for dimension reduction involves using one or more of the principal 

components of the phenotypes in place of the original phenotypes
58

. Principal components analysis 

(PCA) extracts linear combinations of multiple variables that can be used as phenotypes in a genetic 

association analysis
6
. This approach requires only one test, and can be based on a pre-set 

significance level instead of running m different tests and adjusting the significance level for this 

multiplicity. The disadvantage of this approach is that principal components (PCs) depend on the 

variance-covariance matrix of the data, and they are not genetically based; indeed, it is possible that 

PCs have a low heritability. 

An efficient alternative approach is a method based on the principal component of heritability 

(PCH), which derives a trait based on the measured phenotypes to enhance the heritability. PCH is 

based on the notion of optimising the phenotypic variance explained by genetic variants: for each 

SNP the phenotypes are reduced to a single variable that has a higher heritability than any other 

linear combination of the phenotypes; the association between a SNP and the derived variable is 

often easier to detect than an association with any of the individual phenotypes or the PCs
58

. 

 

This approach can be applied in the context of pedigree studies. Ott and Rabinowitz developed it for 

family-based data, where available phenotypes are combined into scales: Y is the p dimensional 

vector of phenotypes composed for a family-specific component, A, and an individual-specific 
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component, E, that are uncorrelated with each other: 

. 

From the variance-covariance matrices of A and E, it is possible to derive the heritability of a linear 

combination of phenotypes. The principal components of heritability are defined not as the scores 

with maximum variance, but instead, as the scores with maximum heritability, subject to being 

uncorrelated with each other. That is, the first PC has highest heritability, the second PC has highest 

heritability among all PCs uncorrelated with the first, the third has highest heritability among those 

uncorrelated with the first and second, and so on
59

. 

The notion of heritability attributable to a genetic variant should not be confused with the total 

genetic heritability of a phenotype: the latter is usually calculated using family data, without 

reference to any specific genetic variants, while the heritability attributable to a genetic variant can 

be calculated directly from a random sample from the same population. Using the heritability 

attributable to a genetic variant, PCH can be applied also to association studies
58

 of unrelated 

subjects, but in this manner a drawback arises: because the linear combination differs for each 

genetic variant, it is necessary to estimate the PC that maximises the heritability over all phenotypes 

for each single SNP each time. To address this challenge, Klei and colleagues proposed an iterating 

method of sample splitting and cross-validation that uses one portion of the data as training set and 

the remainder of the sample as a testing set for population-based association analysis
58

. 

From simulation experiments, both on family-based and population-based samples, PCH resulted in 

substantial gains in power over standard PCA when the phenotypes are not primarily repeated 

measures of a single trait
58,59

. When several phenotypes are repeated measures, instead, a better 

approach is to replace them with a simple average of the measures
57,58

. 

If the number of phenotypes that have been measured is very large, and exceeds the number of 

individuals, as for example in a typical gene expression experiment, a ridge penalty can be added to 

prevent over fitting, as proposed by Wang and colleagues
60

. 

 

Another approach is the one proposed by Ferreira and Purcell in 2009, where they used a canonical 

correlation analysis (CCA), which is a multivariate generalization of the Pearson product-moment 

correlation. CCA extracts the linear combination of phenotypes that explains the largest possible 

amount of covariation between the marker and all phenotypes
61

. 

The method starts with a sample of n unrelated individuals, with data for two sets of variables, a bi-

allelic marker (set 1) and k phenotypes (set 2), and aims to measure the association between these 

two sets. The analysis can also be extended to multiple markers by expanding the first set of 

variables to include more than one marker. The test is based on Wilk’s lambda (λ) and approximates 

to an F-distribution: 

 

Where ρ is the canonical correlation between the marker and k phenotypes, and the F 

approximation is: 

. 

The test can also be extended to the analysis of family-based data: prior to CCA, it is necessary to 

partition each individual’s genotype into the orthogonal between-families (B) and within-family (W) 
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components; then CCA is performed using the k phenotypes and either the B (between-family 

association test), the W (within-family association test), or the B+W (total association test) genotype 

scores. An adaptive permutation procedure is then used to account for family structure. 

From simulation studies, this method was both robust and powerful; although it is most appropriate 

for the analysis of normally distributed traits, it shows good performance, even when considering 

non-normally distributed phenotypes or disease outcomes
61

. A weak point of this method is that 

CCA also treats genotypes as normally distributed, instead of using a more appropriate ordinal 

model. Moreover, CCA inflates type 1 error rates when applied to non-normal continuous 

phenotypes or binary phenotypes at low frequency variants
62

. 

 

2.2.2.3 Multivariate approaches 

Multivariate analyses jointly analyse more than one phenotype in a unified framework. Thus, they 

simultaneously test for the association of multiple phenotypes with a genetic variant, given a 

mathematical model of the relationships among phenotypes, which can be either correlations or 

conditional dependencies. 

Numerous multivariate parametric and non-parametric approaches have been proposed for genetic 

association studies, particularly for correlated phenotypes. The choice of the most appropriate 

method depends on the types of phenotypes included in the analysis: continuous, categorical, 

binary or mixed
6
. 

Many methods for multivariate analysis in genetics were first employed in linkage analysis, but  are 

easily adapted to genome-wide association data from human studies
44

. 

Multivariate approaches are generally more efficient than multiple univariate ones, in the presence 

of correlated phenotypes, and when phenotypes depend on different sets of independent variables 

and predictors. In addition, multivariate analysis can prevent problems arising from missing data and 

interpretation that may complicate multiple univariate analyses when different sets of individuals 

are included
44

. 

Most multivariate methods require that all phenotypes are measured on the same individuals; this 

can be a limitation because they are only well suited for studies in which subjects are phenotyped 

across various diseases (for example, large cohort studies or cross-sectional studies), and they are 

not well suited for diseases with a low prevalence. 

Another major difficulty is that parameter estimation reflects different alternative hypotheses to be 

compared to the global null hypothesis of no association. Ideally, the analyst can specify one of 

these alternative hypotheses, a priori, but sometimes interest may be in more than one, or even all 

of the alternative hypotheses. This situation raises considerable uncertainty about how to 

appropriately correct for multiple comparisons
44

. 

Multivariate regression framework for continuous phenotypes 

For continuous phenotypes, a multivariate regression framework can be used, but the approach 

requires that the phenotypes are approximately normally distributed. 

 

A first example is represented by linear regression approaches based on the Haseman-Elston 



Dissection of pleiotropic effects in genome-wide association studies of phenotypes related to 

cardiometabolic health 

38 2 | Literature review 

 

method and applied to linkage studies. This group of methods is based on a robust algorithm for 

detecting linkage developed by Haseman and Elston for data from sib pairs. 

The extension to incorporate observations of multiple correlated phenotypes on each individual is 

justified by the idea that these kinds of linkage studies may be more powerful if they use the 

information from each of the phenotypes that are affected by a same gene. 

The Haseman-Elston method consider yij the measure of a phenotype for the ith sib (i = 1,2) for the 

jth pair of sibs, with μ mean, gij major genetic effect and eij random independent effect. If the major 

gene has two possible alleles (A, a), the considered model is: 

 

and 

 

If πmj is the proportion of genes (0, 1/2, or 1) that the jth sib pair shares identical by descent (ibd) at 

a marker locus, and fm1j denotes the probability that the sib pair shares one gene ibd; if Yj = (y1j - y2j)
2
, 

where y1j and y2j are the trait values for the two sibs composing the jth pair, Imj is the observed ibd of 

the sib pair at the marker locus, and the variance of the difference in residuals for the pair is σ2, then 

 

The coefficient β is negative if θ (recombination fraction between the phenotype and marker loci) < 

0.5 and the additive genetic variance is greater than zero (α > 0)
63

. 

From this equation we understand that the variability between a pair of sibs can be linearly 

modelled as a function of the genetic component of variance and the recombination fraction 

between the phenotype and marker loci. The ratio of the estimate of β to its standard error is 

distributed as a standard normal variable: a one-sided test of linkage can be obtained by comparing 

this statistic with the appropriate t distribution
64

. 

Amos and colleagues proposed a two-step approach where Haseman and Elston’s function can be 

extended to multiple variables to find a linear function having the strongest correlation to ibd at a 

marker among sib pairs. A conservative test of no significant regression of the identified linear 

function on the proportion of genes ibd can be obtained by calculating an F statistic, that is, the 

linear function is then analysed as a univariate phenotype. The calculated F statistic is then 

compared with the critical value from an F distribution with the appropriate df
64

. 

Amos and colleagues tested this method on a sample pedigree of 200 individuals, considering all the 

possible combinations of four lipid traits (high-density lipoprotein, low-density lipoprotein, apo Al, 

and apo B levels) in relation to the marker-locus haptoglobin, and demonstrated that testing 

multiple traits can lead to the identification of stronger relationships with ibd. 

Allison and colleagues, in 1998, evaluated the method developed by Amos et al. (1990), through a 

series of simulations, confirming that such multivariate analysis can substantially increase the power 

of quantitative-trait locus (QTL)–mapping studies
47

. 

Multivariate linear regression approaches based on the Haseman-Elston method were also applied 

in studies of multipoint linkage, as for example in the study by Eaves at al
65

. 
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Linear regression methods are used in population-based association studies using General Linear 

Models, but they require that the phenotypes are approximately normally distributed. 

Suppose there are N =1,2,. . .,n continuous traits measured for z individuals; a general linear model 

function can be written as: 

 

where Y = (y1, y2, …, yn) is a data matrix of a series of n multivariate measurements, in our case a 

series of n normally distributed traits, X = (x1, x2, …, xm) is a matrix of covariates, and functions of the 

genotype probabilities for the m markers being considered, B = (β1, β2, …, βm) is a matrix containing 

estimated regression coefficients, and E = (e1, e2, …, em) is a matrix containing errors. The errors are 

usually assumed to follow a multivariate normal distribution. 

The general linear model is a generalization of multiple linear regression model to the case of more 

than one dependent variable y and it incorporates several statistical models
66

: χ2
 statistic, likelihood 

estimation, MANOVA, F-test. 

An example is represented by the study of Yang and colleagues, published in 2009, where they 

applied a linear regression model for the study of association of a single marker to two quantitative 

traits
67

. 

Multivariate methods for discrete phenotypes 

To model multiple categorical phenotypes (for example, multiple binary diseases), a multivariate 

logistic regression framework can be applied. To simplify, we can consider a bivariate logistic 

regression, which analyses two binary dependent variables jointly as functions of possibly different 

sets of independent variables. If we use π to indicate the probability of a particular combination of 

two dichotomous phenotypes, the joint outcome follows a Bernoulli distribution: Bernoulli (π00) 

Bernoulli (π10) Bernoulli (π01) Bernoulli (π11), with the constraint that π00 + π10 + π01 + π11 = 1. These 

joint probabilities are modelled with three parameters: the marginal probability P(y1 = 1) = π10 + π11, 

the marginal probability P(y2 = 1) = π01 +π11, and the odds ratio that relates the two dependent 

variables π00π01/π10π11 . The bivariate regression model also analyses two binary dependent 

variables jointly as functions of possibly different sets of independent variables. The joint outcomes 

are described by two latent continuous variables that follow the bivariate normal distribution
44

. 

 

Lee and colleagues proposed also a log-linear regression model to explicitly test and compare causal 

models for multiple diseases subtypes; their approach can be easily applied to multiple correlated 

diseases. Imagine we have a group of individuals all characterised for two diseases: some are 

unaffected (U), some are affected by disease1 (d1), some are affected by disease2 (d2), and the rest 

by both diseases (d12). Under this scenario, a series of log-linear models are fitted that 

corresponding to different relationships: a null model represents a variant with no effect on risk of 

either disease1 or disease2, a disease1 model represents a variant with effect on disease1 risk and 

no effect on disease2 risk, a disease2 model vice versa, and a gradient model suggests that the 

variant increases risk for both diseases. Each model has four parameters to estimate, qU, qd1, qd2 and 

qd12, that are the frequencies for the A allele in groups U, d1, d2 and d12. In a group i = U, d1, d2 or d12, 

the observed counts of alleles are labelled Ai and ai , then the log likelihood L for a model is: 

. 
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Maximum likelihood parameter estimation is used to obtain the allele frequency parameters, along 

with two commonly used information criteria, the Akaike information criterion (AIC) and Bayesian 

information criterion (BIC). For a model with k parameters, the AIC is –2ln( L ) + 2 k ; the BIC is –2ln( 

L ) + k ln( n ) where n is the total number of observations. These information metrics can be used for 

selecting the causal model that best fits the observed data. Models with lower values for these 

metrics are to be preferred because they provide a good fit to the data without the need for large 

numbers of model parameters
68

. This approach could be easily extended to model genotype or 

haplotype frequencies instead of allele frequencies, or be re-parameterised in terms of genotypic 

relative risks , or include affected offspring/parent trio data
68

. 

 

A Bayesian model search is a flexible, robust, and computationally efficient alternative approach, 

which lends itself naturally to the creation of genetic risk classifiers. A Naive Bayesian Classifier 

(NBC) is a simple tool that can be used to capture the complex genetic basis of a multigenic 

phenotype and can predict a subject’s phenotype based on the posterior probability of the 

phenotype itself, given their genetic profile
69

. Bayesian classifiers have been used before in GWAS 

because they can use a large number of genetic variants, but generally only one individual 

phenotype. Pleiotropic associations can be modelled via the construction of simple Bayesian 

networks, and these models can be applied to produce single or ensembles of Bayesian classifiers 

that leverage pleiotropy to improve genetic risk prediction
69

. 

A model approach based on Bayesian classifiers has been proposed for including multiple diseases: 

this method starts from a GWAS dataset with multiple known related disease phenotypes as input, 

for which it identifies relationships between SNPs and phenotypes, and uses these relationships to 

generate classifiers and ensembles of classifiers that can predict one or multiple phenotypes. The 

algorithm does this by operating in two distinct phases
70

. 

In phase I, SNPs are ranked by significance of association, and the most likely association model is 

determined for each SNP. More specifically, we indicate with s a single-SNP with 2 or 3 possible 

values, depending on the mode of inheritance being tested; in the recessive mode, s is like a 

Bernoulli random variable with two possible values: 1 = [AA | AB] and 2 = [BB]; in the dominant 

mode, s is coded as 1 = [AA] and 2 = [AB | BB]; in the allelic or additive mode, each allele is treated 

as a separate observation, with 1 = [A] and 2 = [B]; in the genotypic mode, s has three possible 

values: 1 = [AA], 2 = [AB], and 3 = [BB]. If d1 and d2 represent two diseases, n different SNPs are 

modelled as having distributions that are conditional on the phenotype classes, considering four 

possible equally likely relationships between d1, d2, and each s: 

 M0, the null model, in which the distribution of the SNP is independent of either phenotype; 

 M1 and M2, the single-phenotype association models in which the genotype frequencies of s 

are associated with d1 or d2; and 

 M12, the pleiotropic model, in which the distribution of s is correlated to both d1 and d2. 

Let S be the vector of observed genotypes for each SNP, s, in m samples, and D1 and D2 the vectors 

of observed phenotypes for the two diseases respectively. Firstly, single-phenotype Bayes factors 

are calculated for each phenotype (d1 and d2) to compare the likelihood of observed genotypes S, 

given observed phenotypes D1 and D2, under the model M1 and M2 respectively, with the likelihood 
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under the null model (M0): 

 
70

. 

The calculations are carried out under the four different modes of inheritance and the model with 

the largest Bayes factor is selected for each SNP. Only t SNPs, whose Bayes factors satisfy a 

significance threshold of ln(BF) > 1 are then considered. Secondly, the pleiotropic model is tested for 

each of the t SNPs: if Dx is the chosen phenotype (with x=1 or 2), then if p[S M12, D1, D2]>p[S Mx,Dx] 

the model M12 would be selected for this SNP; otherwise, the first-pass model (M1 or M2) would be 

selected. 

The SNPs are ranked based on the Bayes factor comparing their respective selected models against 

the corresponding null models, and nested SNP sets (classifiers) are defined. After that, three types 

of genetic risk prediction can be carried out: marginal, conditional and naïve. Marginal prediction is 

the prediction of the risk of only one of the phenotypes, using only the subject genotype; the other 

phenotype is assumed unknown for prediction, but the classification rule is trained on a discovery 

set that includes both phenotypes. Conditional prediction is for only one of the phenotype, but now 

we assume that both the subject genotype and the value of the other phenotype are known; once 

again, the classification rule is trained using both phenotypes. Naïve prediction is based on naïve 

Bayesian classifiers and the classification rule is trained using one phenotype alone, ignoring all data 

on the other phenotype
70

. 

In phase II, cross-validation is used to: (1) determine the optimal number of SNPs to use in the final 

classifier, (2) estimate various accuracy metrics of the classifiers, and/or (3) select alternative 

classification thresholds. Either 10-fold or leave-one-out cross-validation (LOOCV) can be used. The 

discovery dataset is split into training and test sets. For each training/test set, phase I model 

selection is repeated on the training set, and the corresponding test set is classified using the 

resultant nested SNP sets. The final number of SNPs to include in the model is determined by finding 

the set of SNPs that, in the cross-validation, achieves the highest area under the Receiver Operating 

Characteristic (ROC) curve
69,70

. 

Testing with simulated and real data demonstrated that these models may improve genetic risk 

prediction under numerous circumstances
70

. 

Multivariate methods for continuous and categorical phenotypes together 

Several methods extend multivariate approaches to allow non-normally distributed phenotypes 

and/or a mixture of continuous and categorical phenotypes for linkage and association studies. 

Williams and colleagues in 1999 proposed a variance-components method for multipoint linkage 

analysis that allows joint consideration of a discrete variable and a correlated continuous trait in 

pedigrees of arbitrary size and complexity. The continuous trait is assumed to be normally 

distributed
71

. 

In contrast to the situation where all phenotypic data are either quantitative or qualitative in nature, 

and the likelihood of the complete pedigree data can be specified without any special partitioning of 

the variables, when some phenotypes are continuous and others are discrete, it becomes 

convenient to partition the total likelihood into factors that are descriptive of each type of data, and 

to develop each factor accordingly. The joint likelihood of observing a particular configuration of 
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continuous phenotype values and discrete-phenotype statuses within a pedigree can be factored as 

L(x,y) = L(x)L(y|x), where L(x) is the likelihood of observing the continuous data on the pedigree 

members and L(y|x) is the conditional likelihood of observing liabilities consistent with the affection 

statuses of the pedigree members, given their values for the continuous phenotype. The two 

likelihoods are then multiplied to give the total joint likelihood of the discrete and continuous 

observations in a pedigree. The results of this approach, when applied to simulated data, showed 

that joint consideration of a discrete phenotype and a correlated quantitative trait can improve the 

estimation of genetic parameters and increase evidence for linkage of the phenotypes to a major 

gene, compared with univariate analysis of individual phenotypes
71

. 

 

An extended regression framework, for example, can be based on variations of generalized 

estimating equations (GEE) that represent a multivariate version of generalized linear model (GLM) 

and were introduced by Liang and Zeger in 1986
72

. 

Generalized estimating equation models do not rely on assumptions of standard parametric 

distributions such as multivariate normality; the user is only required to specify the mean function 

and the variance
44

. 

Under the GLM, if we have an individual phenotype indexed by k, and a tested marker indexed by m, 

the model relates phenotypes and genotypes by this function: 

 

for each jth individual from the ith family. In a population-based cohort, the number of j is the same 

of i, as each individual belongs to a distinct family. Lijk is the link function for μijk, the expected value 

of k; β0k and β1k represent population mean and genotypic effects, respectively; and gij is the 

genotype score for m. The derivation of the log-likelihood with respect to β 1k yields the score: 

 

where tijk = yijk - μijk . Under the null hypothesis of no association (β 1k = 0), μijk is identical in all 

subjects, that is, μijk = μk
73

. 

For multivariate data with arbitrary distributions with K phenotypes, Liang and Zeger’s GEEs 

estimate model parameters while accounting for correlations among variables. A multivariate score 

is: 

 

where ∆ij is a diagonal matrix depending on the underlying GEE model, and tij = (tij1, …, tijK) is a K-

dimensional vector containing all the phenotypic information. Under the null hypothesis of no 

association, ∆ij and Var(tij)
-1

 are identical for all subjects, therefore the resulting score is: 

 

(S1 is a special situation of S with only one phenotype k)
72

. 

 

Lange et al. used GEE scores to extend family-based association tests (FBAT) creating a FBAT- GEE 

test. FBAT-GEE is a valid multivariate test that does not require any distributional assumption for the 

phenotypes and can be applied directly to multiple dichotomous outcome variables, counts, 
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continuous variables, and to combinations of different types of variables
73

. 

In n independent families, each consisting of parents and one offspring, the authors tested the null 

hypothesis that a marker locus is not linked to any disease-susceptibility locus for any of m selected 

phenotypes. The bi-allelic marker has alleles A and B, with gi counting the number of transmitted A 

alleles in the offspring of the ith family, and pi1 and pi2 are the parental genotypes for that family. 

Under the assumption that the phenotype yi, given gi, can be modelled by a generalized linear 

model, the likelihood score is given by the statistic: 

 

S3 can then directly be utilized to construct a FBAT χ
2
: 

 

 

where  is the mean value of S, and its variance is  

. 

When there are multiple phenotypes, instead of just one, per offspring, χ
2
 is integrated with a GEE 

model where tij is substituted by tij. With no missing phenotypic data and no covariates, the variance 

matrix of ti and Δi are identical for all subjects under the null hypothesis, thus they vanish when the 

score test is constructed under the null-hypothesis: 

 

The variance matrix is . 

The multivariate extension of the univariate FBAT can be defined by: 

 

With df given by the rank of the variance matrix VS
73

. 

Simulation experiments involving quantitative traits show that the multivariate FBAT clearly 

outperforms permutation tests and univariate FBATs with corrections for multiple testing. Moreover 

it can be easily extended to multi-allelic markers or to linear transformations of dependent 

variables
73

. 

This calculation can be also easily extended to population-based association studies, by just 

changing: 

 

And the χ
2
 test is: 

 

Finally, this statistic has also been implemented for joint analysis of population- and family-based 

samples: the total sample is divided into two complement sets, U and R, where U contains Nu 

unrelated individuals, and R contains the remaining N - Nu related offspring in each family. For the U 

set, the population genotype mean and variance, denoted by  and Var(g) respectively, are 

estimated
74

. For each individual in the R set, the genotype mean and variance are estimated from its 

parents’ genotypes.  thus becomes: 
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The proposed test χ
2
 can then be regarded as the uniform integration of population- and family-

based association tests. This method can be further integrated with principal component analysis to 

adjust for population stratification, and also to take account of multiple siblings and missing 

parents
74

. 

 

Extended generalized estimating equation (EGEE) methods have been proposed by Liu et al. as 

powerful approach to bivariate association analysis for candidate genes or GWA studies which 

incorporates both continuous and discrete phenotypes, and which can be also extended to multiple 

correlated phenotypes with complex distributions. The advantages are: 1) offering consistent 

estimations of regression and association parameters, 2) being efficient
75

. 

The authors used seemingly unrelated regression (SUR) model by which two generalized linear 

models (GLMs) with different link functions, as for example different phenotypic distributions, can 

be combined in a unique function. In their bivariate simplification, they used an identity link for 

continuous traits, and a logit link for binary phenotypes. 

For N unrelated individuals, each having observations on two phenotypes (T1 normally distributed 

trait and T2 binary variable), this unique function of the relationship between the explanatory 

variables and the marginal means of the two phenotypes can be expressed as: 

 

Where µi is the mean vector of the two phenotypes, Xi’ is a compound function vector of 

explanatory variables, including genetic markers and other covariates, and β is a vector of regression 

parameters for the two phenotypes (β1 and β2) to be estimated
75

. 

There are two additional parameters to estimate: the dispersion parameter ψ for each phenotype 

(ψ1 forT1 and ψ2 for T2), and the association parameter ξ. In the context of binary outcomes, there 

exists no over-dispersion, so that ψ2 ≡ 1. ψ1 is squared transformed to ϕ
2
 and ξ and ϕ are combined 

in a single vector . 

Within EGEE, the authors took two steps: an Estimation Step, where the regression vector β and the 

association vector  are estimated; and a Testing Step, where they employed a Wald χ
2
 statistic to 

test the significance of β parameter, that is to test if the explanatory variable has an effect on either 

the continuous phenotype or the binary outcome, and of the ξ parameter
75

. 

Simulation experiments and GWA real data analyses demonstrated better performance of this 

method over univariate analyses, in terms of improved power with comparable false-positive rates, 

under almost all the scenarios simulated. 

 

An interesting alternative to GEE methods is the ordinal regression analysis, where the genotype of 

a marker is used as outcome variable, and the set of multiple phenotypes as predictors in the model. 

This is the strategy behind MultiPhen software, which is based on the idea that modelling the 

association between linear combinations of phenotypes and the genotype at each SNP can uncover 

novel genetic associations not detectable in single phenotype GWASs and in those based on an a 

priori definition of a phenotype as a fixed function of variables. MultiPhen rapidly performs multi-
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phenotype analysis by identifying the linear combination of phenotypes most associated with 

genotype at each SNP. This is achieved by reversing the regression, such that the K phenotypes 

under investigation become the predictor variables, and genotype is regressed on phenotypes, 

rather than phenotypes on genotype as in standard univariate approaches (as described in 

paragraph “2.2.2.1. Multiple univariate analyses”). The genotype data is an allele count and is 

therefore modelled using ordinal proportional odds logistic regression. Ordinal regression 

(proportional odds logistic regression) is applied without making any assumption on the distribution 

of phenotypes: binary, ordinal and continuous measurements can thus be accommodated. The test 

for association is then an omnibus likelihood ratio test for model fit to test whether all regression 

weights in the model are together significantly different from zero
62

; in other words, at each SNP g = 

1, …, G, a likelihood ratio test is used to test the null hypothesis bg1 = … = bgK = 0. The test does not 

assume Hardy-Weinberg Equilibrium
62

. 

MultiPhen was shown to outperform other multivariate methods when minor allele frequency 

(MAF) was low and the phenotypes were case-control status or non-normally distributed continuous 

variables
54

. Another key advantage of this method is its computational speed, as well as its 

applicability to directly genotyped or imputed SNPs or CNV data
62

. For all its advantages, we 

developed a strategy of ordinal regression analysis similar to that used in MultiPhen approach, and 

we applied it for the analysis on multiple cardiometabolic phenotypes. In-depth description of this 

analysis will be reported hereinafter. 

 

Non-parametric tests for multiple phenotypes have been proposed, even if not extensively utilised 

and extended. An example is Zhang and colleagues’ rank-based approach that uses the generalised 

Kendall’s τ and corresponding non-parametric U-statistics for analysing differences between pairs of 

individuals, as more flexible forms of test statistics.  

As the authors explained, D and M denote a causal locus of interest and a marker locus, respectively, 

and AD and AM denote the alleles at D and M, respectively. The coefficient of LD between D and M is 

δ = P(AD, AM) − P (AD)P(AM). The null hypothesis, H0, is that there is no linkage disequilibrium (δ = 0) 

between the alleles at the marker and the causal locus of interest. In other words, the assumption 

under the null hypothesis is equivalent to the independence of the phenotype distribution and the 

marker distribution. The U-statistic is then used for testing this independence assumption
76

. 

Kendall’s τ is a classic nonparametric measure of correlation between two variables based on the 

difference between the probability of observing the two variables in the same order in two 

observations, and the probability of observing the two variables in the opposite order. For a sample 

of n observations (X1, Y1), ···, (Xn, Yn), two observations (Xi,Yi) and (Xj, Yj) are concordant if (Xi − Xj)(Yi − 

Yj) > 0 and discordant if (Xi − Xj)(Yi − Yj) < 0. Then Kendall’s τ is based on the difference between the 

numbers of concordant pairs and discordant pairs. Firstly a multiplicative kernel function is defined 

as following: 
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where ϕ1(Xi,Xj)and ϕ2(Yi,Yj) measure the dissimilarity of (Xi,Xj) and (Yi,Yj), respectively; and the 

corresponding U-statistic is: 

; 

The Kendall’s τ thus is: 

 

Where Var0(U) is the variance of U under the null hypothesis. 

Suppose we observe a vector of measured or coded phenotypes T = (T
(1)

,···, T
(p)

)ʹ, and a vector of 

markers M = (M
(1)

,···, M
(g)

)ʹ, for each of n study subjects, which can be substituted for Y and X 

respectively. The U-statistic becomes: 

 

And the association test statistic is 

 

where Cov0(U|T) is the co-variance matrix of U given trait T under the null hypothesis that there is 

no association between marker alleles and any T-phenotype linked locus. 

This approach can handle mixed outcomes, but does not consider additional covariates beyond the 

genetic variant. 

Simulation studies revealed an increased power of the method in detecting significant associations 

compared to the Lange and colleagues’ FBAT- GEE test
76

. 

 

2.2.2.4 Graphical multivariate approaches 

Graphical methods for jointly analysing multiple phenotypes have been recently developed based 

on network theory. The application of network theory to genetics has given rise to systems genetics, 

which is the study of networks of interactions between genes and phenotypes, as well as networks 

of interactions among phenotypes, ideally integrating functional data into the GPM
44

. 

Graph-based methods 

Some methods envisage the consideration of the information provided by networks or graphs of 

phenotypes before applying a regression analysis. A graph is a set of nodes and edges; in multiple 

phenotype analysis, nodes represent phenotypes and edges represent the relationships between 

them. 

There are many strategies to define whether an edge should be drawn between two phenotypes. 

For example, one could compute correlation coefficients for all pairs of phenotypes, and connect 

two nodes with an edge if the correlation coefficient is larger than some threshold value, or, in the 

absence of a threshold, all edges exist and weights can be assigned equal to the corresponding 

correlation coefficients. 

A sophisticated example of the use of this type of approach is described by Kim and collaborators: 

they proposed to use a multivariate regression function that incorporates a quantitative-trait 

network as representation of the correlation structure between phenotypes, combining in this 
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manner multiple traits in a single statistical framework and subsequently analysing them jointly to 

identify SNPs associated with subsets of tightly correlated traits, instead of combining results from 

multiple univariate analyses
10

. 

They started from a GWAS method called graph-guided fused lasso (GFlasso), which is a multivariate 

regression with the L1 penalty, named “lasso”, which sets many of the regression coefficients for 

irrelevant markers to “0”. 

As a starting point, the equation of single-trait association via linear regression model is: 

 

Where: X is an N×J matrix of genotypes for N individuals and J SNPs, and each element xij of X is 

assigned 0, 1 or 2 according to the number of minor alleles at the jth locus of the ith individual. Y is 

an N×K matrix of K quantitative trait measurements over the same set of individuals so that yk 

denotes the kth column of Y; βk is a J-vector of regression coefficients for the kth trait that can be 

used in a statistical test to detect SNP markers with significant association, and ϵk is a vector of N 

independent error terms with mean 0 and a constant variance. The estimates of B = (β1,...,βK) are 

obtained by minimizing the residual sum of squares: 

 

Using lasso, which penalises the residual sum of square with the L1 norm of regression coefficients 

and has the property of setting regression coefficients with weak association markers exactly to 0, 

the estimate of the regression coefficients can be obtained as: 

 

where λ is a regularization parameter that controls the amount of penalization. This is equivalent to 

solving a set of K independent regressions for each trait with its own L1 penalty, and does not 

provide combined information across multiple traits. 

Kim and colleagues added an additional penalty to this equation, named “fusion penalty”, which 

uses weighted connectivity between phenotypes as a guide and combines regression coefficients 

across correlated phenotypes, based on the idea that if two traits are highly correlated, their 

variation across individuals might be explained by genetic variations at the same loci. The 

assumption of this modified graph-weighted fused lasso (GwFlasso) is that a representation of the 

correlation structure over the set of K traits as an edge-weighted graph G is known. 

For example, the authors proposed computing a pairwise Pearson’s correlation coefficient for all 

pairs of phenotypes, and then connect two nodes with an edge if their correlation coefficient is 

above a given threshold ρ. Considering E as a set of edges, the weight, representing the strength of 

correlation between the two nodes, of each edge (m,l) E, is fixed as the absolute value of 

correlation coefficient |rm,l |. 

Given the correlation graph of phenotypes, the GwFlasso estimate of the regression coefficients is 

calculated as follows: 
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where: βjm and βjl are the two regression coefficients for the jth marker, fused together if traits m 

and l are connected in the graph, λ and γ are regularization parameters that determine the amount 

of penalization;  and the last term of the equation is the fusion penalty, which counts both for the 

direction (sign(rml)), and for the amount (f(rml)= |rm,l |) of the correlation. 

This method, compared with a univariate regression approach, and a multivariate one that doesn’t 

account for any structural information in the phenotypes, through simulated and real data 

demonstrated an improvement of accuracy in detecting true associations
10

. 

Tree-based methods 

Tree-based approaches include classification trees (CT) and regression trees (RT), which are both 

based on recursive partitioning of a sample into homogeneous disjointed subgroups. The optimal 

tree is created by both growing and pruning procedures. Tree-based association analysis is 

implemented by using genotype measurements such as allelic covariates, and related phenotype 

measurements, to construct binary trees. An allele shows association with the phenotype if its 

corresponding covariate is included in the optimal tree. Figure 2.8 illustrates this procedure: imagine 

we have 1000 sampled individuals and we want to test the association of fasting glucose with the 

derived allele at a SNP (A>a), accounting for three covariates: Body Mass Index (BMI), hypertension 

(HTN) and total triglyceride level (TG). Firstly, the total number of subjects is divided into two groups 

according to whether mean BMI is less than 25 or not; then subgroups are further subdivided 

according to their HTN status; finally the obtained subgroups are further divided based on TG. 

 

The association with the genotype is then assessed for each final subgroup and, if a significant 

association is discovered, for example in NODE12 (indicated by the blue arrow in figure 2.8), it 

Figure 2.8: Example of procedure for tree-based association analysis. 
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means that the analysed genetic variant is associated with fasting glucose levels for those subjects 

with higher BMI (>25), HTN, and higher triglycerides
77

. An example application of this method is 

reported in a paper by Chen and colleagues
77

. 

In gene mapping, these approaches have been used more often with multiple independent variables 

than with multiple dependent variables
44

. 

Bayesian network methods 

A Bayesian network is a directed acyclic graph in which the nodes represent random variables, and 

edges represent conditional dependencies between random variables, that is conditionally 

independent variables
44

. 

The Bayesian network analysis framework is based on model comparison, which effectively includes 

both standard univariate and multivariate association tests. Framing the association analysis as a 

model comparison problem, rather than as a testing problem focussed only on rejecting the null 

hypothesis, provides the interpretation of significant associations, and in particular by distinguishing 

which phenotypes are associated with each genetic variant. A collection of models is defined, each 

of which corresponds to a different association scenario, and the support for each model relative to 

the ‘‘null’’ scenario of no association is computed. 

More specifically, consider assessing association between a single predictor variable g (a SNP 

genotype) and d related variables Y, each measured on n individuals randomly sampled from a 

population (so g is an nx1 vector, and Y is an nxd matrix). d should be reasonably small, in the range 

of 2 to 10, and should include ‘‘related’’ variables in the sense that these variables either are 

significantly statistically correlated with one another, or are approximately uncorrelated but 

plausibly mechanistically linked, and so could be expected to 

share some genetic influences
78

. 

γ = (U,D,I) denotes a partition of Y[1, …, d] into disjoint 

subsets U, D and I, which represent, respectively, the 

variables that are not associated, directly associated and 

indirectly associated with g. YU, YD and YI are the 

corresponding columns of the matrix Y. Each partition is then 

associated to a probability model pγ(Y|g) that satisfies the 

following conditional independence relations: YU is 

independent of g; and YI is conditionally independent of g 

given YD, YU. These conditions imply that pγ(Y|g) factorises 

as: 

pγ(Y|g) = pγ(YU) pγ(YD|YU, g) pγ(YI|YU, YD). 

 

The relationships among YU, YD, YI and g can be visualised 

graphically as in the Bayesian network in figure 2.9. 

Since γ identifies which coordinates of Y are associated with 

g, inferring γ can be viewed as the main goal. Inference for γ

using Bayesian methods involves specifying a prior 

distribution, p(γ), and computing the posterior distribution 

Figure 2.9: A Bayesian network 

consisting of a marker g, Y
D
 

phenotypes directly associated with g, 

Y
I
 phenotypes indirectly associated 

with g, and Y
U
 phenotypes  not 

associated with g. Edges represent 

conditional dependencies, with the 

arrow pointing from the parent node 

to the child node. 
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using: 

p(γ|Y, g) p(γ)pγ(Y|g). 

Because each value of γ effectively defines a different statistical ‘‘model’’, performing inference for 

aspects of γ by summing over models is often referred to as ‘‘Bayesian model averaging’’ (BMA), 

which has the potential to answer questions about aspects of γ even when the actual ‘‘true’’ value 

of γ may be difficult to infer reliably. 

Implementing this inference approach involves specifying a model, pγ(Y|g), for each possible value 

of γ. The support for partition γ, relative to the global null hypothesis H0, is given by the likelihood 

ratio, or Bayes Factor (BF): 

 

where large values of BFγ indicate support for partition γ compared with the null. 

The support for each partition γ corresponds to a test in which some subset of variables (YD) is 

treated as the response variables, another subset (YU) is controlled for, and the remaining subset (YI) 

is ignored. BFγ is then: 

 

for comparing a model where YD depends on g given YU with a model where YD is independent of g 

given YU. The overall evidence against the global null H0 is summarised by an overall Bayes Factor. 

All possible values of γ represent a large number of models even if d is only moderate. A shortcut 

involves explicitly specifying only two models, and then deriving all other models from these; the 

two models that must be specified are those corresponding to the ‘‘global null’’, in which all 

variables are in U, and the ‘‘full alternative’’, in which all variables are in D. p0(Y) and p1(Y|g) denote 

these two probability distributions. For multivariate normal outcomes, it is possible to use Bayesian 

Multivariate Regression (BMVR) to specify the null distribution p0(Y) and general alternative 

distribution p1(Y|g). 

This method for multivariate normal phenotypes is easily implemented, and can be applied genome-

wide, requiring only summary data. However, implementing the framework for other phenotype 

distributions may be challenging. Another limitation is that the effect of genotype is assumed to 

affect only the mean, and not the variances or covariances, of phenotypes
78

. 

 

2.2.2.5 Polygenic approaches 

As an alternative to the methods proposed above, or as a preliminary analysis that can be 

performed before searching for specific CP variants, is it possible to use a polygenic approach that 

analyses the information of all or of a large proportion of SNPs genome-wide, to evaluate the 

genetic overlap between two phenotypes
6
. 

This kind of approaches can use a polygenic score or a genetic correlation. 

 

A polygenic score is  based on risk alleles and their effect sizes estimated for single-nucleotide 

polymorphisms from independent genome-wide association studies and it aggregates the number 

of risk alleles that each subject carries weighted by the effect sizes of the alleles, for a particular 
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phenotype
6
. This scoring procedure aims to indirectly measure the collective effect of many weakly 

associated alleles that tend to show only very small allele frequency differences between cases and 

controls, but will nonetheless have higher average association test statistics and lower p-values than 

null loci
79

. 

Purcell and colleagues, on behalf of the International Schizophrenia Consortium, used this approach 

to directly test the polygenic inheritance theory to evaluate whether common variants have an 

important role, “en masse”, on schizophrenia risk. Subsequently, they examined whether this 

component is shared with bipolar disorder
79

. 

The authors calculated the polygenic score using the PLINK software
80

, as explained at the URL 

http://pngu.mgh.harvard.edu/~purcell/plink/profile.shtml, and then applied a logistic regression to 

test the association with the diseases. 

As result of their study, the schizophrenia-derived score alleles were also associated with bipolar 

disorder (p-value = 7x10
-9 

and p-value = 1x10
-12 

in two independent samples), indicating a 

substantial, shared genetic component. However, they were largely not shared with several non-

psychiatric diseases. The authors estimated also that common polygenic variation accounts for more 

than one-third of the total variation in schizophrenia risk
79

. 

 

Genetic correlation is the genome-wide aggregate effect of causal variants affecting two separate 

phenotypes. Traditionally, genetic correlations between complex phenotypes are estimated from 

pedigree studies, but such estimates can be biased by several factors, such as shared environmental 

exposures. Lee and colleagues proposed and validated a methods based on linear mixed models to 

obtain unbiased estimates of the genetic correlation between pairs of quantitative traits, or pairs of 

binary phenotypes, using population-based case–control studies with genome-wide SNP data
81

. 

They started from standard bivariate linear mixed models for two phenotypes: 

y1 = X1b1 + Z1g1 + e1 for phenotype 1 and y2 = X2b2 + Z2g2 + e2 for phenotype 2, 

where y is a vector of observations for trait, b1 and b2 are vectors of fixed effects, g1 and g2 are 

vectors of  random polygenic effects for each individual, e1 and e2 are residuals for phenotypes 1 and 

2, respectively, and X and Z are incidence matrices for the effects b and g, respectively. Based on 

this, the authors elaborated a linear approximation where the correlation between two diseases is 

the same on both the observed and liability scale. 

Using this approach, Lee and colleagues demonstrated a significant genetic correlation between 

type 2 diabetes and hypertension (p-value = 0.023)
81

. 

 

It is important to notice that both approaches, polygenic score and genetic correlation, assess 

whether CP effects may exists between phenotypes but do not point to any particular DNA variant 

or genomic region
6
. 

 

2.2.2.6 Knock-out, knock-down and knock-in models 

Experimentally, CP effects can be detected also by the observation of co segregation of phenotypic 

differences through the use of knock-out or knock-down or knock-in genotypes in a homogenous 
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background using cultured cells in vitro or animal models. 

An example is represented by a series of functional studies for an endogenous β galactoside-binding 

protein galectin 3
6
: the knock-out mouse model of galectin 3 revealed that the deficiency of the 

protein leads to a concanavalin-A induced hepatitis in the liver
82

, whereas inhibition of galectin 3 

expression suppressed tumour growth in human breast carcinoma cells
83

. 

Dudley and collaborators applied this strategy on a yeast model
84

. A subsequent interesting step in 

the analysis proposed in Dudley’s study, after common phenotype profiles are identified for several 

genes, consists of applying a clustering algorithm to group pleiotropic genes. Comparisons of these 

clusters to biological process classifications, synthetic lethal interactions, and protein complex data, 

support the hypothesis that this method can be used to genetically define cellular functions
84

. 

This knock-out method avoids the problem of closely linked genes, but it assesses only mutations 

that lead to the complete loss of gene activity, and therefore has to be taken as an upper limit of 

pleiotropy due to allele substitutions. Another limitation is that this approach applies only to knock-

out genotypes that are not lethal
1
. To overcome these limitations, a knock-down strategy can be an 

alternative. 

 

 

2.2.3 Distinguishing real pleiotropy from mediation and allelic heterogeneity 

 

As explained in chapter “2.2.1. General introduction”, the identification of a significant CP effect 

does not equate the identification of a pleiotropic effect: in fact, phenomena such as mediation and 

allelic heterogeneity may lead to a situation which can be easily confused with pleiotropy.  

It is important to distinguish real pleiotropy from other forms of CP effects because they imply 

distinct molecular mechanisms, and have different implications for disease risk and pathogenesis
6
. 

In the following subsections we report a summary of principal methods to distinguish potential 

pleiotropy from mediation and allelic heterogeneity, this point will also be a central matter of the 

development of my study projects. 

 

2.2.3.1 Identifying mediation 

The definition of mediation is reported in chapter “2.1.2. Cross-Phenotype association and definition 

of pleiotropy”: it is when a genetic variant is directly associated with a phenotype and that 

phenotype is causal for a second phenotype. 

The association between the genetic variant and the second phenotype (also called “target 

phenotype”) can be easily tested while adjusting or stratifying by the first phenotype (“intermediate 

phenotype”): if the association persists, the CP effect is probably not fully mediated. The 

disadvantage of this very simple approach is that it can be biased when the phenotypes share 

confounding factors (C)
6
. 

 

A popular framework for causal inference commonly used to test if the intermediate phenotype 

causally affects the target phenotype is Mendelian randomisation where the effect of a genetic 
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variant can be taken as a proxy for the intermediate phenotype, and this is used to establish the 

causal relationship between the intermediate phenotype and the target phenotype
6
. 

Mendelian randomization refers to the random assortment of genes from parents to offspring that 

occurs during gamete formation and conception
85

, and it was proposed  for the first time by Martin 

Katan
86

. It is an instrumental variable analysis that uses a genetic variable (G, the instrumental 

variable), which is assumed to be randomly distributed within a population, and thus independent 

of confounders (C), to test whether an intermediate phenotype (PA) causes another target 

phenotype (PB) (see figure 2.10). 

The tested hypothesis is that PA causes 

PB and the estimate of this relationship 

is βPA,PB. To assess this, the magnitude 

of the estimated effects of a gene (G) 

on an intermediate phenotype (PA), and 

on a target phenotype (PB), can be 

combined to yield an estimate of the 

causal effect of PA on PB (βPA,PB). In other 

words, if a causal pathway is correctly 

specified, then the causal effect βPA,PB 

can be estimated by the ratio of the 

regression coefficients from the 

association analyses of G on PB, and of 

G on PA: 

βPA,PB = βG,PB/βG,PA
87

 

To conduct a valid Mendelian 

randomisation experiment, the 

following assumptions must be met: 

 Assumption 1: G (which is a 

SNP or a combination of multiple SNPs) is robustly associated with PA. 

 Assumption 2: G is unrelated to C, which represents confounding factors that bias the 

relationship between PA and PB. In other words, there are no common causes of G and PB. 

 Assumption 3: G is related to PB only through its association with PA. 

The assumptions of Mendelian randomisation are strong, and thus extreme care needs to be taken 

in the experimental design, in the selection of the instrumental variable (G), and in data 

interpretation
6
. 

Mendelian randomisation provides a potential research framework to assess causal links between 

phenotypes and, when correctly performed, provides insights into aetiological mechanisms and 

causality. Nevertheless, large sample sizes are needed, and gene-gene and gene-environment 

interactions could lead to false-positive or false-negative inferences, and population stratification 

can distort the results. 

An example application of this approach is reported by Voight and colleagues in a paper in 2012, 

where they found that LDL levels causally affect myocardial infarction risk, whereas high-density 

Figure 2.10: Example of relationship model between a genetic 

marker (G) and two phenotypes (P
A
 and P

B
), with the 

participation of some confounders (C). 
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lipoprotein (HDL) levels do not
88

. Another example is provided by the study of the relationship of the 

BMI-associated locus FTO and other metabolic and cardiometabolic related traits. Freathy et al., in 

2008, through the use of the Mendelian randomisation approach, found that the FTO genotype is 

associated with metabolic syndrome and its components to an extent entirely consistent with its 

effect on BMI
89

. These results were replicated and extended in 2013 in a sample of ~150,000 

individuals: this analysis demonstrated a causal relationship between adiposity and hypertension, 

adiposity and dyslipidemia, adiposity and heart failure, and adiposity and increased concentrations 

of the liver enzymes ALT and GGT
90

. 

 

2.2.3.2 Identifying allelic heterogeneity 

Another important issue is the distinction of CP effects that are caused by proximal variants that 

actually represent independent association signals. This is defined as multi-phenotype allelic 

heterogeneity (see chapter “2.1.2. Cross-Phenotype association and definition of pleiotropy”). 

A preliminary approach to solve this problem can be the evaluation of LD between variants at a 

locus that is associated with multiple phenotypes. In this context, variants in very high LD can be 

considered as representative of a single underlying signal of association, whilst variants in very low 

or insignificant LD can be interpreted as uncorrelated or independent. 

In addition, fine mapping of the region that surrounds a CP effect can help to discriminate allelic 

heterogeneity from real pleiotropy. Such mapping is used to more precisely locate the causal variant 

or variants that are responsible for a CP effect: if a single variant in the same gene, or variants in the 

same high LD block are discovered to be most probably causal for the diseases, this can be indicative 

of pleiotropy
6
. Notably, in many cases, establishing whether a variant is truly causal cannot be 

recognised just by fine mapping alone, and therefore this approach is approximate and not always 

useful to distinguish allelic heterogeneity. 

 

A more precise and powerful method consists of performing association analyses for each 

phenotype, conditional on each most significantly associated SNP, within a specific locus. If the two 

analysed variants are not independent, and their signals overlap, the conditional analysis will show a 

decrease in the strength of the original signals of association. On the other hand, if the two variants 

are independent, thus representing allelic heterogeneity, the conditional analysis will show no 

change in the effects on the phenotypes that are independently associated within the same locus. 

Since this process is not hypothesis generating, but simply an evaluation of the architecture of multi-

phenotype associations at these loci, multiple testing correction is not required. 

 

2.2.3.3 Functional characterisation 

The identification of the underlying mechanisms of multi-phenotype effects can be enriched by 

combining phenotypic and genetic data with functional data. 

Several bioinformatics tools and databases are available for predicting the deleterious, potentially 

disease-causing biomolecular effects of mutations on the basis of the functional category, for 
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example, PolyPhen
91

 or SIFT
92

. However, most of these tools focus on the functional effects of either 

protein-coding or splice-site variants. 

We know that mutations in non-protein-coding genes (such as microRNAs), or intergenic regulatory 

elements (such as enhancers), are also important and can result in the dysregulation of hundreds of 

target proteins, and thus could have a major role in phenotypic determination. Recently, the 

possibility of exploring and analysing several aspects for functional characterisation of coding/non-

coding DNA elements arose thanks to the publication of data by the Encyclopedia of DNA Elements 

(ENCODE) project
93

. Since it is noteworthy that regulatory variants may confer tissue-specific effects 

on multiple genes, some of which reside on different chromosomes, and that single variants can 

thus have distinct effects on different tissues, tissue-specific investigations should be undertaken. 

The examination of expression quantitative trait loci (eQTL) data in relevant tissue types can also 

help to identify the regulatory changes caused by mutations, as demonstrated in the Genotype-

Tissue Expression (GTEx) eQTL Project
94

. 

The knowledge of biological processes or pathways that involve multi-phenotype associated variants 

can help in discerning the real nature of a cross-phenotype effect; in fact, systematic investigation of 

such complex biological networks would help to elucidate genetic and cellular mechanisms 

underlying various phenotypes, and consequently to prioritise candidate factors
95

. Multiple public 

resources of canonical pathways, biological functions, or protein–protein interaction data, can be 

used to compare and contrast diverse biological roles of gene products, as well as potential 

pathogenetic mechanisms underlying distinct disorders (
96

 for a list of tools).  
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2.3 Overview of genetics of cardiometabolic phenotypes 
 

2.3.1 Genetic discoveries for cardiometabolic phenotypes 

2.3.1.1 General introduction 

In our project about the study of pleiotropic effects for cardiometabolic phenotypes, we consider a 

series of diseases and quantitative traits related to cardiac and metabolic aspects of an organism. 

This is the list of considered phenotypes, grouped in categories based on the aspect of the 

metabolism they are related to: 

 Glycaemic Phenotypes: 2 hour post-prandial glucose (2hGlu), 2 hour post-prandial insulin 

(2hIns), fasting glucose (FG), homeostasis model assessment for beta-cell function 

(HOMAB), fasting insulin (FI), homeostasis model assessment for insulin resistance 

(HOMAIR), fasting pro-insulin (PROINS), glycated haemoglobin (HbA1c), type 2 diabetes 

(T2D, disease outcome). 

 Anthropometric and obesity-related traits: body max index (BMI), waist circumference (WC), 

hip circumference (HIP), waist-hip ratio (WHR), height, body fat percentage (PCBFAT). 

 Lipids: high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, 

total cholesterol (TC), triglycerides (TG). 

 Blood Pressure-related phenotypes: diastolic blood pressure (DBP), systolic blood pressure 

(SBP), hypertension (HTN, disease outcome). 

A detailed description of these groups and phenotypes, and of main genetic discoveries for them, is 

provided below.  

We chose to analyse these variables for two main reasons: first, they describe in an exhaustive 

manner the different multifaceted physiological and pathophysiological aspects of human 

metabolism; second, for these variables publicly available data exists and their information is 

present in the majority of studied samples.  

 

Why is it important to study cardiometabolic traits and diseases? 

The rising prevalence of metabolic-related diseases indicates a crisis in global health. From a report 

of the World Health Organisation 2010, in 2004 over 112,000 deaths in the United States were 

attributed to increased cardiovascular disease (CVD), and in the same year, diabetes related 

complications were estimated to account for 5% of all global mortality. In 2006, more people died as 

a result of being overweight than underweight
97

. 

Therefore, it is evident that an improved understanding of pathophysiology of these diseases, 

achieved through genetic discovery, can provide new opportunities for treatment, diagnosis, and 

monitoring
98

. For this reason, numerous genetic analyses for cardiometabolic phenotypes have 

followed one another during the last 20 years. 

In general, the discovery of causal genes for cardiometabolic traits and disorders has followed three 

main waves: 

 The first wave consisted of family-based linkage analyses focused on candidate-genes. This 
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approach especially permitted the identification of genes responsible for rare, monogenic 

extreme forms of diseases and phenotypes segregating as single-gene (Mendelian) 

disorders. Thanks to their high penetrance, in fact, the alleles responsible for these 

particular forms were relatively easy to identify
98

. 

 The second wave of discovery switched to tests of association for specific candidate variants 

or genes of interest. Most of these studies were seriously underpowered or focused on 

inappropriate candidates. Nevertheless, by accruing data over the course of multiple 

studies, some genuine susceptibility variants were identified. 

 The third, and most successful, wave of discovery has been driven by systematic, large-scale 

surveys of association between common DNA sequence variants and phenotypes through 

genome-wide association studies (GWASs). 

In the following sections, I will give an overview of the most important genetic discoveries for 

cardiometabolic phenotypes following these waves of studies. 

 

In the past few years, genetic studies have identified hundreds of novel susceptibility loci for 

cardiometabolic diseases. In addition, GWASs have been undertaken on a number of related 

quantitative risk factors for these diseases. In fact, taken together, the inference from quantitative 

traits in terms of the (large) number of loci involved, the allelic frequency spectrum of associated 

variants, and the nature of the candidate genes, suggests that models arising from quantitative 

traits appropriately reflect the genetic architecture of related diseases, and reinforce the emerging 

evidence that it is the cumulative effect of many loci that underlies susceptibility to such 

pathologies. 

The main relevance of the genetic discoveries achieved to date lies in potential insights into 

biological mechanisms underlying disease pathogenesis/progression and the potential for clinical 

translation through novel approaches to the diagnosis, prevention, treatment, and monitoring of 

cardiometabolic diseases, even though this step will take some time, because most GWAS 

discoveries were made in the last few years
3
.  

However, today, clinical translation is still limited: one of the fundamental obstacles for efforts to 

clinical translation, and thus to build efficient diagnostic and prognostic tools for more typical forms 

of cardiometabolic diseases, lies in difficulties defining the alleles and transcripts mediating 

association effects that have frustrated efforts to gain early biological insights. Moreover, the 

modest effect sizes of the common variants so far studied and discovered, and therefore the limited 

proportion of heritable variance which they explain has limited their value in guiding treatment of 

individual patients
99

. A third problem to the translation of the knowledge of risk variants implicated 

in multifactorial phenotypes relates to the concreteness with which risk-allele discovery has led to 

an improved understanding of their biological basis. The majority of associated variants, in fact, map 

to “noncoding” regions of the genome, making it more difficult to characterise their downstream 

consequences
98

. 

 

The growing power of techniques for genetic and functional evaluation is likely to catalyse further 

successes in characterising causal variants and connecting them to the genes, pathways and 
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networks they modulate.  

Most of the early GWASs involved individuals of European descent, but trans-ethnic fine mapping 

approaches, for example, particularly in samples of African origin, are growing and should help to 

localise the causal variants within common GWAS signals. Moreover, additional ongoing efforts to 

track causal variants through fine-mapping and resequencing, sequence based discovery of lower-

frequency alleles, as well as functional characterisation of associated polymorphisms through the 

analysis of their interactions and participation in common pathways and, finally, the analysis of 

tissue-specific expression or regulation, should provide acceleration in the capacity for clinical 

translation
99

. 

 

2.3.1.2 Type 2 Diabetes 

Type 2 diabetes (T2D) is a common, chronic, complex disease that accounts for more than the 95% 

of diabetes worldwide, and is characterised by concomitant defects in both insulin secretion from 

the β-cells in the pancreatic islets, and insulin action (insulin resistance) in fat, muscle, liver and 

elsewhere, the latter being typically associated with obesity (see figure 2.11). Although strong 

evidence for familial clustering highlights a strong contribution of genetic mechanisms to the disease 

aetiology, environmental and lifestyle factors are also of relevance
100

. 

 

T2D accounts for substantial morbidity and mortality from adverse effects on cardiovascular risk and 

disease-specific complications such as blindness and renal failure
98

. The global prevalence of T2D is 

Figure 2.11: Schema for the 

pathogenesis of T2D. T2D generally 

derives from concomitant defects in 

both insulin secretion and insulin 

action. Abnormalities in both β-cell 

mass and β-cell function contribute to 

the former, whereas obesity is a major 

cause of deficient insulin action. All 

processes involve contributions from 

both inherited and environmental 

effects. Examples of some of the genes 

and exposures implicated are shown in 

the yellow boxes. From Prokopenko et 

al. 2008
100

. 
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of 220 million affected (figure 2.12), and this number is projected to rise to 366 million by 2030, 

according to the estimates of the World Health Organisation 2010
97,99

. 

 

For T2D, the discovery of causal genes has followed the three main waves cited above. Linkage 

analysis was very successful in identifying the mutations responsible for monogenic and syndromic 

subtypes of T2D and has led to molecular classifications of disease with demonstrable prognostic 

and therapeutic relevance. For example, individuals with maturity onset diabetes of the young 

(MODY) due to mutations in HNF1A (Hepatic Nuclear Factor 1A) respond particularly well to 

treatment with sulfonylureas, whilst those with mutations in glucokinase (GCK) gene can often come 

off medication entirely because of their relatively benign prognosis. Infants with neonatal diabetes 

due to mutations in the KCNJ11 (potassium inwardly-rectifying channel subfamily J member 11) 

gene, conventionally treated with insulin, typically showed substantial improvements when their 

treatment was changed to sulfonylureas
98

. 

 

However, family-based linkage studies and candidate gene association studies did not prove fruitful 

in revealing the variants of lower penetrance implicated in more common forms of the disease. Two 

of the many candidate-gene associations claimed for T2D have stood the test of time: the Pro12Ala 

variant in the peroxisome proliferator-activated receptor gamma (PPARG) gene, encoding the target 

for the thiazolidinedione class of drugs used to treat T2D, and the Glu23Lys variant in KCNJ11, which 

encodes part of the target for another class of diabetes drug, the sulphonylurease. These 

polymorphisms are both common and confirmed, in multiple studies, to influence risk of T2D. Their 

effect sizes are only modest: each copy of the susceptibility allele increases risk of disease by 15–

20%
99

.

Figure 2.12: Prevalence of type 2 diabetes by country. Colour intensity represents percentage of individuals aged 

20–79 with diabetes (fasting plasma glucose > 7.0 mmol/L). From Travers et al. 2011
99

. 
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Interestingly, rare mutations in both KCNJ11 and PPARG loci are also known to be causal for certain 

rare monogenic syndromes characterized by severe metabolic disturbance of β-cell function and 

insulin resistance, respectively
100

. 

 

The number of loci for which there is convincing evidence that they confer susceptibility to T2D 

started to grow in early 2007 with the publication of the first GWAS
98

. Since then, more than 20 

major GWASs for T2D have been published, and a cumulative number of around 80 genome-wide 

significant hits was discovered
3
 (more than 60 loci; see figure 2.13 and Appendix table 1 for an 

overview). 

 

The first wave of GWAS, in 2007, confirmed the already known loci PPARG, KCNJ11 and TCF7L2 

(transcription factor 7-like 2), but added a further six novel loci including signals near CDKAL1 (CDK5 

regulatory subunit associated protein 1-like 1) and CDKN2A/CDKN2B (cyclin-dependent kinase 

inhibitor 2A/B), which encode putative or known regulators of cyclin-dependent kinases, HHEX 

(hematopoietically expressed homeobox) which transcribes a homeobox protein implicated in β-cell 

development, SLC30A8 (solute carrier family 30 member 8), IGF2BP2 (insulin-like growth factor 2 

mRNA binding protein 2), and FTO
101-105

. Each copy of a susceptibility allele at one of these loci is 

associated with a 15 to 20% increased risk of diabetes
98

. 

Figure 2.13: Overview of genome-wide T2D-associated loci, through December 2012. 
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Within successive rounds of GWA meta-analyses, the Diabetes Genetics Replication and Meta-

analysis (DIAGRAM) Consortium, including more than 47,000 genome-widely characterised 

individuals and 94,000 samples for replication, firstly combined data from three published GWASs to 

reveal six novel loci
106

 and subsequently aggregated data from additional five GWASs to capture a 

further 12 signals
19

, bringing the count of confirmed common variant signals for T2D to more than 

60. 

DIAGRAM also coordinated a new run of meta-analysis of genetic variants genotyped on the 

Metabochip SNP array, including 34,840 cases and 114,981 controls of European descent. The 

Illumina CardioMetabochip (Metabochip) array for genotyping was published in 2012
107

: it is a 

custom array of 196,725 SNPs developed to support cost-effective, large-scale follow-up studies of 

putative association signals for a range of cardiovascular and metabolic traits and to fine map 

established loci. This analysis added another ten loci to the list of confirmed common variants 

associated with T2D
108

. 

 

Most published studies have considered individuals of European descent. More recently, equivalent 

studies have emerged from samples of East Asians
109-111

, and South Asians
112

, and large studies 

involving African Americans and other major ethnic groups are underway. Despite differences in 

allele frequency and LD patterns, most of the signals found in one ethnic group, in particular 40 

European signals, showed some evidence of association in others, indicating that the common-

variant signals identified by GWASs are likely to be the result of widely distributed causal alleles
3
. 

GWAS in East Asians also revealed several novel associations for T2D: for example variants in the 

potassium voltage-gated channel, KQT-like subfamily member 1 gene (KCNQ1), which have since 

been replicated in European ancestry populations. 

 

The strongest common-variant association signal identified for T2D remains TCF7L2, detected just 

prior to the GWAS era, and subsequently confirmed by various GWASs; fine-mapping studies have 

converged upon the intronic SNP rs7903146 as the most compelling candidate variant in this region, 

with a per-risk allele odds ratio (OR) of around 1.35, and lifetime prevalence rates that, in persons 

carrying two copies of a risk allele, roughly double those seen in persons with none
98,99

. At this locus, 

ChIP-Seq (chromatin immunoprecipitation sequencing) studies have shown that rs7903146 maps 

within a region of islet-specific open chromatin, and the two alleles differ in their capacity to achieve 

or maintain this state
113

. TCF7L2 mRNA levels in human pancreatic islets increase with the number 

of risk alleles, and over-expression of TCF7L2 leads to reduced glucose-stimulated insulin 

secretion
114

. To date, pharmacogenetic studies in common forms of T2D have not offered dramatic 

applications. The only convincing result concerns the association of genotype at the TCF7L2 with 

variation in response to sulfonylurea treatment. In a retrospective observational study, patients 

carrying two risk alleles at TCF7L2 variant were almost twice as likely to fail treatment objectives 

than those carrying no risk alleles, with an intermediate effect for heterozygotes
115

. 

At other T2D-susceptibility loci, including GCKR, PPRG and SLC30A8, there is substantial statistical 

and biological evidence to support particular coding sequence variants as causal. Functional 

characterisation has shown that the T2D-risk allele alters fructose-6-phosphate-mediated regulation 
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of the protein coded by GCKR (glucokinase regulatory protein), with consequences for glycolytic flux. 

SLC30A8 encodes a zinc transporter, ZnT8, known to be expressed in the pancreatic islets and 

implicated in the proper function of β-cell insulin granules; in mice, β-cell-specific knock-outs of Znt8 

are glucose intolerant, and display defects in insulin production, crystallisation, packaging and 

secretion, highlighting the importance of zinc as a modulator of islet function
99

. 

 

2.3.1.3 Glycaemic Traits 

Studies of risk variants for T2D in healthy populations have shown that most of them act through 

perturbation of insulin secretion rather than insulin action, establishing inherited abnormalities of β-

cell function or mass (or both) as critical components of the progression to T2D
98

. A role for other 

complex processes influencing other quantitative physiological T2D-related traits cannot be 

excluded and may have an action on the susceptibility in developing the disease. 

With the aim of studying such processes, the Meta-Analysis of Glucose- and Insulin- Related Traits 

Consortium (MAGIC) investigators have been carrying out genetic analyses focused on the 

identification of variants influencing normal physiological variation in levels of continuous glycaemic 

traits in healthy non-diabetic individuals
18,116-119

 (for a complete list of glycaemic-associated loci see 

figure 2.14 and Appendix table 2). Glycaemic trait large-scale GWAS meta-analyses so far comprised 

Figure 2.14: Overview of genome-wide associated loci for glycaemic traits, through December 2012. 
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FG, FI, PROINS, 2hGlu assay, and HbA1C levels. 

 

Glucose is the major source of energy for most cells of the body, including those in the brain. It 

derives from carbohydrates that are found in fruit, cereal, bread, pasta, and rice, and which are 

quickly turned into glucose in the body, raising blood glucose levels. Hormones such as insulin and 

glucagon help control blood glucose levels. A blood fasting glucose (FG) test measures the amount 

of glucose in a sample of blood after having not eaten anything for at least 8 hours (fasting): a level 

between 70 and 100 milligrams per decilitre (mg/dL) is considered normal; while a level of 100-125 

mg/dL means impaired fasting glucose, a condition of pre-diabetes, and a level of 126 mg/dL or 

higher most often means diabetes. 

Another way to measure glucose tolerance is the oral glucose tolerance test (OGTT): after giving 

patients a liquid containing a certain amount of glucose (usually 75 grams) to drink, the glucose 

concentration in blood is measured after time intervals of 30 minutes. The measurement taken after 

two hours is called two hour post-prandial glucose level (2hGlu) and is considered normal if less than 

140 mg/dL. 

Glycated haemoglobin (HbA1c) is a form of haemoglobin that is measured to identify the average 

plasma glucose concentration over prolonged periods of time as it is influenced by average 

glycaemia over a 2- to 3-month period. It is formed in a non-enzymatic glycation pathway by 

haemoglobin's exposure to plasma glucose. The HbA1c test indicates the body’s long term control of 

blood sugar and is used to monitor and diagnose diabetes: a normal level is considered when HbA1c 

is less than 5.7% of total haemoglobin, whilst levels between 5.7% and 6.4% are indicative of pre-

diabetes, and if they are 6.5% or higher indicate diabetes. 

Insulin is a hormone secreted by the pancreas in response to eating carbohydrates that facilitates 

the transport of sugars from the bloodstream into the cells where they are used to make energy. 

Insulin resistance occurs when insulin does not work optimally to drive glucose into cells and tissues. 

Measuring FI in the blood is helpful in the diagnosis of insulin resistance and type 2 diabetes. Insulin 

excess is defined when levels are equal to or greater than 15 µIU/mL (micro International Units per 

millilitre). 

Proinsulin is the pro-hormone precursor of mature insulin and C-peptide, made in the β-cells of the 

islets of Langerhans that are pancreatic specialised regions. Higher circulating levels of proinsulin are 

associated with impaired β-cell function, raised glucose levels, insulin resistance, and T2D, and seem 

to indicate an advanced stage of β-cell exhaustion. Consequently, fasting proinsulin might be used 

as marker detecting and for therapeutic decision in T2D. A normal proinsulin level is 2 to 6 pmol/L 

(picomoles per litre). 

Part of this clinical information is taken from PubMed Health 

(https://www.ncbi.nlm.nih.gov/pubmedhealth/t/a/) and MedlinePlus 

(http://www.nlm.nih.gov/medlineplus/encyclopedia.html). 

 

Prior to the GWAS era, the only compelling association signal for fasting glucose levels was known at 

GCK locus, coding for a glucokinase
3
. The first GWAS in European samples (about 46,000 individuals) 

expanded that number to 16 loci
117

. These variants explain around 10% of the inherited variation in 
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fasting glucose levels. Only two signals, near GCKR and IGF1 (insulin-like growth factor 1), were 

shown to influence fasting insulin levels in the same analysis. 

Comparable analyses for two hour glucose (15,000 GWAS samples and up to 30,000 replication 

samples) identified further signals, including variants near the locus for GIP Receptor GIPR
118

. 

A genome-wide meta-analysis exploration for glycated haemoglobin HbA1c, equivalent to the one 

for fasting glucose and fasting insulin, identified ten loci that reached genome-wide significant 

association, including six new loci near FN3K (fructosamine 3 kinase), HFE (hemochromatosis), 

TMPRSS6 (transmembrane protease, serine 6), ANK1 (ankyrin 1), SPTA1 (spectrin alpha 1) and 

ATP11A/TUBGCP3 (ATPase class VI type 11A/tubulin gamma complex associated protein 3), and four 

known HbA1c/glycaemic/T2D loci: HK1 (hexokinase type 1), MTNR1B (melatonin receptor 1B), GCK 

and G6PC2/ABCB11 (G-6-phosphatase catalytic subunit 2/ATP-binding cassette, sub-family B 

member 11)
120

. Three of the ten signals (GCK, G6PC2 and MTNR1B) of association with HbA1c are 

partly related to an association with hyperglycaemia. The remaining seven non-glycaemic loci 

accounted for a 0.19% HbA1c difference between the extreme 10% tails of the risk score. 

Similarly, a GWAS analysis was conducted on proinsulin levels
121

. A meta-analysis for this trait 

resulted in nine SNPs at eight loci achieving genome-wide significant association (p-value < 5x10
-

8
)

121
. Two loci (LARP6 (La ribonucleoprotein domain family member 6) and SGSM2 (small G protein 

signalling modulator 2)) were new, as previously unknown to be related to metabolic traits; one 

variant (near MADD, MAP-kinase activating death domain) had already been associated with fasting 

glucose, and another (PCSK1, protein convertase subtilisin/kexin type 1) with obesity; finally four 

SNPs (TCF7L2, SLC30A8, VPS13C/C2CD4A/B (vacuolar protein sorting 13 homolog C/C2 calcium-

dependent domain containing 4A/B), and ARAP1 (ArfGAP with RhoGAP domain ankyrin repeat and 

PH domain 1)) were already known as associated with increased T2D risk. 

The proinsulin-raising allele of ARAP1 was also associated with lower fasting glucose, improved β-

cell function, and lower risk of T2D. Notably, this gene encodes the protein prohormone convertase 

1/3, the first enzyme in the insulin processing pathway
121

. 

In 2012, the Illumina CardioMetabochip (Metabochip) array for genotyping was published
107

; a 

second run of GWAs for glycaemic traits genotyped with the Metabochip was thus conducted
18

, 

resulting in discovery of 41 glycaemic associations not previously described: 20 for FG, 17 for FI, and 

four for 2hGlu. 

This raised the number of associated loci to 36 for FG, 19 for FI, and 9 for 2hGlu, explaining 4.8%, 

1.2%, and 1.7% of the variance in these traits, respectively. 

Since obesity is an important determinant of insulin resistance, Manning and colleagues decided to  

carry out a joint meta-analysis (JMA) approach for genetic association to simultaneously test both 

the main genetic effects on glycaemic traits, on glycaemic traits adjusted for BMI (as index of 

obesity), and potential interaction between each genetic variant and BMI
119

. Six loci not previously 

known to be associated with fasting insulin levels were discovered, as well as seven additional loci 

associated with fasting glucose levels. Further, all previously reported associations for fasting 

glucose (16 loci) and fasting insulin (two loci) were replicated. The association of fasting insulin 

accounting for BMI with the genetic variant located at the COBLL1/GRB14 (Cordon-Bleu WH2 Repeat 

Protein-Like 1/growth factor receptor-bound protein 14) locus is of particular interest since several 
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studies suggested that GRB14 is a tissue-specific negative regulator of insulin receptor signalling via 

the regulation of adipose tissue distribution. In addition, another suggested candidate locus was 

PPP1R3B (protein phosphatase 1 regulatory subunit 3B), which is likely to act via hepatic metabolism 

to influence fasting insulin and glucose levels, as well as the lipid profile and C-reactive protein 

levels
119

. 

 

From the results described above and reported in figure 2.14, there is an incomplete overlap of T2D 

associated loci with those influencing physiological variation in glycaemic traits (figure 2.15). Some 

loci, for example MTNR1B, have a relatively large effect on both, whereas others, such as G6PC2, 

influence fasting glucose levels but have a minimal effect on T2D risk. On the other hand, CDKN2A/B 

has an impact on T2D but only modest effects on fasting glucose levels in healthy, non-diabetic 

individuals. The loci included in this last group appear to have their primary effect on the 

functionality of β-cells (rather than on insulin resistance) highlighting the importance of β-cell 

function with respect to normal and abnormal glucose homeostasis
3
, supporting the idea that the 

mechanisms influencing physiological and pathophysiological variation in glycaemic homeostasis are 

only partially overlapping
99

. 

 

Physiological characterisation of some of the genetic loci influencing glycaemic traits demonstrated 

regulation activity by diverse pathways as reported in figure 2.16: the glucose-raising allele in MADD 

was related to abnormal insulin processing and higher proinsulin levels, but not to insulinogenic 

index. Defects in both insulin processing and insulin secretion, were seen in glucose-raising allele 

carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B, while abnormalities in early insulin secretion only 

were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1 (fatty acid desaturase 1), 

DGKB (diacylglycerol kinase beta), and PROX1 (prospero homeobox 1)
122

. MTNR1B is also associated 

with fasting glucose and T2D risk. From functional analyses MTNR1B expression results localised to 

the β-cells within human islets and showed altered expression in islets from type 2 diabetic donors, 

Figure 2.15: 

Overlaps 
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T2D-

associated 

loci and 

fasting 

glucose/ 

fasting 

insulin-

associated 

loci. 
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whilst the receptor, it encodes, mediates the inhibitory effect of melatonin on glucose-stimulated 

insulin response. Inhibition of this melatonin-ligand receptor system is therefore a potential 

therapeutic option for T2D
123

. 

 

2.3.1.4 Obesity, obesity-related traits and Height  

Obesity is a rapidly growing health problem worldwide, conferring substantial excess risk for 

morbidity and mortality, especially from obesity-related complications, such as T2D and 

atherosclerotic cardiovascular disease (CVD)
124

. 

Obesity is a complex disorder, where genetic predisposition interacts with environmental exposures 

to produce a heterogeneous phenotype. Heritability of obesity is between 50 and 80%. 

BMI is typically used as an indication of obesity status and it has consistently been associated with 

health outcomes
124

. It is a number calculated from a person's weight and height with the formula 

weight(kg)/[height(m)]
2
 and is used as a screening tool to identify possible weight problems for 

adults. Worldwide, there are more than 400 million adults with a BMI exceeding 30 kg/m
2
, the 

universally established threshold to define ‘‘obesity’’, and this number is projected to rise to 700 

million by 2030 (see figure 2.17)
99

. 

 

Figure 2.16: 

Suggestive 

mechanisms by 

which some of 

published genetic 

loci could influence 

glycaemic 

regulation. From 

Ingelsson et al. 

2010
122

. 
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Other indices of fat distribution that can be used to monitor obesity are waist circumference (WC), 

as representative of central obesity, and hip circumference (HIP). Waist-to-hip ratio (WHR) is a 

measure of central obesity corrected by a peripheral mass index. Another index, finally, is body fat 

percentage (PCBFAT). The use of these alternative measures, instead of BMI, is prompted by the 

particularly deleterious health effects of visceral fat accumulation rather than of BMI. 

 

From monogenic disease studies for extreme forms of obesity, identification of mutations in the 

leptin gene (LEP) causing severe early onset obesity resulted in the development of recombinant 

Figure 2.17: Prevalence of obesity by country. A: colour intensity represents percentage of females aged 15–100 

with BMI > 25 kg/m
2

. B: colour intensity represents percentage of males aged 15–100 with BMI > 25 kg/m
2

 

(‘‘overweight’’ data from World Health Organisation 2010: https://apps.who.int/infobase/). From Travers et al. 

2011
99

. 

   A 

B 
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leptin therapy as a life-saving treatment for affected children
99

. 

Before the GWAS era, the only robust association between DNA sequence variation and either BMI 

or weight was observed from tests of association and involved low-frequency coding variants in 

MC4R gene, encoding the melanocortin-4 receptor. This variant explains approximately 2 to 3% of 

cases of severe obesity
3,98

. 

Genome-wide association studies of population-based samples for genetic variants influencing BMI 

and obesity have been more productive and have identified several loci influencing BMI and the risk 

of obesity. The strongest signal identified is the association with variants within FTO (the fat-mass 

and obesity–related gene). Successive rounds of GWA meta-analysis have brought the count of 

confirmed common variant signals for BMI and obesity to over 30
16,125-128

. 

Subsequently, the Genomic Investigation of Anthropometric Traits (GIANT) Consortium firstly 

combined data from 15 GWAS cohorts to reveal six new loci contributing to variation in BMI, as well 

as replicating the established common variant signals at FTO and MC4R
127

. Almost in parallel, the 

deCODE group reported ten new BMI-influencing loci
128

. The synthesis of these two efforts, 

involving genetic analysis of almost 250,000 individuals, confirmed 14 existing loci and revealed 18 

novel signals for BMI and obesity
16

. 

The role of rare CNVs in obesity has not been well examined so far, but rare deletions at 

chromosome 16p11.2 have been shown to have high penetrance for obesity and mental 

retardation
99

. 

The largest signal for obesity-related traits remains that at FTO: its association signal accounts for 

less than 0.5% of the overall variance in BMI, equivalent to a difference of 2 to 3 kg between adults 

that are homozygous for the risk allele and those that are homozygous for the alternative allele. 

Consideration of all 32 currently known BMI-influencing loci increases this figure to only 1.45%
16

. 

The cited studies have tackled obesity through its cognate quantitative trait, BMI. As for T2D, case–

control studies of extreme obesity have identified loci only partly overlapping with those associated 

with physiological variation of BMI (for example, PCSK1, POMC (proopiomelanocortin), BDNF (brain-

derived neurotrophic factor), MC4R, and SH2B1 (SH2B adaptor protein 1))
99

. 

GWAS of patterns of other indices of fat distribution, such as WC, HIP, WHR and body fat 

percentage, have characterized approximately 16 loci that are largely distinct from those influencing 

overall adiposity
126,129-132

; many of these signals display markedly stronger associations in women 

than in men. 

For an overall view of the loci associated with obesity and body fat distribution, see figure 2.18 and 

Appendix table 3. 

Additional studies in Indian Asians confirmed BMI-associated variants in MC4R
129

, whilst other 

studies based on East Asian population revealed four new BMI-associated loci
133,134

. 

As for T2D and fasting glucose, most of the signals for obesity and fat distribution map to regulatory 

regions and the causal transcript is known for only a minority of the loci
3
. 

The BMI association signal near FTO is the most established signal and comprises a 47-kb LD block 

which may be involved in the regulation of the adjacent gene, RPGRIP1L (retinitis pigmentosa 

GTPase regulator interacting protein 1-like), as well as FTO itself. Although the region of association 

is clearly defined, and its effect is comparatively large, there is still some doubt as to whether FTO 
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itself is responsible for the weight phenotype. Studies of mice demonstrated that disruption of Fto 

sequence influences adiposity with changes in body weight
135

 thus being consistent with the 

hypothesis that FTO itself has a direct effect on BMI; studies of human FTO mutations instead are 

less clear-cut, as no direct evidence linking coding variants to body-weight variation has been 

demonstrated
3,98

. RPGRIP1L is expressed in the hypothalamus, with responses to alterations in 

nutritional and hormonal status that are similar to those of FTO. 

The fact that RPGRIP1L and many of the other most obvious positional candidates at BMI and 

obesity-associated loci (BDNF, SH2B1, and NEGR1 (neuronal growth regulator 1)) are all implicated 

in aspects of neuronal function is consistent with the known role of the hypothalamus in appetite 

regulation, and with the suspected role of other compartment of the central nervous system (CNS) 

in obesity. For example, BMI-associated NEGR1 is involved in neuronal growth, whilst SH2B1 is 

involved in hypothalamic leptin signalling: Sh2b1 knockout mice are, in fact, obese and the 

phenotype can be rescued by targeted expression of Sh2b1 in neurons
136

. 

These findings reinforce the view of common obesity as a behavioural, rather than a metabolic 

disorder, mediated through hypothalamic dysregulation. In contrast, equivalent studies of fat 

distribution, rather than overall adiposity, have highlighted candidate transcripts implicated in the 

regulation of adipocyte development and function
99

. 

 

Figure 2.18: Overview of genome-wide obesity and body fat distribution associated loci, through December 2012. 
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Special consideration has to be given to height, an important anthropometric trait that should be 

taken into account when studying BMI and other obesity indices. For human adult height, a 

combined discovery and validation study on cohorts of about 180,000 samples identified 180 

robustly associated loci, many non-randomly clustered in meaningful biological pathways, and 

enriched for genes that are involved in growth-related processes, that underlie syndromes of 

abnormal skeletal growth and that are directly relevant to growth-modulating therapies (GH1 

(growth hormone 1), IGF1R (insulin-like growth factor 1 receptor), CYP19A1 (cytochrome P450 

family 19 subfamily A polypeptide 1), ESR1 (estrogen receptor 1))
137

 (for a complete list of these loci 

see figure 2.19 and Appendix table 4). 

For instance, genes such as TGFB2 (transforming growth factor beta 2)and LTBP1/3 (latent 

transforming growth factor beta binding protein 1/3) highlight a role for the TGF-β signalling 

pathway in regulating human height, consistent with the implication of this pathway in Marfan 

syndrome, a genetic disorder of the connective tissue. Fgfr4
-/-

 Fgfr3
-/-

 mice show severe growth 

retardation that is not seen in either single mutant, suggesting that the height-associated FGFR4 

(fibroblast growth factor receptor 4) variant might modify FGFR3-mediated skeletal dysplasias. 

Other genes, such as NPPC and NPR3 (encoding the C-type natriuretic peptide and its receptor), 

influence skeletal growth in mice and likely influence also human growth
137

. 

Altogether, the discovered loci GW significantly associated with height explain approximately 12%–

Figure 2.19: Overview of genome-wide height-associated loci, through December 2012. 
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14% of additive genetic variation (about the 10% of phenotypic variation). 

 

2.3.1.5 Lipids 

Plasma-lipid and lipoprotein levels, if high, are heritable risk factors for cardiovascular disease and 

targets for therapeutic intervention. 

Total cholesterol (TC) represents all types of cholesterol in the blood. Clinically, a healthy level of TC 

is lower than 200 mg/dL; while levels equal or higher than 240 mg/dL are indicative of an elevated 

risk of cardiac dysfunctions. 

Low-density lipoprotein cholesterol (LDL) is the fraction of TC which carries cholesterol, triglycerides, 

and other lipids in the blood to various parts of the body. LDL displays a positive association with 

atherogenesis. Atherosclerosis requires the build-up of LDL deposits in the arterial wall where they 

undergo oxidation and subsequent inflammatory response, leading to the formation of foam cells 

and further exacerbation of arterial LDL adhesion; this picture is compatible with cardiovascular 

disease status
138

. A healthy LDL level should be less than 100 mg/dL. 

High-density lipoprotein cholesterol (HDL), instead, is a sub-group of cholesterol composed by a 

small, dense complex of phospholipids and apolipoproteins, including apolipoprotein A1 (APOA1), 

which is synthesized in the liver and which carries cholesterol, triglycerides, and other lipids in the 

blood from other parts of the body to the liver to be metabolised. It is negatively associated with 

atherogenesis, and thus helps to protect against heart disease
138

. Optimal HDL levels should be 

above 40 mg/dL in men and above 50 mg/dL in women. 

Triglycerides (TG) are lipids composed by an ester derived from glycerol and three fatty acids, and in 

the blood they help the bidirectional transfer of adipose fat and blood glucose from the liver. The 

normal amount of triglycerides in the blood should be less than 150 mg/dL, while levels higher than 

200 mg/dL are linked to atherosclerosis and heart disease. 

 

Plasma concentrations of blood lipids are highly heritable: estimates range from 40% to 60% for 

total TC, LDL, HDL and TG, respectively
139

, and numerous genetic studies have come, in succession, 

to discover heritable variants that influence their levels (for a complete list of discovered loci see 

figure 2.20 and Appendix table 5).  

The first GWASs, involving up to 20,000 individuals of European ancestry, identified about 30 genetic 

loci contributing to inter-individual variation in plasma lipid concentrations
101,140-144

. Half of these loci 

harboured genes previously known to influence plasma lipid concentrations
145

. 

Among detected loci were HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase), a well-established 

drug target of statins for the treatment of hyperlipidaemia; LPA, which encodes lipoprotein; PLTP, 

which encodes a phospholipid transfer protein; and ANGPTL3 and ANGPTL4 (angiopoietin-like 3 and 

4), lipoprotein lipase inhibitors. 

A meta-analysis for common variants associated with plasma lipids in more than 100,000 individuals 

of European ancestry, followed by an evaluation of mapped variants in other ethnic groups, 

detected a total of 95 loci significantly associated with plasma concentrations of cholesterol and 

triglycerides, with 59 showing genome-wide significant association with lipid traits for the first 
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time
145

. 

The newly reported associations included SNPs near known lipid regulators (for example, CYP7A1 

(cholesterol 7-alpha-hydroxylase), NPC1L1 (Niemann-Pick disease type c1 gene like 1) and SCARB1 

(scavenger receptor class B, member 1)), as well as in loci not previously implicated in lipoprotein 

metabolism
145

. The 95 loci contribute not only to normal variation in lipid traits, but also to extreme 

lipid phenotypes. Moreover, most of them also had an impact on lipid traits in three non-European 

populations: East Asians, South Asians and African Americans. These observations indicate that most 

(but probably not all) of these identified lipid loci contribute to the genetic architecture of lipid traits 

widely across global populations
145

. Overall variation at these 95 loci explains 10% - 12% of the total 

variance and 25% - 30% of the genetic variability in lipid phenotypes
139

. 

One of the discovered loci, NPC1L1, is a known drug target for the treatment of hyperlipidaemia 

(ezetimibe). Several other loci harbour genes that were already known to influence lipid 

metabolism, before this study: SCARB1, a HDL-receptor that mediates selective uptake of 

cholesteryl-ester; CYP7A1, which encodes cholesterol 7-alpha-hydroxylase; STARD3 (StAR-related 

lipid transfer domain containing 3), a cholesterol transport gene; LRP1 and LRP4 (low density 

lipoprotein receptor-related protein 1 ad 4), members of the LDL receptor-related protein family; 

and MYLIP (myosin regulatory light chain interacting protein), which protein product of is an 

ubiquitin ligase regulator of cellular LDL receptor levels
145

. 

Four novel lipid genes - GALNT2, PPP1R3B, TTC39B and SORT1 (see description below) – have been 

validated in functionality and with experiments in mouse models. 

GALNT2 (encoding UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyl 

transferase 2) is a member of a family of GalNAc-transferases, which transfer an N-acetyl 

galactosamine to the hydroxyl group of a serine/threonine residue in the first step of O-linked 

oligosaccharide biosynthesis. Liver-specific overexpression of mouse orthologue Galnt2 resulted in 

significantly lower plasma HDL (24% compared to control mice); while reduction of the transcript 

level of about the 95% (knock-down) resulted in higher HDL. 

Higher expression of PPP1R3B was related to lower plasma lipids by expression quantitative trait loci 

(eQTL) studies; consistently, overexpression of the mouse orthologue Ppp1r3b in mouse liver 

resulted in significantly lower plasma HDL levels. 

The HDL-associated locus on chromosome 9p22, TTC39B (encoding tetratricopeptide repeat domain 

39B), resulted in significantly higher plasma HDL levels when its orthologue (Ttc39b) expression 

were knocked-down in mice
145

. 

Finally, SORT1 (sortilin 1) on chromosome 1p13 is another interesting locus, which is strongly 

associated with both, plasma LDL and myocardial infarction (MI) in humans. Associated variants at 

this locus have a minor allele frequency of about 30% in Europeans, and they are also common in 

other ethnicities (African Americans, Hispanics, Asian Indians and Chinese). This observation 

suggests that SORT1 could be an important global genetic determinant of MI risk. Through a series 

of studies in human cohorts and human-derived hepatocytes, it was demonstrated that a lipid-

associated common non-coding polymorphism at the 1p13 locus, rs12740374, creates a C/EBP 

(CCAAT/enhancer binding protein) transcription factor binding site and alters the hepatic expression 

of SORT1 gene. In mouse liver, Sort1 alters plasma LDL and very low-density lipoprotein (VLDL) 
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particle levels by modulating hepatic VLDL secretion: this observation provides functional evidence 

for a novel regulatory pathway of lipoprotein metabolism and suggests that modulation of this 

pathway may alter risk for MI in humans with a clinical difference of about 40% between alternative 

1p13 homozygotes
146

. 

 

Recently, to identify additional genetic associations underlying variation in plasma-lipid phenotypes, 

a large meta-analysis of 32 studies (comprising 66,240 individuals of European ancestry) was 

undertaken using a dense gene-centric approach: genotypes were in fact obtained using the 

candidate-gene HumanCVD BeadChip (Illumina), which is a custom gene-centric array that was 

designed to capture genetic diversity by using ~50,000 SNPs across ~2,000 gene regions selected, a 

priori, as primarily related to cardiovascular, inflammatory, and metabolic phenotypes
139

. Through 

this analysis, the authors confirmed a number of the previously reported associations and identified 

four, six, ten, and four unreported SNPs in established lipid genes for HDL, LDL, TC, and TGs, 

respectively. Several lipid-related SNPs in previously unreported genes were also identified: DGAT2 

(diacylglycerol O-acyltransferase 2), HCAR2 (hydroxycarboxylic acid receptor 2), GPIHBP1 

(glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1), PPARG and FTO 

for HDL; SOCS3 (suppressor of cytokine signalling 3), APOH (apolipoprotein H), SPTY2D1 (Suppressor 

of Ty domain containing 1), BRCA2 (breast cancer 2 gene) and VLDLR (very low density lipoprotein 

receptor ) for LDL; SOCS3, UGT1A1 (UDP glucuronosyltransferase 1 family polypeptide A1), BRCA2, 

Figure 2.20: Overview of genome-wide associated loci for lipids, through December 2012. 
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UBE3B (ubiquitin protein ligase E3B), FCGR2A (Fc fragment of IgG low affinity IIa receptor), CHUK 

(conserved helix-loop-helix ubiquitous kinase) and INSIG2 (insulin induced gene 2) for TC; and 

SERPINF2 (serpin peptidase inhibitor clade F  member 2), C4B (complement component 4B), GCK, 

GATA4 (GATA binding protein 4), INSR (insulin receptor) and LPAL2 (lipoprotein Lp(a)-like 

2,pseudogene ) for TG
139

. 

The most significantly associated locus for HDL in this study was CETP (cholesteryl ester transfer 

protein). CETP is a hydrophobic glycoprotein, secreted by the liver and bound mainly to HDL 

particles in the plasma. Its inhibition was significantly related to increased plasma HDL levels. 

LDLR (low density lipoprotein receptor), the most associated locus for both LDL and TC, encodes the 

cell-surface LDL receptor, which removes circulating LDL via receptor-mediated endocytosis. 

Finally, the locus most strongly associated with TG levels was BUD13 (functional spliceosome-

associated protein 71), located near the APOA1-C3-A4-A5-ZNF259 cluster. In yeast, its homolog is an 

active spliceosome, but little is known about its function in humans. Variants in this gene have long 

been associated with clinical hypertriglyceridemia
139

. 

 

2.3.1.6 Blood pressure and Hypertension 

Systemic blood pressure (BP) is the pressure exerted by circulating blood upon the walls of blood 

vessels, and is determined primarily by cardiac output and total peripheral resistance, which are 

controlled by a complex network of interacting pathways involving renal, neural, endocrine, vascular 

and environmental factors
147

. During each heartbeat, blood pressure varies between a maximum, 

the systolic blood pressure (SBP), and a minimum, the diastolic blood pressure (DBP). 

SBP occurs near the end of the cardiac cycle when the ventricles contract; DBP, instead, occurs near 

the beginning of the cardiac cycle when the ventricles are filled with blood. Normal values of BP for 

a resting, healthy adult human are 120 mmHg SBP and 80 mmHg DBP (120/80 mmHg). 

High blood pressure is defined as hypertension (HTN) and occurs when SBP is >= 140mmHg and/or 

DBP is >= 90mmHg. Over one billion people worldwide have hypertension and, in 2008, its 

prevalence was around 40% in adults aged 25 and over
148

; it is estimated that HTN contributes to 

13.5 million deaths worldwide each year, and to about half the global risk for stroke and ischemic 

heart disease
149

. 

HTN is a major cardiovascular disease risk factor, but even small increments in blood pressure within 

the normal range are associated with an increased risk of cardiovascular damaging events and, thus, 

with effects on cardiovascular morbidity and mortality at the population level
149-151

: in fact, 

observational data indicate that a prolonged increase in DBP of 5 mmHg is associated with a 34% 

increase in risk for stroke, and a 21% increase in risk of coronary events
149

, while 2 mm Hg lower SBP  

is estimated to translate into 6% less stroke and 5% less coronary heart disease
152

. 

Although lifestyle influences (excess salt and alcohol intake, and lack of exercise) are known to 

increase blood pressure and the risk of developing HTN, a substantial heritability of blood pressure, 

around 30–60%, has been documented, and has prompted extensive efforts to identify the 

contribution of genetic factors to overall disease pathogenesis
149

 (for an overview of discovered loci 

see figure 2.21 and Appendix table 6). 
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Despite considerable knowledge about pathways that are critical to blood pressure homeostasis, 

linkage and candidate gene studies provided limited consistent evidence of BP quantitative trait loci, 

identifying few variants associated with inter-individual blood pressure variation. 

The study of families with rare Mendelian disorders of hypertension or of hypotension syndromes 

produced most notable progresses toward identifying mutations with gain or loss of function in 

about a dozen of genes, and other common variants with less strong effects in two additional genes, 

all influencing renal sodium regulation
149,152

. 

 

It was with GWASs that the majority of common genetic variation associated with BP was identified. 

The first tranche of GW analyses consisted of two GWASs in European ancestry individuals within 

two major consortia: the Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) 

Consortium and the Global BPgen Consortium. 

The first study identified four GW significant loci attained for SBP (ATP2B1 (ATPase Ca++ 

transporting plasma membrane 1), CYP17A1 (cytochrome P450 family 17 subfamily A polypeptide 

1), PLEKHA7 (pleckstrin homology domain containing family A member 7), SH2B3 (SH2B adaptor 

protein 3), six for DBP (ATP2B1, CACNB2 (calcium channel voltage-dependent beta 2 subunit), 

CSK/ULK3 (c-src tyrosine kinase/unc-51 like kinase 3), SH2B3, TBX3/TBX5 (T-box 3/5), ULK4), and one 

Figure 2.21: Overview of genome-wide associated loci for blood pressure traits and hypertension, through 

December 2012. 
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for hypertension (ATP2B1). The top ten risk alleles for SBP and DBP were each associated with about 

a 1 and 0.5 mm Hg increase in SBP and DBP, respectively
149

. 

The second GWAS identified eight loci (CYP17A1, CYP1A2 (cytochrome P450 family 1 subfamily A 

polypeptide 2), FGF5 (fibroblast growth factor 5), SH2B3, MTHFR (methylenetetrahydrofolate 

reductase), c10orf107 (chromosome 10 open reading frame 107), ZNF652 (zinc finger protein 652) 

and PLCD3 (phospholipase C delta 3)) showing genome-wide significant association with SBP or DBP, 

each of which was also associated with hypertension
152

. 

In total, the two studies recognised 13 loci associated with SBP, DBP and HTN, with a considerable 

concordance among top loci across all three phenotypes: for example ATP2B1 and CACNB2 showed 

significant association with SBP, DBP and HTN and SH2B3 showed significant association with SBP 

and DBP. 

ATP2B1 is a strong candidate gene: it encodes PMCA1, a plasma membrane calcium/calmodulin-

dependent ATPase that is expressed in vascular endothelium and is involved in calcium pumping 

from the cytosol to the extracellular compartment. Another interesting locus is CYP17A1, which is 

also associated with a rare Mendelian form of hypertension
149

. 

 

The second tranche of GWAS for BP consisted of a multi-stage designed analysis in 200,000 

individuals of European descent, which identified 29 independent SNPs at 28 loci significantly 

associated with SBP, DBP, or both
150

. Sixteen of the 29 SNPs were novel: six contain genes previously 

known or suspected to regulate blood pressure (GUCY1A3/GUCY1B3 (guanylate cyclase 1 soluble 

alpha/beta 3), NPR3/C5orf23, ADM (adrenomedullin), FURIN/FES (furin/feline sarcoma oncogene), 

GOSR2 (golgi SNAP receptor complex member 2), GNAS/EDN3 (guanine nucleotide binding protein 

alpha stimulating activity polypeptide / endothelin 3), whilst the other ten provide new clues to 

blood pressure physiology. Of the 13 previously reported associations, only the association at PLCD3 

was not supported by the new results. Eight loci contained non-synonymous coding SNPs. 

Some of the discovered signals were also replicated in individuals of different ancestry: nine SNPs 

were replicated in East Asians, and six in South Asians
150

. 

Among the discovered loci, NPPA and NPPB at the MTHFR/NPPB locus are particularly interesting as 

they encode precursors for atrial- and B-type natriuretic peptides (ANP, BNP). Three other loci 

harbour genes involved in natriuretic peptide and related nitric oxide signalling pathways: NPR3, 

GUCY1A3, and ADM. Two loci then have plausible connections to blood pressure via genes 

implicated in renal physiology or kidney disease: SLC4A7 (solute carrier family 4 sodium bicarbonate 

cotransporter member 7) and PLCE1 (phospholipase C epsilon 1). Finally, missense variants in two 

genes involved in metal ion transport also resulted associated: HFE and SLC39A8 (solute carrier 

family 39 member 8)
150

. 

A GWAS of blood pressure extremes (extreme case-control design) identified an additional variant 

on chromosome 16 in the region of uromodulin (UMOD), where each copy of the minor G allele was 

associated with a lower risk of HTN, reduced urinary uromodulin excretion, better renal function, 

and with a 7.7% reduction in risk of CVD events. The putative role of this variant in HTN may be due 

to an effect on sodium homeostasis: the UMOD gene encodes for the Tamm Horsfall protein 

(THP)/uromodulin, a glycosylphosphatidylinositol (GPI) anchored glycoprotein that is the most 
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abundant tubular protein in the urine, and is expressed primarily in the thick ascending limb of the 

loop of Henle (TAL), with negligible expression elsewhere
147

. 

 

Two further blood pressure phenotypes that can be studied to find genetic determinants of 

cardiovascular disease risk are pulse pressure (PP) and mean arterial pressure (MAP). PP is the 

difference between SBP and DBP and represents a measure of stiffness of the main arteries; MAP is 

a weighted average of SBP and DBP. Both PP and MAP are predictive for hypertension and 

cardiovascular disease
151

. A  GW study for these two phenotypes discovered four new PP loci (CHIC2 

(cysteine-rich hydrophobic domain 2), PIK3CG (phosphatidylinositol-4,5-bisphosphate 3-kinase 

catalytic subunit gamma), NOV (nephroblastoma overexpressed) and ADAMTS8 (ADAM 

metallopeptidase with thrombospondin type 1 motif 8)), two new MAP (microtubule-associated 

protein) loci (MAP4 and ADRB1), and one locus associated with both of these traits (FIGN, fidgetin) 

that was also associated with SBP in East Asians. For three of the new PP loci, the estimated effect 

for SBP was opposite of that for DBP, in contrast with the majority of common SBP- and DBP-

associated variants, which show concordant effects on both traits; this fact suggests the need of 

further investigations
151

. 

In 2011, using the HumanCVD BeadChip (Illumina), genotypes were tested for association with four 

continuous BP traits, SBP, DBP, MAP and PP, and also for association with HTN
148

. Discovery and 

follow-up analyses identified eight independent genetic variants associated with BP, confirming 

some signals at previously known loci (LSP1/TNNT3 (lymphocyte-specific protein 1/troponin T type 

3), MTHFR/NPPB, AGT (angiotensinogen) and ATP2B1), but also contributing to the discovery of four 

new loci (NPR3, HFE, NOS3 (nitric oxide synthase 3), and SOX6 (sex determining region Y-box 6))
148

. 

 

Further genetic studies for BP phenotypes in other ethnic groups have been undertaken. A meta-

analysis of GWASs for SBP and DBP in East Asian ancestry subjects confirmed seven loci previously 

identified in populations of European descent, and also identified new loci (ST7L/CAPZA1 

(suppression of tumorigenicity 7 like/capping protein muscle Z-line alpha 1), FIGN/GRB14, ENPEP 

(glutamyl aminopeptidase) and NPR3) and a newly discovered variant near TBX3. Significant 

replication in an independent sample was observed for all of these loci, with the exception of NPR3. 

Additionally, an associated variant near ALDH2 (aldehyde dehydrogenase 2 family) showed ethnic 

specificity, as it is not polymorphic in Europeans
153

. 

An extensive replication study in Japanese subjects replicated significant associations for seven loci, 

CASZ1 (castor zinc finger 1), MTHFR, ITGA9 (integrin alpha 9), FGF5, CYP17A1, ATP2B1, and 

CSK/ULK3, with any or all of the phenotypes SBP, DBP and HTN
154

. In this study the strongest 

association was observed for FGF5, a promising candidate because it encodes a member of the 

fibroblast growth factor family, the protein fibroblast growth factor, which is known for its effects in 

promoting angiogenesis in the heart. 
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2.3.2 Evidence of CP effects in cardiometabolic phenotypes 

 

Findings from genetic studies, and in particular from GWASs, highlighted multiple loci that are 

associated with more than one cardiometabolic phenotype, suggesting shared molecular pathways. 

In some cases, the same variant shows association with more than one phenotype; in other cases, 

distinct nearby markers have indicated a multi-phenotype association pattern for a genomic region. 

The patterns of such multiple associations often do not follow epidemiological expectations, 

underscoring the importance of focused investigations about the role of pleiotropy in 

cardiometabolic diseases
20

. Below I refer to some examples of multiple cardiometabolic associations 

reported in the literature. 

 

Obesity-related traits have been widely studied, and a substantial number of identified genetic 

associations are shared with other cardiometabolic phenotypes, in particular BMI shares 16 signals 

(figure 2.22) and WHR seven (figure 2.23). This is expected if we consider the biological causes and 

consequences of obesity
155

. 

Particularly interesting is the 

connection between obesity 

and glycaemic phenotypes, 

especially FI. Obesity is a 

consequence of human 

conserved adaptive traits 

with maladaptive effects in 

the modern “obesogenic” 

environment, characterised 

by a chronic imbalance 

between caloric intake and 

energy expenditure, resulting in the storage of excess nutrients in white adipose tissue. With chronic 

over-nutrition, the storage capacity of professional metabolic tissues (white adipose tissue, liver, 

Figure 2.22: 

Overlapping 

association signals 

between BMI and 

other metabolic 

traits. 

Figure 2.23: 

Overlapping 

association 

signals 

between 

WHR and 

other 

metabolic 

traits. 
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and skeletal muscle) is eventually exceeded, leading to cell-intrinsic and -extrinsic dysfunctions. 

Obesity-induced cellular dysfunction activates a diverse range of stress-responsive and counter-

regulatory signalling pathways (including activation of Jun N-terminal kinases (JNK) and inhibitor of 

nuclear factor kB kinase subunit b (IKKb)). These pathways interact to produce two metabolically 

important effects: first, it converges on and inhibits insulin signalling pathways, primarily through 

serine phosphorylation of IRS (insulin receptor substrate) proteins; second, it initiates, supports, and 

augments an inflammatory response within metabolic tissues (figure 2.24)
155

. 

An example of shared association which relates obesity with insulin resistance is represented by the 

GRB14 locus, which is associated with both WHR and FI. The protein coded by this gene is the 

Growth Factor Receptor-Bound Protein 14, which regulates adipose tissue distribution and 

consequently insulin receptor signalling in a tissue-specific negative manner
119

. 

Another interesting example is represented by the BMI-locus FTO: as I have already reported above, 

this locus showed significant signals for BMI, and also for T2D, lipids, FI and, as secondary effect, on 

the risk of coronary artery disease. Actually, FTO was firstly characterised as a T2D-associated locus, 

and only subsequently it demonstrated that association with T2D was predicated entirely by case–

control differences in adiposity
99

. The exact physiological function of FTO is unknown, but it is 

believed to be involved in the regulation of food intake and to affect lipolysis in adipose tissue
139

. 

 

T2D is associated with obesity and other metabolic dysfunctions, such as cardiovascular disease. 

This relationship with other cardiometabolic phenotypes is also represented by a corresponding 

overlap of association signals (see figure 2.25). 

An example is the cis-acting expression quantitative (eQTL) KLF14 (Kruppel-like factor 14) locus with 

its association with HDL and T2D; KLF14 is a trans-regulator of adipose gene expression, correlated 

with levels of several metabolic traits
19

. Another example is a pool of common genetic variants that 

were found to underlie T2D and hypertension in a linear mixed-effect model
81

. 

 

Some multi-phenotype associations are explained by changes of phenotype from variability within 

the physiological range to pathological values: this can be the case that explains the relationship 

Figure 2.24: Nutrient excess 

consequences through inflammatory 

signalling pathway and link with 

insulin resistance. Insulin’s presence 

at the cell surface is transduced to 

cytoplasmic and nuclear responses 

by tyrosine phosphorylation of IRIS1 

and IRIS2. Serine phosphorylation of 

these same proteins by JNK and 

IKKB, which in turn are activated by 

exceeded nutrient storage, however, 

potently inhibits insulin signalling 

and activates inflammatory 

response. From Odegaard et al. 

2013
155

. 
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and, thus, the many shared associated variants between T2D and glycaemic traits (as represented in 

figure 2.15). T2D and glycaemic traits GWAS meta-analyses showed directional consistency, with 

increased FG levels for most identified T2D signals; however, we already discussed the fact that the 

mechanisms responsible for the pathogenesis of T2D and those influencing physiological glucose 

homeostasis do not completely overlap. To this end, it is noteworthy that most of T2D risk variants 

are related to decreased β-cell function, while variants at only a few loci (PPARG, FTO, and IRS1 

(insulin receptor substrate 1)) are associated with increased insulin resistance. IRS1 locus is in fact 

associated with increased risk of T2D, insulin resistance, along with decreased HDL, increased TG, 

and increased risk of cardiovascular disease
19

. 

T2D-susceptibility loci were also associated with other phenotypes apart from cardiometabolic 

traits: variants at HNF1B and JAZF1 (juxtaposed with another zinc finger gene 1) showed clear 

effects on susceptibility to prostate cancer, while CDKAL1 is also a susceptibility locus for Crohn’s 

disease
100

. 

 

Lipids lipoprotein levels in plasma are related to cardiovascular disease; in fact, several HDL and TG 

loci are also associated with cardiovascular disease (IRS1, C6orf106, KLF14 and NAT2 (N-

acetyltransferase 2)), suggesting that there may be selective mechanisms by which HDL or TG can be 

altered in ways that also modulate heart disease
19

. 

However, lipid traits share associated variants also with other cardiometabolic phenotypes, as 

represented in figure 2.26. For example, at the glucokinase regulator gene GCKR one common 

variant allele increases TG levels, but also lowers glucose levels, effects that run counter to 

epidemiological correlations
156

. 

 

 

Figure 2.25: Overlapping association signals between T2D and other metabolic traits. 
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2.3.3 Relationships between cardiometabolic phenotypes 

2.3.3.1 Proposed models: Metabolic Syndrome 

Clinically and epidemiologically, metabolic, anthropometric and cardiovascular phenotypes are 

highly correlated, and are thought to be etiologically connected
157

. On one hand, quantitative 

metabolic traits underlie risk for several complex diseases, and are used as diagnostic criteria to 

define disease outcomes: this is the case of T2D, diagnosed and monitored through FG/FI levels; but 

also of hypertension. On the other hand, it is common to observe a concurrence of some 

cardiometabolic phenotypes that cluster together, in particular: increased risk of T2D, obesity, high 

blood pressure (BP), high triglycerides, low HDL-cholesterol levels (HDL) and insulin resistance 

(IR)
157

.This cluster of related phenotypes is usually epidemiologically described, and it has been 

clinically defined as Metabolic syndrome (MetS)
158

. 

MetS has an estimated prevalence of 20-25% among adults around the globe. Cardiovascular 

disease and T2D represent the primary clinical outcome of MetS; just to give an example, in the 

Framingham cohort, MetS alone predicted the 25% of all new-onset cardiovascular diseases, and it 

is also highly predictive for new-onset diabetes. Beyond these two main outcomes, MetS individuals 

have been reported to be susceptible to other conditions, such as polycystic ovary syndrome, fatty 

liver, cholesterol gallstones, asthma, sleep disturbances, and some forms of cancer
158

. This last 

relationship is confirmed by the observation of some common genetic determinants for both T2D 

and prostate cancer
100

. 

 

In 2004, the National Cholesterol Education Program’s Adult Treatment Panel III report (ATP III) 

identified six main components of metabolic syndrome: 

 Abdominal obesity (1); 

 Atherogenic dyslipidaemia: further partitioned into  

- low HDL (2),  

- high TG (3); 

 Raised blood pressure (4); 

 Insulin resistance with or without glucose intolerance (5); 

 Pro-inflammatory state: elevations of C-reactive protein (CRP); 

 Pro-thrombotic state: characterised by increased plasma plasminogen activator inhibitor 

(PAI)-1 and fibrinogen. 

When at least three characteristics of (1-5) are present, a diagnosis of MetS can be made
158

. 

Recently, the link between inflammatory response and metabolism has been the subject of intense 

research, and two companion studies demonstrated an enrichment of immune pathways in MetS by 

integrating genomic and transcriptional variation
138

. 

 

The metabolic syndrome seems to have three potential etiological categories: obesity and disorders 

of adipose tissue that have been considered as mainly responsible for the rising prevalence of MetS 

and are the primary target of therapeutic intervention; insulin resistance, on which many 

investigators place a greater priority than on obesity; and a constellation of other factors, each of 
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which subject to its own regulation through both genetic and acquired factors. 

The genetic association of the FTO locus to cardiometabolic phenotypes supports the idea that 

obesity is one of the major risk factors for MetS: several studies have, in fact demonstrated that FTO 

genotypes are associated with MetS components to an extent entirely consistent with the FTO 

effect on BMI, and consequently that adiposity has a causal relationship on hypertension, 

dyslipidemia, and heart failure
89,90

. 

On the other hand, KLF14 locus is a good example that strongly supports a major role of insulin 

resistance in MetS. It is, in fact, associated with T2D through a primary effect on insulin action, 

which is not driven by obesity, as well as with dyslipidaemia and heart diseases
19

. 

 

2.3.3.2 Alternative models and methods of study 

Despite the great number of clinical observations, and numerous studies in the literature, abundant 

controversy exists about the extent of MetS and its capacity in explaining the relationships between 

cardiometabolic phenotypes. 

In fact, the pair-wise genetic correlations between the MetS components showed large variability, 

and clinical exceptions to the definition of MetS have been recognised. An example is represented 

by metabolically healthy obesity and metabolically unhealthy leanness phenotypes. Ruderman and 

other researchers described metabolically obese normal-weight individuals who, despite having a 

normal-weight BMI, demonstrate metabolic disturbances that are typical of MetS individuals, 

including insulin resistance, increased levels of central adiposity, low levels of high-density 

lipoprotein-cholesterol (HDL) and elevated levels of triglycerides, impaired fasting glucose, and 

hypertension
159

. Some data suggest that this phenotype is reasonably common, with a prevalence of 

3–28%
124

. 

Metabolically healthy obese individuals have also been described: despite having BMI > 30 kg/m
2
, 

these subjects do not present any metabolic disease (T2D, HTN or other cardiovascular diseases), 

they are insulin sensitive, and lack most of the metabolic abnormalities typical of MetS
160

. Also this 

phenotype appears to be reasonably common, with a prevalence of 11–28%
124

. 

These two particular multi-phenotype conditions are interesting because they separate obesity from 

its usual metabolic consequences, and describe heterogeneity in the metabolic risk status of 

individuals with normal weight, overweight, or obesity, suggesting new pathways in cardiometabolic 

phenotype regulation that explains risks, independent of overall obesity, or risks associated with 

obesity that are independent of adiposity’s intermediate metabolic abnormalities
124

. 

 

Even the complexity of the genetic association signals for metabolic phenotypes underlines an 

important feature of discontinuity and little consistency in the patterns of overlap, compared to that 

expected by common epidemiology. Overall, many genetic loci show effects on multiple 

phenotypes, but few of them cluster in a way consistent with a common genetic basis of MetS.  

An example is the GCKR locus, already cited above
156

. 

 

Another unexpected pattern for cardiometabolic phenotypes was observed by Voight and 
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colleagues: using a Mendelian randomisation approach, they found that LDL levels causally affect 

myocardial infarction risk, whereas high-density lipoprotein (HDL) levels do not. This counter-

intuitive result can be explained by the facts that low HDL may be a consequence, rather than a 

cause, of myocardial infarction risk, thus contradicting the established view that increasing the 

levels of HDL cholesterol will uniformly lower the risk of myocardial infarction and cardiovascular 

disease
88

. 

 

The examples described above are explicative of the fact that MetS is just one combination of 

complex phenotypes and that alternatives exist. 

In general this is consistent with the idea that uncovered alternative and/or combined pathways are 

involved in the determination of complex phenotypes, and in the relationships between them. 

Clarifying those pathways and relationships will shed light on the underlying cellular processes and 

biological mechanisms that determine diseases and physiological traits, with enormous advantages 

for the clinical translation into prevention, diagnosis and treatment. The study of genetic associated 

determinants, especially accounting for combined effects on multiple phenotypes aims to contribute 

to this clarification. 
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3.1 Preliminary data and General aim 
 

3.1.1 Preliminary analysis: multi-phenotype effects of glycaemic loci and 

evidence of directional consistency 

3.1.1.1 Introduction 

My PhD project was envisaged after our initial observation of the overlap between the glycaemic 

and other cardiometabolic trait and disease loci, within the results of meta-analyses for identifying 

new loci influencing glycaemic traits
18

. 

 

The study combined previous discovery meta-analyses with newly available samples of European 

ancestry, including those genotyped using the Metabochip SNP genotyping array, for a total of up to 

133,000 individuals. A follow-up meta-analysis of all included samples for 66,000 SNPs was 

performed, discovering 41 new glycaemic associations: 20 for fasting glucose concentration, 17 for 

fasting insulin concentration, and four for 2hGlu
18

. 

In this study we performed a series of additional analyses by testing for overlaps of significant 

associations and directional consistency of the effects with other metabolic phenotypes; in 

particular, we implemented: 

 a graphical comparison of significance and direction of effects of newly discovered 

glycaemic SNPs in five other phenotypes (T2D, TG, HDL, BMI and WHR adjusted for BMI 

(WHRadjBMI) ); 

 a binomial analysis of directional consistency of associations in follow-up results for 

glycaemic traits for those variants reported in Metabochip as associated with other 

cardiometabolic phenotypes. 

 

The results of these analyses led us to the hypothesis about pleiotropic effects on cardiometabolic 

phenotypes. 

 

3.1.1.2 Materials and Methods 

False Discovery Rate analysis 

When pursuing multiple inferences, researchers tend to select the most significant ones for 

emphasis, discussion and support of conclusions, but such a reporting usually results in a greatly 

increased false positive rate. 

As a new point of view on the problem of multiplicity, the number of erroneous rejections (type I 

errors) should be taken into account in addition to the question about the number of errors made. 

The rate of erroneous rejections is inversely related to the number of hypotheses rejected. 

A desirable error rate to control is the expected proportion of errors among the rejected 

hypotheses, defined as False Discovery Rate (FDR)
161

. 
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When we test, simultaneously, m null hypotheses H0, m0 are the true ones, and R is the number of 

rejected ones as represented in table 3.1.  

The m hypotheses are assumed to be known in advance; R is an observable variable; U, V, S and T 

are unobservable variables. 

The proportion of errors committed by falsely rejecting null hypotheses can be viewed as the 

random variable Q = V/(V+S), that is the proportion of erroneously rejected null hypotheses. When 

no error of false rejection is committed, V+S = 0 and therefore Q = 0.  

FDR E(Q) is the expectation of Q: 

. 

Considering this equation as a function of the significance level α at which the individual testing is 

done, FDR formula becomes: 

. 

We applied FDR calculation to all the results in our analysis. 

Graphical visualisation of associations of glycaemic trait variants with other cardiometabolic traits 

For those SNPs that we identified as associated at genome-wide significance (p-value < 5x10
-8

) to 

one of the following glycaemic traits in the meta-analysis of more than 133,000 individuals - fasting 

glucose (FG), fasting insulin (FI), fasting insulin adjusted for BMI (FIadjBMI), two hour glucose 

H0 declared non-significant H0 declared significant Total

True H0 U V m0

False H0 T S m-m0

Total m-R R m

Table 3.1: Number of erroneous 

and correct classifications when 

testing m null hypotheses. 

Figure 3.1: Heat map of associations 

between glycaemic loci and T2D, HDL 

and TG concentrations, BMI and 

WHR. Loci associated with these 

phenotypes (P < 0.05) are highlighted. 

Those with positively correlated effect 

directions are shown in yellow, and 

those with negative correlations are 

shown in blue. Those which did not 

reach q-value < 0.05 in FDR analyses 

are indicated by a diagonal line 

through the corresponding rectangle. 

From Scott et al. 2012
18

. 
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(2hGlu) - we also investigated their association with other metabolic phenotypes and disease 

outcomes. 

 

We looked-up the meta-analysis of association results for such SNPs in the latest DIAGRAM 

Metabochip analyses
108

 for T2D and examined associations of these SNPs in publicly available data 

from previous studies of lipid traits from the Global Lipids Genetics Consortium (GLGC)
145

 –TG, HDL 

and LDL cholesterol - as well as BMI and WHR from GIANT Consortium
16,126

. From these data, we 

extracted p-values of association and the directions of effect aligned to glycaemic trait-raising 

alleles. We highlighted associations with other phenotypes at p-value < 0.05, and displayed their 

directions using a colour code from bright yellow (very significant p-value < 5x10
-8

, positive 

association) to bright blue (very significant p-value < 5x10
-8

, negative association), with an 

intermediate black colour for non-significant associations (p-value > 0.05, figure 3.1). We also 

performed a false discovery rate (FDR) analysis for each trait, separately. 

Analyses of directional consistency of cardiometabolic trait associations between discovery and 

follow-up studies 

The Illumina CardioMetabochip (Metabochip) is a custom Illumina iSELECT array of 196,725 SNPs 

designed to support efficient large-scale follow-up analyses of putative associations for glycaemic 

and other metabolic and cardiovascular phenotypes (as represented in figure 3.2) and to enable the 

fine mapping of established loci. 

 

We investigated whether the Metabochip follow-up SNPs were likely to contain further true 

associations, in addition to those SNPs that reached genome-wide significance and whether more 

SNPs than expected by chance (50%) had a consistent direction of effect on glycaemic traits in 

follow-up analyses with that observed in the discovery analyses.  

To do so, we performed two separate meta-analyses: the first one is of those studies involved in the 

original discovery analyses, comprising 42,078 individuals for fasting glucose, 34,230 for fasting 

insulin and 15,252 for 2hGlu; and the second one is a separately performed meta-analysis of all 

studies that were newly available to follow-up, comprising 85,710 individuals for fasting glucose, 

69,240 for fasting insulin, and 27,602 for 2hGlu. 

SNPs were filtered by LD (r
2
 < 0.01) to identify independent variants. All SNPs in LD (r

2
 ≥ 0.01), and 

Figure 3.2: Metabochip design: 

consortia and the number of SNPs 

they submitted to be followed-up 

using the Metabochip genotyping 

array. From Scott et al. 2012
18

. 
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those associated with glycaemic traits (FG, FI, 2hGlu, HbA1c and proinsulin) at genome-wide levels 

of significance (including SNPs identified in the present study), were excluded. 

For each trait (FG, FI, FIadjBMI and 2hGlu), we identified all SNPs that had a nominally significant 

association (p-value < 0.05) in the follow-up studies alone and, for these SNPs, we performed a two-

sided binomial test to test whether more SNPs than those expected by chance (50%) had a 

consistent direction of effect in the follow-up results with that observed in the discovery analyses. 

These analyses were initially performed for all 66,000 SNPs together, and then we were also able to 

compare across SNPs submitted to the Metabochip by different consortia (see figure 3.2), and for 

SNPs submitted for particular phenotypes from these consortia (table 3.2). 

 

The results of each of these tests were plotted, overall, within SNPs from each consortium, and 

within SNPs submitted for follow-up of each trait (figure 3.3). We supplemented these results with 

FDR analyses, and noted the q-value at a p-value = 0.05 in the follow-up studies to identify the 

likelihood of true positives among these nominally significant SNPs. 

 

3.1.1.3 Results 

From the graphical visualisation of associations between significant glycaemic loci and T2D, HDL, TG, 

BMI, and WHR (figure 3.1), we observed that, in general, there is a significant effect of glycaemic loci 

on T2D risk: usually the increasing glycaemic trait level allele is significantly associated with 

increased risk of the disease. Exceptions are loci TCF7L2 for FI, and GCKR, PPP1R3B and VPS13C for 

2hGlu. 

FI-associated loci showed also marked effects on TG levels with same directions, and opposite 

significant effects on HDL. FDR analysis was non-significant (q-value > 0.05) in a few cases: FI-

associated variant rs7903146 in the TCF7L2 locus for TG, and FI-associated variants in GCKR and 

ARL15 for HDL. 

 

For the overall follow-up study of each glycaemic trait, evaluation of the 66,000 Metabochip follow-

up SNPs revealed a significant excess of SNPs showing directionally consistent associations (p-value 

< 0.05) compared to that expected by chance (table 3.2): FG p-valuebinomial = 5.01 × 10
−12

, FI p-

valuebinomial = 7.58 × 10
−13

; FI adjusted for BMI p-valuebinomial = 9.76 × 10
−9

; 2hGlu p-valuebinomial = 2.37 

× 10
−6

. FDR analyses suggested that a number of these nominal associations in the follow-up studies 

are true positives for fasting glucose and fasting insulin in particular (23% for FG; 24% for FI). 

 

Notably, when we evaluated consistency of association with FI between discovery and follow-up 

stages among SNPs submitted to the Metabochip by other consortia, SNPs submitted by GIANT 

Consortium to be associated with anthropometric traits (p-valuebinomial = 1.52 × 10
−8

), and by GLGC 

for lipid traits (p-valuebinomial = 1.15 ×10
−6

), showed a marked excess of directional consistency, for 

BMI and triglycerides in particular (table 3.2, figure 3.3B). When we performed the same test for 

fasting insulin concentration adjusted for BMI, the observed enrichment among SNPs submitted by 

GIANT and GLGC was attenuated (table 3.2, figure 3.3C), although SNPs nominated for follow up on 
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TG associations remained the most significant (p-value = 3.18 × 10
−7

). Of the 3,353 SNPs submitted 

for follow-up of TG associations, 158 SNPs showed nominal significance (p-value < 0.05) in follow-up 

studies and consistent direction of association with FI (adjusted for BMI) in both discovery and 

follow-up stages (data not shown). In 139 (88%) of these SNPs, the insulin-raising alleles were 

associated with higher levels of triglycerides, consistent with the positive correlations previously 

described between fasting insulin and triglyceride associations observed among the genome-wide 

significant loci for fasting insulin concentration (figure 3.1). 

 

3.1.1.4 Discussion 

From our results, the number of glycaemic loci associated with other metabolic phenotypes (q-value 

< 0.05; 34 of 53), also at genome-wide levels of significance (p-value < 5 × 10
−8

; 14 of 53) (figure 3.1), 

is of particular note. Fasting insulin loci showed directionally consistent association with lipid levels 

(HDL and triglycerides); that is, the insulin-raising allele was associated with lower HDL and higher 

triglyceride levels, a hallmark combination in insulin-resistant individuals. 

 

Further support for this notion comes from the analysis of loci nominated for the Metabochip by 

other consortia, and their associations with glycaemic traits. Effectively, comparing the consistency 

of the direction of associations for glycaemic traits between discovery and follow-up studies, we 

observed more directionally consistent associations than expected by chance among Metabochip 

follow-up SNPs; and this is particularly true when analysing FI association with those SNPs selected 

for BMI and TG. The significance for triglycerides SNPs remained also after BMI adjustment of FI, 

indicating that this association was not driven by obesity. Moreover, for 88% of triglyceride SNPs 

which showed consistency in directions of effects with fasting insulin, the insulin-raising alleles were 

associated also with higher levels of triglycerides. 

 

These primary observations highlighted the fact that unexpected CP effects within cardiometabolic 

phenotypes may exist, and suggested to us the idea of deepening this outcome and developing 

research about the study of pleiotropy in cardiometabolic traits and diseases. 
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Figure 3.3: Directional consistency of association for A. FG, B. FI, C. FIadjBMI, D. 2hGlu. SNP lists (r
2 

< 

0.01) submitted by each consortium are detailed on the x-axis and -log10(p-values) on the y-axis for 

the binomial tests of consistent direction and nominal significance (p-val< 0.05) in follow-up studies. 

Below x-axis: total number of SNPs LD pruned and present in discovery and follow-up results. 
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Table 3.2: Directional consistency of associations between discovery and follow-up studies for glycaemic traits. The number of SNPs nominated to the Metabochip for 

follow-up of particular phenotypes by each consortium is shown, alongside the number of SNPs where p-value < 0.05 in follow-up studies. The number of those SNPs 

showing consistent direction is also shown, as well as the p-value for the binomial test comparing this number to the null expectation (50%). In addition, the q-value from 

FDR analyses at p-value = 0.05 is also shown. From Scott et al. 2012
18

. 

DIAGRAM CARDIOGRAM

All FG FI 2hGlu HbA1c T2D All WHR BMI FATPCT WC HEIGHT All HDL LDL TG TC All SBP DBP QT interval CAD

Total Follow-up SNPs on 

METABOCHIP 65,345 8,473 5,055 1,046 1,081 1,082 5,270 13,454 5,268 5,276 1,076 1,093 1,098 15,499 5,249 5,250 5,256 971 14,717 5,269 5,267 5,244 8,636

Total SNPs after LD-pruning 

and removing MAGIC hits 17,980 3,040 2,455 723 738 700 2,470 3,229 2,224 2,089 715 603 432 3,471 2,077 2,126 3,089 378 3,465 2,326 2,278 2,080 2,977

Total # P <0.05 in follow-up 1,166 206 173 50 48 42 172 202 136 139 32 38 30 228 144 128 205 31 219 154 131 133 190

q-value at P =0.05 0.77 0.74 0.71 0.72 0.71 0.79 0.71 0.80 0.81 0.74 0.89 0.76 0.70 0.76 0.72 0.82 0.74 0.59 0.78 0.74 0.82 0.77 0.77

Total # P <0.05 in follow-up 

and consistent direction 701 135 112 27 31 29 102 115 82 88 17 27 25 128 86 68 131 22 126 103 81 72 96

Binomial test P -value 5.01E-12 9.73E-06 1.30E-04 6.72E-01 5.95E-02 1.95E-02 1.78E-02 5.72E-02 2.03E-02 2.15E-03 8.60E-01 1.39E-02 3.25E-04 7.35E-02 2.41E-02 5.36E-01 8.33E-05 2.95E-02 3.04E-02 3.38E-05 8.51E-03 3.86E-01 9.42E-01

Total SNPs after LD-pruning 

and removing MAGIC hits 17,783 3,026 2,449 723 733 697 2,454 3,173 2,190 2,061 711 600 431 3,403 2,048 2,093 3,055 377 3,407 2,303 2,260 2,044 2,977

Total # P <0.05 in follow-up 1,167 207 156 53 46 40 156 247 173 175 57 43 47 261 160 145 250 38 230 167 142 137 173

q-value at P =0.05 0.76 0.72 0.78 0.65 0.74 0.81 0.78 0.63 0.63 0.58 0.58 0.67 0.43 0.64 0.62 0.67 0.61 0.49 0.74 0.67 0.79 0.72 0.83

Total # P <0.05 in follow-up 

and consistent direction 706 122 88 40 24 17 83 168 114 118 36 31 34 170 102 84 179 23 143 106 87 79 95

Binomial test P -value 7.58E-13 1.22E-02 1.28E-01 2.69E-04 8.83E-01 4.30E-01 4.71E-01 1.52E-08 3.50E-05 4.66E-06 6.27E-02 5.40E-03 3.09E-03 1.15E-06 6.29E-04 6.73E-02 6.17E-12 2.56E-01 2.70E-04 6.19E-04 9.04E-03 8.71E-02 2.24E-01

Total SNPs after LD-pruning 16,501 2,771 2,276 674 664 647 2,222 3,008 2,141 1,998 655 597 409 3,225 1,985 2,060 3,029 357 3,111 2,085 2,047 2,078 2,735

Total # P <0.05 in follow-up 1,103 188 154 57 40 49 149 250 169 160 43 53 54 230 133 136 237 28 224 151 137 129 172

q-value at P =0.05 0.75 0.70 0.72 0.56 0.73 0.65 0.74 0.60 0.63 0.62 0.73 0.56 0.37 0.70 0.74 0.72 0.63 0.52 0.68 0.69 0.73 0.77 0.79

Total # P <0.05 in follow-up 

and consistent direction 647 114 78 44 24 29 86 157 103 85 32 42 41 150 80 83 158 20 146 95 82 81 99

Binomial test P -value 9.76E-09 4.33E-03 9.36E-01 4.71E-05 2.68E-01 2.53E-01 7.11E-02 6.21E-05 5.46E-03 4.77E-01 1.91E-03 2.25E-05 1.75E-04 4.58E-06 2.38E-02 1.26E-02 3.18E-07 3.57E-02 6.50E-06 1.89E-03 2.60E-02 4.65E-03 5.63E-02

Total SNPs after LD-pruning 

and removing MAGIC hits 17,015 2,979 2,414 715 722 684 2,360 2,987 2,044 1,938 702 570 420 3,179 1,922 1,970 2,881 359 3,244 2,242 2,183 1,907 2,878

Total # P <0.05 in follow-up 974 176 138 36 61 27 119 179 116 111 37 32 21 169 114 103 144 21 195 117 119 95 171

q-value at P =0.05 0.87 0.59 0.85 0.87 0.59 0.92 0.92 0.83 0.87 0.84 0.89 0.74 0.81 0.88 0.84 0.89 0.87 0.80 0.83 0.89 0.91 0.82 0.95

Total # P <0.05 in follow-up 

and consistent direction 561 106 77 20 48 15 61 92 59 62 20 15 12 83 66 46 79 8 116 73 68 57 94

Binomial test P -value 2.37E-06 8.15E-03 2.02E-01 6.18E-01 7.67E-06 7.01E-01 8.55E-01 7.65E-01 9.26E-01 2.55E-01 7.43E-01 8.60E-01 6.64E-01 8.78E-01 1.11E-01 3.25E-01 2.79E-01 3.83E-01 9.76E-03 9.34E-03 1.42E-01 6.42E-02 2.21E-01

FI  

FI (adjusted for BMI)

2hGlu

ICBP (with QT)Overall Follow-up 

SNPs

MAGIC GIANT GLGC

FG
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3.1.2 The Cross-Consortia Pleiotropy Group 

 

The Cross-Consortia Pleiotropy Group 

(XC-Pleiotropy group, figure 3.4 for 

the symbol) is a “consortium of 

consortia” that was initiated in 2011 

with the aim of investigating patterns 

of established multi-phenotype 

associations across the human genome for cardiometabolic traits and disease outcomes. 

 

The Consortium serves as a platform for multiple GWAS consortia of cardiometabolic phenotypes 

(table 3.3) to share their meta-analyses results. All data are regulated by appropriate ethics 

oversight from their respective institutional review boards. 

The XC-Pleiotropy group’s objectives are to explore results of these meta-analyses to clarify several 

questions about pleiotropy; to this aim its participants are divided in different, but interacting, 

working groups. 

 

One of the main objectives is to understand whether pleiotropic loci can be discovered by testing 

existing GWAS data using multiple-phenotype mapping methods, establishing (1) what is the 

potential of existing univariate analyses, (2) what is the best methodology to detect new pleiotropic 

associations from them, and (3) which approaches could be applied to verify the hypotheses of 

pleiotropy at already known cardiometabolic-phenotype loci. 

Defining the fraction of established loci for metabolic traits and diseases with discernible pleiotropic 

effects is thus a key point, as well as evaluating the effects of pleiotropic loci in the context of 

established epidemiology, in particular verifying if individual pleiotropic effects are consistent with 

epidemiological expectation, and if pleiotropic loci form clusters of phenotype correlations that 

Figure 3.4: 

Symbol of 

the XC-

Pleiotropy 

group. 

Table 3.3: GWAS Consortium partners of the XC-pleiotropy group. 

GWAS Consortium Name Abbreviation Phenotypes Main Reference

Reference 

number

Diabetes Genetics Replication and 

Meta-Analysis DIAGRAM Type 2 diabetes

Morris et al. 2012; Voight et al. 

2010 19, 108

Genetics of Body Fat Percentage - Body fat percentage Kilpelainen et al. 2011 132

Genetic Investigation of 

Anthropometric Traits GIANT

Height, BMI, waist 

circumference, waist-to-hip 

ratio

Speliotes  et al. 2010, Heid et 

al. 2009, Lango Allen et al. 2010 16, 126, 137

Genetics of Blood Pressure Global BPgen

Systolic and diastolic blood 

pressure, hypertension

Newton-Cheh et al. 2009; Ehret 

et al. 2011 152,  152

Global Lipids Genetics Consortium GLGC

Total cholesterol, HDL 

cholesterol, LDL cholesterol, 

triglycerides Teslovich et al. 2010 145

Meta-Analyses of Glucose and 

Insulin-Related Traits MAGIC

Fasting glucose and insulin 

with and without adjustment 

for BMI, two-hour glucose, 

fasting proinsulin, glycated 

Hemoglobin

Dupuis et al. 2010; Manning et 

al. 2012; Soranzo et al. 2009; 

Strowbridge et al. 2011; Saxena 

et al. 2010

117, 118, 

119, 120, 121
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match the epidemiological expectation. The group aims to aid the interpretation of variation at 

established genomic regions with evidence of pleiotropic effects, and to the evaluation of the 

structure of pathways around similar pleiotropic loci. 

The consortium aims, in addition, to dissect the underlying architecture for those genomic regions 

showing adjacent multiple signals of univariate associations with cardiometabolic traits and 

disorders through, for example, the development of methods for distinguishing allelic heterogeneity 

from potential pleiotropy. 

 

In the context of the XC-Pleiotropy group, and on its behalf, I started my work on the study of 

pleiotropy and I developed my PhD project in an attempt to achieve some of the above listed 

objectives of the consortium. 

 

 

3.1.3 Aims of my PhD project 

 

Since I started my University studies, I developed a deep interest in human genetics. 

During the first year of my PhD I became involved in work investigating the genetic background of 

complex human diseases: I worked in the project investigating the association between genetic 

variants and Aggressive Periodontitis, a complex human disease involving the Immune system, with 

a particular focus on detecting the genotype-genotype interactions underlying disease 

predisposition. 

While doing this work, I realised the complexity of studying multifactorial complex phenotypes and 

the necessity of developing appropriate methodological and statistical approaches and to explore 

new areas of research for the analysis of the genetic data. 

During the period from November 2011 to December 2012, I undertook research training at the 

Wellcome Trust Centre for Human Genetics (WTCHG), University of Oxford. It was there that I 

started studying Type 2 Diabetes (T2D) and glycaemic traits in non-diabetic individuals, as well as the 

framework of multiple T2D-related cardiometabolic and inflammatory phenotypes; in this context 

we also developed the project on the study of pleiotropy. 

 

Deepening the study of present GWAS for cardiometabolic phenotypes, it was clear that there is 

considerable overlap between associated loci, as reported, for example, in our work on glycaemic 

loci described above
18

; but the patterns of multi-phenotype associations resulted very complex and 

this is evident in chapters “2.3.2_Evidences of CP effects in cardiometabolic phenotypes” and 

“2.3.3_Relationships within cardiometabolic phenotypes”. This complexity of the observed 

metabolic trait associations within univariate analyses might be due to several underlying factors, as 

explained in chapter “2.1.2_Cross-Phenotype association and definition of pleiotropy”, including 

pleiotropy. 

The phenomenon of pleiotropy refers to genetic variants exerting their effects on multiple 

phenotypes (in our case cardiometabolic); combinations of such effects might, or might not, follow 

epidemiological expectations and therefore add complexity to the aetiology of complex human 
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traits and disease outcomes. Our idea is that the dissection of pleiotropy will help uncover the 

mechanistic basis of the pathogenetic processes leading to T2D and cardiac diseases; moreover, the 

definition of specific sets of effects on combinations of cardiometabolic and inflammatory 

phenotypes might highlight novel biological pathways, targets for translational research, for 

therapeutic intervention, and for the understanding of the pathophysiology of human metabolism. 

 

Based on this hypothesis, and in collaboration with the XC-pleiotropy group, my PhD project mainly 

focused on exploration of the pleiotropic effects at common variants across the genome on 

cardiometabolic phenotypes, with the objective of understanding how DNA sequence variation 

influences risk of metabolic diseases, with a particular focus on the impact of variants that influence 

multiple phenotypes and the mechanisms underlying those multiple effects. 

The research has been divided into three specific aims, and thus three sub-projects: 

(1) first of all, we wanted to explore established multi-phenotype effects at cardiometabolic loci 

from published results of univariate meta-analyses, defining clusters of loci with similar multiple-

phenotype effects, comparing them to known epidemiological expectations, and identifying 

enriched biological networks within the most interesting clusters; 

(2) secondly, we applied a strategy for dissecting the architecture of established cardiometabolic loci 

showing multiple associations for a better definition of the underlying mechanisms of these multi-

phenotype effects, and for the discernment of potential pleiotropy from allelic heterogeneity; 

(3) the third sub-project aimed to develop and apply a statistical strategy for multivariate analyses of 

CP phenomena in cohorts from the ENGAGE consortium to verify a priori hypotheses of pleiotropy, 

and to discover new uncovered multiple associations. 
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3.2 Project 1: Clustering and pathway analysis of univariate 

GWAS results for the detection of pleiotropic effects 
 

3.2.1 Introduction and Aim 

 

As reported in the “2_Literature Review” section of this thesis, cardiometabolic continuous traits are 

related to phenomena of dysmetabolism, which are considered as epidemics in the world. 

Since the first studies on cardiometabolic disorders, it was noticed that several of them commonly 

clustered together and in 2004, metabolic syndrome (MetS) was defined
158

. 

Metabolic disorders and related traits have been studied in genome-wide association studies 

(GWAS) during the past seven years, resulting successful in the identification of common genetic 

variants associated with these phenotypes: several hundreds of loci have been identified (187 

variants/108 loci for lipids, 99 variants/67 loci for glycaemic traits, 59 variants/53 loci for obesity, 65 

variants/46 loci for blood pressure and hypertension, 85 variants/64 loci for T2D). A subset of these 

variants has shown to be associated with more than one of these phenotypes, thus corresponding to 

potentially pleiotropic loci. However, the patterns of phenotype associations observed in GWAS at 

individual cardiometabolic risk-loci are highly variable and, in addition, the overlap of genetic 

associations is not always consistent with epidemiological correlations (for a more complete 

description of all these aspects, see chapter “2.3_Overview of genetics of cardiometabolic 

phenotypes”). 

 

In this study, on behalf of the XC-Pleiotropy Group, we aimed to extend the analysis applied in Scott 

et al. 2012
18

 to investigate patterns of multiple cardiometabolic phenotype associations across the 

genome using existing univariate analysis results. 

First, we wanted to test the capability to detect groups of loci with shared cross-phenotype effects 

by analysing simultaneously individual effects on multiple traits and diseases extracted from existing 

data and using unexplored simple statistical and graphical instruments. 

Our objective was also to evaluate pleiotropic loci in the context of established epidemiology, 

verifying when potential pleiotropic loci form clusters of phenotype correlations that match 

epidemiological expectations and when not, considering the difference in magnitudes of observed 

effects between related phenotypes and how this can influence the power to detect pleiotropic 

associations. 

Using univariate GWAS meta-analysis data for established loci, we wanted to achieve a systems-

level understanding of the role of potentially pleiotropic loci by exploring functional interactions 

between codified proteins through pathway analysis. These connections form networks that enable 

viewing of a given set of genes as something more than just a static collection of distinct genetic 

functions. Protein association network information can aid in the interpretation of functional 

genomics data and, furthermore, has also proven surprisingly useful for the detection and 

characterisation of disease genes, both for Mendelian and for complex diseases
162,163

. 
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We aimed to test different methods to identify specific mechanisms evaluating the structure of 

pathways and networks around potential pleiotropic loci. To this purpose, we used several software 

packages that reconstruct networks enriched for connectivity across clusters of loci using 

information from literature, protein-protein interaction databases, expression and annotation 

databases. This analysis can help in answering some important questions. For example, are there 

clusters of traits and respective pleiotropic loci that impact the same pathways? Which pathways 

are more enriched within potential pleiotropic loci? Can pathway connectivity in multi-phenotype 

networks suggest gene candidates for causality or tissues of action underlying the association 

signals? 

To summarise, in the present project, we undertook (1) the examination of associations at 

established cardiometabolic loci with epidemiologically correlated cardiometabolic phenotypes, by 

grouping shared patterns of individual trait or disease effects; subsequently we (2) compared the 

observed combinations of effects at identified groups of loci with our expectations based on 

epidemiological knowledge of cardiometabolic phenotypes; finally we (3) defined pathways and 

gene networks involved in the phenotypic variability within the identified association pattern 

groups. 

 

 

3.2.2 Materials and Methods 

3.2.2.1 Starting data: cardiometabolic univariate meta-analyses results 

Through the XC-Pleiotropy Group we have priority access to association summary statistics from 

published GWAS discovery meta-analysis on cardiometabolic phenotypes.  

These data were shared by six cardiometabolic trait and disease consortia as reported in table 3.3. 

Each study was approved by their local ethics board and each participant provided written, informed 

consent. 

We used already published genome-wide meta-analysis association studies results for 22 

cardiometabolic phenotypes, 20 quantitative traits and 2 diseases, in European samples from the six 

international consortia as reported in table 3.4: 5 traits from GIANT, 1 from the Body Fat Percentage 

consortium , 3 phenotypes from the Global BPgen consortium, 4 from the GLGC, 8 from MAGIC and 

1 disease from DIAGRAM. 

For 3 traits from GIANT (HIP, WC, WHR), and for 4 traits form MAGIC (FG, FI, HOMAB, HOMAIR) 

consortium, we also considered phenotypic refinements through adjustment for BMI (HIPadjBMI, 

WCadjBMI, WHRadjBMI, FGadjBMI, FIadjBMI, HOMABadjBMI, HOMAIRadjBMI), raising the number 

of evaluated phenotypes to 29. 

Sample sizes for phenotypes varied from 10,382 individuals for fasting proinsulin to 183,727 for 

height. We employed the GWAS meta-analysis association results for these phenotypes to extract 

effects and p-values of established associated SNPs. 
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3.2.2.2 Selection of variants at cardiometabolic loci 

As first step of this study, after a systematic literature search using PubMed and NHGRI catalogue
7
, 

we listed all genome-wide significant (p-value < 5x10
-8

) SNPs reported from published GWAS for 

cardiometabolic phenotypes (before October 2012); secondary signals, that are additional peak 

signals of association detected after conditioning the genome-wide association analysis on 

previously detected main signals, were included. For a complete list of these SNPs see Appendix 

tables 1, 2, 3, 4, 5 and 6. 

Among 687 identified association signals, there were 623 distinct polymorphisms. 

Using SNAP internet tool
164

, we calculated the pair-wise linkage disequilibrium (LD) between 

adjacent polymorphisms using 1000 Genomes CEU data (pilot phase)
165

 as reference panel. 

Redundant SNPs were then removed using an LD cut-off of r
2
 ≥ 0.8. The resulting set of 547 SNP 

variants was used for subsequent analyses. 

 

3.2.2.3 Alignment of multi-phenotype effects and meta-analysis of multiple association 

Omnibus p-value calculation through Fisher’s omnibus test as a simple multi-phenotype meta-

analysis 

A meta-analysis combines association summary statistics from different studies to provide a 

summary result and it can be applied to different phenotype analyses, in our case for CP effect 

Table 3.4: GWAS discovery meta-analyses for cardiometabolic phenotypes used in the present study. 

Consortium 

(abbreviation) Complete phenotype name Abbreviation Paper of publication

Paper reference 

number

Sample size 

(average)

Body Max Index BMI Speliotes et al. 2010 16 108,156

Waist Circumference WC - - 74,825

Hip Circumference HIP - - 66,712

Waist-Hip Ratio WHR - - 66,326

Waist Circumference adjusted for BMI WCadjBMI - - 75,084

Hip Circumference adjusted for BMI HIPadjBMI - - -

Waist-Hip Ratio adjusted for BMI WHRadjBMI Heid et al. 2009 126 113,636

Height HEIGHT Lango Allen et al. 2010 137 183,727

- Body fat percentage PCBFAT Kilpelainen et al. 2011 132 31,159

Diastolic Blood Pressure DBP Newton-Cheh et al. 2009 152 28,466

Systolic Blood Pressure SBP Newton-Cheh et al. 2009 152 28,424

Hypertension HTN Newton-Cheh et al. 2009 152 16,820

High Density Lipoprotein HDL Teslovich et al. 2010 145 88,754

Low Density Lipoprotein LDL Teslovich et al. 2010 145 84,685

Total Cholesterol TC Teslovich et al. 2010 145 88,754

TryGlicerides TG Teslovich et al. 2010 145 85,691

2 hour Glucose adjusted for BMI HGLUadjBMI Saxena et al. 2010 118 42,854

2 hour Insulin adjusted for BMI HINSadjBMI - - -

Fasting Glucose FG Manning et al. 2012 119 50,510

Homeostasis Model Assessment for Beta cell function HOMAB Manning et al. 2012 119 -

Fasting Insulin FI Manning et al. 2012 119 44,972

Homeostasis Model Assessment for Insulin Resistance HOMAIR Manning et al. 2012 119 -

Fasting Glucose adjusted for BMI FGadjBMI Manning et al. 2012 119 51,785

Homeostasis Model Assessment for Beta cell function  adjusted for BMI HOMABadjBMI Manning et al. 2012 119 -

Fasting Insulin  adjusted for BMI FIadjBMI Manning et al. 2012 119 46,271

Homeostasis Model Assessment for Insulin Resistance  adjusted for BMI HOMAIRadjBMI Manning et al. 2012 119 -

Fasting Pro-insulin PROINS Strowbridge et al. 2011 121 10,382

Glycated Haemoglobine HBA1C Soranzo et al. 2009 120 30,587

DIAGRAM  Type 2 Diabetes T2D Voight et al. 2010 19 26,288

GIANT

Global BPgen

GLGC

MAGIC
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detection. 

We decided to apply one of the simplest meta-analytical approaches based on aggregation of p-

values across phenotypes in different studies: the Fisher’s omnibus test
49

. 

For each cardiometabolic variant a cumulative association statistic Scum was calculated with the 

following formula: 

. 

The statistic was calculated from univariate p-values of all 29 cardiometabolic phenotypes from 

GWAS meta-analysis results. When a variant was not reported for a particular phenotype, its value 

was considered as missing and Scum was calculated only for the remaining phenotypes. 

 

Scum follows the χ
2
 distribution with 2N df

50
 and tests the null hypothesis that the genetic variant is 

not associated with any phenotype versus the alternative hypothesis that it is associated with at 

least one phenotype. As we already knew that each of the selected variants was associated with at 

least one cardiometabolic phenotype, we used Scum to verify the presence of multiple significant or 

suggestive associations at same variants where cumulative p-value resulted more significant than 

the single univariate ones. 

Z-score calculation 

From GWAS meta-analyses results of the 29 available phenotypes we extracted the summary 

statistics for the 547 listed cardiometabolic SNPs and we aligned the effects based on the HDL rising 

allele. HDL was chosen as reference arbitrarily. 

For each listed SNP we obtained the z-score value for each cardiometabolic phenotype as calculated 

from beta (β) and standard error (SE) summary statistics from GWAS meta-analyses results, with the 

following formula: 

; 

z-score was used to take into account the size of the effect (represented by β parameter) and its 

significance (represented by the division for the SE). An absolute value of z-score more than or equal 

to 5.45 corresponds to a p-value less or equal to the GW significance threshold (p-value = 5x10
-8

). A 

positive value of z-score means increasing effect, while negative values are indexes of decreasing 

effects. 

We decided to do not apply a multi-phenotype meta-analysis of the effect statistics (as for example 

z-score) for two main reasons: 

(1) on one hand, fixed-effects meta-analysis assumes that the tested genetic variant has the same 

underlying effect on each phenotype, and that the observed differences are due to chance alone; 

this assumption is not applicable to multiple phenotypes considered in this study, since we know 

from epidemiological observations that some of them may have opposite effects (for example HDL 

and other lipids); therefore, the application of a fixed-effects meta-analysis on our data would have 

represented an excessive approximation that is far from the reality; 

(2) on the other hand, random-effects meta-analysis or subset-based meta-analysis, which allow the 

genetic effect to differ across phenotypes (the first method) or to be opposite (the second method) 

would lead to an excessive loss of power, due to the substantial number of phenotypes included in 

the study. 
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We therefore analysed multi-phenotype z-score statistics using a different approach, as explained 

below. 

Used software 

R software
166

 (R version 3.0.1 (2013-05-16)) was used to run mentioned statistical analyses. It is 

available at http://cran.r-project.org/. 

 

3.2.2.4 Clustering of cardiometabolic loci effects on multiple phenotypes 

Clustering method 

As described above, we obtained a cardiometabolic multi- phenotype combined effect matrix of z-

score values for the list of cardiometabolic SNPs. 

Using this matrix of data, we applied a hierarchical agglomerative clustering method, using 

Euclidean distance between effects, to group together variants with more similar behaviour on 

cardiometabolic phenotypes and, thus, to identify clusters of cardiometabolic variants with shared 

multiple effects. We opted for this method because we did not know how many groups of similar 

loci we could observe within our data. In fact, in contrast with other clustering algorithms such as k-

means or k-medoids clustering, hierarchical clustering approach does not require any a priori 

specification of the number of groups to be searched. 

Agglomerative clustering algorithms begin with every of the N observations representing a singleton 

cluster. At each of the N − 1 steps, the closest two (least dissimilar) clusters are merged into a single 

cluster, producing one less cluster at the next highest level. This union can be graphically 

represented by two branches joining the two clusters into a unique node: the graph obtained in this 

manner from the hierarchical clustering analysis is called “dendrogram”. Through hierarchical 

clustering, the entire hierarchy represents an ordered sequence of groupings. 

Single linkage (SL) agglomerative clustering takes the intergroup dissimilarity to be that of the 

closest (least dissimilar) pair; this is also often called the nearest-neighbour technique. Complete 

linkage (CL) agglomerative clustering (furthest-neighbour technique) takes the intergroup 

dissimilarity to be that of the furthest (most dissimilar) pair. Group average (GA) clustering uses the 

average dissimilarity between groups
167

. 

Having different sample sizes for different phenotypes, distances between groups of loci with similar 

behaviour could be underestimated due to weaker effects in some phenotypes; considering this, we 

decided to perform the complete linkage method for hierarchical agglomerative clustering as it is 

based on the maximum differences, partially skipping the bias caused by different sample sizes. 

 

The obtained hierarchical cluster was subsequently evaluated via multi-scale bootstrap resampling: 

10,000 bootstrap replicates were generated to compute a probability (%, bootstrap value) as index 

of the strength of each dendrogram node. 

Sub-cluster sets definition 

As described above, hierarchical clustering methods give an ordered sequence of groupings without 

defining how many groups are best representative of the data. It is up to the user to decide which 
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level (if any) actually represents a “natural” clustering in the sense that observations within each 

group are sufficiently more similar than observations belonging to different groups at that level
167

. 

Several methods exist to calculate the best number of sub-clusters in a hierarchical cluster 

dendrogram, such as that proposed in the R package “dynamicTreeCut” by Peter Langfelder and 

colleagues
168

. However these methods are extremely dependent on input parameters in our 

dataset, leading to very different results as a consequence of minimal changes in their setting. 

Therefore, we chose to apply a constant height cut-off at three different levels of the Euclidean 

distance and to then compare the three different sets of groups obtained. The chosen cut-off levels 

were at the 25% of Euclidean distance (cut-off A), at the 20% of Euclidean distance (cut-off B), and at 

the 15% of Euclidean distance (cut-off C). 

Used software 

R software
166

 packages hclust and pvclust (R version 3.0.1 (2013-05-16)) were used to run clustering 

analyses and groups definition. R is available at http://cran.r-project.org/. For a description of the 

hclust package see http://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html; for a 

description of the pvclust package see http://www.is.titech.ac.jp/~shimo/prog/pvclust/. 

 

In parallel, we performed hierarchical complete clustering using the Genesis software
169

, a package 

originally developed as a platform independent Java package of tools to simultaneously visualise and 

analyse a whole set of gene expression experiments. Results from this parallel analysis were 

compared with those obtained with R packages. The Genesis software is available at 

http://genome.tugraz.at/genesisclient/genesisclient_description.shtml. 

 

3.2.2.5 Pathway analysis 

We considered the obtained groups of SNPs with similar cardiometabolic multi- phenotype effects 

from each of the three sets based on different height cut-offs of the Euclidean distance applied to 

the results of the cluster analysis. For each of these groups of clustered variants we wanted to verify 

the presence of enriched common biological networks and test the significance of those 

enrichments. We thus conducted a pathway analysis using different web tools.  

DAPPLE 

DAPPLE (Disease Association Protein-Protein Link Evaluator) is a programme that looks for 

significant physical connectivity among proteins encoded by genes according to protein-protein 

interactions reported in the literature. It is based on the InWeb database
95

, which combines 

reported protein interactions from the Molecular INTeraction database (MINT), the Biomolecular 

Interaction Network Database (BIND), IntAct, Kyoto Encyclopedia of Genes and Genomes (KEGG) 

annotated protein-protein interactions (PPrel), KEGG Enzymes involved in neighbouring steps 

(ECrel), Reactome and others. It is particularly developed to study genes in loci associated with 

diseases, as its hypothesis is that causal genetic variation affects a limited set of underlying 

mechanisms that are detectable by protein-protein interactions. 

Contrary to the majority of tools for pathway analysis, DAPPLE takes as input a list of seed SNPs or 
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genomic regions, and applies an algorithm to define the nearest genes in a flanking region defined 

by the user; therefore it was particularly applicable for our study where an input was represented by 

the list of all SNPs in a defined sub-cluster with common multi- phenotype effects. 

After defining nearest input genes, DAPPLE uses the information included in the databases 

mentioned above
170

 for proteins encoded by these genes to build direct and indirect interaction 

networks. In direct interactions, any two associated proteins can be connected by exactly one edge, 

while in indirect interactions, associated proteins can be connected via common interactor proteins 

not present in the input data, but shared among associated proteins. 

DAPPLE represents the constructed network in a graphical image as reported in the example in 

figure 3.5: input genes are represented as coloured circles, while additional connectors are in grey. 

Furthermore, DAPPLE calculates several metrics to evaluate network properties and assesses the 

statistical significance of these network connectivity parameters using a within-degree node-label 

permutation method. The calculated metrics can be divided into two categories: edge metric and 

node metrics. The edge metric is the direct network connectivity parameter, defined as the number 

of edges in the direct network. We interpreted direct network connectivity as the frequency with 

which different loci harbour proteins that directly bind each other. Node metrics include associated 

protein direct connectivity and associated protein indirect connectivity, which refer to the number 

of distinct loci an associated protein can be connected to directly and indirectly, respectively, and 

common interactor connectivity, which refers to the average number of proteins in distinct loci 

bound by common interactors in indirect networks. A more tightly clustered network might be 

enriched for both edge and node metrics
170

. 

Individual scores for 

each protein are 

calculated and 

reported in the 

graphical output 

using a colour code 

(see legend in figure 

3.5) for input genes. 

The individual protein 

scores for interactor 

factors, similarly 

calculated, can be 

used to propose 

candidate related 

genes. 

Several parameters 

can be set; we run 

DAPPLE pathway analysis using the default parameters and considering genes in +/- 50kb regions 

flanking input SNPs. 

DAPPLE is an internet tool available at http://www.broadinstitute.org/mpg/dapple/dapple.php. 

Figure 3.5: Example of graphical output from DAPPLE pathway analysis. On the right 

there is the reconstructed network: coloured circles represent input genes, their colour 

is proportional to their p-value significance of inclusion in the network, as represented 

in the legend on the right. Grey circles are interactors added by the programme as 

connectors for indirect interactions between input genes. 
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STRING 

The Search Tool for the Retrieval of Interacting Genes (STRING) database (http://string-

db.org/newstring_cgi/show_input_page.pl?UserId=d0QyhUDToyxf&sessionId=x9_KU35utwtG) 

provides uniquely comprehensive coverage and ease of access to both experimental and predicted 

interaction information, derived from a large number of databases: Clusters of Orthologous 

Groups  (COG), Ensembl, IntAct, RefSeq, PubMed, Reactome, Database of Interacting Proteins (DIP), 

Biological General Repository for Interaction Datasets (BioGRID), MINT, KEGG, Saccharomyces 

Genome Database (SGD), FlyBase, SwissProt/UniProt, SwissModel, HUGO, Online Mendelian 

Inheritance in Man (OMIM), NCI/Nature Pathway Interaction Database (PID), RCSB Protein Data 

Bank (PDB), The Interactive Fly, BioCyc, Gene Ontology, Similarity Matrix of Proteins (SIMAP). The 

main strengths of STRING lie in its unique comprehensiveness, as well as in its confidence scoring 

calculation, and its interactive and intuitive user interface. Interactions in STRING are not limited to 

direct, physical interactions between two proteins, but they also account for possible genetic 

interactions, transcriptional or post-transcriptional regulation, contribution to larger structural 

assemblies, or involvement in subsequent steps in a metabolic pathway (functional interactions). 

The complete sets of associations are assembled into a large network, which captures the current 

knowledge on the functional modularity and interconnectivity
160,161

. An example is reported in figure 

3.6: circles are input proteins and all variegate information about connections is represented by 

edges of different colours, as explained in the legend.  

The main limitation is 

that SNP IDs cannot be 

used as input: STRING in 

fact accepts gene names 

or protein sequences 

only; therefore for our 

analysis with this 

software we used genes 

defined from input SNPs 

by the DAPPLE 

algorithm. 

STRING allows the 

analysis to be run using 

the input genes only, or 

in combination with a 

number of common 

interactors, as defined 

by the user. For our 

study, we primarily run 

STRING with no added 

interactors; if no significant enrichment was detected, an additional analysis with 10 interactors was 

performed. 

Figure 3.6: Example of graphical output from STRING pathway analysis. On the 

right there is the reconstructed network: coloured circles represent input genes, for 

bigger circles the encoded protein structure is available, edges are coloured 

according to the legend on the right. 
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STRING also calculates a series of confidence scores for identified connections, as well as a statistical 

enrichment analysis of any known biological function or pathway based on GeneOntology (GO) data, 

applying FDR or Bonferroni’s correction. The most recent version of STRING (v9.1), the one used for 

our analyses, extends the automated mining of scientific texts for interaction information to also 

include full-text articles
163

. 

Given all STRING characteristics, we decided to adopt it as a pathway analysis tool used for this 

study. 

Other approaches to evaluate pathways 

As we did for cluster analysis, we compared the results obtained with DAPPLE and STRING using two 

additional tools: GeneMANIA and GOrilla. 

 

GeneMANIA (http://genemania.org/) searches many large, publicly available biological datasets to 

find related genes. These include protein-protein, protein-DNA and genetic interactions, pathways, 

reactions, gene and protein expression data, protein domains and phenotypic screening profiles: 

Gene Expression Omnibus (GEO), BioGRID, PathwayCommons, InterPro, Simple Modular 

Architecture Research Tool (SMART), Protein Family (Pfam), Reactome, BioCyc, Ensembl and OMIM. 

GeneMANIA assigns weights to the network with the aim to maximize connectivity between all 

input genes using linear regression. It also provides a function that calculates GeneOntology terms 

enriched among the genes in the network
171

. Given its features, GeneMANIA revealed itself as a tool 

Figure 3.7: Example of graphical output from GeneMANIA pathway analysis. On the right there is 

the reconstructed network: darker circles represent input genes while lighter circles are added 

connectors as explained in the legend on the right, above; coloured circles highlight genes involved 

in an enriched biological process; for bigger circles the protein information is available. Edges are 

coloured according to the legend below, on the right. 
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highly similar to STRING, we thus decided to use it to compare GO enrichment results, the structure 

of the network and the types of direct and indirect connection found. As represented in figure 3.7, 

the software builds a network of input genes and (eventually) common interactors; edges 

connecting nodes are coloured on the basis of the type of connection as described in the legend; the 

user can highlight genes that form part of specific enriched biological processes with different 

colours of nodes. The user can decide to run the analysis on input genes only or after adding a 

certain number of interactors. Similarly to procedures in STRING, we used flanking gene entries 

defined by the DAPPLE software from SNP rsIDs as input in this analysis and we used the same 

analysis settings. 

 

GOrilla is a web-

based application 

that identifies 

enriched GO terms 

in ranked lists of 

genes: it employs a 

flexible threshold 

statistical approach 

to identify enriched 

GO terms and to 

compute an exact 

p-value for the 

observed 

enrichment, taking 

the threshold for 

multiple testing 

into account 

without the need 

for simulations. It 

also produces a 

hierarchical 

structure of 

enriched 

processes, thus 

providing a clear 

view of the relations between enriched GO terms
172

. An example of GOrilla output is in figure 3.8. 

GOrilla was used to compare the enrichments identified through STRING, where input genes were 

the same as used in STRING and GeneMANIA. GOrilla is publicly available at: http://cbl-

gorilla.cs.technion.ac.il. 

 

 

Figure 3.8: Example of graphical output from GOrilla GO enrichment analysis. A 

hierarchical representation of enriched biological processes is provided with a table of 

significance for each of them (below); the significance is also represented in the graph 

through a colour code as reported in the legend above. 
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3.2.3 Results 

3.2.3.1 Alignment of meta-analysis results for cardiometabolic SNPs and Fisher’s Omnibus p-value 

calculation 

After the alignment of GWAS meta-analysis results for cardiometabolic phenotypes for the list of 

547 published cardiometabolic variants, we observed that for 3 variants (rs5945326 on chromosome 

23, rs3918226 on chromosome 7 and rs11066280 on chromosome 12), association summary 

statistics for more than half of considered phenotypes were not available in consortia meta-

analyses. We decided to exclude these SNPs from subsequent analyses, reducing our SNP list to 544 

variants. 

 

From Fisher’s Omnibus p-value calculation, 324 SNPs (about 60%) showed a genome-wide 

significant (p-value < 5x10
-8

) Omnibus test p-value. 

For 40 of them, the significance was attributable to a very strong association with a single 

phenotype: 6 with a single trait within lipids (TC, HDL, LDL or TG), 5 with a single trait within 

glycaemic phenotypes (FG with or without adjustment for BMI, FI with or without adjustment for 

BMI, HOMAB with or without adjustment for BMI, HOMAIR with or without adjustment for BMI, 

HGLUadjBMI, HINSadjBMI, PROINS or HBA1C) and 29 with one trait within the obesity group (BMI, 

WC with or without adjustment for BMI, WHR with or without adjustment for BMI, HIP with or 

without adjustment for BMI, HEIGHT or PCBFAT). 

 

175 variants resulted in significant Fisher’s Omnibus p-value test because of multiple high 

associations to more than one phenotype within the same subgroup of phenotypes: 52 SNPs for 

lipids, 42 SNPs for glycaemic traits, 80 SNPs for obesity traits and one SNP for blood pressure (DBP, 

SBP and HTN). 

For example, rs964184 near the APOA1 gene was associated with all lipid traits (p-value for HDL = 

5.47x10
-47

, p-value for LDL = 1.46x10
-26

, p-value for TC = 6.21x10
-57

, p-value for TG = 6.71x10
-240

) and 

this resulted in an Omnibus test p-value << 1x10
-300

, thus absolutely significant. 

 

Importantly, there were 109 SNPs which showed significant Omnibus test p-values occurring from 

the combination of multiple significant univariate associations with phenotypes belonging to 

different phenotype groups (as reported in table 3.5). 

The first two most significant signals in this group were rs4420638 at the APOEC1 locus (Omnibus 

test p-value = 1.2x10
-279

) and rs1260326, near the GCKR gene (Omnibus test p-value = 7.1x10
-236

). 

Both showed very significant univariate association with lipid traits; in addition rs4420638 was less 

strongly associated with T2D (univariate p-value = 3x10
-7

) and with WHRadjBMI (univariate p-value = 

5x10
-4

), while rs1260326 was also associated with many glycaemic traits, for example with FG 

(univariate p-value = 5x10
-24

), and with height (univariate p-value = 9x10
-5

). The combination of 

these multiple significant p-values resulted in a very significant omnibus multi-phenotype 

association. 
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SNP HDL LDL TC TG PCBFAT BMI WC HIP WHR

WC 

ADJBMI

HIP 

ADJBMI

WHR 

ADJBMI HEIGHT DBP SBP HTN FG HOMAB FI HOMAIR

FG 

adjBMI

HOMAB

adjBMI FIadjBMI

HOMAIR

adjBMI

HGLU 

adjBMI

HINS 

adjBMI PROINS HBA1C T2D OMNIB

rs4420638 4E-21 9E-147 5E-111 5E-22 0.293 0.245 0.03 0.644 0.002 0.005 0.324 5E-04 0.258 0.075 0.526 0.527 0.023 0.231 0.014 0.018 0.224 0.567 0.165 0.161 0.764 0.007 0.167 0.576 3E-07 1.2365E-279

rs1260326 0.077 2E-04 7E-27 6E-133 0.799 0.129 0.998 0.074 0.017 0.024 0.085 2E-04 9E-05 0.656 0.847 0.59 5E-24 0.07 6E-09 1E-11 1E-24 0.016 6E-13 7E-17 2E-06 0.862 0.064 0.307 0.061 7.0958E-236

rs1421085 3E-05 0.982 0.354 0.058 3E-14 3E-62 5E-50 5E-19 5E-19 0.02 0.154 0.043 0.058 0.115 0.283 0.376 0.373 5E-04 1E-05 3E-05 0.03 0.837 0.227 0.211 0.981 0.421 0.43 0.028 2E-09 6.2949E-157

rs4506565 0.78 0.092 0.027 0.028 0.018 5E-04 0.001 3E-05 0.716 0.387 0.045 0.379 0.737 0.738 0.96 0.747 7E-09 1E-09 8E-07 6E-04 5E-11 2E-08 7E-05 0.012 9E-08 0.24 1E-17 1E-05 5E-68 1.3839E-124

rs12243326 0.467 0.169 0.169 0.112 0.041 6E-04 0.006 1E-04 0.992 0.761 0.334 0.176 0.436 0.54 0.436 0.444 2E-08 5E-11 1E-06 2E-04 6E-11 5E-10 9E-05 0.006 1E-09 0.569 4E-15 4E-05 4E-61 1.6148E-116

rs174546 3E-22 2E-21 3E-22 5E-24 0.908 0.774 0.289 0.84 0.585 0.555 0.325 0.756 0.033 0.016 0.405 0.588 5E-10 3E-07 0.043 0.336 5E-09 1E-08 0.011 0.136 0.491 0.88 0.747 0.047 0.003 1.90566E-94

rs9987289 6E-25 2E-14 7E-23 0.021 0.14 0.388 0.131 0.161 0.008 0.633 0.002 0.015 0.881 0.734 0.381 0.633 3E-09 0.01 2E-09 3E-09 2E-07 0.064 2E-08 3E-08 0.019 0.058 0.117 0.141 0.015 1.0072E-90

rs12916 0.135 5E-45 9E-47 0.304 0.176 1E-04 5E-04 5E-04 0.139 0.99 0.687 0.968 0.763 0.029 0.24 0.243 0.048 0.528 0.095 0.1 0.396 0.654 0.903 0.979 0.116 0.365 0.277 0.974 0.341 4.93225E-76

rs10401969 0.579 7E-22 3E-38 2E-29 0.308 0.351 0.46 0.182 0.009 0.023 0.04 0.002 0.076 0.196 0.666 0.151 0.008 0.966 0.514 0.213 0.004 0.873 0.295 0.08 0.858 0.07 0.215 0.355 5E-04 9.00743E-76

rs10195252 9E-08 2E-06 2E-05 2E-10 0.001 0.009 0.772 1E-04 6E-07 3E-05 0.002 5E-11 0.895 0.453 0.094 0.027 0.016 0.013 3E-05 1E-05 0.001 1E-04 1E-10 5E-11 0.005 0.014 0.259 7E-04 0.012 1.6618E-75

rs983309 3E-19 2E-13 6E-21 0.128 0.075 0.329 0.061 0.287 0.023 0.69 0.026 0.059 0.934 0.799 0.475 0.5 8E-10 0.064 8E-08 8E-08 3E-08 0.225 3E-07 3E-07 0.068 0.276 0.127 0.034 0.039 6.02465E-75

rs571312 3E-08 0.997 0.611 1E-05 1E-05 2E-22 9E-19 5E-14 2E-07 0.698 0.315 0.76 3E-06 0.268 0.231 0.327 0.01 0.029 0.006 0.004 0.471 0.831 0.546 0.647 0.191 0.815 0.268 0.93 6E-04 4.73094E-63

rs3923113 1E-06 8E-05 5E-04 7E-08 0.002 0.004 0.895 5E-04 6E-05 2E-04 0.008 5E-08 0.867 0.766 0.127 0.028 0.022 0.035 1E-04 4E-05 0.001 7E-04 1E-09 3E-10 0.007 0.086 0.276 7E-04 0.031 2.51823E-58

rs2943641 2E-08 0.06 0.452 1E-07 2E-08 0.006 0.003 0.002 0.589 0.128 0.128 0.602 0.551 0.374 0.4 0.047 0.74 2E-05 2E-06 3E-05 0.176 6E-10 5E-14 3E-12 0.19 0.172 0.174 0.199 5E-05 2.99651E-58

rs2785980 9E-04 0.047 0.221 0.002 0.012 0.192 0.496 8E-10 2E-06 0.293 1E-09 4E-10 0.003 0.038 0.876 0.254 0.492 1E-04 7E-06 1E-04 0.218 5E-06 6E-08 1E-06 0.655 0.912 0.467 0.632 0.001 7.93861E-51

rs389883 0.577 2E-06 9E-13 4E-15 0.856 4E-05 0.004 1E-06 0.092 0.525 1E-05 1E-04 7E-10 0.101 2E-04 0.038 0.334 0.274 0.094 0.174 0.208 0.06 0.003 0.016 0.246 0.476 0.864 0.275 8E-04 3.14493E-50

rs12328675 3E-10 0.057 0.091 3E-08 0.131 0.034 0.653 0.008 0.004 0.003 0.127 1E-05 0.803 0.337 0.152 0.221 0.609 0.003 3E-05 8E-05 0.171 3E-06 1E-12 2E-11 0.166 0.023 0.166 0.012 0.036 8.57428E-50

rs489693 1E-06 0.099 0.186 5E-07 4E-04 5E-17 2E-15 3E-09 8E-09 0.393 0.93 0.108 5E-04 0.684 0.464 0.307 0.36 0.007 0.003 0.011 0.545 0.659 0.909 0.62 0.582 0.507 0.774 0.708 0.001 1.1009E-48

rs12970134 1E-05 0.532 0.451 6E-06 3E-05 3E-18 4E-15 3E-10 2E-07 0.814 0.781 0.363 6E-04 0.477 0.153 0.249 0.165 0.053 0.019 0.03 0.884 0.726 0.391 0.328 0.51 0.589 0.693 0.792 1E-04 7.22093E-47

rs2820436 0.006 0.072 0.278 0.006 3E-04 0.083 0.573 1E-08 6E-07 0.114 1E-06 2E-11 0.02 0.202 0.83 0.754 0.052 0.002 2E-05 2E-05 0.058 4E-04 8E-07 5E-07 0.831 0.754 0.15 0.26 0.003 1.09387E-46

rs11782386 6E-14 2E-09 8E-17 0.67 0.082 0.646 0.277 0.143 0.028 0.609 0.001 0.057 0.469 0.35 0.161 0.573 1E-04 0.088 4E-05 2E-04 9E-04 0.498 8E-04 0.003 4E-05 0.084 0.055 0.036 0.281 3.50539E-46

rs9491696 2E-05 0.629 0.769 4E-05 0.216 0.416 7E-05 0.49 4E-15 2E-06 6E-05 1E-15 0.675 0.263 0.167 0.824 0.252 3E-05 4E-04 0.001 0.116 2E-04 8E-04 0.003 0.586 0.925 0.789 0.596 0.113 5.83865E-46

rs143384 0.121 0.015 4E-04 0.431 0.667 0.723 0.193 6E-05 6E-04 0.01 1E-11 5E-05 5E-39 0.135 0.311 0.311 0.605 0.325 0.839 0.661 0.365 0.357 0.625 0.505 0.199 0.07 0.862 0.076 0.23 2.4398E-45

rs7578326 2E-07 0.359 0.81 3E-06 8E-07 0.007 0.009 0.002 0.833 0.457 0.34 0.203 0.402 0.37 0.239 0.057 0.453 3E-04 3E-05 1E-04 0.188 3E-07 3E-11 7E-10 0.088 0.109 0.317 0.2 2E-06 2.44203E-45

rs2247056 0.039 9E-06 4E-14 2E-15 0.178 0.004 0.066 3E-06 0.223 0.928 2E-05 0.008 5E-13 0.09 0.047 0.591 0.628 0.499 0.313 0.239 0.469 0.384 0.158 0.189 0.828 0.242 0.177 0.545 9E-04 6.25758E-43

rs2112347 3E-04 8E-20 7E-23 0.745 0.689 5E-08 1E-05 2E-06 0.042 0.495 0.926 0.529 0.562 0.078 0.747 0.209 0.304 0.584 0.333 0.318 0.474 0.589 0.409 0.541 0.081 0.159 0.938 0.958 0.025 2.25793E-41

rs6882076 0.895 2E-22 7E-28 1E-10 0.671 0.919 0.5 0.38 0.882 0.446 0.068 0.78 0.967 0.788 0.66 0.291 0.113 0.095 0.242 0.311 0.505 0.16 0.206 0.3 0.371 0.429 0.807 0.017 0.019 4.5815E-40

rs459193 4E-04 0.217 0.177 5E-05 0.077 0.225 0.002 0.519 4E-06 0.002 0.219 9E-06 0.073 6E-04 7E-04 0.178 4E-04 0.01 7E-05 2E-05 9E-04 0.023 1E-05 1E-06 0.086 0.055 0.86 0.632 0.021 1.86442E-38

rs2000999 0.534 2E-22 3E-24 6E-06 0.404 0.005 0.015 0.047 0.149 0.927 0.267 0.851 0.74 0.041 0.218 0.764 0.5 0.073 0.043 0.051 0.266 0.391 0.607 0.634 0.402 0.193 0.301 0.149 0.87 4.91137E-37

rs4731702 1E-15 0.017 0.213 1E-06 0.098 0.173 0.071 0.087 0.468 0.309 0.014 0.888 0.113 0.373 0.232 0.778 0.078 0.006 5E-04 1E-04 0.042 0.001 2E-05 3E-06 0.069 0.048 0.67 0.192 2E-07 3.41775E-36

rs17036328 0.003 0.287 0.449 6E-04 3E-04 0.019 0.004 0.223 0.034 0.6 0.484 0.347 0.048 0.88 0.468 0.847 0.007 0.01 8E-04 2E-04 2E-04 1E-04 3E-09 1E-09 0.002 0.016 0.763 0.46 4E-07 1.76569E-35

rs2814944 4E-09 7E-05 9E-08 0.354 0.778 0.01 2E-04 8E-06 0.054 2E-05 2E-06 0.199 6E-13 0.546 0.102 0.076 0.963 0.046 0.014 0.041 0.354 0.254 0.228 0.406 0.425 0.497 0.848 0.235 0.811 3.36479E-35

rs4297946 0.886 5E-19 3E-17 0.006 0.088 0.01 0.465 5E-04 0.07 0.118 0.007 0.009 0.912 0.149 0.154 0.934 0.37 0.527 0.102 0.137 0.077 0.279 0.01 0.025 0.303 0.201 0.754 0.096 0.183 2.09129E-32

rs6457620 0.003 1E-05 7E-10 0.004 0.202 0.132 0.741 0.013 0.063 0.979 3E-04 0.007 4E-08 0.005 0.048 0.026 0.622 0.009 0.002 0.002 0.706 0.009 0.002 0.003 0.103 0.368 0.964 0.238 0.02 3.82104E-31

rs3817334 1E-09 0.382 0.002 0.108 0.003 5E-11 2E-06 9E-04 0.023 0.145 0.36 0.338 5E-05 0.223 0.075 0.62 0.168 0.996 0.334 0.198 0.758 0.167 0.233 0.348 0.9 0.381 1E-10 0.113 0.049 6.85997E-31

rs3184504 5E-06 2E-09 3E-11 0.185 0.066 1E-04 4E-04 0.029 0.128 0.224 0.945 0.895 0.966 4E-07 8E-04 0.038 0.545 0.925 0.983 0.766 0.937 0.23 0.057 0.092 0.112 0.505 0.112 1E-04 0.627 2.21376E-28

rs11065987 6E-04 2E-09 7E-12 0.867 0.018 1E-04 2E-04 0.047 0.111 0.069 0.77 0.675 0.706 1E-06 4E-04 0.004 0.776 0.564 0.568 0.431 0.783 0.545 0.185 0.202 0.169 0.786 0.258 8E-05 0.263 5.81847E-28

Table 3.5: SNPs with significant Omnibus test p-values possibly determined by the combination of multiple significant univariate associations with traits belonging to 

different trait groups. 
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SNP HDL LDL TC TG PCBFAT BMI WC HIP WHR

WC 

ADJBMI

HIP 

ADJBMI

WHR 

ADJBMI HEIGHT DBP SBP HTN FG HOMAB FI HOMAIR

FG 

adjBMI

HOMAB

adjBMI FIadjBMI

HOMAIR

adjBMI

HGLU 

adjBMI

HINS 

adjBMI PROINS HBA1C T2D OMNIB

rs4765127 3E-10 9E-04 0.005 2E-08 0.004 0.002 0.616 9E-04 0.004 6E-04 0.01 8E-06 0.346 0.727 0.108 0.084 0.384 0.536 0.278 0.329 0.192 0.214 0.01 0.019 0.213 0.177 0.48 0.962 0.018 1.25991E-27

rs3822072 2E-06 0.023 0.548 0.007 0.004 0.121 0.402 0.034 0.032 0.208 3E-05 2E-04 0.07 0.034 0.131 0.686 0.774 0.002 0.001 0.002 0.269 9E-05 3E-06 1E-05 0.754 0.439 0.318 0.105 0.017 4.17245E-27

rs731839 1E-06 0.622 0.13 2E-04 0.027 0.005 0.022 0.05 0.213 0.234 0.9 0.536 0.009 0.156 0.238 0.639 0.131 0.005 5E-05 3E-04 0.028 0.001 5E-07 1E-06 0.566 0.378 0.2 0.288 0.415 1.46958E-24

rs7027110 0.196 0.052 0.467 0.107 0.991 0.761 0.041 0.002 0.981 1E-04 1E-07 0.868 1E-10 0.218 0.906 0.304 0.684 6E-04 4E-04 3E-04 0.618 0.001 5E-04 4E-04 0.035 0.968 0.329 0.647 0.135 1.97004E-24

rs11920090 0.726 0.073 0.031 4E-04 0.29 0.327 0.374 0.116 0.18 0.67 0.569 0.331 0.1 0.788 0.895 0.411 2E-09 1E-07 0.035 0.348 2E-11 7E-07 0.157 0.966 0.584 0.186 0.597 6E-04 0.051 2.07012E-24

rs9686661 8E-07 0.007 0.006 1E-10 0.083 0.51 0.114 0.506 4E-04 6E-04 0.663 4E-05 0.462 0.487 0.24 0.005 0.808 0.624 0.225 0.337 0.989 0.073 0.003 0.012 0.271 0.027 0.298 0.083 9E-05 2.68908E-24

rs1378942 0.29 6E-05 6E-05 0.745 0.083 0.016 0.009 0.121 0.022 0.119 0.785 0.111 0.068 6E-08 3E-06 4E-05 2E-04 0.008 0.96 0.664 2E-04 0.011 0.504 0.252 0.781 0.022 0.841 0.942 0.081 3.83203E-24

rs6450176 5E-08 0.091 0.056 2E-05 0.391 8E-05 0.002 0.354 6E-04 0.82 0.021 0.014 0.35 0.732 0.434 0.244 0.704 0.057 0.074 0.148 0.625 8E-04 3E-04 0.002 0.32 0.065 0.78 0.114 4E-05 6.39055E-23

rs2814982 1E-06 5E-07 5E-11 0.73 0.477 0.031 0.02 0.012 0.596 0.064 0.006 0.981 3E-08 0.671 0.714 0.974 0.634 0.063 0.005 0.02 0.925 0.109 0.016 0.042 0.513 0.616 0.606 0.494 0.494 7.2458E-23

rs1173771 0.513 0.415 0.376 0.045 0.158 0.525 0.004 0.052 0.19 2E-06 9E-05 0.126 8E-15 0.003 1E-04 5E-05 0.277 0.823 0.466 0.442 0.202 0.815 0.213 0.269 0.657 0.124 0.129 0.67 0.399 6.23003E-22

rs6569648 0.061 0.36 0.187 0.005 0.606 0.016 0.343 0.004 0.027 0.995 9E-05 0.001 9E-12 0.09 0.134 0.076 0.368 0.008 0.174 0.154 0.524 0.001 0.026 0.027 0.004 0.547 0.074 0.999 0.001 7.63025E-22

rs1800562 0.184 6E-10 2E-08 0.748 0.452 0.531 0.361 0.157 0.195 0.072 0.108 0.145 0.009 0.109 0.469 0.185 0.87 0.697 0.877 0.624 0.639 0.9 0.792 0.757 0.508 0.461 0.683 3E-20 0.594 1.79237E-21

rs2287019 1E-03 5E-04 1E-05 0.413 0.005 3E-07 1E-05 4E-05 0.034 0.182 0.452 0.968 0.93 0.412 0.806 0.517 0.001 0.718 0.321 0.241 0.045 0.059 0.432 0.714 5E-05 0.086 0.008 0.29 0.328 2.02713E-21

rs6912327 0.229 0.062 0.146 0.385 0.553 0.066 0.651 0.951 0.704 0.037 0.001 0.384 1E-04 0.259 0.241 0.18 0.325 1E-03 8E-05 3E-04 0.159 4E-04 1E-06 9E-06 0.295 4E-04 0.077 0.798 0.029 2.49416E-21

rs1055144 0.385 0.89 0.331 1E-03 0.138 0.232 0.026 0.379 5E-06 3E-07 0.512 3E-09 0.007 0.66 0.581 0.577 0.36 0.016 0.017 0.009 0.372 0.005 0.001 1E-03 0.864 0.386 0.342 0.305 0.152 9.46117E-21

rs13107325 7E-11 0.121 0.003 0.015 0.118 1E-07 7E-04 0.073 0.171 0.028 0.298 0.139 0.003 7E-05 1E-04 0.006 0.208 0.835 0.987 0.988 0.801 0.223 0.294 0.253 0.537 0.841 0.933 0.856 0.382 1.28005E-20

rs2256183 2E-04 0.003 3E-07 0.002 0.186 0.014 0.011 0.002 0.708 0.424 0.024 0.514 3E-14 0.092 0.097 0.269 0.581 0.927 0.974 0.751 0.593 0.814 0.767 0.847 0.431 0.389 0.274 0.663 2E-04 1.29204E-20

rs1167800 0.073 0.862 0.476 0.086 0.246 4E-05 0.006 0.02 0.326 0.535 0.589 0.294 0.634 0.649 0.47 0.599 0.655 4E-05 2E-08 2E-07 0.933 0.004 3E-05 9E-05 0.191 0.158 0.534 0.932 0.081 5.19226E-20

rs4865796 0.019 0.414 0.193 0.012 0.361 5E-05 0.071 0.923 0.021 0.06 7E-06 0.376 0.034 0.568 0.412 0.139 0.727 0.031 0.047 0.148 0.534 4E-04 2E-04 0.003 0.103 0.061 0.166 0.003 2E-05 2.03673E-19

rs10423928 6E-04 0.002 7E-04 0.187 0.011 2E-06 1E-04 2E-04 0.047 0.259 0.402 0.866 0.867 0.26 0.787 0.392 1E-03 0.732 0.223 0.12 0.064 0.06 0.4 0.71 3E-06 0.177 0.004 0.284 0.421 2.24762E-19

rs849134 0.583 0.603 0.659 0.106 0.902 0.057 0.899 0.436 0.721 7E-05 3E-04 0.104 3E-13 0.071 0.036 0.031 0.153 0.334 0.457 0.519 0.019 0.572 0.973 0.937 0.056 0.627 0.609 0.021 3E-10 6.01894E-19

rs11605924 4E-04 0.83 0.271 0.119 0.681 0.832 0.776 0.771 0.47 0.222 0.914 0.41 0.48 0.173 0.957 0.868 3E-13 1E-04 0.532 0.565 2E-13 5E-04 0.75 0.208 0.201 0.622 0.537 0.721 0.007 6.11186E-19

rs2277862 0.028 6E-06 4E-10 0.002 0.513 0.487 0.743 0.047 0.01 0.345 1E-04 0.007 6E-10 0.037 0.301 0.048 0.789 0.744 0.546 0.833 0.969 0.745 0.999 0.77 0.653 0.479 0.221 0.448 0.083 7.85865E-19

rs12444979 6E-04 0.406 0.753 0.228 0.204 4E-11 2E-07 2E-06 0.001 0.254 0.608 0.919 0.067 0.909 0.761 0.728 0.767 0.01 0.014 0.023 0.577 0.106 0.234 0.355 0.384 0.042 0.497 0.201 0.065 1.09261E-18

rs10761731 3E-07 4E-04 0.001 3E-12 0.446 1E-03 0.014 0.827 0.009 0.642 0.036 0.112 0.027 0.063 0.284 0.197 0.33 0.537 0.307 0.322 0.418 0.961 0.822 0.822 0.057 0.506 0.003 0.656 0.916 1.32042E-18

rs6759321 0.005 1E-06 1E-08 0.627 0.595 0.008 7E-04 0.002 0.064 0.317 0.595 0.673 0.01 0.87 0.711 0.107 0.64 1E-03 2E-04 6E-04 0.609 0.097 0.097 0.134 0.258 0.991 0.686 0.858 0.286 3.0433E-18

rs605066 3E-08 0.021 0.165 3E-06 0.088 0.603 0.278 0.93 0.001 7E-04 0.835 6E-05 0.508 0.069 0.06 0.351 0.177 0.134 0.01 0.019 0.097 0.31 0.03 0.055 0.027 0.505 0.779 0.014 0.943 3.76734E-18

rs9804646 0.648 1E-08 2E-16 4E-09 0.646 0.919 0.77 0.665 0.494 0.323 0.119 0.361 0.555 0.357 0.55 0.305 0.76 0.08 0.49 0.436 0.911 0.132 0.644 0.558 0.031 0.117 0.668 0.154 0.13 7.65128E-18

rs7941030 3E-08 3E-06 2E-10 0.985 0.794 7E-04 0.002 0.439 0.004 0.953 0.006 0.158 0.209 0.381 0.577 0.2 0.645 0.645 0.86 0.892 0.931 0.073 0.05 0.104 0.764 0.315 0.468 0.077 0.078 8.1178E-18

rs10838687 2E-14 0.687 0.013 0.152 0.018 0.02 0.508 0.957 0.716 0.01 0.312 0.055 0.068 0.879 0.796 0.422 3E-05 0.003 0.09 0.212 1E-04 0.007 0.282 0.537 0.444 0.695 0.933 0.876 0.38 6.21287E-17

rs442177 3E-07 1E-03 4E-04 9E-12 0.686 0.114 0.137 0.249 0.157 0.559 0.086 0.463 6E-04 0.387 0.489 0.961 0.358 0.149 0.056 0.025 0.813 0.363 0.277 0.151 0.121 0.414 0.108 0.799 0.212 1.57923E-16

rs1530559 0.012 2E-04 6E-05 0.601 0.204 0.012 0.008 0.055 0.203 0.02 0.744 0.447 0.008 0.359 0.792 0.221 0.793 7E-05 7E-05 1E-04 0.847 0.006 0.016 0.015 0.502 0.73 0.442 0.255 0.775 1.80071E-16

rs1495743 0.849 5E-04 9E-09 4E-14 0.053 0.231 0.066 0.618 0.025 0.345 0.589 0.035 0.502 0.484 0.328 0.98 0.029 0.968 0.472 0.235 0.031 0.743 0.558 0.342 0.667 0.362 0.753 0.023 0.035 3.14264E-16

rs1325598 0.86 0.256 0.367 0.291 0.988 0.049 0.185 0.061 0.266 0.759 0.058 0.035 2E-08 0.096 0.661 0.77 0.971 0.024 0.008 0.018 0.512 0.002 2E-04 6E-04 5E-04 5E-04 0.977 0.187 0.111 6.93668E-16

rs6784615 2E-05 0.068 0.408 0.011 0.853 0.19 0.967 0.017 2E-04 0.023 0.016 9E-08 0.095 0.227 0.447 0.922 0.838 0.092 0.061 0.048 0.603 0.039 0.004 0.006 0.966 0.133 0.641 0.531 0.003 1.38246E-15

rs3792752 0.41 0.187 0.154 0.603 0.51 0.123 0.71 0.556 0.159 6E-04 0.242 0.024 3E-09 0.383 0.154 0.106 0.219 0.002 0.007 0.02 0.164 1E-04 3E-04 0.002 0.329 0.835 0.594 0.323 0.82 2.8146E-15

rs879882 0.553 0.002 6E-05 1E-04 0.878 0.565 0.109 0.015 0.305 0.001 8E-05 0.318 8E-07 0.594 0.915 0.05 0.4 0.569 0.232 0.211 0.304 0.361 0.092 0.16 0.933 0.158 0.773 0.005 0.006 3.08792E-15

Table 3.5: Continuation. 
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SNP HDL LDL TC TG PCBFAT BMI WC HIP WHR

WC 

ADJBMI

HIP 

ADJBMI

WHR 

ADJBMI HEIGHT DBP SBP HTN FG HOMAB FI HOMAIR

FG 

adjBMI

HOMAB

adjBMI FIadjBMI

HOMAIR

adjBMI

HGLU 

adjBMI

HINS 

adjBMI PROINS HBA1C T2D OMNIB

rs1708299 0.174 0.339 0.213 0.306 0.961 0.27 0.71 0.49 0.314 2E-04 9E-06 0.936 1E-17 0.376 0.108 0.23 0.857 0.421 0.201 0.18 0.513 0.781 0.752 0.595 0.049 0.897 0.899 0.044 9E-04 4.35413E-15

rs3123629 0.345 2E-06 6E-09 1E-06 0.175 0.013 0.061 0.399 0.75 0.765 0.652 0.435 0.184 0.363 0.764 0.15 0.234 8E-04 0.13 0.114 0.181 0.005 0.404 0.401 0.425 0.519 0.088 0.403 0.273 1.12458E-14

rs2898290 0.468 0.915 0.279 6E-05 8E-04 0.039 0.483 0.971 0.661 0.007 0.006 0.567 0.001 0.009 0.418 0.476 0.378 0.034 0.081 0.027 0.64 8E-04 4E-05 2E-05 0.981 0.807 0.287 0.505 0.093 1.29584E-14

rs2737229 0.295 8E-07 2E-08 0.012 0.533 0.017 0.012 7E-04 0.653 0.496 0.016 0.051 0.413 0.136 0.635 0.306 0.952 0.184 0.218 0.343 0.503 0.998 0.555 0.346 0.574 0.379 1E-05 0.055 0.921 4.10837E-14

rs1961456 0.825 2E-04 2E-09 3E-11 0.726 0.479 0.196 0.68 0.082 0.928 0.707 0.167 0.188 0.465 0.385 0.671 0.136 0.262 0.21 0.085 0.125 0.545 0.366 0.224 0.554 0.779 0.327 0.001 0.052 5.41223E-14

rs4607103 0.058 0.902 0.943 0.187 0.017 0.006 0.047 0.003 0.048 0.04 0.008 2E-05 0.127 0.449 0.994 0.958 0.004 0.965 0.232 0.236 6E-04 0.714 0.026 0.02 0.039 0.086 0.866 0.189 1E-04 6.80518E-14

rs11613352 4E-08 5E-04 0.003 4E-10 0.398 0.019 0.065 0.012 0.352 0.337 0.338 0.506 0.381 0.785 0.988 0.908 0.404 0.337 0.666 0.667 0.233 0.691 0.849 0.886 0.197 0.003 0.232 0.047 0.191 1.07773E-13

rs492602 0.732 8E-08 2E-10 3E-04 0.71 0.049 0.009 2E-04 0.908 0.218 0.001 0.464 0.857 0.309 0.933 0.875 0.546 0.78 0.819 0.923 0.343 0.869 0.196 0.35 0.471 0.179 0.148 0.067 0.617 2.06728E-13

rs11153594 0.389 3E-09 2E-10 0.005 0.969 0.625 0.136 0.612 0.738 0.669 0.058 0.262 6E-04 0.496 0.681 0.964 0.946 0.134 0.03 0.055 0.59 0.134 0.037 0.086 0.28 0.752 0.552 0.225 0.442 3.1625E-13

rs12946454 0.015 0.833 0.839 0.047 0.158 0.612 0.58 0.596 0.486 0.012 0.131 0.861 3E-07 8E-04 6E-06 4E-04 0.08 0.455 0.136 0.146 0.093 0.775 0.238 0.264 0.003 0.057 0.05 0.589 0.452 3.21035E-13

rs1173766 0.603 0.894 0.598 0.055 0.245 0.189 0.004 0.039 0.229 1E-04 7E-04 0.205 1E-08 0.016 7E-04 2E-04 0.34 0.979 0.659 0.565 0.191 0.959 0.226 0.252 0.985 0.06 0.256 0.375 0.517 3.38179E-13

rs9488822 0.251 3E-08 2E-10 2E-04 0.437 0.856 0.558 0.451 0.27 0.662 0.064 0.045 0.006 0.327 0.731 0.672 0.593 0.141 0.067 0.097 0.395 0.135 0.077 0.153 0.692 0.68 0.971 0.229 0.473 9.07395E-13

rs6495122 0.437 2E-04 4E-04 0.986 0.032 0.048 0.08 0.54 0.197 0.3 0.77 0.327 0.225 4E-05 2E-04 5E-04 0.009 0.022 0.951 0.69 0.014 0.024 0.617 0.38 0.994 0.021 0.184 0.846 0.354 1.56034E-12

rs6457821 0.006 0.011 8E-04 0.443 0.59 0.256 0.359 0.354 0.33 0.003 0.075 0.2 2E-11 0.467 0.833 0.876 0.22 0.113 0.179 0.429 0.448 0.042 0.029 0.136 0.069 0.03 0.522 0.478 0.243 1.87149E-12

rs7134594 7E-15 0.562 1E-04 0.61 0.566 0.25 0.067 3E-04 0.751 0.591 0.059 0.082 0.33 0.853 0.105 0.578 0.261 0.117 0.086 0.036 0.481 0.324 0.169 0.108 0.689 0.632 0.432 0.6 0.624 1.94457E-12

rs974801 0.007 4E-04 0.064 0.857 0.457 0.887 0.493 0.919 0.686 0.551 0.406 0.744 5E-04 0.176 0.396 0.677 0.511 0.015 1E-04 0.003 0.519 0.003 1E-05 5E-04 0.056 0.021 0.942 0.496 0.515 2.08595E-12

rs11847697 4E-04 0.59 0.589 0.016 0.005 1E-08 3E-06 0.007 0.004 0.344 0.362 0.621 0.425 0.053 0.191 0.355 0.796 0.161 0.186 0.086 0.51 0.958 0.682 0.981 0.273 0.628 0.173 0.194 0.187 2.62646E-12

rs2925979 2E-11 0.946 0.494 9E-05 0.03 0.118 0.385 0.07 0.14 0.054 0.969 0.011 0.011 0.546 0.926 0.811 0.146 0.649 0.294 0.265 0.198 0.724 0.155 0.102 0.246 0.023 0.352 0.853 0.002 4.02169E-12

rs3786897 5E-05 0.215 0.034 0.244 0.892 0.02 0.007 0.934 5E-05 8E-05 0.154 2E-05 0.282 0.029 0.123 0.462 0.401 0.436 0.144 0.197 0.104 0.36 0.054 0.055 0.526 0.998 0.456 0.882 0.306 4.44012E-12

rs17271305 0.554 0.443 0.626 0.297 0.06 0.255 0.242 0.527 0.109 0.986 0.037 0.181 7E-06 0.08 0.865 0.491 0.003 0.228 0.911 0.696 2E-04 0.966 0.09 0.038 1E-06 0.599 0.004 0.221 0.006 1.26588E-11

rs2336725 1E-04 0.092 0.709 0.129 0.947 0.779 0.968 0.034 0.026 0.928 4E-04 0.005 4E-08 0.604 0.851 0.714 0.004 0.397 0.784 0.53 0.013 0.197 0.913 0.706 0.444 0.864 0.227 0.039 2E-04 1.46144E-11

rs7178424 0.191 0.294 0.444 0.263 0.158 0.585 0.693 0.15 0.127 0.665 0.005 0.093 2E-07 0.286 0.851 0.363 0.018 0.292 0.681 0.918 0.001 0.741 0.409 0.3 1E-05 0.539 9E-04 0.436 8E-04 2.3541E-11

rs10037512 0.717 0.935 0.903 0.56 0.937 0.43 0.754 0.325 0.597 0.531 0.034 0.474 4E-09 0.711 0.558 0.784 0.001 0.345 5E-04 2E-04 0.002 0.559 4E-04 3E-04 0.612 0.915 0.461 0.632 0.496 6.03674E-11

rs1799945 0.618 0.424 0.52 0.116 0.914 0.138 0.005 0.065 0.016 0.003 0.032 0.026 0.456 3E-05 3E-04 4E-05 0.813 0.766 0.766 0.798 0.907 0.475 0.535 0.689 0.891 0.871 0.415 1E-04 0.027 1.30429E-10

rs6795735 0.083 0.821 0.922 0.155 0.138 0.033 0.269 0.021 0.004 0.011 0.025 7E-08 0.29 0.114 0.367 0.796 0.064 0.62 0.56 0.498 0.017 0.574 0.346 0.261 0.082 0.281 0.102 0.431 2E-04 1.30999E-10

rs10010325 0.013 0.021 0.485 0.525 0.754 0.556 0.411 0.774 0.413 0.261 0.021 0.418 2E-06 0.124 0.185 0.957 0.57 0.014 5E-04 0.014 0.671 0.006 3E-04 0.021 0.044 0.097 0.61 0.77 0.429 1.66356E-10

rs5017948 9E-07 0.858 0.084 0.597 0.325 0.361 0.801 0.093 0.138 0.228 0.002 0.26 5E-06 0.143 0.103 8E-04 0.074 0.523 0.792 0.722 0.069 0.389 0.578 0.954 0.329 0.043 0.16 0.519 0.031 5.13077E-10

rs11063069 0.719 0.024 0.007 0.009 0.874 0.127 0.002 0.1 0.137 0.068 0.103 0.472 6E-04 0.517 0.798 0.091 0.026 0.5 0.236 0.205 0.027 0.688 0.11 0.06 0.908 0.204 0.031 0.59 2E-04 9.53056E-10

rs2154319 0.212 0.595 0.351 0.765 0.869 0.131 0.071 0.022 0.901 0.589 0.019 0.173 4E-10 0.905 0.529 0.501 0.878 0.57 0.335 0.563 0.776 0.219 0.022 0.067 0.007 9E-04 0.418 0.592 6E-04 1.803E-09

rs2929282 3E-06 0.767 0.641 2E-11 0.703 0.011 0.003 0.493 0.021 0.119 0.455 0.21 0.085 0.662 0.506 0.056 0.904 0.629 0.74 0.932 0.897 0.966 0.904 0.941 0.212 0.646 0.571 0.437 0.322 8.10885E-09

rs12940887 0.007 0.119 0.136 3E-04 0.027 0.121 0.64 0.555 0.531 0.033 0.254 0.646 0.001 5E-06 0.002 0.023 0.515 0.254 0.57 0.438 0.561 0.469 0.7 0.622 0.443 0.706 0.038 0.762 0.631 1.51992E-08

rs3829109 0.613 0.128 0.664 0.065 0.491 0.631 0.34 0.026 0.431 0.119 0.011 0.578 0.001 0.018 0.023 0.189 0.012 0.073 0.48 0.592 0.008 0.024 0.337 0.457 0.019 0.117 0.24 0.213 0.004 1.66288E-08

rs11597086 7E-04 0.043 6E-05 0.027 0.026 0.556 0.011 0.047 0.513 0.081 0.02 0.862 2E-04 0.932 0.786 0.471 0.485 0.417 0.936 0.872 0.56 0.243 0.528 0.589 0.936 0.433 0.682 0.198 3E-04 2.54612E-08

rs645040 3E-06 0.223 0.352 3E-08 0.652 0.056 0.251 0.107 0.785 0.998 0.402 0.628 0.077 0.607 0.745 0.365 0.945 0.026 0.019 0.061 0.776 0.045 0.072 0.137 0.871 0.51 0.279 0.85 0.146 2.99114E-08

rs7225700 0.119 4E-09 1E-06 0.172 0.558 0.993 0.048 0.21 0.946 0.012 0.006 0.979 0.003 0.608 0.406 0.771 0.888 0.509 0.466 0.637 0.788 0.458 0.612 0.626 0.828 0.366 0.56 0.147 0.656 4.75231E-08

Table 3.5: Continuation. 
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At the FTO locus, rs1421085 is the third most significant SNP (Omnibus test p-value = 6.3x10
-157

) with 

its primary association with BMI (p-value = 3x10
-62

) and with other obesity-related traits, followed by 

significant association with T2D (p-value = 2x10
-9

) and other suggestive associations with glycaemic 

traits and with HDL. As we know from the literature, it was demonstrated that these multiple 

associations at FTO variants are attributable to the association with BMI, which mediates all the 

others. This is confirmed by our results since the significant associations disappeared when the traits 

are adjusted for BMI (for WC, HIP, WHR, HOMAB, FI and HOMAIR). 

 

Of particular interest are 86 variants which showed almost equivalent multiple associations (when 

difference of order of magnitude at univariate associations was no more than 10) with different 

phenotypes, for example rs10195252 at GRB14 locus: it is comparably associated with TG (p-value = 

2x10
-10

), WHRadjBMI (p-value = 5x10
-11

), FiadjBMI (p-value = 1x10
-10

) and HOMAIRadjBMI (p-value = 

5x10
-11

) at a GW significance level; moreover this variant presented additional suggestive 

associations with HDL, LDL, TC, HIP, WCadjBMI and HBA1C. All together these associations led to an 

omnibus p-value that increased in significance: 2x10
-75

. 

 

3.2.3.2 Evaluation of multi- phenotype effects and association significance at cardiometabolic loci 

through complete hierarchical clustering 

To identify groups of loci with similar patterns of multi- phenotype effects, to clarify the degree of 

connection between them, and to shed light on the types of multiple associations in comparison 

with epidemiological expectations, we decided to consider z-score values from cardiometabolic 

GWAS meta-analysis results and to apply a complete hierarchical clustering algorithm. 

 

Complete hierarchical cluster obtained from the matrix of z-scores is represented in figure 3.9 as a 

dendrogram of 544 included variants. In figure 3.9, below the dendrogram, the heatmap of multiple 

cardiometabolic trait effects is also reported as it visually represents the combination of multiple 

effects and their hierarchical organisation. The heatmap is built based on a colour code from bright 

yellow (very significant p-value < 5x10
-8

, positive effect) to bright blue (very significant p-value < 

5x10
-8

, negative effect) with intermediate black colour for non-significant associations. 

The Approximately Unbiased (AU) estimate of bootstrap value (%), obtained by multiscale 10,000 

bootstrap resampling, is reported for each node of the dendrogram in figure 3.9. 

We initially observed that nodes at the highest levels of the dendrogram, which represent 

separations between bigger groups of loci, are poorly supported, while nodes that separate smaller 

groups are in general well supported (bootstrap value > 65%). This result can be interpreted as the 

fact that cardiometabolic phenotype loci share same multi- phenotype effects within small groups, 

each of which probably contributes to the same pathway that influences the phenotypes. 
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Figure 3.9: Complete hierarchical cluster dendrogram obtained from cardiometabolic z-scores data of 544 included variants with bootstrap value (%) for each node. The 

heatmap of multiple cardiometabolic phenotype effects is reported below the dendrogram: each row is a cardiometabolic phenotype (labelled on the right) and each 

column is a variant (labelled below); a colour code is used in each cell to represent the direction and the intensity of effects: yellow represents positive direction, while blue 

represents negative direction of effects; the brightness of the colour is directly proportional to the intensity and the significance of the effect. 
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Figure 3.10: The three sub-sets of the cluster are represented as obtained using the three different Euclidean 

distance threshold: A. threshold C at 15% of Euclidean distance, B. threshold B at 20% of Euclidean distance and C. 

threshold A at 25% of Euclidean distance. D. Heat map of the clustered multi-phenotype effects. 
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3.2.3.3 Definition of sub-clusters of loci with shared effects and Pathway analyses 

Using three different thresholds of the Euclidean distance (25%, 20% and 15%) we defined three 

sets of sub-clusters derived from the total cluster that we had obtained from the hierarchical 

clustering approach. The three sets are represented in figure 3.10 A, B and C respectively. 

 

Set A (25% of Euclidean distance) contained 19 sub-clusters with a mean number of 28.63 SNPs 

each; set B (20% of Euclidean distance) had 30 groups and an average of 18.13 SNPs for each; set C 

(15% of Euclidean distance) includes 57 sub-sets containing a mean of 9.54 SNPs each. Each of 

defined groups of SNPs with similar cardiometabolic multi- phenotype effects obtained through one 

of the thresholds above was interrogated through pathway analysis using the four different internet 

software tools described above (figures from 3.11 to 3.25 represent the most interesting one). 

By examining the structure and the multiple effect architecture of identified sub-clusters, we could 

recognise some trends in the patterns of multi- phenotype effects.  

A summary of trends of multiple effects and of the results of pathway analyses for the four software 

tools are reported in Appendix table 7. In general, GOrilla was less useful for discovering enriched 

pathways, probably because it is not well suited for small lists of genes used as input, such as in 

most of the groups of our sets. STRING and GeneMANIA were the most useful tools and resulted in 

agreement for the majority of our analyses. 

 

In the sections below, the trends are categorised and described with special focus on those sub-

clusters showing significant result in pathway analyses. 

Sub-clusters of cardiometabolic loci without a uniform trend of multi- phenotype effects 

First of all, in some groups, especially the biggest ones obtained preferentially through the wider 

threshold of Euclidean distance (cut-off A), it was not possible to identify a uniform trend of multiple 

effects, but rather a unique effect on a single phenotype or on a few phenotypes, while other 

phenotypes showed different effects . 

 

An example is represented in figure 3.11A (we called this group “H25_6”): in this sub-cluster we 

recognised a common trend of increased glycaemic traits, in particular HOMAB, FI and HOMAIR, 

which is maintained also after adjustment for BMI, accompanied by a common trend of lipids, in 

particular with a decrease of HDL and an increase of TG. Within this group of loci we could recognise 

two separate effects of obesity/anthropometric traits: the first half of the group showed a strong 

increase of height, while the second half did not present this characteristic, but instead showed low 

BMI, WC and WHR (these last two effects were also maintained after adjustment for BMI). The 

second half is thus concordant with the description of healthy obesity/unhealthy leanness (HOUL): 

in fact, decreased adiposity (both BMI and central obesity) is present together with low levels of HDL 

cholesterol and high levels of TG, glycaemic traits and high T2D risk. 

The total group includes variants originally identified as associated with height or with glycaemic 

traits; pathway analysis revealed a significant excess of direct and indirect connections (p-value from 

DAPPLE software = 0.02 and 0.002 respectively, figure 3. 11B for network representation) between 
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putative genes in the proximity of these variants with an enrichment of the viral reproduction 

pathway (from STRING: p-value = 7x10
-7

, q-value after FDR correction = 0.008; see red rectangles in 

figure 3. 11C). 

This enrichment was not confirmed by other internet tools, such as GOrilla and GeneMANIA. 

Moreover the significance was lost when the group was further sub-divided in two groups using a 

smaller cut-off of Euclidean distance that divided anthropometric/obesity effects. 

 

Sub-clusters of cardiometabolic loci characterised by an effect on a single phenotype or on a 

specific subgroup of phenotypes 

Some sub-clusters were characterised by an effect on a single phenotype or on a specific subgroup 

of phenotypes (lipids, glycaemic, blood pressure, obesity) with a uniform trend of multiple effects 

along all the included loci. 

 

Figure 3.11: Example of a sub-cluster of cardiometabolic loci obtained with cut-off A of the whole cluster and 

without a uniform trend of multiple effects. A. Zoom on the heat-map of this sub-cluster; B. Network obtained 

through pathway analysis with DAPPLE software; C. Network obtained through pathway analysis with STRING 

software: 10 connectors are added by the programme (see legend below), red rectangles highlight the name of 

genes involved in the most significant enriched biological process, edge colour are explained in the legend below. 

Comparable results were obtained with GeneMANIA software. 
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An interesting example is represented in figure 3.12 (H25_4). This highly supported group (bootstrap 

value = 93%) contains four SNPs (rs4420638, rs629301, rs6511720, rs1367117) that map near 15 

genes (within 100 kb), as indicated by DAPPLE software. 

The effect of the four variants is limited to lipids only, with low HDL cholesterol and high TC, LDL and 

TG: a combination of effects that is consistent with epidemiological expectation (figure 3.12A). 

The group of loci reported a significant excess of direct connections (DAPPLE p-value = 0.001) and of 

simultaneous interactions of input genes to common connectors (DAPPLE p-value = 0.003, figure 

3.12B). 

This high significance was confirmed by STRING and GeneMANIA, which both indicated enrichment 

for plasma lipoprotein particle clearance and remodelling (STRING q-value after FDR correction = 

4.25x10
-8

, GeneMANIA FDR q-value = 2.45x10
-7

) and regulation of phospholipid catabolic process 

(STRING FDR q-value = 3.69x10
-5

), without the addition of further interactors (figure 3.12C). This 

enrichment was attributable to five genes, as reported by both STRING and GeneMANIA: APOC1, 

APOC2, APOE, APOB and LDLR. 

The APOC1 protein modulates the interaction of APOE with beta-migrating VLDL (very-low density 

lipoproteins), while APOC2 is a component of VLDL that activates the enzyme lipoprotein lipase: 

VLDL becomes thus LDL. LDLR is a low density lipoprotein receptor placed at the cell membrane: it 

Figure 3.12: Example of a sub-cluster of loci with effects on lipids only. A. Zoom on the heat-map of this sub-

cluster; B. Network obtained through pathway analysis with DAPPLE software; C. Network obtained through 

pathway analysis with STRING software: no connector is added, red rectangles highlight the name of genes 

involved in the most significant enriched biological process. Same result was obtained with GeneMANIA software. 
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binds LDL, the major cholesterol-carrying lipoprotein of plasma, thanks to the mediation of ligands 

APOE and APOB, and it transports it into cells by endocytosis. 

 

Another example is reported in figure 3.13. As in the previous group of loci, in this one (called 

H25_8) it is also possible to notice a strong effect on lipids, but in this second case on LDL, TG and TC 

only (figure 3.13A). This sub-cluster had high support after multiscale bootstrap of clustering results 

(bootstrap value = 87%). 

The sub-cluster is composed of 15 variants originally associated with lipids, at genome-wide 

significance, and significantly enriched for indirect connection between input genes (DAPPLE p-value 

= 0.05, figure 3.13B). 

Also in this case STRING and GeneMANIA agreed reporting significant enrichment of some biological 

processes, in particular of negative regulation of cholesterol and sterol transport (STRING FDR q-

value = 2.53x10
-9

, GeneMANIA FDR q-value = 4.15x10
-5

) with the involvement of genes such as 

APOE, APOB, APOC1, APOC2, ABCG5, ABCG8, PCSK9 and MYLIP (figure 3.13C). The highlighted 

connections are significant without adding any other connector to input genes. 

 

A third example is represented by sub-cluster H15_22 in figure 3.14. Here, 19 SNPs have a strong 

Figure 3.13: A second example of a sub-cluster of loci with effects on lipids only. A. Zoom on the heat-map of this 

sub-cluster; B. Network obtained through pathway analysis with DAPPLE software; C. Network obtained through 

pathway analysis with STRING software: no connector is added, red rectangles highlight the name of genes 

involved in the most significant enriched biological process. Same result was obtained using GeneMANIA 

software. 
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effect on blood pressure and hypertension (figure 3.14A), although bootstrap analysis did not 

support it. This lack of support could be attributable to heterogeneous minor effects on other 

phenotypes. 

The DAPPLE software did not reveal any significant interaction for this group, but instead STRING 

highlighted an enrichment of 11 input genes for heterocycle metabolic processes (FDR q-value = 

0.006, figure 3.14B). 

Interestingly, in this case, GeneMANIA suggested a different enriched pathway for some of the same 

genes (ADM, NPPB, GUCY1A3, GUCY1B3) when 10 interactors were included in the analysis: 

circulatory system process pathway (FDR q-value = 0.04, figure 3.14C). No significant enrichment 

was observed using the GOrilla software. 

 

Sub-clusters with unexpected effects on a specific subgroup of phenotypes 

Some of the observed sub-clusters were characterised by multiple effects on phenotypes belonging 

to the same subgroups of phenotypes, but with unexpected directions or combinations of these 

Figure 3.14: Sub-cluster of BP associated loci. A. Heat-map of cardiometabolic effects; B. Network obtained using 

STRING software, red rectangles highlight the name of genes involved in heterocycle metabolic biological process; 

C. Network obtained using GeneMANIA software with 10 connectors added by the programme, red circles 

highlight the name of genes involved in circulatory system process. 
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effects. We were interested to discover if these complex combinations of outcomes could be 

indexes of unpredicted biological processes. 

 

For example, figure 3.15 represents a group of 14 SNPs (H15_25) with strong effects on lipids, but 

with a strange pattern: in fact we could observe a strong effect leading to lower LDL and TC, but also 

unexpectedly to lower HDL, and less strong effect on TG (figure 3.15A). 

The sub-cluster was not supported by bootstrap analysis, but this could be due to heterogeneity of 

minor effects on other phenotypes, as for example on height and glycaemic traits. 

This group of variants in DAPPLE led to a list of 45 genes with high degree of direct edges between 

input nodes (DAPPLE p-value = 0.04) and of common interactors (DAPPLE p-value = 0.007, figure 

3.15B). In the network, the presence of factors such as UBASH3B (ubiquitin associated and SH3 

domain containing B), HSPA6 (heat shock protein 6), PTPN5, FAM83 (family with sequence similarity 

Figure 3.15: Sub-cluster of lipids-associated loci with strange pattern of effects. A. Heat-map of the effects; B. 

Network obtained through pathway analysis with DAPPLE software with excess of direct edges and common 

interactors; C. Network obtained using STRING software, red rectangles highlight the name of genes involved in 

the most significant enriched biological process; comparable results were obtained using GeneMANIA 

programme. 
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83 member E) and TTPAL (tocopherol transfer protein-like) was significant; some proteins encoded 

by these genes are involved in proteins transport and folding. Pathway analysis was significant using 

STRING software with an enrichment of phospholipid efflux and protein-lipid complex assembly (p-

value = 2.37x10
-6

, FDR q-value = 0.02, figure 3.15C), a result that was confirmed also using 

GeneMANIA (FDR q-value = 0.01), but not using GOrilla. 

 

Another example of epidemiologically unexpected effects on related phenotypes is a sub-cluster 

which includes variants mapping near known T2D and glycaemic-associated loci such as ADCY5, 

CDKN2A/B, PCSK1, ARAP1 and others (figure 3.16A, cluster H25_13). This sub-cluster presented a 

singular pattern of effects on glycaemic traits: in fact we could observe a strong decrease of FG 

flanked by a complete opposite increase of β-cell function (HOMAB) and, with less intensity, of FI; 

this outcome was not mediated by an association with BMI as it was maintained after BMI 

adjustment. 

This picture can be explained by a defect on the functionality of β-cells (rather than on insulin 

resistance) which causes an impaired production of insulin, even if high levels of glucose in the 

blood are present, leading to an inadequate response, and thus to a persistent hyperglycaemia and 

risk of developing T2D (a suggestive effect of this increased risk can be observed in figure 3.16A). In 

fact, if we considered the effects attributable to the alternative alleles of the reported loci, we 

would observe high FG, but low FI and HOMAB, and thus suggestive high T2D risk. 

This group of variants was supported by a bootstrap value of 46%, a quite low value that could be 

attributable to the effects of rs174546 near the FADS1 locus: this variant in fact is differentiated by 

the rest of the group as it shows additional strong effects on lipids. In the dendrogram, rs174546 

firstly separated from the rest of the group and, when we excluded it, the bootstrap value raised to 

68%. 

When we analysed the group in a pathway analysis, DAPPLE did not find enriched connections, but 

just three networks, as represented in figure 3.16B. The STRING software, instead, revealed 

enrichment for response to carbohydrate stimulus pathway (p-value = 1.09x10
-6

, FDR q-value = 0.01) 

and pancreas development (p-value = 3.05x10
-6

, FDR q-value = 0.02, figure 3.12C). In addition, 

GeneMANIA was significant for peptide transport (FDR q-value = 0.014) and insulin secretion (FDR q-

value = 0.014) processes when 10 interactors were added to input genes (figure 3.16D). 

 

Using a smaller threshold (cut-off C) of the Euclidean distance, this sub-cluster was further 

subdivided in two parts, H15_35 and H15_37. H15_37 was remarkably significant in pathway 

analysis, and it could be responsible also for the total significance of the bigger sub-cluster H25_15 

to which it belongs (figure 3.17A). In fact, this group had a strong bootstrap value (90%) and 

borderline degree of direct connections (DAPPLE p-value = 0.06). In STRING the group of loci was 

particular enriched for pancreas development biological process (p-value = 9x10
-7

, FDR q-value = 

0.008, figure 3.17B). The same result was confirmed by GeneMANIA, where peptide hormone 

secretion and pancreas development were proposed as enriched pathways with comparable 

significance (FDR q-value = 0.015). Highlighted biological processes involved in four particular 

factors: PDX1 (pancreatic and duodenal homeobox 1), FOXA2 (forkhead box A2), SLC2A2 and PCSK1. 
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These are all factors involved in insulin/proinsulin secretion and β-cell/pancreatic islets 

development. 

 

Figure 3.16: Sub-cluster of loci with a strange pattern of effects on glycaemic traits. A. Heat-map of the effects; B. 

Three networks obtained through pathway analysis with DAPPLE software; C. Network obtained using STRING 

software, red rectangles highlight the name of genes involved in carbohydrate stimulus pathway; no connectors 

are added. D. Network obtained using GeneMANIA software, blue circles highlight the name of genes involved in 

peptide transport process. 
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Sub-clusters with multiple effects consistent with the definition of MetS 

In the whole cluster of multiple cardiometabolic effects, we distinguished sub-clusters of loci with 

multiple effects on multiple phenotypes belonging to different groups of related phenotypes; by 

analysing the patterns of those effects, we identified groups of loci which behaved in a way that is 

consistent with metabolic syndrome definition (MetS). 

As defined in chapter “2.3.3.1_Proposed models: Metabolic Syndrome”, MetS is characterised by 

the concurrent presence of some cardiometabolic phenotypes that cluster together: increased risk 

of T2D, increased obesity, high blood pressure high triglycerides, low HDL-cholesterol levels and 

presence of insulin resistance
157

. Some of the identified sub-clusters in our data presented several of 

these aspects together. 

 

The group in figure 3.18 is one example: this sub-cluster of variants (H25_12) is characterised by a 

strong positive effect on height, accompanied by a general increase of obesity-related traits (WC, 

HIP and WHR with or without adjustment for BMI), but not of BMI. Even if of minor intensity, the 

main effects are combined with a MetS-compatible trend of all other cardiometabolic phenotypes, 

especially glycaemic traits (figure 3.18A). 

  

Figure 3.17: Sub-cluster derived from a further subdivision of group in figure 3.16. A. 

Heat-map of the effects; B. Network obtained using STRING software, red rectangles 

highlight the name of genes involved in pancreas development and insulin signalling 

processes; similar results were obtained using GeneMANIA programme. 
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Figure 3.18: Sub-cluster of loci with a pattern of multiple effects that is suggestively compatible with MetS 

definition. A. Heat-map of the effects; B. Network obtained through pathway analysis with DAPPLE software; C. 

Network obtained using STRING software, red rectangles highlight genes involved in chromatin assembly 

process; GeneMANIA gave comparable results. D. Network of biological processes reconstructed using GOrilla 

software. 
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This sub-cluster was enriched for direct connections between genes near input variants (DAPPLE p-

values = 0.001), but also for indirect connections (DAPPLE p-value = 0.01) and for common 

interactors (DAPPLE p-value = 0.001), as reported in figure 3.18B. The strong significance is 

attributable to the numerous identified genes within a histone cluster element in the DNA. 

Pathway analysis with other software tools revealed concordance of results which supported this 

hypothesis: STRING showed a strong enrichment for chromatin assembly process (p-value = 4.24x10
-

11
, FDR q-VALUE = 4.72x10

-7
, figure 3.18C) and GeneMANIA agreed with this result (FDR q-value = 

6.83x10
-7

, data not shown), proposing also the nucleosome related pathway as a more general 

enriched biological process (FDR q-value = 4.94x10
-7

). 

The GOrilla 

software produced 

comparable 

results, with the 

reconstruction of a 

highly significant 

(p-value = 1.55x10
-

13
, FDR q-value = 

2.99x10
-10

) 

enriched pathway, 

as reported in 

figure 3.18D, which 

involves histone 

cluster genes and 

other genes (EZH2, 

ZNF462, KAT5, 

HMGA2, PHF20, 

see below for a 

description) in 

chromatin 

organisation, and 

nucleosome 

assembly 

pathways. 

Histone cluster genes were attributable to only one associated variant in this group, rs80674; 

therefore when we removed it from variants included in the group, the results of the pathway 

analysis changed, shifting to an enrichment of aging process in STRING (STRING p-value = 5.84x10
-6

, 

FDR q-value = 0.07) and GeneMANIA (even if for GeneMANIA, the FDR q-value was not significant = 

0.5). After this removal, GOrilla maintained histone modification as a common biological process, 

but with less significance (p-value = 2x10
-5

, FDR q-value = 0.04), and involving only EZH2 (enhancer 

of zeste homolog 2), KAT5 (K(lysine) acetyltransferase 5), HMGA2 (high mobility group AT-hook 2) 

and PHF20 (PHD finger protein 20); it also proposed regulation of cellular process pathway (p-value 

Figure 3.19: 

Network of 

biological 

processes 

reconstructed 

using GOrilla 

software 

starting from 

data of sub-

cluster 

described in 

figure 3.18, 

after removal 

of histone 

cluster genes. 

Two parallel 

processes are 

proposed: 

histone 

modification 

and 

regulation of 

cellular 

process. 
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= 6x10
-5

, FDR q-value = 0.023) as a common pathway for 35 input genes (see figure 3.19). 

 

A second example 

of a MetS 

compatible sub-

cluster is H15_42 

in figure 3.20: it is 

a highly supported 

(bootstrap value = 

95%) group of 20 

BMI-associated 

variants with a 

pronounced 

increasing effect 

on BMI and also on 

WC, HIP and WHR, 

even if this effect 

resulted mediated 

by BMI 

association. In fact 

no remarkable 

association was 

found for 

WCadjBMI, 

HIPadjBMI and WHRadjBMI. Suggestive increase was also reported for some glycaemic traits 

(HOMAB, FI and HOMAIR) and for T2D risk, as well as for TG and PBFAT; a decrease instead was 

observed for HDL (figure 3.20A). The 20 included SNPs were near 27 genes (within flanking 100kb 

regions) and their analysis in DAPPLE revealed a borderline significance for an excess of common 

interactors (p-value = 0.07, figure 3.20B). No significant enrichment was observed using other tools 

for pathway analysis. 

 

Another interesting sub-cluster is represented in figure 3.21 (group H15_53): this is a group of 17 

SNPs with a strong effect on T2D. An increasing effect, even if of minor significance, was observed 

also for the other traits, but not for HDL. The trend described in this picture can be interpreted as 

epidemiologically expected (figure 3.21A). Pathway analysis using the DAPPLE software did not 

reveal significant excess of connections; while using STRING (figure 3.21B) and GeneMANIA (figure 

3.21C), with the addition of 10 interactors between input genes, we obtained significant enrichment 

for regulation of cell cycle process including interphase, G1 phase, and mitosis (STRING p-value = 

1.49x10
-15

, STRING FDR q-value = 1.66x10
-11

, GeneMANIA FDR q-value = 0.03). 

Figure 3.20: 

Sub-cluster 

of loci with a 

pattern of 

multiple 

effects 

consistent 

with MetS 

definition. A. 

Heat-map of 

the effects; 

B. Network 

obtained 

through 

pathway 

analysis with 

DAPPLE 

software. 
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Sub-clusters with multiple unexpected effects 

Other sub-clusters of loci showed multiple effects on phenotypes belonging to different groups of 

related phenotypes, but not following our expectations according to the epidemiological definition 

of MetS or to epidemiological expectations. Several of these groups were, in fact, were 

characterised by particular combinations of multiple effects, which can reveal novel involved 

pathways that should be considered in the knowledge of cardiometabolic phenotypes. 

 

A first example is the group of 23 SNPs that we called H25_7: it presented with a varied pattern of 

strong effects, significantly supported when we applied a bootstrap test on the cluster (bootstrap 

value = 68%). Describing the observed pattern of effects in an ordered manner (see figure 3.22A), 

we can firstly see an expected effect on lipids, with very low HDL, high LDL (that brings to a general 

high level of TC), and very high TG. This is accompanied by increased glycaemic trait levels and T2D 

risk and a less strong increase of blood pressure and hypertension risk. These described effects are 

expected, but obesity-related traits revealed an unpredictable behaviour: body fat percentage and 

Figure 3.21: Sub-cluster of loci with a pattern of multiple effects that is compatible with MetS definition. A. Heat-

map of the effects; B. Network obtained through pathway analysis using  STRING software, 10 interactors are 

added (blue and light-blue circles in the legend), red rectangles highlight the name of genes involved in the most 

significant enriched biological process; C. Network obtained using GeneMANIA software with comparable results. 
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BMI, in fact, were decreased. 

This picture can be interpreted as lean individuals, but with high lipids levels and a compromised 

state of metabolic health (T2D, HTN); we called this state healthy obesity/unhealthy leanness 

(HOUL). By exploring the patterns of effects on obesity traits in more detail, it was possible to notice 

that low BMI is followed by low hip circumference, maintained also after BMI adjustment, but high 

WHR and WCadjBMI: this observation revealed that the HOUL condition described by the variants in 

this group is attributable to an overall normal or low BMI, but with high levels of central adiposity. 

This characteristic is typical of an "apple shaped" body type, where fat is predominantly deposited 

on the visceral region of the waist, as explained in figure 3.23, a status usually associated with 

“dysmetabolism” and cardiovascular diseases. 

When analysing the included SNPs in pathway analysis, DAPPLE recognised 33 flanking genes with 

strong indirect connections (p-value = 0.01, figure 3.22B). This discovery was also supported by the 

STRING software, which revealed enrichment for vascular endothelial growth factor signalling 

Figure 3.22: Sub-cluster of loci with a HOUL pattern of multiple effects. A. Heat-map of the effects; B. Network 

obtained through pathway analysis with DAPPLE software. C. Network obtained using STRING software, 10 

interactors are added (blue and light-blue circles in the legend), red rectangles highlight the name of genes 

involved in cardiovascular development process. 



Dissection of pleiotropic effects in genome-wide association studies of phenotypes related to 

cardiometabolic health 

3 | Projects 127 

  

pathway (FDR q-value = 5.75x10
-5

) and cardiovascular development (FDR q-value = 0.018) when 10 

connectors were added to input genes (as described in figure 3.22C). Other tools did not replicate 

the results. 

 

A second example is in 

figure 3.24A (group 

H25_11): here an 

unexpected pattern on 

lipids with low levels of 

TG, TC and LDL, 

accompanied also by 

normal or low levels of 

HDL, manifested 

together with high 

levels of BMI and 

height. 

The described combination of effects can be explained by a medical case of obesity without any 

effects on lipidemia (compatible with HOUL definition). The group was highly supported in bootstrap 

analysis (bootstrap value = 84%) and revealed a high level of common interactors in DAPPLE 

pathway analysis (p-value = 0.001). GeneMANIA suggested two possible enriched pathways for the 

group: ER to Golgi transport vesicle membrane pathway (FDR q-value = 3.49x10
-8

) and immune 

response-activating cell surface receptor signalling pathway (FDR q-value = 3.53x10
-6

, figure 3.24B), 

but this was not confirmed by other pathway analyses. 

 

Finally, the sub-cluster in figure 3.25A (H15_43) is another example of unusual multi-phenotype 

effects with high BMI and obesity traits, low HDL, but also low blood pressure, and low glycaemic 

traits (FI, HOMAB and HOMAIR) after adjustment for BMI. This is a particular case of HOUL where 

hypotension manifests in obese individuals. The group was particularly enriched for indirect 

connections between input genes (DAPPLE p-value = 0.02, figure 3.25B). STRING confirmed this 

result with a significant enrichment of DNA damage response as signal transduction by p53 class 

mediator when 10 interactors are added to the pathway (p-value = 6.49x10
-10

, FDR q-value = 

6.98x10
-6

, figure 3.25C). Another suggestive enriched pathway was regulation of protein metabolic 

process (p-value = 3.81x10
-8

, FDR q-value = 4.62x10
-5

, figure 3.25C). 

Figure 3.23: 

Graphical 

representation of 

“apple shaped” (on 

the left) and "pear 

shaped" (on the 

right) body type. In 

“apple shape” fat is 

more visceral, while 

in “pear shape” it is 

predominantly 

deposited on the 

hips and buttocks. 
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Figure 3.24: Sub-

cluster of loci with 

unexpected pattern of 

multiple effects. A. 

Heat-map of the 

effects; B. Network 

obtained through 

pathway analysis with 

GeneMANIA software, 

red circles highlight 

the name of genes 

involved in ER to Golgi 

transport vesicle 

membrane pathway, 

blue circles highlight 

the name of genes 

that, together with the 

red ones, are involved 

in immune response-

activating cell surface 

receptor signalling. 

Figure 3.25: Sub-cluster of loci with a HOUL pattern of multiple effects. A. Heat-map of the effects; B. 

Network obtained through pathway analysis with DAPPLE software. C. Network obtained through pathway 

analysis with STRING software, 10 interactors are added (blue and light-blue circles in the legend); red 

rectangles highlight the name of genes involved in DNA damage response, green rectangles highlight 

additional genes that, together with red ones, are involved in regulation of protein metabolic process. 
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3.2.4 Discussion 

 

In this study we aimed to explore patterns of multiple cross-phenotype effects for cardiometabolic 

traits and diseases across the genome by analysing known cardiometabolic loci in existing univariate 

analysis data and to discover possible biological processes which have a role in the regulation of 

metabolism and, thus, an influence on risk of cardiometabolic diseases. 

 

To have a general view of the extent of noteworthy multiple effects in our data, we applied a simple 

meta-analysis approach on p-values of association from univariate analyses. 109 variants of the 

analysed 544 (20%) showed significant Omnibus test p-values as result of the combination of 

multiple significant univariate associations in unrelated phenotypes. 86 (15.8%) of these SNPs 

showed multiple signals of almost equivalent significance in different phenotypes. Some of them are 

already known signals for multiple traits or diseases reported by the literature, such as those near 

GRB14, KLF14, IRS1 and C6orf106
19,81,119,99,139

; others were novel, especially because most of them 

did not reach genome-wide significant levels of univariate association for secondary traits, but gave 

highly significant Omnibus p-values when single trait results were combined: variants near PPP1R3B, 

PPARG, MTCH2 (mitochondrial carrier 2), PEPD (peptidase D), ZNF462 are just a few examples. 

Fisher’s omnibus p-value test was useful to highlight variants at established cardiometabolic loci 

with multiple associations, revealing that around the 15% of known cardiometabolic-associated 

SNPs could be potentially pleiotropic on phenotypes characterising different aspects of metabolism 

(for example obesity and blood pressure, or lipids and glycaemic levels). 

Nonetheless, this method has some limits. First of all this approach does not take into account the 

effects, but just the p-values, therefore it did not shed light on the modalities of multiple association 

in comparison with epidemiological expectations. Additionally, it did not allow us to easily identify 

groups of loci with similar patterns of multiple effects and to clarify the degree of connection 

between them, useful information for studying biological pathway enrichment. 

 

To remedy for these limitations, and to achieve the aims of this research, we therefore considered z-

score values from 29 cardiometabolic GWAS meta-analysis results and we applied a clustering 

analysis of multiple effects. We identified several groups of loci with similar patterns of multi-

phenotype effects (see figures 3.9 and 3.10). Our results suggested that cardiometabolic loci 

predominantly share same multiple effects within little groups (average size: 7, from groups with 

bootstrap value ≥ 65%), most of which are probably representing a distinct mechanism that 

participates to the characterisation of involved phenotypes. 

Among identified groups of effects, we were able to distinguish and categorise five different 

behavioural trends: (1) sub-clusters of cardiometabolic loci without a uniform trend of multi- 

phenotype effects, (2) sub-clusters of cardiometabolic loci characterised by effects on a single 

phenotype or on a specific group of related phenotypes, (3) sub-clusters with unexpected effects on 

a specific group of related phenotypes, (4) sub-clusters with multiple effects consistent with the 

definition of MetS, (5) sub-clusters with multiple epidemiologically unexpected effects. 

Within these categories, several sub-clusters were particularly interesting because their 
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combination of effects or the functional connections between genes near their included variants, 

suggested unintuitive or peculiar biological processes involved. 

An example is the group in figure 3.15: pathway analysis of variants included in this group suggested 

that a perturbed process of protein folding and transport related to the creation of protein-lipids 

complexes and involving factors such as UBASH3B, HSPA6, PTPN5, FAM83, TTPAL, APOE and APOC, 

may have strong effects on all lipids, bypassing the normal difference between HDL and the other 

lipid traits. 

Another group of genes (figures 3.16, 3.17), among which PDX1, FOXA2, SLC2A2 and PCSK, 

implicated in insulin/proinsulin secretion and β-cell/pancreatic islets development, confirmed the 

hypothesis that defects in the functionality of β-cells (rather than on insulin resistance), which cause 

an impaired production of insulin even if high levels of glucose are present in the blood, may lead to 

an hyperglycaemic status with consequent increased risk of developing T2D. This result thus 

supports the idea, already reported in literature, that β-cell dysfunction may be an important factor 

in T2D pathogenesis
19,99

. 

 

MetS is the clinical definition of a certain combination of cardiometabolic and inflammatory 

phenotypes, characterised by increased risk of T2D, increased obesity, high BP, high triglycerides, 

low HDL-cholesterol levels and presence of insulin resistance
157

. It is the most common, and thus 

epidemiologically expected, clinical manifestation for cardiometabolic phenotypes. 

Our results highlighted that MetS is just one possible relationship, and that biological processes 

involved in cell cycle and cell processes may be of key importance in the determination of its status 

(figures 3.19, 3.21). 

Alternatives exist, for example metabolically healthy obesity or unhealthy leanness, as we observed 

in our data (groups of loci in figures 3.22, 3.24 and 3.25). 

HOUL individuals are normal weight patients who present dysmetabolic characteristics such as high 

lipids, LDL and/or glucose levels in the blood and high blood pressure, until the development of out-

and-out metabolic diseases such as T2D, HTN or CAD; alternatively, HOUL status may describe obese 

individuals without any other cardiometabolic disorder and with normal levels of lipids, cholesterol, 

glycaemic traits and blood pressure, therefore in an excellent status of metabolic health. 

From our results, a consistent number of cardiometabolic loci (at least 43, and up to 70, if we 

consider also other loci with suggestive effects) showed a pattern of effects which is compatible 

with HOUL. The majority of these loci (64 of 70, 91.43%) were genome-wide significant in Fisher’s 

omnibus test (p-value ≤ 5x10
-8

). From the analysis of factors encoded by these loci, cardiovascular 

development, DNA damage response and regulation of protein metabolism and transport, seem to 

be key biological processes involved in the determination of such cases. 

 

In conclusion, this study enabled analysis of the extent of cross-phenotype effects of 

cardiometabolic variants and allowed identification of groups of loci with shared patterns of exerted 

effects. Pathway analysis revealed that some of these groups are enriched for loci that impact the 

same biological processes. These pathways may be expected, for example regulation of lipids 

metabolism or cholesterol transport for groups of loci with strong effects on lipids (figures 3.12, 3.13 
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and 3.15), or circulatory system processes for genes near blood pressure-association signals (figure 

3.14); but sometimes the highlighted processes are counterintuitive, for example regulation of 

cellular process for a group of loci with effects on obesity and anthropometric traits (figures 3.18, 

3.19). 

In some cases, connectivity in multi-phenotype networks was useful in suggesting genes that are 

more likely for causality or tissues of action underlying the association signals (see the example 

described in figure 3.12). In some other cases, enriched networks were significant only in the 

presence of additional interactors that could be further investigated as candidate factors for 

association with implicated phenotypes. 

 

The approach used in this first project revealed highly useful in recognising cross-phenotype effects 

using univariate GWAS results and in characterising these associations in terms of causal genes and 

biological mechanisms involved, contributing to shedding light on the processes that regulate 

physiological aspects of metabolism or that contribute to the risk of developing cardiometabolic 

diseases. 

Nevertheless, this method has some limitations and cannot uncover all the aspects concerning the 

study of pleiotropy. First of all, it does not provide a measure of statistical significance of the best 

model that represents the pattern of multiple effects for each variant or groups of variants. 

Secondly, this approach does not allow discovery of novel variants across the genome, besides those 

already associated with at least one cardiometabolic phenotype in univariate studies, since it used 

already established SNPs from single-phenotype GWASs; this limit leaves out polymorphisms which 

could have a strong overall multiple effect without standing out in univariate GWAS analyses for 

single phenotypes and which, therefore, may contribute to part of the missing heritability of 

complex phenotypes. Finally, the undertaken study revealed cross-phenotype effects, but was not 

able to discern the real genetic mechanisms behind them. In other words, it did not discern real 

pleiotropy from mediation, even it did not deal with the interpretation of multi- phenotype signals 

which lie in common genomic regions, distinguishing multi-phenotype allelic heterogeneity from 

real overlapping signals. 

To solve the additional issues described, different approaches must be developed and other 

methods must be tested on different types of data, as we applied in the following described sub-

projects. 
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3.3 Project 2: Validating pleiotropy, and analysis of locus 

architecture in potential pleiotropic regions 
 

3.3.1 Introduction and Aim 

 

As we have already described in previous chapters (see “2.3_Overview of genetics of 

cardiometabolic phenotypes”), cardiometabolic phenotypes have complex aetiology and are 

epidemiologically correlated. 

In the past years, GWAS have identified hundreds of novel susceptibility loci for cardiometabolic 

diseases and, interestingly, their findings have highlighted multiple loci that are associated with 

more than one cardiometabolic phenotype, suggesting shared molecular pathways
20

. In some cases, 

the same variant has shown an association with more than one phenotype; in other cases, distinct 

nearby markers have indicated a multi-phenotype association pattern for a genomic region. 

 

The specific genetic mechanisms underlying the shared physiology of metabolic phenotypes remain 

poorly understood, rendering the comprehensive analysis of multiple phenotypes an important area 

of investigation. Additionally, the mechanisms of genetic multi-phenotype effects are specific at 

each locus and require individual investigation. As different mechanisms have different implications 

for disease risk and pathogenesis, it is crucial to design approaches for studying them and verifying 

the hypotheses of pleiotropy at already known loci; in particular, the development of analytical and 

statistical tools to distinguish and study CP effects of cardiometabolic risk loci will permit 

clarification of the common genetic basis of these phenotypes. 

 

In the study described in the precedent section, we analysed similar patterns of multi-phenotype 

effects within single DNA variants, but we did not consider the possibility that adjacent variants with 

effects on different phenotypes could be representative of the same pleiotropic region, and thus 

that they were part of the same association signal. However, we observed that multiple variants 

near the same gene, even if not in high LD (r
2
 < 0.8), usually show similar effects on cardiometabolic 

phenotypes. 

When two or more SNPs in the same region show a multi-phenotype association signal, the pattern 

of association may occur, either due to overlapping signals, where the variants tag the same 

functional region, or because of multi- phenotype allelic heterogeneity, where the identified 

variants co-localise in the same genomic region but represent independent signals. 

 

To address the challenge of distinguishing overlapping signals from multi-phenotype allelic 

heterogeneity in established cardiometabolic loci, contributing to the dissection and 

characterisation of the genetic architecture of the corresponding genomic regions, we systematically 

investigated shared genetic associations across multiple phenotypes by utilizing GWAS results for 21 

cardiometabolic traits and diseases, available in the XC-Pleiotropy group, and applying approximate 
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conditional analysis on the regions showing multiple signals of association for different phenotypes. 

 

 

3.3.2 Materials and methods 

 

For an overview of the workflow and main results, see figure 3.26. 

 

3.3.2.1 Identification of variants with multi-phenotype cardiometabolic associations 

To identify known autosomal SNPs genome-wide significantly (p-value < 5x10
-8

) associated with two 

or more cardiometabolic phenotypes, we performed a systematic literature search using PubMed 

and the NHGRI catalogue
7
. We selected published associations (before October 2012) from GWAS 

meta-analyses in 

Europeans and non-

Europeans for 19 

quantitative traits and 

two disease 

phenotypes. More 

specifically, for 

glycaemic traits: fasting 

glucose (FG) with and 

without adjustment for 

BMI, fasting insulin (FI) 

with and without 

adjustment for BMI, 

two-hour glucose 

(2hGlu), fasting 

proinsulin (PROINS) 

and glycated 

haemoglobin 

(HbA1c)
18,117-121

; for 

anthropometric/obesit

y traits: height, body 

mass index (BMI), 

waist circumference 

(WC) and waist to hip 

ratio (WHR) with and 

without adjustment for 

BMI
16,126,129-131,133,134,137

; 

body fat percentage 
Figure 3.26: Workflow followed for the analysis of genetic architecture of 

cardiometabolic associated loci. 
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(PCBFAT)
132

; for lipids: high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides 

(TG) and total cholesterol (TC)
139,145

; for blood pressure phenotypes: systolic (SBP) and diastolic 

(DBP) blood pressure, pulse pressure (PS) mean arterial pressure (MAP) and hypertension (HTN, 

disease phenotype)
147-154,173,174

; Type 2 Diabetes (T2D)
19,108,109,112,117,175,176,110,177,178

. In total, 695 

cardio-metabolic SNP-phenotype associations for 630 genome-wide autosomal SNPs were 

identified. For a complete list of these SNPs, see Appendix tables 1, 2, 3, 4, 5 and 6. 

 

3.3.2.2 Definition and characterization of genomic regions with multi-phenotype association 

signals 

Genomic region definition 

To facilitate the dissection of the genetic architecture of multi-phenotype association signals, we 

assigned the variants into genomic regions. We defined two variants as belonging to the same 

region if they were located less than 500 kb apart from each other. We labelled each defined region 

with the name of nearest gene/s. 

Region categorisation based on Linkage Disequilibrium 

We estimated LD between each two variants based on the 1000 Genomes CEU reference panel 

(pilot phase)
165

 and then we used the lowest pairwise LD value observed within each region to 

roughly classify the regions into five categories: 1) “Single SNP region” – a single SNP associated with 

multiple phenotypes; 2) “Strong LD region”’ - Distinct SNPs associated with cardiometabolic 

phenotypes, but in strong LD (r
2
 > 0.8); 3) “Moderate LD region”- Distinct SNPs in moderate LD (r

2
 = 

0.5-0.8) associated with cardiometabolic phenotypes; 4) “Low LD region” - Distinct SNPs associated 

with cardiometabolic phenotypes, in low LD (r
2
 = 0.2-0.5); 5) “No LD region” - Distinct SNPs not in LD 

(r
2
 < 0.2) associated with cardiometabolic phenotypes. Pairwise LD was evaluated using SNAP 

internet tool
164

. 

Region categorisation based on correlation between associated traits 

We used 3204 individual-level data from the Framingham cohort study to calculate a Pearson’s 

correlation matrix between available cardiometabolic traits. The traits included were: BMI, WC and 

WCadjBMI, HIP and HIPadjBMI, WHR and WHRadjBMI, height, FG and FGadjBMI, HOMAB and 

HOMABadjBMI, FI and FIadjBMI, HOMAIR and HOMAIRadjBMI, 2hGlu (GLUC2H) and 2hGlu with BMI 

adjustment (GLUC2HRadjBMI), 2 hour insulin with (INS2HRadjBMI) and without (INS2HR) BMI 

adjustment, HbA1c, HDL, LDL, TG, TC, SBP and SBP adjusted for BMI (SBPadjBMI), DBP and DBP 

adjusted for BMI (DBPadjBMI). 

Traits were adjusted for sex, age (and squared age in some cases); some phenotypes were log-

transformed. A detailed description of phenotype definition, transformation and applied exclusions 

are given in table 3.6. 

We defined groups of highly-correlated traits using a threshold of the absolute value of correlation 

(indicated as “r”) >= 0.5. We applied this definition to the analysed genomic data, distinguishing 

regions associated with the same trait (ST) or with highly-correlated traits (R) from those associated 

with non-highly correlated traits (NR), or from mixed ones (regions associated with both highly and 
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non-highly correlated traits). 

We reserved particular consideration to 

type 2 diabetes (T2D) and hypertension 

(HTN), which are disease outcomes, 

based on their pathological relationships 

with physiological traits: as T2D arises 

from high levels of FG, these two 

phenotypes were classified as 

pathophysiological related in a healthy 

variation-to-disease manner (HD). The 

same definition was applied for DBP/SBP 

and HTN. 

 

3.3.2.3 Regional plots examination for 

genome-wide associations 

We used published genome-wide meta-

analysis association results for 19 

quantitative traits and two disease phenotypes, in European samples from the six international 

consortia which shared their result data within the XC-Pleiotropy group (see table 3.3): 

 Height, BMI, WC, WHR and WHRadjBMI from GIANT (Genetic Investigation of 

ANthropometric Traits), 

 PCBFAT, 

 DBP, SBP and HTN from the Global BPgen consortium (Global Blood Pressure genetics 

Consortium), 

 HDL, LDL, TC and TG from the GLGC (Global Lipids Genetics Consortium),  

 FG, FGadjBMI, FI, FIadjBMI, 2hGlu adjusted for BMI (HGLUadjBMI), PROINS and HbA1c from 

MAGIC (Meta-Analyses of Glucose and Insulin-related traits Consortium) and  

 T2D from DIAGRAM (Diabetes Genetics Replication And Meta-analysis Consortium). 

See table 3.4 for a description of these traits. 

We employed GWAS meta-analysis association results for these phenotypes to visualize the multi-

phenotype association signals at the defined genomic regions: the –log10(p-value) of the associations 

of each genomic variant within each region with the corresponding cardiometabolic phenotypes 

were plotted using the LocusZoom software
179

. This visualisation allowed us to select regions which 

needed to be further evaluated through approximate conditional analysis. 

 

3.3.2.4 Approximate Conditional Analysis 

To assess whether each pair of variants within a genomic region represented independent 

associations or shared signals, we performed approximate conditional analyses for the 

corresponding phenotypes by using the Genome-Wide Complex Trait Analysis (GCTA) tool
180

. GCTA 

Table 3.6: Detailed information about traits used for calculation 

of correlation matrix in FHS cohort. 

Trait Transformation Adjustment for BMI Covariates

FI log-transformed with & without sex, age

HOMAIR log-transformed with & without sex, age

HOMAB log-transformed with & without sex, age

FG untransformed with & without sex, age

2hglu untransformed with & without sex, age

2 hour insulin (2hIns) log-transformed with & without sex, age

HbA1c untransformed without sex, age

DBP untransformed with & without sex, age, age
2

SBP untransformed with & without sex, age, age
2

HDL normalized without sex, age, age
2

LDL normalized without sex, age, age
2

TC normalized without sex, age, age
2

TG normalized without sex, age, age
2

WHR untransformed with & without sex, age, age
2

WC untransformed with & without sex, age, age
2

HIP untransformed with & without sex, age, age
2

BMI untransformed without sex, age, age
2

HEIGHT untransformed without sex, age
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implements a conditional analysis of phenotype associations using GWAS meta-analysis summary 

statistics while incorporating LD information from a reference sample as explained in Yang et al. 

2012
181

. In this way, it allows the calculation of a new p-value of association for a SNP of interest 

with a particular phenotype, corrected for the effect of another adjacent SNP or group of SNPs on 

the same phenotype that could influence the association of the primary SNP, based on the extent of 

the LD between them. 

 

The analytical work was split in three parts, each estimating LD between the SNPs from a local 

population sample of European ancestry from which the individual level genotype data were 

available: the Framingham Heart Study (FHS, N = 2,459); Genetics of Overweight Young Adults 

(GOYA, N = 801)
182

 and Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS, N = 

949)
183

. Additional details about studied cohorts are reported in table 3.7. 

We firstly evaluated the attainment of comparable results with the use of the three different 

cohorts. 

Then, for each of those regions that needed to be further evaluated, we proceeded with the 

approximate conditional analysis for each variant and for each phenotype that the region had been 

shown to be associated with, conditioning on other variants lying in the same region. 

 

Based on visualisation of association signals of some regions and on results from approximate 

conditional analyses of the remaining regions, we classified them into five categories: 1) “Single SNP 

region” (S), as described for LD analysis; 2) “Explained signals region” (E) – Distinct SNPs associated 

with cardiometabolic phenotypes but underlying the same signal, as when conditioning the 

association of one variant on the others, the association signal considerably decreased; 3) “Not 

Explained signals region” (NE) - Distinct signals of association with cardiometabolic phenotypes, such 

that when conditioning the association of one variant on the others, the association signal did not 

decrease; 4) “Partially Explained signals region” (PE) - When conditioning the association of one 

variant on the others, the association signal decreased but it remained significant or it did not 

decrease consistently compared to original significance; 5) “Complex signals region” (C) – More than 

two distinct SNPs showing mixed behaviours when conditioning the association of one variant on 

the others. 

We follow this general scheme to define NE, PE and E signals: 

 

Table 3.7: 

Detailed 

information 

about cohorts 

used in 

approximate 

conditional 

analysis. 

Short study name FHS GOYA PIVUS

Long study name Framingham Heart Study

Genetics of Overweight Young 

Adults

Prospective Investigation of the 

Vasculature in Uppsala Seniors

Total sample size 2,459 801 949

Ethnicity European descent European descent Northern European

Country USA Danemark Sweden

Genotyping array Affymetrix 500K and MIPS 50K Illumina 610K Quad array 

Illumina BeadStation 500GX, 

Metabochip (custom Illumina 

iSelect genotyping array)

Imputation software MACH MACH IMPUTE2

Imputation panel

HapMap release 22 (CEU 

individuals)

HapMap release 22 (CEU 

individuals)

HapMap release 22 (CEU 

individuals)

Reference see web site 182 183

Web Site

http://www.framinghamheartstud

y.org/ - http://www.medsci.uu.se/pivus/
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If the original p-value was 
Conditional p-value for NE 
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Anyway, every region was then individually evaluated and its classification was refined taking into 

account the combination of behaviours of all signals after conditional analysis. 

 

 

3.3.3 Results  

 

Our study was subdivided in different sequential steps. For a better comprehension, figure 3.26 

represents the workflow with the main results. 

 

3.3.3.1 Genomic regions with multi- phenotype cardiometabolic associations and their descriptive 

characterisation 

We gathered information about 630 established SNPs associated with at least one cardiometabolic 

phenotype with p-value less than 5x10
-8

 (see Appendix tables 1, 2, 3, 4, 5 and 6) and we grouped 

them into regions where each variant was distant from the adjacent ones by less than 500kb. We 

identified 152 regions associated with multiple phenotypes including 382 autosomal SNPs 

representing 446 cardiometabolic associations.  

The region near NOS3/TMEM176A locus contained SNPs not present in the HapMap CEU reference 

panel and neither in the 1000 Genomes CEU reference panel (pilot phase), therefore this region was 

discarded for the following analyses. In total we obtained 151 regions to further investigate (see 

table 3.8).  

 

We explored LD patterns within each region using 1000 Genomes CEU reference panel data
165

 to 

calculate the LD between every couple of adjacent SNPs. 

Based on the lowest pairwise LD value observed within each region, we identified 14 (9.27%) regions 

containing the same SNP associated with more than one phenotype, and 32 (21.19%) containing 

variants in strong LD (r
2
 > 0.8). Of the remaining regions, 19 (12.58%) contained variants in moderate 

LD, while 15 regions (9.93%) contained variants in low LD. Finally, in 71 (47.02%) regions we 

observed variants with no LD (r
2
 < 0.2). LD-based category assignment for each region is reported in 

table 3.8. This preliminary description helped us in initially outlining the possible mechanisms 

behind multi-phenotype associations in defined genomic regions: for example it is easier to exclude 

allelic heterogeneity in regions containing a single SNP showing multi- phenotype association 

signals, or multiple SNPs in strong LD. 
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Table 3.8: Genome-wide regions grouped based on the classification of multiple signals, with associated phenotypes 

and number of SNPs included. LD classification and phenotype relationship classification are shown. Continuation in 

the following page. * = this region was not analysed through approximate conditional analysis. 

Locus Chr N° of SNPs LD type Relationship between phenotypes

TMEM57/LDLRAP1* 1 LDL TC 1 SINGLE SNP R

PCSK9* 1 LDL TC 1 SINGLE SNP R

CELSR2/PSRC1/SORT1* 1 LDL TC 1 SINGLE SNP R

PROX1* 1 T2D FG 1 SINGLE SNP HD

MOSC1* 1 LDL TC 1 SINGLE SNP R

IRF2BP2/TOMM20* 1 LDL TC 1 SINGLE SNP R

SLC39A8* 4 BMI DBP SBP HDL 1 SINGLE SNP MIXED

MYLIP* 6 LDL TC 1 SINGLE SNP R

TFAP2B* 6 BMI WC 1 SINGLE SNP R

CYP7A1* 8 LDL TC 1 SINGLE SNP R

PLEC1* 8 LDL TC 1 SINGLE SNP R

ABCA1* 9 HDL TC 1 SINGLE SNP NR

HP/HPR/DHX38* 16 LDL TC 1 SINGLE SNP R

CSPG3/CILP2/PBX4* 19 T2D LDL TC TG 1 SINGLE SNP MIXED

Locus Chr N° of SNPs LD type Relationship between phenotypes

ANGPTL3/DOCK7* 1 TG LDL TC 2 STRONG LD MIXED

GALNT2 1 HDL TG 2 STRONG LD NR

RBJ/DNAJC27 2 BMI HEIGHT 2 MODERATE LD NR

GCKR 2 2hGlu TC TG T2D FG FI 2 STRONG LD MIXED

BCL11A* 2 T2D 2 STRONG LD ST

IRS1 2 T2D FI TG HDL PCBFAT 7 MODERATE LD MIXED

ULK4 3 DBP 2 STRONG LD ST

ADCY5 3 T2D FG 2hGlu 2 MODERATE LD R

WFS1* 4 T2D 2 STRONG LD ST

FGF5 4 DBP SBP HTN 2 STRONG LD R

PDGFC 4 FI FIadjBMI 2 STRONG LD ST

ZBED3* 5 T2D FGadjBMI 2 STRONG LD HD

TIMD4/HAVCR1 5 LDL TC TG 2 STRONG LD MIXED

CDKAL1 6 T2D BMI FG 4 MODERATE LD MIXED

FRK 6 TC LDL 2 MODERATE LD R

RSPO3 6 WHRadjBMI FI 2 STRONG LD NR

DNAH11 7 TC LDL 2 MODERATE LD R

KLF14* 7 HDL T2D 2 STRONG LD NR

LPL* 8 HDL TG 2 STRONG LD MIXED

SLC30A8* 8 T2D FG PROINS 3 STRONG LD MIXED

TRIB1* 8 LDL TC TG HDL 3 STRONG LD MIXED

GLIS3 9 T2D FG 2 STRONG LD HD

ABO* 9 TC LDL 2 STRONG LD R

C10orf107 10 SBP DBP HTN 2 MODERATE LD R

CYP17A1 10 SBP DBP HTN 3 STRONG LD R

GPAM* 10 LDL TC 2 STRONG LD R

SPTY2D1* 11 LDL TC 2 STRONG LD R

ARAP1/CENTD2 11 FG PROINS T2D 2 STRONG LD MIXED

UBASH3B 11 TC HDL 2 STRONG LD NR

LRP1* 12 TG HDL 2 STRONG LD NR

ATP2B1* 12 SBP DBP HTN 4 STRONG LD R

SH2B3/BRAP 12 SBP DBP LDL TC 3 MODERATE LD MIXED

CCDC92/ZNF664 12 HDL TG 2 STRONG LD NR

NRXN3 14 BMI WC 2 STRONG LD R

CYP1A1/CSK/ULK3 15 DBP 2 MODERATE LD ST

HMG20A* 15 T2D 2 STRONG LD ST

FTO* 16 FI HDL BMI PCBFAT T2D 4 STRONG LD MIXED

PLCD3/ACBD4 17 SBP HEIGHT 2 MODERATE LD NR

FOXA2 20 FG 2 MODERATE LD ST

MAFB* 20 TC LDL 2 STRONG LD R

PLTP 20 TG HDL 2 MODERATE LD NR

Locus Chr N° of SNPs LD type Relationship between phenotypes

ST7L/CAPZA1/MOV10 1 DBP SBP 2 NO LD R

G6PC2 2 FG HbA1C 2 MODERATE LD R

ADAMTS9 3 WHRadjBMI T2D 2 LOW LD MIXED

MSL2L1/PCCB 3 TG HEIGHT 2 NO LD NR

LCORL 4 HEIGHT 2 NO LD ST

HHIP 4 HEIGHT 2 NO LD ST

NPR3 5 SBP DBP HTN HEIGHT 3 NO LD MIXED

HMGCR/FLJ35779 5 LDL TC BMI 2 LOW LD MIXED

JAZF1 7 HEIGHT T2D 2 LOW LD NR

MLXIPL 7 TG HDL 2 STRONG LD NR

GATA4 8 SBP TG 2 LOW LD NR

NAT2 8 TC TG 2 MODERATE LD NR

TTC39B 9 HDL TC 2 MODERATE LD NR

CPN1/CHUK 10 HEIGHT TC 2 LOW LD NR

MTNR1B 11 T2D HbA1C FG 2 LOW LD MIXED

ST3GAL4 11 LDL TC 2 STRONG LD R

SRR 17 T2D PROINS 2 LOW LD NR

ZNF652 17 HEIGHT SBP DBP 3 LOW LD MIXED

CSH1/GH1 17 HEIGHT 2 NO LD ST

SINGLE SNP REGIONS

Associated phenotypes

EXPLAINED SIGNALS REGIONS

Associated phenotypes

PARTIALLY EXPLAINED SIGNALS REGIONS

Associated phenotypes
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Table 3.8: Continuation. 

Locus Chr N° of SNPs LD type Relationship between phenotypes

GVI1/EVI5/RPL5 1 TC HEIGHT 2 LOW LD NR

DNM3/PIGC 1 HEIGHT WHRadjBMI 3 NO LD MIXED

APOB 2 HDL TG LDL TC 2 NO LD MIXED

EFEMP1 2 HEIGHT 2 LOW LD ST

CCDC108/IHH 2 HEIGHT 2 NO LD ST

GHSR/FNDC3B 3 HEIGHT 2 NO LD ST

ARL15 5 FI HDL FIadjBMI 2 NO LD MIXED

ANKRD55/MAP3K1 5 T2D FIadjBMI TG 2 NO LD NR

FGF18/FBXW11 5 HEIGHT 2 NO LD ST

BOD1/CPEB4 5 HEIGHT WHRadjBMI 2 NO LD NR

LY86/RREB1 6 WHRadjBMI FG 2 NO LD NR

HFE/HIST1H4C 6 SBP DBP HTN HbA1C LDL TC HEIGHT 3 NO LD MIXED

VTA1/GPR126 6 HEIGHT 2 NO LD ST

SLC22A1/LPA 6 LDL TC TG HDL 3 NO LD MIXED

ANK1 8 T2D HbA1C 3 NO LD MIXED

PLAG1/SDR16C5 8 HEIGHT 2 NO LD ST

TRPS1 8 HDL TC 2 NO LD NR

QSOX2/DNLZ 9 HEIGHT FG 2 NO LD NR

VPS26A/HK1 10 T2D HbA1C 2 NO LD NR

PPIF 10 HEIGHT (secondary signal) T2D HEIGHT 3 NO LD MIXED

DUSP8/LSP1/TNNT3 11 T2D BP 2 NO LD NR

ADM/AMPD3 11 SBP HDL 2 NO LD NR

PLEKHA7/NUCB2/KCNJ11 11 SBP HEIGHT T2D 3 NO LD NR

CRY2/LRP4/NR1H3 11 FG HDL 2 NO LD NR

SERPINH1/DGAT2* 11 HEIGHT HDL 2 NO LD NR

APOA1/C3/A4/A5/BUD13 11 HDL LDL TC TG 3 NO LD MIXED

PDE3A/SLCO1C1* 12 HDL HEIGHT 2 NO LD NR

STAT2/GLS2* 12 HEIGHT FGadjBMI 2 NO LD NR

HMGA2 12 T2D HEIGHT 2 NO LD NR

SOCS2/CRADD 12 HEIGHT 2 NO LD ST

HNF1A/TCF1 12 LDL TC T2D 2 NO LD MIXED

SBNO1 12 HDL HEIGHT 2 NO LD NR

PDS5B/BRCA2/KL 13 LDL HEIGHT FG 3 NO LD NR

SPRY2 13 T2D PCBFAT 2 NO LD NR

NFATC4/CBLN3/KIAA1305 14 HEIGHT LDL 2 NO LD NR

LOXL1/PML 15 HEIGHT 2 NO LD ST

ACAN 15 HEIGHT 2 NO LD ST

FURIN/FES/PRC1 15 SBP DBP T2D 2 NO LD MIXED

GPRC5B/GP2/UMOD 16 BMI HTN 2 NO LD NR

NOG 17 HEIGHT 2 NO LD ST

ANGPTL4/ADAMTS10 19 HDL HEIGHT 2 LOW LD NR

PEPD/KCTD15 19 T2D FI FIadjBMI BMI 3 NO LD MIXED

APOEC1/C2 19 TG HDL LDL TC 2 NO LD MIXED

GDF5/ERGIC3 20 HEIGHT TC 2 NO LD NR

FITM2/R3HDML/HNF4A 20 T2D HDL TC 3 NO LD MIXED

Locus Chr N° of SNPs LD type Relationship between phenotypes

MTHFR/NPPB/CLCN6 1 DBP SBP 3 LOW LD R

LYPLAL1 1 FI WHR (only in women) FIadjBMI HEIGHT WHRadjBMI 6 LOW LD MIXED

THADA/ABCG5/8 2 T2D LDL TC 3 NO LD MIXED

FIGN 2 SBP BP DBP 3 NO LD R

COBLL1/GRB14 2 T2D (only in women) WHRadjBMI FI FIadjBMI TG HDL 5 NO LD MIXED

PPARG/RAF1 3 T2D FIadjBMI TC 4 NO LD MIXED

IGF2BP2/ETV5 3 FG 2hGlu T2D HEIGHT BMI 4 NO LD MIXED

TET2 4 FIadjBMI FI HEIGHT 3 MODERATE LD MIXED

PCSK1/ERAP2 5 FG PROINS BMI 2hGlu 5 NO LD MIXED

MICA/HLA 6 HEIGHT (secondary signal) TG HEIGHT SBP DBP HTN LDL TC 7 NO LD MIXED

HMGA1/C6orf107/UHRF1BP1 6 HEIGHT BMI TC HDL FIadjBMI FI 7 NO LD MIXED

DGKB/TMEM195 7 T2D (only in men) FG 3 NO LD HD

GCK/NPC1L1 7 HbA1C 2hGlu T2D FG TC LDL 5 NO LD MIXED

PPP1R3B 8 FG FI HDL FIadjBMI LDL TC 2hGlu 5 MODERATE LD MIXED

CDKN2A/B 9 T2D (secondary signal) FG 3 NO LD HD

CACNB2 10 SBP DBP HTN 3 NO LD R

HHEX/IDE/CYP26A1 10 T2D TG 3 NO LD MIXED

TCF7L2 10 FG T2D FI 2hGlu 3 MODERATE LD MIXED

KCNQ1 11 T2D HEIGHT 4 NO LD MIXED

MADD/MTCH2/SLC39A13/OR4S1 11 PROINS FG BMI HEIGHT 6 NO LD MIXED

FADS1/2/3 11 TG FG TC LDL HDL 4 STRONG LD MIXED

TBX5/TBX3 12 DBP 3 NO LD ST

MTIF3/PDX1 13 BMI FG PROINS 3 NO LD NR

LIPC 15 HDL (secondary signal) TC TG 3 NO LD MIXED

FAM148B/VPS13C/C2CD4A/B 15 2hGlu HEIGHT PROINS T2D FG 5 LOW LD MIXED

CETP 16 LDL HDL TC TG 4 MODERATE LD MIXED

GOSR2/OSBPL7 17 SBP LDL TC 3 NO LD MIXED

DYM/LIPG 18 HEIGHT HDL TC 3 NO LD NR

MC4R 18 BMI HDL HEIGHT WC T2D 6 NO LD MIXED

LDLR/DOCK6/LOC55908* 19 LDL TC HDL 2 NO LD MIXED

GIPR/QPCTL 19 T2D (only in women) 2hGlu FG BMI 4 NO LD MIXED

TOP1 20 FG TC LDL 3 LOW LD MIXED

NOT EXPLAINED SIGNALS REGIONS

Associated phenotypes

COMPLEX SIGNALS REGIONS

Associated phenotypes
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Based on the correlation matrix between cardiometabolic traits, calculated from Framingham cohort 

study and represented in figure 3.27, we identified groups of highly correlated traits. 

BMI was highly correlated with other anthropometric and obesity traits, such as WC (correlation 

value r = 0.85), HIP (r = 0.87) and borderline with WHR (r = 0.47). However this correlation 

disappeared when WC, HIP and WHR were adjusted for BMI. WC and WHR were highly correlated 

with and without BMI adjustment (r = 0.78 and r = 0.82, respectively), while the relationship 

between WC and HIP was evident only without the adjustment for BMI. HIP demonstrated a 

relationship with HEIGHT only when adjusted for BMI (r = 0.55). A borderline correlation was also 

seen for BMI and WC with FI and HOMAIR, but it disappeared after BMI adjustment. 

We highlighted strong correlations between glycaemic traits: negative correlation is observable 

between FG and HOMAB (r = -0.59) and it is maintained also when the traits were adjusted for BMI; 

FG was positively correlated with HOMAIR, 2hGlu and HBA1C (r = 0.68, 0.73 and 0.72, respectively), 

while FI with HOMAIR and 2hIns (r = 0.93 and 0.61, respectively): these results did not significantly 

change after BMI adjustment. HOMAIR showed interesting correlations with HBA1C, 2hGlu and 

2hIns (r = 0.51, 0.57 and 0.51, respectively) that became borderline (just below the defined 

threshold of r = 0.5) after BMI adjustment. 

Interestingly, among lipids we observed a uniform negative trend of HDL in its correlation with all 

the other metabolic traits (even if not more than 0.50 as an absolute value) and this is consistent 

with the definition of MetS
157

. A high positive correlation was instead evident between TC and LDL (r 

= 0.92). Finally, we could observe that DBP and SBP were highly correlated (r = 0.66), even when 

BMI-adjusted. 

Combining the information on correlation between phenotypes, we better characterised observed 

Figure 3.27: Correlation matrix between cardiometabolic traits calculated from data of 3204 individuals from the 

Framingham cohort study. Colours are proportional to the level of pairwise correlation, as explained in the legend 

below, on the left. 



Dissection of pleiotropic effects in genome-wide association studies of phenotypes related to 

cardiometabolic health 

3 | Projects 141 

  

multi- phenotype associated loci (table 3.8).  

In general, as we could expect from epidemiological data, we observed an excess of highly related 

traits (27 R, HD and ST regions out of 46, 58.70%) in regions containing single SNPs or SNPs in very 

strong LD (r
2 

> 0.8); while regions with variants in low LD or no LD (r
2 

< 0.5) had an excess of non-

related associated phenotypes or mixed phenotypes (66 NR and MIXED regions out of 86, 76.74%). 

In total, we identified 97 regions (64.24%) that contained variants associated with not highly 

correlated phenotypes (NR and MIXED, see table 3.8). The remaining 54 regions (35.76%) were 

characterised by multiple associations with the same phenotype, or highly related phenotypes (R 

regions, r > 0.5), or by “health-to-disease” phenotypes. 

 

3.3.3.2 Visualisation of the association signals  

To complete the first part of our study for descriptive analyses of the 151 regions, we undertook a 

visual inspection of their patterns of multi- phenotype association signals, using regional plots of the 

association p-values from GWAS meta-analysis results shared within the XC-Pleiotropy group.  

Combining the observation of association signals with the information about LD and about 

correlation between associated phenotypes, we were able to immediately interpret the multi- 

phenotype association of 36 regions, distinguishing multiple signals that were clearly shared 

between phenotypes from those that were distinctly separate signals located within the same 

genomic region. 

As already described in the previous sub-chapter, 14 (9.27%) regions contained single SNP (S) 

showing associations with multiple phenotypes. 

 

18 regions, from the 151 analysed, showed a clear pattern of explained signals (E): as we can 

observe in the example represented in figure 3.28, the two association signals at GPAM (glycerol-3-

phosphate acyltransferase) region are led by two different SNPs (rs1129555 for LDL, p-value = 

2.14x10
-9

 in our data, and rs2255141 for TC, p-value = 2.03x10
-10

), but both represent the same 

association pattern of a group of SNPs in high LD (coloured points in the figures) that is identical for 

the two traits, LDL and TC. Additionally, the two variants (rs1129555 and rs2255141) are in high LD 

with each other (r
2
 = 0.96). In this case approximate conditional analysis was not necessary, and we 

interpreted the region as containing a shared signal of association. All of the 18 regions classified 

here as E were also classified as “strong LD” regions; most of them (11) were associated with related 

phenotypes (R, or HD, or ST) as in the described example. 

 

For three regions the presence of two separate signals of association was highly visible. An example 

is reported in figure 3.29: the SERPINH1/DGAT2 region contains two associations at two different 

SNPs, rs11236530 for HDL (p-value = 0.005 in our data) and rs634552 for height (p-value = 1.35x10
-

9
); from regional plot visualisation, we observed that the two SNPs highlight two separate signals 

with completely different surrounding LD patterns and divided by a recombination hotspot 

(recombination rate  30 cM/Mb). As confirmation of our observation, all the three regions contain 

couples of variants not in LD (r
2
 < 0.2). We decided to categorise them as Not Explained signals (NE) 
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without running approximate conditional analysis. 

Through the visualisation of association patterns only, we classified the LDLR/DOCK6/LOC55908 (low 

density lipoprotein receptor/dedicator of cytokinesis 6/locus 55908) region as a Complex signal (C), 

since it presented the same variant (rs6511720) associated with both, LDL and TC, and another 

variant (rs737337) associated with HDL, but with a completely different signal of association, 

separated from the previous one by a recombination hotspot with recombination rate of  50 

cM/Mb. The two variants are not in LD (r
2
 = 0.008, data not shown). 

Figure 3.28: Regional plots of 

associations at the GPAM locus, as 

example of region with a clear pattern of 

Explained signals (E) observable just from 

the graphical visualisation. -log
10

 of p-

values of association are plotted for all 

variants included in the region; each 

point is a variant, violet point is the main 

one, the others are represented following 

a colour code proportional to the LD with 

the main variant, and a shape code 

consistent with functionality, as 

described in the legend. A: GPAM locus 

was associated with LDL (violet square 

points rs1129555, p-value = 2.14x10
-9

 in 

our data), B: but also with TC (violet 

circle points rs2255141, p-value = 

2.03x10
-10

 in our data). The two signals 

are similar. Below the plots: genes lying 

in the region. 

Figure 3.29: Regional plots for 

the SERPINH1/DGAT2 region as 

example of clear pattern of Not 

Explained signals (NE) 

observable just from the 

graphical visualisation. A: 

SERPINH1/DGAT2 locus was 

associated with HDL (violet 

circle points rs11236530, p-

value = 0.005 in our data), B: 

but also with height (violet circle 

points rs634552, p-value = 

1.35x10
-9

). The two signals are 

clearly different and separated 

by a recombination hotspot 

(recombination rate  30 

cM/Mb). Below the plots: genes 

lying in the region. 
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3.3.3.3 Approximate Conditional Analysis 

For the remaining 115 regions, comprising 257 markers, we were not able to interpret the patterns 

of multi-phenotype associations just using descriptive analyses; we thus decided to apply an 

analytical approach using approximate conditional analysis: it is a statistical method that allows 

calculating a signal conditioned on other signals in the same locus, using the summary data results 

from association analyses and the LD information as input. Conditioning was done on every marker 

in a cross- phenotype manner. 

 

After approximate conditional analysis, we classified 23 regions as Explained signals (E): in these 

regions the analysis decreased significantly the association signals below genome-wide level. An 

example is reported in figure 3.30, where PLCD3/ACBD4 (phospholipase C delta 3/acyl-CoA binding 

domain containing 4) locus was associated with height (rs4986172, p-value = 7.12x10
-9

) and with 

SBP (rs12946454, p-value = 6.05x10
-6

 in our data) and it was not clear if the two variants 

represented the same signal of association for the two traits. 

After conditioning the height signal for the SBP one, the regional association for height decreased 

below genome-wide significance level (rs4986172 conditional p-value = 7x10
-4

); and conditioning the 

SBP signal for the height one, regional association for SBP significantly decreased (rs12946454 

conditional p-value = 0.004). From this result, in this region the association signal attributable to one 

variant for one trait is explainable by the other variant, originally associated with the other trait. This 

Figure 3.30: Regional plots of the PLCD3/ACBD4 locus before (A.1 and B.1) and after (A.2 and B.2) approximate 

conditional analysis. A.1: This locus was associated with height (violet circle points rs4986172, p-value = 7.12x10
-9

) 

B.1: and with SBP (violet circle points rs12946454, p-value = 6.05x10
-6

 in our data). A.2: Conditioning the height 

(rs4986172) signal for the SBP one (rs12946454), regional association for height decreased below genome-wide 

significance level (conditional p-value = 7x10
-4

). B.2: Conditioning the SBP (rs12946454) signal for the height one 

(rs4986172), regional association for SBP significantly decreased (conditional p-value = 0.004). This region was 

thus classified as Explained signals (E). 
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feature is exclusively statistical: its biological explanation may not be immediate and may require 

further analysis for the identification of the causal gene and its functional characterisation in 

relationship with height and SBP. 

 

42 regions showed Not Explained signals (NE) as in LY86/RREB1 (lymphocyte antigen 86/ras 

responsive element binding protein 1) region (figure 3.31): it contains two different SNPs, one 

associated with WHRadjBMI (rs1294421, p-value = 5x10
-8

) and one with FG (rs17762454, p-value = 

1x10
-5

 in our data); after approximate conditional analysis on the FG variant, WHRadjBMI 

association signal did not change (rs1294421, conditional p-value = 6.33x10
-8

) and this was true also 

for FG-association signal after conditioning on the WHR variant (rs17762454, conditional p-value = 

8x10
-6

). 

 

For 19 regions the association signal at one phenotype was not completely explained by the signals 

observed for other phenotypes within the same region; based on this unclear profile, and on our 

inability to interpret this kind of multiple association signal, we decided to classify these regions as 

“Partially Explained” (PE). An example is the JAZF1 locus in figure 3.32: here two variants in low LD 

(r
2
 = 0.48) are associated, one with height (rs1708299, p-value = 1.8x10

-17
) and another with T2D 

(rs849134, p-value = 3.22x10
-10

); approximate conditional analysis on the T2D variant (rs849134) 

considerably decreased the height association signal, but it remained near the genome-wide 

significance level (rs1708299, conditional p-value = 3.32x10
-7

); the same behaviour was observed for 

Figure 3.31: Regional plots of the LY86/RREB1 locus before (A.1 and B.1) and after (A.2 and B.2) approximate 

conditional analysis. A.1: This locus was associated with WHRadjBMI (violet circle points rs1294421, p-value = 

5x10
-8

 in our data) B.1: and with FG (violet circle points rs17762454, p-value = 1x10
-5

). A.2: Conditioning the 

WHRadjBMI (rs1294421) signal for the FG one (rs17762454), regional association for WHRadjBMI did not 

decrease (conditional p-value = 6.33x10
-8

). B.2: Either conditioning the FG (rs17762454) signal for the WHRadjBMI 

one (rs1294421), regional association for FG did not significantly decrease (conditional p-value = 8x10
-6

). This 

region was thus classified as Not Explained signals (NE). 
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the T2D association signal (rs849134) after conditioning on the height variant (conditional p-value = 

6x10
-8

). 

 

The remaining 31 regions were mixed, that is they included both explained and unexplained signals 

(complex, C). An example is represented in figure 3.33: the region of the TOP1 locus contains three 

variants, rs6072275 associated with FG (p-value = 3x10
-5

), rs4297946 associated with TC (p-value = 

2.76x10
-17

) and rs909802 associated with LDL (p-value = 3x10
-19

); we observed that the FG signal 

(rs6072275) conditioned on the TC one (rs4297946) and on the LDL one (rs909802) did not change 

its pattern of association (conditional p-value = 2x10
-5

 for both analyses); we obtained the same 

result even when we conditioned the TC signal (rs4297946) and  the LDL signal (rs909802) on the FG 

variant (rs6072275, conditional p-value became 2x10
-18

 for TC and 2.1x10
-21

 for LDL). We noted, 

instead, a decrease of the association signal when we condition the TC association (rs4297946) on 

the LDL variant (rs909802), resulting in a conditional p-value = 0.09, and also when conditioning the 

LDL signal (rs909802) on the TC variant (rs4297946) (conditional p-value = 0.4). This pattern can be 

explained as an independent signal of association between both rs6072275 - rs4297946 and 

rs6072275 - rs909802 and, instead, a shared association between rs4297946 and rs909802. This is 

confirmed by pairwise LD values between these variants from 1000Genomes reference panel 

(r
2

rs6072275-rs4297946 = 0.246, r
2

rs6072275-rs909802 = 0.230 and r
2

rs4297946-rs909802 = 0.935). 

Figure 3.32: Regional plots of the JAZF1 locus before (A.1 and B.1) and after (A.2 and B.2) approximate conditional 

analysis. A.1: This locus was associated with HEIGHT (violet circle points rs1708299, p-value = 1.8x10
-17

 in our data) 

B.1: and with T2D (violet circle points rs849134, p-value = 3.22x10
-10

). A.2: Conditioning the HEIGHT (rs1708299) 

signal for the T2D one (rs849134), regional association for HEIGHT decreased, but still near G-W significance level 

(conditional p-value = 3.32x10
-7

). B.2: Conditioning the T2D (rs849134) signal for the HEIGHT one (rs1708299), 

regional association for T2D decreased, but remained at a borderline G-W significance level (conditional p-value = 

6x10
-8

). This region was thus classified as Partially Explained signals (PE). 
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3.3.3.4 Final interpretation of cardiometabolic loci architecture 

Table 3.8 reports the complete classification of studied genomic regions. 

Starting from 151 regions, we identified 14 (9.27% of the total) as single SNP (S) ones; the majority 

of them showed associations with related phenotypes (11 R, or HD; 78.60%) and only three were 

reported in the literature as associated with multiple not highly correlated phenotypes: rs13107325 

at SLC39A8 locus associated with SBP and DBP, BMI and HDL; rs1883025 at ABCA1 locus associated 

with HDL and TC; and rs10401969 at CSPG3/CILP2/PBX4 (chondroitin sulfate proteoglycan 

3/cartilage intermediate layer protein 2/pre-B-cell leukemia homeobox 4) locus associated with LDL 

and TC, but also with TG and T2D. 

 

We defined 41 (27.15% on the total) regions with Explained signals (E), that is with potential shared 

patterns of multi-phenotype associations; all of them contained variants in strong (29 with r
2
 > 0.8) 

or moderate (12 with r
2
 > 0.5) LD. 21 (51%) showed multiple associations with highly related 

phenotypes (R and HD) or with the same phenotype, and 20 (49%) with at least with two non-

Figure 3.33: Regional plots of TOP1 locus before (A.1, B.1 and C1) and after (A.2, B.2, C.2, A.3, B.3 

and C.3) approximate conditional analysis. A.1: this locus was associated with FG (rs6072275, p-

value = 3x10
-5

 in our data), B.1: TC (rs4297946, p-value = 3x10
-17

). C.1: and LDL (rs909802, p-value = 

3x10
-19

). We observed that the FG signal conditioned on the TC (A.2) and LDL (A.3) variants did not 

change the pattern of association; we obtained the same result even when we conditioned TC (B.2) 

and LDL (B.2) on the FG variant. We noted, instead, a decrease of the association signal when we 

condition TC on the LDL variant (B.3) (conditional p-value = 0.09) and LDL on the TC variant (C.3) 

(conditional p-value = 0.4). We thus classified this region as Complex signals (C). 
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related phenotypes (NR or MIXED). The latter are the most interesting regions as they are 

potentially pleiotropic; they include: ANGPTL3/DOCK7, GALNT2, RBJ/DNAJC27 (DnaJ homolog 

subfamily C member 27), GCKR, IRS1, TIMD4/HAVCR1 (T-cell immunoglobulin and mucin domain 

containing 4/ hepatitis A virus cellular receptor 1), CDKAL1, RSPO3 (R-spondin 3), KLF14, LPL, 

SLC30A8, TRIB1 (tribbles pseudokinase 1), ARAP1/CENTD2, UBASH3B, LRP1, SH2B3/BRAP (SH2B 

adaptor protein 3/BRCA1 associated protein), CCDC92/ZNF664 (coiled-coil domain containing 

92/zinc finger protein 664), FTO, PLCD3/ACBD4 and PLTP. 

 

32 (21.19% on the total) regions contained Complex signals (C), in other words, some explained and 

some unexplained. 6 (19%) were associated with related phenotypes, while 26 (81%) showed mixed 

associations or associations with non-highly related phenotypes. Between them, the most 

interesting overlapping, and thus potential pleiotropic, signals were: LYPLAL1 (lysophospholipase-

like 1) for its association with FI and WHRadjBMI; COBLL1/GRB14 associated with FI, T2D, WHR, TG 

and HDL; PPARG/RAF1 (RAF1 is v-raf-1 murine leukemia viral oncogene homolog 1) in T2D and FI; 

TET2 (tet methylcytosine dioxygenase 2) associated with FI and height; MICA/HLA (MHC class I 

polypeptide-related sequence A/major histocompatibility complex) for its associations with height 

and TG; HMGA1/C6orf107/UHRF1BP1 (UHRF1 binding protein 1) in TC, HDL and height; PPP1R3B 

associated with FG, FI HDL, LDL and TC; FADS1/2/3 for TG, TC, LDL and FG; MC4R for its effects on 

BMI, WC, height, HDL and T2D; and finally GIPR/QPCTL (glutaminyl-peptide cyclotransferase-like) 

and its association with 2hGlu and BMI.  

 

45 (29.8% on the total) regions contained Not Explained signals (NE), suggestive of independence 

between included variants and thus of multi-phenotype allelic heterogeneity. Our inspection of 

regional plots and approximate conditional analyses was supported by the fact that all NE regions 

contained variants with no LD (r
2
 < 0.2), or just low LD (r

2
 < 0.5). In addition, NE regions were 

predominantly associated with lowly correlated phenotypes (35.78%). 

 

Also, after approximate conditional analysis, for 19 (12.58% on the total) regions we were not able 

to understand if the multiple signals of association overlapped or not, as the conditional analysis led 

to a decrease of the original association signal, but not to a complete loss of the significance of 

association. We defined these regions as Partially Explained (PE) signals.  

 

 

3.3.4 Discussion 

 

Discerning the real genetic mechanisms behind cross-phenotype effects is an important phase for 

evaluation and quantification of the shared genetic basis and physiology of phenotypes, including 

pathogenesis and disease risk.  

In the precedent project we analysed combinations of CP effects at single DNA variants, but we 

realised that it is also important to consider the architecture of whole loci showing multiple 

phenotype associations. In particular we were interested in verifying the possibility of pleiotropy for 
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cardiometabolic phenotypes, and distinguishing it from allelic heterogeneity. 

When two or more SNPs in the same region show a multi-phenotype association signal, the pattern 

of associations may occur either due to overlapping signals of association, where the variants tag 

the same functional region, or to multi-phenotype allelic heterogeneity, where the identified 

variants co-localise in the same genomic region but represent independent signals. 

In the present project, we systematically applied descriptive and statistical analyses, using GWAS 

results for 21 cardiometabolic phenotypes (available within the XC-Pleiotropy group) and LD 

information estimated from 1000Genome CEU reference panel and from three European ancestry 

cohorts. Our aim was to discern multi-phenotype allelic heterogeneity from real overlapping signals 

at each genomic locus containing multiple cardiometabolic phenotype associations, and thus dissect 

and characterise the genetic architecture of the corresponding regions. 

 

Our results highlighted that a substantial proportion (29.8%) of metabolic phenotype loci 

incorporate complex patterns of potential multi-phenotype allelic heterogeneity: in fact, we 

observed that the presence of multiple cardiometabolic phenotype effects could be explained by 

suggestive independent signals of associations in 45 genomic regions out of the 151 analysed. They 

could underlie different causal genes that are involved in the determination of distinct phenotypes 

through separate functional mechanisms. An example is the LY86/RREB1 region, described in figure 

3.31: two non-overlapping signals are present at this region in association with WHRadjBMI and FG; 

the WHRadjBMI-associated variant (rs1294421) maps nearer LY86 gene, which encodes for a protein 

that participates in the innate immune response; the FG variant (rs17762454) instead maps within 

RREB1 sequence, a gene encoding a transcription factor that binds to the RAS-responsive elements 

of gene promoters. These two genes could separately influence WHRadjBMI and FG. 

 

Moreover, approximate conditional analysis of multi-phenotype effects allowed the definition of at 

least 87 (57.62%) genomic regions with the same associated genetic variant, or variants attributable 

to the same causal mutation, affecting multiple cardiometabolic phenotypes. For them, in fact, our 

analyses confirmed the overlap between multi-phenotype effects, thus, suggestive for pleiotropy, 

and we can therefore exclude allelic heterogeneity as genetic mechanism leading to multiple 

associations. 

Of these regions, those where shared associations are with non-highly correlated phenotypes (42, 

27.8% of the total) are particularly relevant because it is less probable that their genetic association 

for one phenotype might reflect associations for the other phenotype, in the sense that the effect is 

partially or totally explained through the association with the other phenotype. 

Within this group, some noteworthy examples are: a single missense variant (rs13107325) at 

SLC39A8 locus, well-known variants at GCKR, IRS1, CDKAL1, RSPO3, KLF14, SH2B3/BRAP, FTO, 

PLCD3/ACBD4, LYPLAL1, COBLL1/GRB14, PPARG/RAF1, TET2, HMGA1/C6orf107/UHRF1BP1, 

PPP1R3B, FADS1/2/3, MC4R and GIPR/QPCTL. 

 

Even if we can exclude allelic heterogeneity at these loci, the real mechanisms of multiple effects 

cannot be inferred from our analysis, as it might be pleiotropy, but possibly something else. For 
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example, our approach is not able to verify the presence of mediation among associated 

phenotypes at one locus. 

In addition, our analyses were not able to clarify the pattern of multi-phenotype associations at 19 

regions. 

Another limitation of our approach is the use of an “approximate” conditional analysis: in fact, the 

method implemented in the GCTA software is, of course, highly useful since it works directly on 

genome-wide meta-analysis results instead than on cohort-level data (that are less publicly 

available), but it incurs in an approximation due to the use of an external reference panel, instead of 

data from the original cohorts, for LD estimation and calculation of conditional p-values. In this 

analysis, we tried to limit, as much as possible, the errors of this approximation by using, as 

reference, cohorts having the same ancestry as samples analysed in GWAS meta-analyses. Previous 

studies, in fact, demonstrated that this method leads to results that are consistent with those 

obtained with exact conditional analysis directly on cohort-level data, when the reference sample is 

from the same general population as the discovery sample, even if independent
181

. 

In addition, we used three different cohorts for our analyses and, even if two of the three used 

cohorts had a sample size below the recommended value of 2,000 individuals
181

, we evaluated the 

attainment of comparable results using them separately: our results demonstrated robust with 

respect to the choice of reference samples.  

 

The approaches developed in this project and in the previous one have the limit of not allowing the 

discovery of novel variants across the genome, besides those already established from single-

phenotype GWASs. We thus did not considered polymorphisms which could have a strong overall 

multiple effect on more than one phenotype, without standing out in univariate GWAS analyses, in 

the dissection of loci architecture. In the following section, I will present a third project where we 

applied a multivariate GWAS meta-analysis, with the aim of identifying novel variants associated 

with multiple cardiometabolic phenotypes. 
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3.4 Project 3: A multivariate approach for the study of 

pleiotropy within cardiometabolic phenotypes 
 

3.4.1 Introduction and Aim 

 

In the previous sections we have described approaches for studying multi-phenotype effects and for 

deepening the knowledge about their mechanisms using available results from univariate data.  

Nevertheless, analyses of individual phenotypes are typically limited by (1) the reduced power, 

arising from the known differences in the magnitude of the observed effects and in sample sizes of 

phenotype-specific meta-analyses; (2) the increased heterogeneity between larger numbers of 

genetic studies included, especially in the low and rare allele frequency range; (3) the explanation of 

a reduced proportion of phenotypic variability, due also to a limited power in detecting low 

frequency variants and rare variants; (4) a limited capacity in defining multi-phenotype models of 

association and in interpreting biological functional roles of genetic loci in associated phenotypes. 

Another of our aims was thus to apply other powerful multivariate methods directly on cohort-level 

data because this strategy can lead us to the discovery of novel unknown variants with evidences of 

cross-phenotype effects at a genome-wide level, and provides the possibility of evaluating the 

hypothesis of pleiotropy through calculation and comparison of test statistics. 

Since the XC-Pleiotropy group has only GWAS meta-analysis result data for cardiometabolic 

phenotypes at its disposal, we collaborated within the ENGAGE consortium to perform our analyses 

on its cohort-level data. 

 

The statistical evaluation of multi-phenotype effects through comprehensive modelling and 

systematic analysis across the genome is challenging. Multivariate association methods have 

emerged as computationally feasible in large-scale studies, and powerful for dissecting the genetic 

mechanism at loci associated with several phenotypes
62

. 

In this third project, we thus undertook multi-phenotype analysis by extending the MultiPhen
62

 

methodology from O’Reilly and colleagues (see chapter “2.2.2.3_Multivariate approaches” for a 

description of the original method) and implementing it in a new software: PLEIOTROPY, which 

models allelic effects on multiple correlated phenotypes. Simulations demonstrated that this 

method increases power to detect novel associations over single-phenotype analysis by allowing for 

correlation between phenotypes
62

. 

 

We undertook this project following a two-stage study design, which allowed implementation of 

two complementary approaches: firstly, (1) in stage one we applied a multivariate approach for a 

genome-wide multi-phenotype analysis and meta-analysis of imputed data up to the 1000 Genomes 

Project reference panel
165

 for four plasma lipids (TG, TC HDL and LDL) and BMI to evaluate 

comprehensively genetic effects on multiple correlated metabolic phenotypes; secondly, (2) in stage 

two, detailed follow-up analyses at two known loci were conducted in a comprehensive set of 
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cardiometabolic phenotypes for systematic investigation of the mechanism that underlies the multi-

phenotype effects observed at these loci in the genome-wide analysis. This was achieved by 

employing a two-step multi-phenotype analysis approach that allowed model selection of the best 

combination of phenotypes that fits the data. In step-one of the analysis, we included cohorts with a 

wide range of phenotypes available and we investigated the effects of variants at these two loci on 

this wide range of traits and diseases simultaneously at a study level and across all cohorts through 

meta-analysis. Based on the best models prioritised in the step-one meta-analysis, we selected the 

traits that could be tested in step-two of the analysis, including an additional set of cohorts with a 

smaller number of phenotypes available. 

For this second analysis we chose to evaluate the FTO and FADS1 loci. In fact, variants at the FADS1 

gene have been significantly associated in the literature with lipid phenotypes
141,145

, fasting 

glucose
117

, resting heart rate
184

, inflammatory bowel disease
185

 and Crohn's disease
186

 in single-

phenotype GWAS, making it highly feasible as a pleiotropic candidate. We have already illustrated 

the numerous associations attributed to the BMI-locus FTO
16

: T2D
102

, lipids
139

, FI
18

 and, as secondary 

effect, risk of coronary artery disease; Mendelian randomisation approaches have demonstrated 

that variants at FTO influence metabolic phenotypes through their effect on adiposity measured by 

BMI
89,90

. FTO was thus a good candidate for the study of pleiotropic effects, and it allowed us to 

verify if our approach gave results comparable with those from Mendelian randomisation and, thus, 

if it was appropriate also to distinguishing mediation from potential pleiotropy. 

 

3.4.1.1 The ENGAGE consortium 

ENGAGE (European Network for Genetic and Genomic 

Epidemiology) is a research project started in January 

2008, funded by the European Commission under the 

7th Framework Programme-Health Theme and with 

duration of five years (http://www.euengage.org/, see 

figure 3.34 for the logo of the consortium).  

The ENGAGE Consortium is composed by 24 leading research organizations and two biotechnology 

and pharmaceutical companies across Europe, and in Canada and Australia, and it integrates and 

analyses one of the largest ever human genetics dataset (more than 80,000 genome-wide 

association scans and DNAs and serum/plasma samples from over 600,000 individuals). 

ENGAGE aims to translate the wealth of data emerging from large-scale research in genetic and 

genomic epidemiology from European (and other) population cohorts into information relevant to 

future clinical applications in medicine. The concept of ENGAGE is to enable European researchers 

to identify large numbers of novel susceptibility genes that influence metabolic, behavioural and 

cardiovascular traits, and to study the interactions between genes and life style factors. The final 

goal is to investigate the origins and causes of diseases, and to demonstrate that findings from these 

studies can be used as diagnostic indicators for common diseases, and will help to understand 

better risk factors, disease progression and why people differ in responses to therapeutic treatment.

 

Figure 3.34: Logo of the ENGAGE consortium. 
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In collaboration with the ENGAGE consortium, we had the possibility to work using large cohort’s 

data for our study of multivariate association analysis for cardiometabolic phenotypes. 

 

 

3.4.2 Stage one: Genome-wide multi-phenotype meta-analysis of lipids five-

trait and BMI 

3.4.2.1 Materials and Methods 

Studies 

The genome-wide analysis included 19 GWAS in different cohorts with up to 51,725 individuals. The 

studied cohorts included 58BC
187

, deCODE
116,128,145

, DGI
188

, DIL, EGCUT_370
189,190

, EGCUT_omni
189,190

, 

FINRISK
191

, Finnish Twin Cohort
192

, Health 2000 GENMETS sub-study
193

, Helsinki Birth Cohort 

Study
194,195

, KORAF4
196

, Leiden Longevity Study
197

, NFBC66
198-200

, NTR
201

, PIVUS
183

, TWINGENE, 

ULSAM
202

 and Cardiovascular Risk in Young Finns Study
203

 (table 3.9). All participants were adults 

and of European ancestry. All subjects provided informed consent and all studies were approved by 

local ethics committees. 

Genotyping and quality control 

Contributing GWAS included in undertaken analyses were genotyped with a range of genome-wide 

arrays (table 3.9). 

The quality criteria for filtering of poorly genotyped individuals prior to imputation in each study 

included: (1) call rate < 93%; (2) sex-discrepancies; (3) ethnic outliers; (4) excess of heterozygosity; 

(5) known relatedness and (6) MDS (multidimensional scaling) outliers. 

The quality criteria for filtering of low quality SNPs were: 1) minor allele frequency (MAF) < 1%; 2) 

call rate < 95%, or < 99% if SNP has MAF < 5%; 3) failure of Hardy-Weinberg Equilibrium (HWE) exact 

test (precise threshold depending on studies); 4) sex chromosome SNPs. 

Imputation was performed using the 1000 Genomes Project Phase 1 interim, including 2,188 

haplotypes from “ALL” populations released in June 2011 or later release of the reference panel
165

. 

A total of 38 million autosomal SNPs were imputed using IMPUTE2 (with the exception of the 

deCODE cohort, for which deCODEs own software was used). Study-specific information regarding 

genotyping platforms and imputation methods are listed in table 3.9. 
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Table 3.9: Characteristics of cohorts used for stage one genome-wide multi-phenotype analysis. 

Short study name Long study name Ethnicity Country References Sample size Genotyping array Imputation 

software

Reference panel 

used for 

imputation

Website

58BC 1958 British Birth Cohort
White 

European
UK 187 2,556 Affy6.0 & Illumina 1M IMPUTE 2

1000 Genomes 

Phase I (interim)

http://www.ucl.ac.uk/ich/research-ich/mrc-

cech/cohort-studies/1958

deCODE deCODE study White 

European

Iceland 116,128,145 14,558 Illumina Human Hap and 

Omni chips

deCODEs own 

software

1000 Genomes 

Phase I (interim)

http://www.decode.com/

DGI Diabetes Genetics Initiative White 

European

Sweden and 

Finland

188 2,539 Affymetrix GeneChip® 

Human Mapping 500K 

Array Set

IMPUTE 2 1000 Genomes 

Phase I (interim)

http://www.broadinstitute.org/diabetes

DIL - White 

European

UK - 2,334 Illumina HumanHap550 IMPUTE 2 1000 Genomes 

Phase I (interim)

-

EGCUT_370 Estonian Genome Center, 

University of Tartu

White 

European

Estonia 189,190 833 Illumina HumanHap 300 IMPUTE2 1000 Genomes 

Phase I (interim)

www.biobank.ee

EGCUT_omniX Estonian Genome Center, 

University of Tartu

White 

European

Estonia 189,190 613 Illumina OmniExpress IMPUTE2 1000 Genomes 

Phase I (interim)

www.biobank.ee

FINRISK FINRISK White 

European

Finland 191 1,371 Illumina Human610-

Quad

IMPUTE 2 1000 Genomes 

Phase I (interim)

www.ktl.fi/finriski

FTC Finnish Twin Cohort White 

European

Finland 192 408 Illumina Human670-

QuadCustom

IMPUTE 2 1000 Genomes 

Phase I (interim)

http://www.nationalbiobanks.fi/index.php/studi

es2/30-finnish-twin-cohort

GenMets Health2000 GenMets Study White 

European

Finland 193, Health and functional capacity in 

finland, baseline results of the health 2000 

health examination survey. 2004. National 

Public Health Institute.

767/809 

cases/controls

Illumina Human610-

Quad

IMPUTE 2 1000 Genomes 

Phase I (interim)

http://www.nationalbiobanks.fi/index.php/studi

es2/8-health2000

HBCS Helsinki Birth Cohort Study White 

European

Finland 194,195 1,277 Illumina Human670-

QuadCustom

IMPUTE 2 1000 Genomes 

Phase I (interim)

http://www.thl.fi/en_US/web/en/project?id=235

72

KORA F4 Cooperative Health 

Research in the Region of 

Augsburg

white 

european

Germany 196 1,633 Affymetrix 6.0 IMPUTE 2 1000 Genomes 

Phase I (interim)

http://www.helmholtz-muenchen.de/en/kora-

en/kora-homepage/index.html

LLS Leiden Longevity Study White 

European

The 

Netherlands

197 1,769 Illumina Human660W-

Quad and Illumina 

OmniExpress

IMPUTE 2 1000 Genomes 

Phase I (interim)

https://www.lumc.nl/con/2095/83047/86636/866

48/

NFBC1966 

(anthro+fasting)

Northern Finland Birth 

Cohort 1966

White 

European

Finland 198 5,202 Illumina 

HumanCNV-370DUO 

Analysis BeadChip

IMPUTE 2 1000 Genomes 

Phase I (interim)

http:kelo.oulu.fi/NFBC/

NFBC66 (lipids) Northern Finland Birth 

Cohort Study 1966

White 

European

Finland 198-200 5,202 Illumina Infinium 

370cnvDuo

IMPUTE 2 1000 Genomes 

Phase I (interim)

http:kelo.oulu.fi/NFBC/

NTR Netherlands Twin Register White 

European

Netherlands 201 5,810 - IMPUTE 2 1000 Genomes 

Phase I (interim)

www.tweelingenregister.org

PIVUS Prospective Investigation of 

the Vasculature in Uppsala 

Seniors

White 

European

Sweden 183 793 Merged Metabochip and 

Omni Express

IMPUTE 2 1000 Genomes 

Phase I (interim)

http://www.medsci.uu.se/pivus/pivus.htm

Twingene Twingene White 

European

Sweden - 5,562 Illumina Human 

OmniExpress

IMPUTE 2 1000 Genomes 

Phase I (interim)

http://ki.se/ki/jsp/polopoly.jsp?l=en&d=9610

ULSAM Uppsala Longitudinal Study 

of Adult Men

White 

European

Sweden 202 1,003 Merged Metabochip and 

Omni 2.5M

IMPUTE 2 1000 Genomes 

Phase I (interim)

http://www.pubcare.uu.se/ULSAM";"http://ww

w.pubcare.uu.se/ULSAM

YFS The Cardiovascular Risk in 

Young Finns Study

White 

European

Finland 203 1,888 Illumina Human670-

QuadCustom

IMPUTE 2 1000 Genomes 

Phase I (interim)

http://youngfinnsstudy.utu.fi/
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Traits 

To investigate the multi-phenotype effects across the genome, information about five traits was 

used: BMI, HDL, LDL, TC and TG. Measurement of BMI followed standard procedures in all studies; 

BMI was then inverse normal transformed in men and women separately and sex-specific residuals 

after adjustment for age, squared age and other study specific covariates, including principal 

components and centre effects in multi-centric studies, were calculated. Lipid traits (HDL, LDL, TC 

and TG) were measured from serum or plasma extracted from whole blood, typically using standard 

enzymatic methods. If LDL was not directly measured, it was calculated using Friedewald’s Equation 

(LDL = TC–HDL–TG/5) for only those with TG below 400 mg/dl, otherwise set to missing. Lipid 

measurements deviating more than 5 standard deviations from the mean were set to missing. 

Individuals were excluded if they were receiving lipid-lowering medication at the time of sampling. 

After applying all these criteria, the lipid phenotypes were defined in men and women separately as 

the inverse normal transformed residuals resulting from the regression of the lipid measurement on 

age, squared age and other study specific covariates.  

Statistical analysis 

To investigate the effect of directly genotyped and imputed variants on the five traits 

simultaneously, we extended and implemented in a new software (called PLEIOTROPY) the recently 

published MultiPhen multivariate method
62

. This method was particularly appropriate for our study 

for three main reasons: (1) it utilises a robust multiple logistic regression to identify the linear 

combination of the traits most associated with the genotype at a SNP, (2) it allows the combination 

of both dichotomous and continuous phenotypes, as it makes no assumptions of their distribution 

and, finally, (3) it allows the analysis of correlated phenotypes as the beta coefficient for each 

phenotype is adjusted for the other phenotypes in the model, taking into account their correlation. 

In a standard genetic association study, a linear regression of the quantitative trait on SNP 

genotypes is usually performed. However, in the current method, for joint analysis of K phenotypes, 

we modelled the genotype, Gij, of the ith individual, at the jth variant, coded as 0, 1 or 2, according 

to the number of minor alleles it carries, as a linear function of phenotype values, yi, in a logistic 

regression framework. Specifically,  

, 

where g
-1

 was the logit link function, αj was the intercept, and βj was a vector of phenotype 

regression coefficients for the jth variant. For imputed variants, we assigned the genotype with 

maximal posterior probability. Under this model, we obtained maximum-likelihood estimates (and 

standard errors) of the phenotype regression coefficients and the corresponding deviance Dj defined 

as: 

 

with an approximate chi-squared distribution with n degrees of freedom, where lj is the log-

likelihood of the jth logistic regression model and l0 is the log-likelihood for the null model. 

 

We carried out GWAS in N cohorts for K (five in this case) phenotypes jointly; then we applied a 

multi-phenotype fixed-effects inverse-variance weighted meta-analysis of the N cohorts by 

obtaining a combined deviance, , having an approximate chi-squared distribution with NK 
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degrees of freedom and we selected variants with significant multi-phenotype effects based on a p-

valueLRT < 5x10
-8

 (p-value of the Likelihood Ratio Test for joint association). 

 

To parse the meta-analysis results, to allow us to evaluate the ability of the five-trait model to 

dissect multi-phenotype effects at the genome-wide significant loci, and to identify the main drivers 

of the observed multi-phenotype associations at each locus, two further analyses were conducted: 

1) fixed-effects inverse-variance weighted meta-analysis of each trait regression coefficients from 

the multi-trait model using GWAMA software
204

; 2) conditional analysis for each trait conditioning 

on the remaining four traits in each study followed by fixed-effects inverse-variance weighted meta-

analysis using GWAMA in the same set of studies as those used in the multi-phenotype meta-

analysis. 

 

3.4.2.2 Results 

We undertook a genome-wide association analysis of multi-phenotype effects through joint-

modelling of BMI, HDL, LDL, TC and TG in up to 51,527 individuals within each of 19 European 

ancestry GWAS with 1000 Genomes-imputed data, followed by meta-analysis across all studies.  

Through fixed-effects inverse-variance weighted meta-analysis of estimates of phenotype regression 

coefficients from the multi-phenotype model, we detected 26 multi-phenotype association signals 

achieving genome-wide significance (p-valueLRT < 5x10
-8

, table 3.10 and figure 3.35). 

All signals are localized within or near loci previously associated with lipid traits in large-scale meta-

analyses of single-trait GWAS
145,205

 (figure 3.36). 

Locus SNP Chr
Position 

(b37)

Effect 

Allele

Other 

Allele
EAF N

N 

Cohorts
pLTR pBMI pHDL pLDL pTC pTG

CELSR2 rs12740374 1 109817590 G T 0.22 33,200 16 2.6x10-47 0.002362 3.6x10-08 0.108898 0.001165 8.6x10-06

PCSK9 rs11591147 1 55505647 G T 0.01 46,549 18 1.6x10-37 0.025089 5.0x10-06 0.090381 8.4x10-04 3.4x10-04

PCSK9 rs191448950 1 55584844 G A 0.01 42,477 17 1.5x10-52 0.035975 3.9x10-04 0.006649 3.5x10-04 2.3x10-04

DOCK7 rs61775910 1 62993403 G A 0.31 34,095 17 4.4x10-18 0.085002 0.573222 0.006796 1.6x10-04 3.9x10-04

APOB rs563290 2 21288226 G A 0.17 35,121 18 1.1x10-25 0.002962 0.009373 0.10829 0.061752 0.212319

GCKR rs1260326 2 27730940 T C 0.36 35,448 18 1.1x10-43 3.2x10-07 0.016247 0.847902 0.619513 3.0x10-28

ABCG8 rs4953023 2 44074000 G A 0.06 49,325 19 1.7x10-17 0.503171 0.224011 0.189971 0.020232 0.128563

MTHFD2L 4-75180409 4 75180409 T C 0.01 36,208 13 5.6x10-09 0.509875 0.252448 0.99921 0.052683 0.673972

HMGCR rs10474433 5 74616843 T C 0.34 50,539 19 2.7x10-22 0.02872 0.086567 0.060543 0.030685 0.047951

MLXIPL rs2240466 7 72856269 G A 0.12 36,017 17 1.4x10-14 1.8x10-10 0.104985 0.700401 0.359004 2.3x10-17

TRIB1 rs2954021 8 126482077 A G 0.47 36,127 17 3.2x10-19 2.5x10-10 0.115768 0.965079 0.13703 7.9x10-06

LPL rs139315015 8 19893297 A G 0.09 50,233 18 1.3x10-42 1.7x10-11 2.7x10-07 0.893757 0.749625 1.5x10-12

PPP1R3B rs4841132 8 9183596 A G 0.11 34,309 15 2.6x10-16 0.333951 4.1x10-05 0.28034 0.198573 0.218652

ABCA1 rs2575876 9 107665739 G A 0.22 34,728 16 7.6x10-22 0.662752 2.6x10-7 0.072887 0.017059 0.251427

APOA1 rs964184 11 116648917 G C 0.13 36,783 18 3.2x10-98 3.0x10-17 7.4x10-05 0.00441 6.1x10-04 3.0x10-23

MADD rs7109147 11 47338384 C T 0.36 36,932 18 2.6x10-11 0.227393 3.2x10-05 0.858387 0.684621 0.556788

FADS1 rs174550 11 61571478 T C 0.37 36,922 18 2.7x10-33 0.358195 0.007006 0.023035 4.1x10-07 2.3x10-18

LIPC rs1532085 15 58683366 A G 0.40 36,511 18 2.9x10-72 0.170515 2.0x10-39 0.040511 0.028331 6.7x10-18

CETP rs3764261 16 56993324 C A 0.31 34,047 17 4.0x10-212 4.4x10-23 2.6x10-63 0.004808 0.221944 3.0x10-05

NUTF2 rs111315946 16 67889793 G C 0.14 37,027 18 4.2x10-11 0.041327 1.4x10-06 0.367479 0.345876 0.977064

HPR rs12445401 16 72148419 A G 0.19 34,978 17 2.7x10-09 0.269564 0.479789 0.053008 0.611345 0.82832

LIPG rs4939883 18 47167214 T C 0.18 36,934 18 1.2x10-10 0.318471 1.6x10-05 0.08205 0.110444 0.217432

LDLR rs8106503 19 11196886 T C 0.10 26,697 15 6.4x10-56 0.023991 3.6x10-04 0.00946 0.017508 0.002633

CILP2 rs3794991 19 19610596 C T 0.09 49,399 17 1.1x10-14 0.331952 0.486681 0.214443 0.002063 0.029126

APOE rs1065853 19 45413233 G T 0.05 35,338 13 2.8x10-298 0.023336 6.0x10-21 9.3x10-08 1.5x10-07 1.7x10-45

HNF4A rs1800961 20 43042364 C T 0.04 28,816 16 2.2x10-08 0.634416 3.3x10-7 0.656425 0.89849 0.319165

PLTP rs6065906 20 44554015 T C 0.17 33,399 16 1.5x10-08 1.2x10-7 0.072091 0.201962 0.117541 2.5x10-08

Table 3.10: 26 multi-phenotype association signals achieving genome-wide significance obtained through joint-

modelling of BMI, HDL, LDL, TC and TG in 19 European ancestry cohorts. Position is based on build 37 of NCBI 

database; EAF: Effect allele Frequency; p: p-value. 
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We observed that at 

11 of these loci, 

associations were 

driven by an 

individual trait or 

two-trait effects; in 

other words, the 

individual effects for 

one or two traits 

were genome-wide 

significant in the 

multi-phenotype 

meta-analysis. In 

particular, we 

observed genome-

wide significant 

effects of variants 

at: 

1) TRIB1 on BMI, 

2) CETP on 

BMI/HDL, 

3) MLXIPL (MLX interacting protein-like), LPL, APOA1 on BMI/TG (see figure 3.35 and 3.37),  

4) GCKR, FADS1, PLTP on TG, 

5) CELSR2 (cadherin EGF LAG seven-pass G-type receptor 2) on HDL and

6) LIPC (lipase member C), APOE on HDL /TG (table 3.10 and figures 3.35 and 3.38). 

Figure 3.35: Loci with genome-wide significant joint effects on BMI and lipid traits in the multi-phenotype meta-

analysis. Loci are colour-assigned to groups defined based on the main drivers of the observed associations 

identified through fixed-effects inverse-variance weighted meta-analysis of estimates of trait regression coefficients 

from the multi-phenotype model. 

Figure 3.36: Genome-wide significant associations of the 26 loci with one or multiple 

lipid traits in previous single-trait meta-analyses. Venn diagram illustrates that all 26 loci 

have been previously associated with one or more lipid traits in single-trait GWAS meta-

analyses
144,201

. Loci are located according to their GW significant effects in single-trait 

analyses and are coloured according to the main drivers of the observed associations 

within the present fixed-effects inverse-variance weighted meta-analysis of estimates of 

trait regression coefficients from the multi-phenotype model. 
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The genome-wide significant effects of TRIB1, CETP, MLXIPL, LPL and APOA1 on BMI through meta-

analysis of individual trait estimates from the multi-phenotype model were observed for the first 

time and were missed by previously published single-trait meta-analyses
16,127

. These effects were 

revealed in the model, where the BMI effect estimates were adjusted for the four plasma lipids, thus 

taking into account trait correlation. 

 

At the remaining 15 loci, multiple traits contributed to the signal and, as such, the main drivers of 

the observed associations could not be determined, suggesting potential pleiotropic effects (table 

3.10, figure 3.39). 

 

To evaluate the ability of the five-trait model to dissect multi-phenotype effects at the genome-wide 

significant loci, we also performed conditional analyses within the same set of studies for each trait, 

with adjustment for the remaining four traits in each study, and we combined the study-specific 

results in fixed effects inverse-variance weighted meta-analyses. 

The conditional analysis confirmed the presence of associations with individual traits highlighted by 

Figure 3.37: Five loci with genome-wide significant effects on BMI in multi-trait association analysis, coloured 

bars represent z-score values of associations from multi-phenotype meta-analysis. 

Figure 3.38: Six loci with identified within the multi-trait association analysis with associations driven by effects 

on lipids, coloured bars represent z-score values of associations from multi-phenotype meta-analysis. 
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the multi-phenotype meta-analysis at most of the above mentioned loci: TRIB1, GCKR, PLTP, CELSR2, 

CETP, MLXIPL, APOA1, LIPC, APOE. 

On the other hand, most of the effects on the remaining lipid traits highlighted by the single-trait 

GWAS were attenuated or disappeared after conditioning (table 3.11). 

We evaluated multi-phenotype effects of 49 established BMI- and WHR-associated loci within our 

five-trait meta-analysis. Among these loci, we observed suggestive significance of joint effects only 

for FTO (p-valueLRT_rs1558902 = 8.9x10
-7

, r
2
=0.965 with rs9939609 used in follow-up analysis): only BMI 

reached genome-wide significance in the multi-phenotype meta-analysis of this variant (p-

valuers1558902 = 6.4x10
-15

) and no effect was observed for the four lipid traits in accordance with the 

evidence for mediation through adiposity at this locus
89,90

. 

Figure 3.39: 

15 pleiotropic 

loci where 

multiple traits 

contributed to 

the signal of 

association. 

A. Group of 

loci with low 

BMI, HDL and 

TG and high 

LDL and TC, 

none of these 

effects 

reached GW 

significance 

by itself. B. 

Loci with 

other trend of 

multiple 

effects that 

do not reach 

GW 

significance 

by itself. 

Coloured bars 

represent z-

score values 

of 

associations 

from multi-

phenotype 

meta-

analysis. 
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BMI HDL LDL TC TG

Locus SNP Chr
Position 

(b37)

Effect 

Allele

Other 

Allele
EAF N

N 

Cohorts
pLTR Effect SE Pvalue  Pcond Effect SE Pvalue  Pcond Effect SE Pvalue  Pcond Effect SE Pvalue  Pcond Effect SE Pvalue  Pcond Pvalue Pvalue Pvalue Pvalue Pvalue

CELSR2 rs12740374 1 109817590 G T 0.22 33,200 16 2.57E-47 -0.030807 0.010128 0.002362 0.164934 -0.106165 0.019261 3.63E-08 0.0000613 0.05948 0.037102 0.108898 0.000166 0.136116 0.041899 0.001165 0.000689 -0.077625 0.017433 0.0000086 0.309599 0.419271 2.21E-06 2.21E-55 9.02E-37 0.529667

PCSK9 rs11591147 1 55505647 G T 0.01 46,549 18 1.62E-37 -0.075507 0.033703 0.025089 0.832104 -0.299267 0.065535 0.00000503 0.086578 0.198142 0.117009 0.090381 6.92E-08 0.447266 0.133873 0.00084 1.08E-09 -0.206027 0.057433 0.000337 0.688377 0.967115 0.022193 2.01E-88 3.24E-68 0.157483

PCSK9 rs191448950 1 55584844 G A 0.01 42,477 17 1.55E-52 -0.064484 0.030744 0.035975 0.766613 -0.198317 0.055899 0.000391 0.418931 0.265571 0.097826 0.006649 0.0000583 0.399984 0.111828 0.00035 0.000483 -0.17939 0.048673 0.00023 0.505234 0.808992 0.037213 4.74E-93 1.16E-74 0.161699

DOCK7 rs61775910 1 62993403 G A 0.31 34,095 17 4.42E-18 -0.015515 0.009008 0.085002 0.133816 0.009954 0.017669 0.573222 0.133173 -0.09363 0.034582 0.006796 0.506351 0.146343 0.038805 0.000164 0.000609 0.055973 0.01577 0.000389 0.000297 0.682208 0.021712 0.0000111 2.57E-17 9.16E-21

APOB rs563290 2 21288226 G A 0.17 35,121 18 1.08E-25 -0.031991 0.010762 0.002962 0.024057 -0.054257 0.020877 0.009373 0.155102 0.065265 0.040641 0.10829 0.013191 0.085858 0.045959 0.061752 0.000578 -0.023341 0.018716 0.212319 0.846425 0.860189 0.40749 7.36E-31 9.1E-27 0.007804

GCKR rs1260326 2 27730940 T C 0.36 35,448 18 1.09E-43 0.043466 0.008501 0.000000324 0.03456 -0.039238 0.016323 0.016247 0.575389 -0.006145 0.032042 0.847902 0.028741 0.017945 0.036138 0.619513 0.000069 -0.164442 0.014909 2.96E-28 2.88E-23 0.174331 0.018219 0.222493 0.000000174 3.44E-57

ABCG8 rs4953023 2 44074000 G A 0.06 49,325 19 1.72E-17 -0.009468 0.014141 0.503171 0.065765 -0.031866 0.026208 0.224011 0.804877 0.06358 0.048512 0.189971 0.201343 0.126346 0.054403 0.020232 0.007566 -0.035861 0.023597 0.128563 0.323714 0.754151 0.411545 1.05E-32 1.9E-32 0.515406

MTHFD2L 4-75180409 4 75180409 T C 0.01 36,208 13 5.63E-09 -0.033643 0.051047 0.509875 0.985533 -0.10599 0.092618 0.252448 0.022345 -0.000181 0.182987 0.99921 0.001018 -0.401603 0.207264 0.052683 0.000321 0.035158 0.083563 0.673972 0.51561 0.472185 0.000991 1.9E-12 2.92E-17 0.01288

HMGCR rs10474433 5 74616843 T C 0.34 50,539 19 2.66E-22 0.015528 0.007098 0.02872 0.566793 0.022306 0.013016 0.086567 0.623903 -0.045092 0.024025 0.060543 0.054896 -0.058056 0.02686 0.030685 0.857002 0.023207 0.011733 0.047951 0.078422 0.21928 0.820104 2.19E-41 1.36E-36 0.345131

MLXIPL rs2240466 7 72856269 G A 0.12 36,017 17 1.34E-14 -0.069574 0.010896 1.77E-10 0.000039 0.032837 0.020256 0.104985 0.901751 -0.014612 0.037974 0.700401 0.780558 -0.038931 0.042443 0.359004 0.080017 0.153015 0.018037 2.31E-17 3.38E-09 0.022845 0.001354 0.020654 0.709361 1.51E-21

TRIB1 rs2954021 8 126482077 A G 0.47 36,127 17 3.21E-19 0.051199 0.008086 2.51E-10 0.000000824 0.02468 0.015692 0.115768 0.00451 -0.001349 0.030814 0.965079 0.617066 -0.051727 0.034789 0.13703 0.683161 -0.063834 0.014278 0.0000079 0.00000224 0.140721 1.67E-05 2.16E-14 1.13E-18 4.4E-27

LPL rs139315015 8 19893297 A G 0.09 50,233 18 1.26E-42 -0.080908 0.012012 1.69E-11 0.001499 -0.118016 0.022943 0.000000275 0.00000185 0.005583 0.041809 0.893757 0.021896 -0.014943 0.046822 0.749625 0.0511 0.140142 0.019798 1.52E-12 0.0000175 0.479022 2.45E-53 0.031594 0.073029 5.83E-69

PPP1R3B rs4841132 8 9183596 A G 0.11 34,309 15 2.6E-16 -0.013005 0.01346 0.333951 0.290446 0.101294 0.024673 0.0000408 0.00000412 0.051861 0.048041 0.28034 0.011853 0.069532 0.054087 0.198573 0.000209 -0.028371 0.023065 0.218652 0.644854 0.072013 1E-18 2.36E-11 7.81E-17 0.006492

ABCA1 rs2575876 9 107665739 G A 0.22 34,728 16 7.6E-22 0.004317 0.009898 0.662752 0.297798 0.019215 0.061322 0.000000264 0.00072 -0.068318 0.03809 0.072887 0.365332 0.102263 0.042861 0.017059 0.000511 0.020204 0.017617 0.251427 0.572749 0.50645 7.38E-22 0.000424 6.48E-14 0.207101

APOA1 rs964184 11 116648917 G C 0.13 36,783 18 3.21E-98 0.100467 0.011886 3E-17 0.0000123 0.088177 0.022239 0.0000741 0.00000444 0.125192 0.043955 0.00441 0.000134 -0.171162 0.049909 0.000608 0.000216 -0.212291 0.021356 2.96E-23 2.44E-27 0.936689 3.4E-23 3.56E-11 5.96E-22 7.82E-104

MADD rs7109147 11 47338384 C T 0.36 36,932 18 2.55E-11 0.010049 0.008325 0.227393 0.352476 -0.067329 0.01617 0.0000317 0.00000664 0.005654 0.03169 0.858387 0.275889 0.014527 0.035763 0.684621 0.252964 -0.008545 0.014542 0.556788 0.107813 0.019245 3.86E-15 0.000665 0.201481 0.0000593

FADS1 rs174550 11 61571478 T C 0.37 36,922 18 2.7E-33 -0.007637 0.008312 0.358195 -0.043407 0.016093 0.007006 -0.072011 0.031678 0.023035 0.181229 0.03575 0.000000407 -0.128076 0.01464 2.29E-18 0.02298 1.35E-11 6.48E-18 3.04E-15 1.79E-17

LIPC rs1532085 15 58683366 A G 0.40 36,511 18 2.88E-72 -0.01129 0.008238 0.170515 0.513884 -0.211537 0.016093 2.01E-39 2.55E-18 -0.064262 0.031368 0.040511 0.083257 0.077678 0.035422 0.028331 0.00085 -0.125067 0.014499 6.72E-18 0.0000956 0.158757 2.77E-65 0.124208 5.33E-15 0.0012

CETP rs3764261 16 56993324 C A 0.31 34,047 17 4E-212 -0.090686 0.009159 4.4E-23 0.00000708 -0.299023 0.017795 2.59E-63 1.57E-41 0.095374 0.033814 0.004808 0.000024 -0.046823 0.038338 0.221944 0.181002 -0.065359 0.015655 0.0000301 0.015858 0.918585 5.7E-167 2.34E-10 0.0000634 0.0000136

NUTF2 rs111315946 16 67889793 G C 0.14 37,027 18 4.24E-11 -0.023569 0.011551 0.041327 0.257638 -0.109205 0.022652 0.00000145 0.00000232 0.039664 0.044013 0.367479 0.741103 -0.046963 0.049822 0.345876 0.803047 0.000575 0.020002 0.977064 0.05515 0.160387 5.27E-21 0.789561 0.007959 0.013562

HPR rs12445401 16 72148419 A G 0.19 34,978 17 2.75E-09 -0.01154 0.010452 0.269564 0.271611 -0.014317 0.020259 0.479789 0.737575 -0.076723 0.039651 0.053008 0.000192 -0.022668 0.044605 0.611345 0.000255 -0.003969 0.018304 0.82832 0.1901 0.772514 0.407844 1.28E-17 7.8E-18 0.001709

LIPG rs4939883 18 47167214 T C 0.18 36,934 18 1.24E-10 0.010464 0.010489 0.318471 0.645592 0.088197 0.020445 0.0000162 0.000014 -0.070893 0.040768 0.08205 0.399292 0.073205 0.045863 0.110444 0.08265 0.022921 0.018585 0.217432 0.637784 0.274208 1.96E-25 0.521689 0.0000387 0.139993

LDLR rs8106503 19 11196886 T C 0.10 26,697 15 6.37E-56 -0.034915 0.015465 0.023991 0.418991 -0.108576 0.030429 0.000362 0.000164 0.150579 0.058012 0.00946 0.000109 0.157835 0.06642 0.017508 0.0000067 -0.081371 0.027045 0.002633 0.642007 0.731207 0.360399 7.86E-89 1.3E-62 0.1664

CILP2 rs3794991 19 19610596 C T 0.09 49,399 17 1.06E-14 -0.011619 0.011976 0.331952 0.928845 -0.015229 0.021893 0.486681 0.001197 -0.04888 0.039375 0.214443 0.000635 0.135373 0.04392 0.002063 0.005793 0.042503 0.019478 0.029126 0.111474 0.980303 0.680915 3.42E-18 3.65E-23 1.18E-17

APOE rs1065853 19 45413233 G T 0.05 35,338 13 2.8E-298 -0.042938 0.01893 0.023336 0.133632 -0.35361 0.03763 5.97E-21 0.760563 0.344251 0.064424 9.32E-08 0.002952 0.388545 0.073875 0.000000148 0.0000312 -0.471843 0.033318 1.74E-45 0.000000432 0.43453 3.22E-10 0 4.45E-203 1.22E-24

HNF4A rs1800961 20 43042364 C T 0.04 28,816 16 2.2E-08 0.010048 0.021129 0.634416 0.143275 0.204167 0.039982 0.000000335 0.000161 0.033951 0.076315 0.656425 0.532339 0.010928 0.08568 0.89849 0.333895 0.036102 0.036242 0.319165 0.806944 0.557646 1.34E-16 0.025404 0.00000189 0.977517

PLTP rs6065906 20 44554015 T C 0.17 33,399 16 1.52E-08 0.046362 0.00873 0.000000112 0.033653 0.028018 0.015578 0.072091 0.330938 -0.035847 0.028095 0.201962 0.311103 0.049114 0.03138 0.117541 0.127754 -0.078857 0.014131 2.46E-08 0.0000125 0.58057 1.5E-11 0.912008 0.424536 0.000000011

Single-trait meta-analysisMulti-trait meta-analysis

BMI HDL LDL TC TG

Table 3.11: 26 multi-phenotype association signals achieving genome-wide significance within the five-trait meta-analysis. Conditional analyses and single-trait meta-

analysis within the same set of studies for each trait are also shown. Position is based on build 37 of NCBI; EAF: Effect allele Frequency; p: p-value. 
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Table 3.12: Phenotypic details of cohorts studied for follow-up multi-phenotype analysis. 

Short study name Long study name References Website Number of 

subjects with 

FTO and BMI 

data

Longitudinal data Age at BMI Mean BMI at 

baseline

Proportion 

women (%)

N with ever 

type 2 

diabetes 

N with ever any 

acute stroke or 

transient 

ischemic attack 

N with ever 

ischemic 

stroke

N with ever 

hypertensio

n

N with ever 

coronary heart 

disease 

N with 

total 

cholester

ol

N with systolic 

blood pressure

N with 

triglycerites

N with c-

reactive 

protein

N with LDL 

cholesterol

N with 

HDL 

cholester

ol

N with 

fasting 

glucose

N with 

diastolic 

blood 

pressure

N with 2h 

post OGTT 

glucose

Glucose: 

mean (SD) / 

mmol/L

2hG: mean 

(SD) / 

mmol/L

HDL-C: 

mean (SD) / 

mmol/L

LDL-C: mean 

(SD) / 

mmol/L

Triglycerides: 

mean (SD) / 

mmol/L

Total 

cholesterol: 

mean (SD) / 

mmol/L

Systolic blood 

pressure: mean (SD) / 

mmHg

Diastolic blood 

pressure: mean (SD) 

/ mmHg

CRP: mean 

(SD) / mg/L

EGCUT Estonian Genome Centre of the University 

of Tartu 

189,190 www.biobank.ee 11282 No 45.74 (18.34) 26.48  (5.52) 56.0% 1132 323 128 4362 537 2362 11277 1868 - 1872 1921 1757 11277 301 5.38 (0.79) 5.92 (1.20) 1.36 (0.70) 3.60 (1.63) 0.42 (0.50) 5.50 (1.18) 130.81 (21.75) 80.52 (12.92) -

FR02 Finnish Risk factor survey 2002 191 www.ktl.fi/finriski 8142 Yes 47.957 (13.12) 26.91 (4.68) 53.3% 746 228 157 3569 383 7549 8142 7549 8119 7454 7549 - 8142 - - - 1.51 (0.42) 3.45 (0.95) 1.40 (0.94) 5.60 (1.07) 137.13 (22.02) 80.46 (12.53) 2.49 (5.23) 

FR07 Finnish Risk factor survey  2007 191 www.ktl.fi/finriski 5900 Yes 50.45 (13.93) 27.13 (4.88) 53.3% 567 121 83 2874 196 5066 5877 3991 5900 3990 3991 3872 5874 3827 5.72 (0.46) 6.16 (1.65) 1.46 (0.35) 3.28 (0.82) 1.16 (0.74) 5.32 (0.99) 138.92 (22.69) 81.01 (12.55) 2.43 (5.03)

FR92 Finnish Risk factor survey  1992 191 www.ktl.fi/finriski 5536 Yes 44.39 (11,32) 26.13 (4.46) 53.9% 629 253 175 2415 410 5451 5537 5450 932 5330 5451 - 5536 - - - 1.40 (0.35) 3.55 (0.986) 1.50 (1.07) 5.62 (1.11) 136.84 (20.98) 82.18 (12.93) 4.05 (7.63) 

FR97 Finnish Risk factor survey  1997 191 www.ktl.fi/finriski 6747 Yes 47.79 (13.22) 26.63 (4.61) 53.3% 818 303 235 3191 516 6594 6807 6594 6457 6480 6594 - 6808 - - - 1.40 (0.36) 3.48 (0.92) 1.48 (1.03) 5.54 (1.05) 137.63 (21.78) 83.52 (12.47) 2.38 (5.91)

KORAF3 Cooperative Health Research in the Region 

of Augsburg, KOoperative 

Gesundheitsforschung in der Region 

Augsburg 

196 http://www.helmholtz-

muenchen.de/en/kora-en/kora-

homepage/index.html

2976 No 56.92 (12.76) 27.61 (4.62) 52.3% 238 - - 1476 - 231 2985 231 243 231 231 231 2985 - 6.41 (1.18) - 1.51 (0.46) 3.48 (0.91) 1.52 (1.27) 5.81 (1.02) 135.21 (22.48) 84.95 (11.61) 0.45 (0.85)

KORAF4 Cooperative Health Research in the Region 

of Augsburg, KOoperative 

Gesundheitsforschung in der Region 

Augsburg 

196 http://www.helmholtz-

muenchen.de/en/kora-en/kora-

homepage/index.html

3009 No 56.08 (13.26) 27.62 (4.81) 51.5% 214 - - 1158 - 3008 3018 3007 3018 3007 3007 2990 3018 2724 6.17 (1.20) 7.06 (2.47) 1.44 (0.37) 3.51 (0.90) 1.42 (1.02) 5.58 (1.02) 126.94 (21.19) 78.25 (10.95) 0.25 (0.53)

MPP Malmö Prevention Project 206 http://www.ludc.med.lu.se/res

earch-units/diabetes-and-

endocrinology/sample-

collections/malmoe-prevention-

project-mpp/

13616 No 45.2 (7.01) 24.28 (3.30) 33.3% - - - 4700 - 10880 9853 10870 - - 243 13615 9858 7370 5.46 (0.554) 5.64 (1.47) 1.55 (0.37) - 1.27 (0.78) 5.61 (1.04) 127.1 (14.2) 83.9 (8.8) -

NFBC1966 Northern Finland Birth Cohort 1966 198-200 http:kelo.oulu.fi/NFBC/ 4775 Yes 31.17 (0.35) 24.70 (4.28) 51.8% 123 33 13 419 17 4566 4769 4565 4755 4551 4566 4322 4762 - 5.70 (0.63) - 1.55 (0.38) 3.00 (0.89) 1.18 (0.73) 5.06 (0.99) 125.21 (13.88) 77.69 (11.60) 2.01 (3.66) 

NFBC1986 Northern Finland Birth Cohort 1986 198-200 http:kelo.oulu.fi/NFBC/ 5285 Yes 16.00 (0.37) 21.22 (3.48) 51.0% - - - 17 - 5110 5281 5110 5247 5110 5110 4789 5281 - 5.18 (0.73) - 1.40 (0.29) 2.25 (0.57) 0.84 (0.42) 4.26 (0.79) 115.48 (12.73) 67.69 (7.58) 0.99 (2.85)

PIVUS Prospective Investigation of the 

Vasculature in Uppsala Seniors 

183 http://www.medsci.uu.se/pivus

/pivus.htm

979 No 70.19 (0.17) 27.07 (4.3) 49.8% 34 35 - 144 27 784 975 784 972 782 784 855 975 - 5.57 (0.56) - 1.52 (0.43) 3.40 (0.84) 1.23 (0.56) 5.4 (0.98) 149.7 (22.7) 78.8 (10.2) 3.2 (4.8) 

ULSAM Uppsala longitudinal study of adult men 202 http://www.pubcare.uu.se/ULS

AM

1175 Yes 49.6 (0.6) 24.8 (3.0) 0.0% 48 274 167 438 271 1128 1175 1128 1082 917 917 1123 1175 908 5.50  (0.50) 6.90 (1.80) 1.40 (0.40) 5.20  (1.20) 1.8  (0.83) 6.8  (1.3) 131.4 (16.8) 82.6 (10.5) 3.3 (4.7)

WTCCCCont Wellcome Trust Case Control Consortium 

1958 Birth Cohohrt

207 www.wtccc.org.uk 5443 No 46(0) 27.37 (4.8) 45.7% 113 - - 1427 - 5352 5430 5341 2687 5041 5345 - 5430 - - - 1.11 (0.40) 2.95 (0.90) 2.10 (1.2) 5.00 (1.1) 139.46 (24.0) 81.14 (13.4) 2.20 (4.32)

QIMR-AUSTRALIA Twin studies at the Queensland Instutite of 

Medical Research

208-210 http://genepi.qimr.edu.au/ 11827 No 35.61 (17.41) 24.12 (5.12) 57.2% - - - - - 8315 - 8311 - 7962 8278 - - - - - 1.52 (0.42) 3.31 (0.93) 1.89 (1.24) 5.67 (1.05) - - -

deCODE deCODE genetics sample set 116,128,145 http://www.decode.com/ 36896 No 59.1 (18.0) 27.2 (5.3) 63.8% 2126 - 2366 8248 3568 18393 16726 17099 24128 16297 17009 12017 - - 5.25 (0.60) - 1.45 (0.42) 3.69 (1.08) 1.46 (0.94) 5.82 (1.17) 135.4 (20.4) - 38.7 (65.8)

DGIcases Diabetes Genetics Initiative of Broad 

Institute of Harvard and MIT, Lund 

University, and Novartis Institutes of 

BioMedical Research 

188 http://www.broadinstitute.org/

scientific-

community/science/projects/dia

betes-genetics-

initiative/diabetes-genetics-

initiative

1602 No 64.42 (10.32) 28.50 (4.40) 49.8% - 201 - 1101 447 1455 1584 1455 - 426 1414 - 1583 - - - 1.20 (0.31) 3.96 (1.04) 1.99 (1.43) 5.81 (1.18) 149.2 (20.8) 84.1 (10.2) -

DGIcontrols Diabetes Genetics Initiative of Broad 

Institute of Harvard and MIT, Lund 

University, and Novartis Institutes of 

BioMedical Research 

188 http://www.broadinstitute.org/

scientific-

community/science/projects/dia

betes-genetics-

initiative/diabetes-genetics-

initiative

1508 No 58.61 (10.16) 26.70 (3.78) 52.2% - 26 - 666 36 1416 1503 1416 - 710 1406 1387 1502 1017 5.32 (0.52) 5.64 (1.32) 1.39 (0.34) 4.03 (0.92) 1.32 (0.69) 5.93 (1.09) 135.9 (18.8) 81.5 (9.9) -

NESDA Netherlands Study of Depression and 

Anxiety 

201 http://www.nesda.nl/en/ 1927 No 41.90 (12.52) 25.65 (5.04) 67.6% 95 - - - - 1813 - 1810 1901 1795 1806 1722 - - 5.03 (0.58) - 1.63 (0.44) 3.13 (1.00) 1.29 (0.85) 5.11 (1.06) - - 2.84 (5.13) 

NTR Netherlands Twin Register 211 www.tweelingenregister.org 5416 No 42.55 (14.76) 25.25 (4.30) 61.2% 240 - - - - 5032 - 5032 4958 5021 5030 4821 - - 5.35 (0.53) - 1.42 (0.38) 3.10 (0.95) 1.32 (0.82) 5.12 (1.06) - - 3.30 (6.54) 

HELENA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MONALISA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

DIL - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MONICA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

PPP Prevalence, Prediction and Prevention of 

diabetes 

212 - 4355 No 47.90 (15.63) 26.31 (4.44) 53.8% 160 49 - 1778 210 3923 4355 3924 - 3881 3923 4173 4355 4144 5.28 (0.57) 5.24 (1.59) 1.42 (0.39) 3.30 (0.944) 1.26 (0.748) 5.30 (1.06) 129.3 (17.2) 79.1 (9.9) -

RS Rotterdam Study 213 http://www.epib.nl/research/er

go.htm

5745 Yes 69.0 (8.80) 26.3 (3.69) 58.7% 1178 149 - 3273 1557 3382 5791 3230 5567 3140 3331 3295 5790 - 5.88 (1.32) - 1.34 (0.37) 3.75 (0.88) 1.51 (0.73) 6.59 (1.22) 139.2 (22.3) 73.7 (11.5) 3.38 (6.8)

Twingene Cardiovascular risk factor study of  Swedish 

twin pairs 

- http://ki.se/ki/jsp/polopoly.jsp?

l=en&d=9610

6386 Yes  65.4(8.3)  26.2(4.2) 45.0% 640 461 254 3771 25 5401 6101 5398 6489 5322 5401 5657 6044 - 5.40 (0.60) - 1.4(0.41) 3.90 (0.93) 1.4(0.9) 5.94(1.1) 139.3(19.8) 81.6(10.5) 3.42(7.4)

TwinsUK TwinsUK 214 http://www.twinsuk.ac.uk/ 4829 No 52.79394(14.42

)

26.0598 (5.06) 0.0% 80 - - 572 - 4245 2646 4194 4035 4183 4247 4517 2646 966 4.66 (0.58) 6.78 (0.40) 1.47 (0.40) 3.41 (1.09) 1.05 (0.70) 5.44 (1.23) 121.41 (15.91) 76.60 (10.56) 2.65 (4.70)
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3.4.3 Stage two: Multi-phenotype follow-up analysis of two selected loci, 

FTO and FADS1, to dissect the mechanism of multi-phenotype effects 

3.4.3.1 Materials and Methods 

Studies 

Two loci, FTO and FADS1, were selected for detailed follow-up analyses of the genetic mechanisms 

of effects. The step-one analyses consisted of 12 studies with up to 72,247 individuals: EGCUT
189,190

, 

FINRISK92/FINRISK97/FINRISK02/FINRISK07
191

, KORAF3/KORAF4
196

; MPP
206

, NFBC1966 and 

NFBC86
198-200

, PIVUS
183

 and ULSAM
202

 (table 3.12). 

The step-two analysis included step-one plus 14 additional studies, which were: 58BC-WTCCC
207

, 

AUSTWINS
208-210

, deCODE
116,128,145

, DGI
188

, DIL, HELENA, MONALISA, MONICA, NTR/NESDA
201,211

, 

PPP
212

, Rotterdam Study
213

, TWINSUK
214

 (table 3.12). The maximum number of individuals in stage-

two analysis was 167,984. All participants were adults or adolescents (HELENA cohort) and of 

European ancestry. All subjects provided informed consent and all studies were approved by local 

ethics committees. 

SNPs and proxies at FTO and FADS1 

We considered two lead SNPs (rs9939609 for FTO and rs174550 for FADS1). If those were not 

genotyped or imputed within a specific cohort, proxies were analysed instead (table 3.13). To define 

proxies, we used linkage disequilibrium estimates from 1000 Genomes Pilot 1 European samples
165

 

with r
2
 range between 0.5 and 1. 

Sets of analysed phenotypes 

The following groups of phenotypes 

were investigated in step-one (figure 

3.40A) and step-two (figure 3.40B) 

analyses:  

 Anthropometric: BMI, weight, 

height;  

 Lipid traits: HDL, LDL, TC, TG;  

 Cardiovascular: pulse pressure 

(PP), systolic/diastolic blood pressure 

(SBP, DBP), hypertension (HTN), heart 

rate (HR), stroke, ischemic stroke (IS), 

coronary heart disease (CHD);  

 Glycaemic: fasting glucose (FG), 

Table 3.13: FTO and FADS1 

variants and their proxies 

tested in the follow-up 

multi-phenotypes analysis. 

Nearest gene Lead SNP Chr Position (b36) Effect allele Other allele Proxy used r2 with lead SNP

FTO rs9939609 16 52378028 T A rs17817712 1

rs3751812 1

rs8050136 1

FADS1 rs174550 11 61328054 T C rs174547 0.93

rs102275 0.932

rs174546 0.965

Figure 3.40: 

Sets of 

phenotypes 

tested 

using multi-

phenotype 

analysis at 

FTO and 

FADS1 loci 

A. in step-

one B. and 

in step-two. 
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2hGlu, homeostasis model assessments of beta-cell function and insulin resistance(HOMAB, 

HOMAIR), T2D;  

 Inflammation: C-reactive protein (CRP) and  

 Addiction: smoking behaviour (SMO).  

Table 3.14: Traits/outcomes (their definition and exclusions applied at a study level) tested in the follow-up multi-

phenotype analysis. 

Phenotype Definition Exclusions

Body mass index (BMI)

Defined as weight (kg)/height2 (m2). Trait is inverse normal transformed 

separately in men and women None

Weight (WT) Trait (kg) is inverse normal transformed separately in men and women None

Height (HT)

Gender-specific Z-scores from residual (standardized residuals are calculated 

from raw height adjusted for age and study-specific  covariates) Outliers +/-4SD

HDL cholesterol (HDL) Trait is untransformed fasting in mmol/l

Patients on lipid-lowering 

medication

LDL cholesterol (LDL)

Trait is untransformed fasting in mmol/l. For individuals with lipid-lowering 

medication adjust observed values by dividing LDL values by 0.7. None

Total cholesterol (TC) Trait is untransformed, fasting in mmol/l

Patients on lipid-lowering 

medication

Triglycerides (TG) Natural log-transformed, fasting in mmol/l

Patients on lipid-lowering 

medication

Pulse pressure (PP)

Defined as the difference between systolic blood pressure and diastolic blood 

pressure measured in mmHg.  For individuals on anti-hypertensive treatment 

observed values were first adjusted by +15 mmHg for SBP and +10 mmHg for DBP None

Systolic blood pressure (SBP) Trait is untransformed in mmHg. None

Observed values were adjusted by +15 mmHg for SBP for individuals on anti-

hypertensive treatment

Diastolic blood pressure (DBP) Trait is untransformed in mmHg. None

Observed values were adjusted by +10 mmHg for DBP for individuals on anti-

hypertensive treatment

Hypertension (HTN) SBP ≥140mmHg, DBP ≥90mmHg, or on anti-hypertensive treatment None

Heart rate (HR) Measured by ECG or peripheral pulse (usually at wrist) in beats per minute (bpm) None

Ever any acute stroke (Stroke)

Stroke or transient ischemic attack at any time point either defined from hospital 

discharge registry or cause of death registry (main diagnosis); or from adjudicated 

events None

ICD-8 codes: 430-436

ICD-9 codes: 430-436

ICD-10 codes: I60-I64+G45

Note: Self-reported events were not considered useful

Ever ischemic stroke (IS)

IS at any time point either defined from hospital discharge registry or cause of 

death registry (main diagnosis); or from adjudicated events None

ICD-8 codes: 432-434

ICD-9 codes: 433-434

ICD-10 codes: I63

Note: Self-reported events were not considered useful

Ever coronary heart disease (CHD) 

(acute myocardial infarction or 

unstable angina)

CHD at any time point either defined from hospital discharge registry or cause of 

death registry (main diagnosis); or from validated events None

ICD-8 codes: 410, 411

ICD-9 codes: 410, 411B

ICD-10 codes: I20.0, I21, I22

Note: Self-reported events were not considered useful

Fasting glucose (FG)

Trait is inverse normal transformed in mmol/L. Glucose measurements made in 

blood were adjusted by multiplying FG values by 1.13, as glucose concentration in 

blood is lower than in plasma

Diabetics (T2D, T1D) 

['diagnosed', on diabetes 

treatment (oral and insulin), 

and/or FPG >=7 mmol/L)], non-

fasting, pregnant

2h post OGTT Glucose (2hGlu) Trait is inverse normal transformed in mmol/L

Homeostasis model assessment of 

percent beta cell function/ 

homeostasis model assessment of 

insulin resistance (HOMAIR/HOMAB)

Traits are inverse normal transformed (unitless).HOMAIR=FG (mmol/L) x FI 

(mU/L)/ 22.5 

HOMAB= 20 x FI (mU/L)/ [FG (mmol/L) -3.5]

Type 2 diabetes (T2D)

Fasting blood glucose ≥7 mmol/L or anti-diabetic treatment. Self-reported 

diabetes

Type I diabetics, pregnant at 

blood sampling

C-reactive protein (CRP) Trait is natural log-transformed, measured using high-sensitivity assays, in mg/l

Known inflammatory disease or 

acute infection (at time of blood 

sampling)

Smoking behavior (SMO) Defined  as ever/never smoker None
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Based on prior knowledge of the genetic effects at FTO and FADS1 on specific phenotypes, eight 

phenotype sets of continuous traits and dichotomous disorder (maximum 12 phenotypes within 

each set) were formed and tested to allow maximisation of sample sizes and meaningful 

combinations of phenotypes in the step-one analysis (figure 3.40A). Based on the best models 

prioritised within each set through meta-analysis across step-one studies, 16 new phenotype sets 

(maximum seven phenotypes within each set) were formed and tested in step-two analysis (figure 

3.40B). To avoid confounding by age, sex and study-specific variables (e.g. study site and 

geographical covariates), the residuals from a linear regression model on these variables were used 

for quantitative traits. A detailed description of phenotype definition, normalization and exclusions 

applied are given in table 3.14. 

Statistical analysis 

In analyses of selected loci with sets of phenotypes tested using the PLEIOTROPY software (as 

explained above in chapter “3.4.2_Stage one: Genome-wide multi-phenotype meta-analysis of lipids 

five-trait and BMI”), we aimed to select the optimal model from the set of all alternative models for 

each genetic variant of interest, based on an appropriate fit measure. With a set of K phenotypes, 

there are 2
k
 possible models. As the best model(s) were selected at the meta-analysis step, each 

cohort was asked to fit all 2
k
 logistic regression models for each variant and phenotype set 

considered. The Bayesian Information Criterion (BIC) score was selected as the optimal model fit 

statistic as it adds a penalty to the likelihood ratio to optimise the trade-off between added 

complexity and explained variance by adding more phenotypes to the model. BIC is defined as: 

 

Where lj is the log-likelihood of the jth logistic regression model, sj is the number of phenotypes in 

the model and n is the sample size (note that for a null model with intercept only, BIC0=-2l0 + log (n), 

where l0 is the log-likelihood for the null model). 

We calculated meta-analysis BIC scores and null BICs using two different approaches: (1) just 

summing BIC (sumBIC) and null BIC (sumBICnull) estimates from all cohorts contributing in the meta-

analysis; (2) based on the sum of log-Likelihood and sum of null log-Likelihood using data from all 

contributing cohorts: 

; 

, 

where: 

sum of log-Likelihoods from all i contributing cohorts, 

K = count of phenotypes in given model, 

 = sum of sample sizes from all i contributing cohorts, 

sum of null LogLikelihoods. 

As this second calculation seemed to be biased towards more complicated models, we used the first 

approach. Step-one and step-two meta-analyses were thus performed by summing the BIC scores 

across all participating studies separately for each genetic marker and each model. While comparing 

alternative models for the same dependent variable (here: genetic marker), the model with smallest 

BIC within each set and locus was selected. More in details, the best models within the specific sets 

were selected based on (summed BICj < summed BIC0) across all studies. 
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Table 3.15: Step-one (top) Step-two (bottom) multi-phenotype meta-analysis top five models within each of the 

tested sets for FTO (rs9939609, left) and FADS1 (rs174550, right) variants. 

Phenotype setTop models N BIC BICnull sumBIC sumBICnull LTR PLTR Phenotype setTop models N BIC BICnull sumBIC sumBICnull LTR PLTR

Set 1 BMI 71065 191526.84 191807.4 191706.22 191897.2 291.7 2.11907E-65 Set 1 HT 72247 190652.36 190672.3 190832.02 190762.1 31.12 -

WT 71065 191582.6 191807.4 191761.93 191897.2 235.94 3.01994E-53 DBP 72247 190664.34 190672.3 190844.16 190762.1 19.14 -

BMI+WT 71065 191512.21 191807.4 191781.55 191897.2 317.5 1.13698E-69 WT 72247 190666.28 190672.3 190845.56 190762.1 17.2 -

HT+WT 71065 191513.09 191807.4 191782.19 191897.2 316.62 1.76539E-69 BMI 72247 190666.66 190672.3 190846.04 190762.1 16.82 -

BMI+DBP 71065 191514.33 191807.4 191783.41 191897.2 315.38 3.28173E-69 Stroke 72247 190666.86 190672.3 190846.39 190762.1 16.62 -

Set 2 BMI 15249 41005.2 41038.09 41049.19 41060.08 42.52 6.99632E-11 Set 2 TC+TG 15586 39969.06 40014.31 40035.01 40036.4 64.56 9.57137E-15

WT 15249 41020.02 41038.09 41064.13 41060.08 27.7 - TC 15586 39997.85 40014.31 40041.81 40036.4 26.12 -

BMI+2hGlu 15249 41007.3 41038.09 41073.29 41060.08 50.06 - TC+WT+TG 15586 39958.22 40014.31 40046.33 40036.4 85.06 -

BMI+TG 15249 41007.66 41038.09 41073.65 41060.08 49.7 - TG 15586 40004.89 40014.31 40048.85 40036.4 19.08 -

BMI+FG 15249 41010.18 41038.09 41076.07 41060.08 47.18 - WT 15586 40009.07 40014.31 40053.12 40036.4 14.9 -

Set 3 BMI 33682 90518.59 90634.12 90633.467 90691.47 125.964 3.13112E-29 Set 3 FG 34804 90744.77 90757.78 90859.66 90815.27 23.46 -

WT 33682 90549.62 90634.12 90664.594 90691.47 94.93 1.97238E-22 PP 34804 90751.94 90757.78 90866.9 90815.27 16.3 -

BMI+WT 33682 90514.78 90634.12 90687.024 90691.47 140.194 3.60794E-31 SBP 34804 90753.55 90757.78 90868.45 90815.27 14.68 -

BMI+FG 33682 90516.18 90634.12 90688.362 90691.47 138.794 7.26551E-31 WT 34804 90753.48 90757.78 90868.48 90815.27 14.76 -

BMI+DBP 33682 90516.58 90634.12 90688.841 90691.47 138.392 8.88299E-31 BMI 34804 90757.96 90757.78 90872.89 90815.27 10.28 -

Set 4 BMI 11864 31680.7 31724.14 31747.17 31757.46 52.82 3.6556E-13 Set 4 LDL 11892 32191.62 32224.51 32258.16 32257.77 42.26 -

WT 11864 31690.76 31724.14 31757.21 31757.46 42.76 6.18847E-11 TC 11892 32197.43 32224.51 32263.97 32257.77 36.46 -

BMI+WT 11864 31675.91 31724.14 31775.63 31757.46 67 - TC+TG 11892 32170.59 32224.51 32270.34 32257.77 72.68 -

BMI+Stroke 11864 31678.24 31724.14 31778.03 31757.46 64.66 - LDL+TG 11892 32172.2 32224.51 32271.99 32257.77 71.06 -

HT+WT 11864 31679.98 31724.14 31779.65 31757.46 62.92 - HDL+LDL 11892 32172.48 32224.51 32272.25 32257.77 70.8 -

Set 5 BMI 54120 145401.49 145600.5 145568.438 145684 209.928 1.42421E-47 Set 5 TC+TG 55296 146217.63 146408.6 146468.252 146492.1 212.796 6.19349E-47

WT 54120 145443.51 145600.5 145610.475 145684 167.906 2.12096E-38 TC 55296 146335.65 146408.6 146502.755 146492.1 83.854 -

BMI+DBP 54120 145386.77 145600.5 145637.192 145684 235.542 7.12368E-52 TG 55296 146359.86 146408.6 146527.041 146492.1 59.638 -

BMI+SBP 54120 145393.37 145600.5 145643.803 145684 228.942 1.93142E-50 HT+TC+TG 55296 146203.55 146408.6 146537.762 146492.1 237.794 -

BMI+T2D 54120 145393.25 145600.5 145643.847 145684 229.068 1.81349E-50 TC+WT+TG 55296 146205.72 146408.6 146540.032 146492.1 235.624 -

Set 6 BMI 50789 136438.47 136630.4 136565.9 136694.1 202.744 5.26077E-46 Set 6 TC+TG 51958 137949.7 138115.5 138140.8 138179.3 187.54 1.88889E-41

BMI+DBP 50789 136428.7 136630.4 136619.76 136694.1 223.344 3.17297E-49 TC 51958 138053.4 138115.5 138181 138179.3 72.94 -

BMI+IS 50789 136430 136630.4 136621.21 136694.1 222.044 6.07796E-49 PP+TC+TG 51958 137945.1 138115.5 138200 138179.3 203 -

BMI+Stroke 50789 136432.32 136630.4 136623.41 136694.1 219.726 1.93689E-48 T2D+TC+TG 51958 137945.4 138115.5 138200.3 138179.3 202.64 -

BMI+SBP 50789 136433.55 136630.4 136624.76 136694.1 218.496 3.58258E-48 SBP+TC+TG 51958 137947.6 138115.5 138202.4 138179.3 200.5 -

Set 7 BMI 19086 50986.44 51045.56 51074.58 51089.6 68.978 9.9568E-17 Set 7 TC 19291 51212.47 51251.12 51300.84 51295.27 48.52 -

BMI+FG 19086 50983.61 51045.56 51115.89 51089.6 81.664 - TC+TG 19291 51172.15 51251.12 51304.62 51295.27 98.72 -

BMI+SBP 19086 50983.88 51045.56 51116.21 51089.6 81.388 - FG 19291 51238.15 51251.12 51326.49 51295.27 22.84 -

BMI+DBP 19086 50984.24 51045.56 51116.53 51089.6 81.026 - TG 19291 51241.85 51251.12 51330.25 51295.27 19.14 -

BMI+TG 19086 50988.75 51045.56 51121.13 51089.6 76.516 - FG+TC+TG 19291 51153.78 51251.12 51330.48 51295.27 126.96 -

Set 8 BMI 31976 85646.49 85772.15 85784.1284 85841.04 136.03738 1.95809E-31 Set 8 TC+TG 32026 86237.32 86389.83 86443.8749 86458.71 173.26086 2.38167E-38

BMI+TC 31976 85645.67 85772.15 85852.0781 85841.04 147.22362 - TC 32026 86323.29 86389.83 86460.8235 86458.71 76.91432 -

BMI+SMO 31976 85646.1 85772.15 85852.6044 85841.04 146.79334 - TG 32026 86358.34 86389.83 86496.2413 86458.71 41.86648 -

BMI+CRP 31976 85648.74 85772.15 85855.1893 85841.04 144.15644 - PP+TC+TG 32026 86227.6 86389.83 86502.9781 86458.71 193.35754 -

BMI+TG 31976 85649.98 85772.15 85856.4436 85841.04 142.9201 - HTN+TC+TG 32026 86229.77 86389.83 86505.2163 86458.71 191.18938 -

Phenotype setTop models N BIC BICnull sumBIC sumBICnull LTR PLTR Phenotype setTop models N BIC BICnull sumBIC sumBICnull LTR PLTR

Set 1 BMI 95,649 257866.4 258247.7 258082.9 258355.9 392.8 2.03385E-87 Set 1 BMI 94,105 247707.6 247720.6 247922.8 247828 24.4 -

BMI+DBP 95,649 257854.9 258247.7 258179.2 258355.9 415.6 5.67031E-91 DBP 94,105 247713.4 247720.6 247928.4 247828 18.6 -

BMI+T2D 95,649 257856 258247.7 258180.1 258355.9 414.6 9.34876E-91 Stroke 94,105 247715 247720.6 247930.2 247828 17 -

BMI+SBP 95,649 257857.6 258247.7 258181.9 258355.9 413 2.0806E-90 PP 94,105 247717.9 247720.6 247933 247828 14.2 -

BMI+Stroke 95,649 257859.9 258247.7 258184.2 258355.9 410.8 6.25048E-90 SBP 94,105 247720.1 247720.6 247935.4 247828 12 -

Set 2 BMI 140,892 379892.8 380502.8 380110.9 380611.8 621.8 3.0357E-137 Set 2 BMI 145,213 384184.8 384197.3 384419.5 384314.3 24.4 -

BMI+T2D 140,892 379884.2 380502.8 380211.9 380611.8 642.2 3.5322E-140 Stroke 145,213 384192.2 384197.3 384426.3 384314.3 17 -

BMI+Stroke 140,892 379886.6 380502.8 380214.1 380611.8 639.8 1.1727E-139 T2D 145,213 384197.6 384197.3 384431.8 384314.3 11.6 -

BMI+Stroke+T2D 140,892 379878.3 380502.8 380314.9 380611.8 659.8 1.0928E-142 BMI+Stroke 145,213 384179.7 384197.3 384531.4 384314.3 41.4 -

T2D 140,892 380446.1 380502.8 380664.5 380611.8 68.4 - BMI+T2D 145,213 384181.9 384197.3 384532.9 384314.3 39.2 -

Set 3 BMI 116,131 312569.5 313025.5 312922.6 313201.9 467.6 1.0667E-103 Set 3 DBP 117,671 309921.1 309951.7 310260.9 310121.6 42.2 -

BMI+SBP 116,131 312550.6 313025.5 313079.5 313201.9 498.2 6.5651E-109 BMI 117,671 309934.5 309951.7 310274.6 310121.6 28.8 -

BMI+DBP 116,131 312551.5 313025.5 313080.6 313201.9 497.2 1.0824E-108 HTN 117,671 309944.5 309951.7 310284.6 310121.6 18.8 -

BMI+PP 116,131 312553.2 313025.5 313082.4 313201.9 495.6 2.4089E-108 PP 117,671 309945.8 309951.7 310285.8 310121.6 17.6 -

BMI+HTN 116,131 312569.3 313025.5 313098.4 313201.9 479.6 7.181E-105 SBP 117,671 309946.2 309951.7 310286 310121.6 17.2 -

Set 4 BMI 18,681 50050.58 50111.84 50132.13 50152.73 71.1 3.3957E-17 Set 4 TC+TG 21,328 55476.37 55570.76 55621.86 55619.36 114.34 -

BMI+TC 18,681 50047.28 50111.84 50169.88 50152.73 84.24 - TC 21,328 55540.13 55570.76 55637.18 55619.36 40.6 -

BMI+TG 18,681 50048.24 50111.84 50170.8 50152.73 83.26 - TG 21,328 55543.91 55570.76 55640.94 55619.36 36.84 -

BMI+FG 18,681 50049.88 50111.84 50172.4 50152.73 81.62 - FG+TC+TG 21,328 55467.47 55570.76 55661.59 55619.36 133.2 -

TC 18,681 50108.48 50111.84 50190.17 50152.73 13.2 - FG 21,328 55567.08 55570.76 55664.21 55619.36 13.66 -

Set 5 BMI 63,921 171649.8 171885.3 171905.8 172013.2 246.52 1.48981E-55 Set 5 FG 65,899 172370.3 172409.9 172624.7 172537.1 50.72 -

BMI+FG 63,921 171636.8 171885.3 172020.4 172013.2 270.7 - DBP 65,899 172396.5 172409.9 172650.7 172537.1 24.54 -

BMI+SBP 63,921 171644.6 171885.3 172028.5 172013.2 262.82 - BMI 65,899 172400 172409.9 172654.4 172537.1 21 -

BMI+PP 63,921 171645.5 171885.3 172029.2 172013.2 261.98 - SBP 65,899 172400.1 172409.9 172654.6 172537.1 20.88 -

BMI+DBP 63,921 171647.4 171885.3 172031 172013.2 260.06 - PP 65,899 172400.8 172409.9 172655.2 172537.1 20.18 -

Set 6 BMI 76,521 204958.3 205231.1 205296.6 205400.2 284 1.00913E-63 Set 6 TC+TG 73,133 193762.2 194116.9 194263.3 194283.7 377.14 1.27377E-82

BMI+TG 76,521 204938.8 205231.1 205446.4 205400.2 314.6 - TC 73,133 193978.8 194116.9 194312.8 194283.7 149.32 -

BMI+TC 76,521 204942.7 205231.1 205450.3 205400.2 310.8 - TG 73,133 194010.5 194116.9 194344.7 194283.7 117.58 -

TG 76,521 205200 205231.1 205538.4 205400.2 42.2 - BMI+TC+TG 73,133 193755.4 194116.9 194423.4 194283.7 395.14 -

TC 76,521 205211 205231.1 205549.3 205400.2 31.2 - BMI 73,133 194104 194116.9 194438 194283.7 24.16 -

Set 7 T2D 166,650 449959.6 450017.9 450148.9 450113.1 70.2 - Set 7 HTN 167,984 446668.8 446669.2 446856.9 446763.1 12.6 -

HTN 166,650 449994 450017.9 450183.2 450113.1 35.8 - IS 167,984 446668.8 446669.2 446857.8 446763.1 12.4 -

Stroke 166,650 450013.4 450017.9 450203.6 450113.1 16.4 - T2D 167,984 446670.7 446669.2 446859.9 446763.1 10.6 -

CHD 166,650 450020.3 450017.9 450209.4 450113.1 9.6 - Stroke 167,984 446671.8 446669.2 446860.8 446763.1 9.6 -

IS 166,650 450022 450017.9 450212.1 450113.1 7.8 - CHD 167,984 446674.9 446669.2 446864 446763.1 6.4 -

Set 8 BMI 29,508 78832.3 78947.23 79019.28 79040.73 125.22 4.55537E-29 Set 8 TC 31,170 82589.69 82680.77 82778.69 82775.34 101.42 -

BMI+TG 29,508 78820.9 78947.23 79101.42 79040.73 146.92 - TC+TG 31,170 82496.25 82680.77 82779.83 82775.34 205.22 -

BMI+TC 29,508 78827.69 78947.23 79108.23 79040.73 140.14 - TG 31,170 82646.44 82680.77 82835.64 82775.34 44.68 -

TG 29,508 78929.49 78947.23 79116.56 79040.73 28.04 - BMI 31,170 82673.11 82680.77 82862.11 82775.34 18 -

TC 29,508 78941.54 78947.23 79128.53 79040.73 15.98 - BMI+TC 31,170 82580.58 82680.77 82864.15 82775.34 120.88 -

Set 9 BMI 68,606 184504.4 184775.8 184676.9 184862.1 282.54 2.0994E-63 Set 9 BMI 71,738 191147.8 191154.5 191336.3 191248.8 17.9 -

BMI+SMO 68,606 184498.5 184775.8 184757 184862.1 299.58 8.85176E-66 HTN 71,738 191149.3 191154.5 191337.7 191248.8 16.44 -

BMI+CRP 68,606 184500.2 184775.8 184758.8 184862.1 297.92 2.02999E-65 T2D 71,738 191154.2 191154.5 191342.4 191248.8 11.56 -

BMI+T2D 68,606 184504.4 184775.8 184762.9 184862.1 293.72 1.65772E-64 CRP 71,738 191155.1 191154.5 191343.4 191248.8 10.64 -

BMI+CHD 68,606 184510.1 184775.8 184768.7 184862.1 287.96 2.95312E-63 SMO 71,738 191156.5 191154.5 191344.8 191248.8 9.22 -

Set 10 TG 78,565 210719 210749.4 211057.9 210919.1 41.6 - Set 10 TC+TG 75,111 199038.2 199410.4 199540.2 199577.6 394.72 1.93928E-86

TC 78,565 210728.7 210749.4 211067.6 210919.1 32 - TC 75,111 199262.7 199410.4 199597.3 199577.6 158.94 -

TC+TG 78,565 210706.3 210749.4 211214.9 210919.1 65.6 - TG 75,111 199302.5 199410.4 199637.2 199577.6 119.22 -

Set 11 BMI 32,489 86840.4 86970.17 87030.46 87065.27 140.16 2.45598E-32 Set 11 BMI 34,300 90795.03 90802.48 90987.11 90898.55 17.9 -

Set 12 BMI 161,417 434639.3 435318.8 434966.9 435482.6 691.4 2.2174E-152 Set 12 BMI 161,726 427302.1 427318.4 427631.1 427482.4 28.2 -

BMI+T2D 161,417 434622.8 435318.8 435114.7 435482.6 720 4.508E-157 T2D 161,726 427313 427318.4 427641.3 427482.4 17.4 -

T2D 161,417 435248.4 435318.8 435576.3 435482.6 82.4 - BMI+T2D 161,726 427293.8 427318.4 427785.9 427482.4 48.6 -

Set 13 BMI 71,071 190454.9 190701.9 190749.5 190849.1 258.12 4.40876E-58 Set 13 TC+TG 67,706 179752.8 180084.7 180188.1 180229.8 354.2 1.22025E-77

BMI+TG 71,071 190440.2 190701.9 190881.6 190849.1 284.04 - TC 67,706 179954.5 180084.7 180244.8 180229.8 141.28 -

BMI+T2D 71,071 190440.6 190701.9 190882.1 190849.1 283.58 - TG 67,706 179984.9 180084.7 180275.1 180229.8 110.96 -

BMI+TC 71,071 190442.1 190701.9 190883.8 190849.1 282.08 - T2D+TC+TG 67,706 179732.7 180084.7 180313 180229.8 385.36 -

T2D 71,071 190668.2 190701.9 190962.6 190849.1 44.78 - BMI+TC+TG 67,706 179747.8 180084.7 180328.2 180229.8 370.3 -

Set 14 BMI 114,297 307609.6 308086 307960.8 308261.4 488 3.8814E-108 Set 14 DBP 118,797 312687.5 312722.1 313041.4 312899 46.2 -

BMI+SBP 114,297 307590.3 308086 308116.4 308261.4 519 1.9979E-113 BMI 118,797 312703.3 312722.1 313057.4 312899 30.4 -

BMI+DBP 114,297 307590.8 308086 308117 308261.4 518.6 2.4403E-113 SBP 118,797 312715.1 312722.1 313069 312899 18.8 -

BMI+DBP+SBP 114,297 307576.4 308086 308278.2 308261.4 544.6 - BMI+DBP 118,797 312668 312722.1 313199.2 312899 77.4 -

SBP 114,297 308049.6 308086 308400.2 308261.4 48.2 - DBP+SBP 118,797 312677.3 312722.1 313208.4 312899 68.2 -

Set 15 TG 122,512 329464.9 329511.6 329825.9 329692.1 58.4 - Set 15 TC+TG 120,072 316696.9 317142.2 317231.9 317320.7 468.8 1.5899E-102

TC 122,512 329488.9 329511.6 329849.8 329692.1 34.6 - TC 120,072 316979.2 317142.2 317336.1 317320.7 174.8 -

TC+TG 122,512 329449.5 329511.6 329991 329692.1 85.6 - TG 120,072 317004.3 317142.2 317360.8 317320.7 149.6 -

Set 16 BMI 22,515 60361.52 60432.95 60460.56 60482.47 81.44 1.80664E-19 Set 16 BMI 22,928 59757.57 59760.59 59856.8 59810.27 13.08 -

STEP ONE

STEP TWO

STEP ONE

STEP TWO

FTO rs9939609 FADS1 rs174550
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3.4.3.2 Results   

To further investigate the mechanisms that underlie the observed multi-phenotype effects, and to 

extend the applied methodological framework to model the combination and selection of a wide 

range of cardiometabolic phenotypes within multi-phenotype analysis, we employed a two-step 

multi-phenotype analysis approach at two selected loci: FTO (rs9939609 or its proxy r
2
=1) and FADS1 

(rs174550 or its proxy, r
2
 ≥ 0.93) as reported in table 3.13. 

Through multi-phenotype modelling in step-one, for FTO the best model was always the model with 

BMI alone: all the eight different sets of phenotypes confirmed this result reporting a p-valueLTR 

which ranged from 6.99x10
-11

 (for set 2) to 2.11x10
-65

 (for set 1, see table 3.15). In step-one analysis 

of FADS1, only in four sets of phenotypes the best model was not the null model , that is only in four 

sets summed BICj was minor than summed BIC0; in all these sets the best model included TG and TC 

together (p-valueLTR from 9.57x10
-15

 for set 2 to 6.19x10
-47

 for set 5, see table 3.15). 

Through multivariate analysis in step-two, in the analysis of FTO (sample size from 18,681 to 

161,417), for set 7 and set 15, the best model was the null one. On the other hand, within the 

remaining tested phenotype sets, we confirmed that the best model included only BMI (as reported 

in figure 3.41A and in table 3.15) with a maximum significant p-valueLTR = 2.21x10
-152

 for set 12 and a 

minimum significant p-valueLTR = 3.39x10
-17

 for set 4. This result confirmed a previously reported 

mediation effect of BMI for the examined phenotypes
89,90

 at the FTO locus, providing a proof of 

principle for the applied method in discerning mediation from potential pleiotropy. 

At FADS1 (N = 67,706 to 120,072), in step-two analysis the best model for eight sets was the null 

one. The best model that emerged, instead, within the remaining four sets, even in this second step, 

included the two lipids: TC and TG. The p-valueLTR of this model varied from a maximum significance 

of 1.59x10
-102

 for set 15 and a minimum significance of 1.22x10
-77

 for set 13. Therefore, at FADS1 

locus pleiotropy between TG and TC was highly supported, as well as mediation through them for 

other phenotypes (figure 3.41B and in table 3.15). 

Figure 3.41: Phenotype sets and best models from multi-phenotype modelling at A) FTO and B) FADS1 loci in step-

two follow-up analysis. Every possible combination of phenotypes was tested for each set. Ticked boxes indicate 

the traits of the best model within each phenotype set. On the right sample size is reported for each tested set.
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3.4.4 Discussion 

 

In the current study, we have extended methodology for simultaneous multi-phenotype analysis in 

individual studies to allow large-scale genome-wide multi-phenotype association testing of imputed 

genetic variants, meta-analysis and, moreover, phenotypic modelling and selection for individual 

loci, with the aim of dissecting the mechanism of multi-phenotype effects. 

We applied and tested our approach with the employment of two complementary multi-phenotype 

approaches: 1) a genome-wide multivariate analysis for the detection of novel, potential, pleiotropic 

variants and 2) a follow-up analysis at two selected loci for the decomposition of the mechanism of 

multi-phenotype effects at each specific locus by considering a wide range of phenotypes and 

making model selection. 

 

Genome-wide analysis was limited by the number of phenotypes available across all contributing 

studies and thus permitted testing of a single phenotypic set that included BMI, TG, TC, HDL and 

LDL. We only tested a model where all phenotypes were included, since testing all possible 

alternative models would have been too computationally demanding. 

Anyway, by combining correlated phenotypes that are likely to share biological pathways, we have 

been able to reveal multi-phenotype effects at 26 lipid loci and highlight previously unknown effects 

on BMI at five of these loci. 

Despite the fact that TRIB1, CETP, MLXIPL, LPL and APOA1 have not been previously associated with 

BMI in single-trait GWAS, there is evidence that points to a link between several of them and 

obesity. In particular, a variant at TRIB1 (rs2980879, r
2
 = 0.4 with our variant, rs2954021) has been 

previously associated, at a genome-wide significance, with adiponectin, which is a highly abundant 

adipose-derived plasma protein that modulates several metabolic processes
215

. A study in middle-

aged individuals has demonstrated that changes in adiposity-related measures, such as BMI, waist 

circumference and visceral fat area, correlated with a rise in adiponectin levels
216

. Furthermore, 

studies have reported an increase in CETP (cholesteryl ester transfer protein) activity and mass in 

obese compared to non-obese controls and weight reduction normalizing the altered CETP levels
217-

219
. One of these studies has also suggested that elevated plasma PLTP (plasma lipid transfer protein) 

levels in obese patients might be the direct outcome of adiposity per se
220

. PLTP is one of the loci 

where we also observed suggestive effects on BMI (p-value = 1.2x10
-7

) in multi-phenotype meta-

analysis, which, interestingly, has not been observed in single-trait published GWAS meta-analysis 

for BMI
16,126

, or in our BMI meta-analysis in the same set of individuals. ChREBP (also known as 

MLXIPL) is a major determinant of adipose tissue fatty acid synthesis and glycolysis and a recently 

discovered isoform, ChREBP-β, has been demonstrated to correlate strongly with ChREBP activity
221

. 

The expression of this isoform has been shown to be markedly reduced in obese and obese-diabetic 

compared to non-obese controls
222

. Another study provided evidence of a decrease in LPL 

expression primarily due to an increase in BMI indicating a different transcriptional regulation 

between obese and lean subjects
223

. Our study indicates that, although these loci have not been 

previously associated with BMI per se in single-trait GWAS, joint modelling of the five correlated 

traits might have been able to capture unmeasured products, mediators or traits that are not 
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considered here and are related to obesity. Therefore, our approach resulted useful in discovering 

novel variants across the genome which could have strong effect without standing out in univariate 

GWAS analyses for single phenotypes and may contribute to explain part of the missing heritability 

of complex phenotypes. 

 

Follow-up analysis at two selected loci allowed the decomposition of the mechanism of multi-

phenotype effects at each specific locus by considering a wide range of phenotypes and making 

model selection. Model selection in the follow-up analysis at each of the two selected loci was done 

at meta-analysis rather than individual-study level; such a strategy was advantageous as it allowed 

avoiding bias in meta-analysis results due to low power to detect effects within individual studies.  

Using this second approach, we demonstrated mediation of the effects through adiposity, measured 

by BMI, at FTO and through TC and TG at FADS1. A recent Mendelian randomization study of the 

effects of FTO-derived adiposity on 24 cardiometabolic disease outcomes and traits suggested 

causal relationship between BMI and multiple cardiometabolic phenotypes, further supporting a 

mediation effect
90

. Nevertheless, the mediation effects observed at FTO and FADS1 cannot rule out 

the possibility of pleiotropic effects on other untested phenotypes at these loci and should be 

subject to further research. 

The observed independent effects of FADS1 on TC and TG are supported by separate biochemical 

pathways in which the enzyme fatty acid delta-5 desaturase (FADS1) is involved. In particular, FADS1 

plays a role in the synthesis of omega-6 fatty acids where it inserts to eicosatrienoyl-CoA a fourth 

double bound between carbons of the fatty acid chain generating arachidonyl-CoA. Such 

polyunsaturated fatty acids of the Acyl-CoAs are directly used in the formation of glycerolipids like 

TG and phosphatidylcholines. As cholesterol is hydrophilic (due to its hydroxyl), it cannot be easily 

transported or stored. The hydroxyl group of cholesterol and the fatty acid of a phosphatidylcholine 

are necessary to form a cholesterol ester in blood. The resulting apolar cholesterol ester can be 

stored and transported with lipoproteins. Therefore, FADS1 is used for the formation of TG (directly) 

and cholesterol esters (via phosphatidylcholines). This study did not provide evidence for 

independent effects of FADS1 on HDL, LDL, BMI or T2D, consistently with the discussed function of 

FADS1. Therefore, associations of FADS1 with lipoproteins, HDL and LDL, BMI and T2D observed in 

previous GWAS are likely to be mediated by its effect on TC and TG, having pleiotropic effect on 

these last two traits.  

 

In this third project we have demonstrated that modelling of multiple correlated phenotypes can 

help in the discovery and characterisation of complex phenotype loci, otherwise missed by the 

standard univariate approaches. This study has also highlighted that the systematic evaluation of 

multi-phenotype effects through multivariate analysis can uncover some of the possible 

mechanisms of genetic effects at individual loci, for example mediation, and can provide novel 

insights into the pathophysiological processes underlying metabolic trait variability. 

Regrettably, a potential limitation of the tested method is the assessment of multi-phenotype 

effects that is possible only in the context of those phenotypes available in the participating studies. 

Another limit is that this approach is time consuming and multiple model evaluation is less feasible 
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at a genome-wide level. Finally, as it considers variants one at a time, this study does not cover the 

problem of individualising potential pleiotropic genomic regions and interpreting their multiple 

associations, distinguishing for example phenomena of multi-phenotype allelic heterogeneity. 
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4.1 Main conclusions of our study 
 

4.1.1 Hypothesis about pleiotropic effects on metabolic phenotype 

 

In the past years, a wealth of genetic data for cardiometabolic phenotypes highly increased together 

with the internationally combined effort of researchers for the identification of associated genetic 

loci. The discoveries of these studies highlighted the complex relationships between metabolic traits 

and diseases: it was, in fact, clear that numerous overlaps exist between associated loci, but the 

patterns of multi-phenotype associations were variable and not always consistent with 

epidemiological expectations. This complexity of the observed cardiometabolic phenotype 

associations can be due to several underlying factors, such as pleiotropy, allelic heterogeneity, 

phenotypic mediation, gene-gene and gene-environment interaction. 

The large efforts in the past have enlightened our understanding of biology of these metabolic 

phenotypes, but they have also suggested the need for further analyses. 

 

The idea that we developed in the projects presented in this thesis is that the dissection of cross-

phenotype effects, and in particular of pleiotropy, will help uncovering the mechanistic basis of 

physiological processes governing cardiometabolic quantitative traits and of pathogenetic processes 

leading to metabolic diseases. 

This research will increase our understanding of the extent of shared genetics among traits and 

diseases and our global understanding of phenotypes as a range of inter-related manifestations of 

biological mechanisms rather than as isolated events. 

The definition of specific sets of effects on combinations of cardiometabolic phenotypes might 

clarify known physiological and pathophysiological mechanisms and highlight novel biological 

pathways, targets for translational research, for therapeutic intervention, and for the understanding 

of the pathophysiology of human metabolism. 

 

Thanks to the collaboration with the XC-pleiotropy group and the ENGAGE consortium, my PhD 

project mainly focused on the dissection of pleiotropic effects at common variants across the 

genome on cardiometabolic phenotypes. 

 

 

4.1.2 What we discovered in developed projects 

 

The research presented in this thesis has been divided into three specific projects: 

(1) Exploration of established multi-phenotype effects at cardiometabolic loci from published 

univariate meta-analyses, defining clusters of loci with similar multiple effects, comparing them to 

known epidemiological expectations, and identifying enriched biological networks within the most 

interesting groups of loci; 
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(2) Dissection of the architecture of established cardiometabolic loci showing multiple phenotype 

associations for a better definition of the underlying mechanisms of multi-phenotype effects and for 

the discernment of potential pleiotropy from allelic heterogeneity; 

(3) Development and application of a statistical strategy for multivariate analyses of CP phenomena 

using cohorts data from the ENGAGE consortium to discover new uncovered multiple associations 

and to follow-up GWAS meta-analysis at two loci. 

 

Specific results and conclusions for each of these sections have been already reported in precedent 

chapters. In general, we can group our findings in several primary points. 

Both univariate and multivariate approaches can be applied for the study of pleiotropy 

From a methodological perspective, in the presented projects, we developed different approaches 

to address the issue of pleiotropy that allowed us to undertake deeper analyses of data obtained 

through univariate GWAS meta-analyses. Moreover, to address limitations of single-phenotype 

analyses, we applied a multivariate joint analysis of multiple correlated phenotypes that brought to 

several advantages, including the ability to take into account correlation between phenotypes, a 

boost in power, an improved precision of parameter estimates, and the identification of novel 

candidate genes. 

Cardiometabolic phenotypes share genetic background 

This fact was formerly suggested by a comparison of results from univariate GWAS reported in the 

literature
7,20

, and it was confirmed also from our study results. 

Starting from the preliminary analysis that we reported in Scott et al. 2012
18

, we noted a 

considerable number of glycaemic loci associated with other metabolic phenotypes; particularly, 

fasting insulin loci associated also with lipid levels (lower HDL and higher triglycerides). 

Through the application of a multi-phenotype meta-analysis, and of approaches for graphical 

visualisation of multiple effects on association results from univariate analyses, as well as of a 

multivariate GWAS and meta-analysis method, many variants at cardiometabolic loci have been 

highlighted with interesting multiple associations characterising different aspects of metabolism (for 

example obesity and blood pressure, or lipids and glycaemic levels, or obesity and lipids levels). 

The application of conditional analysis has also underlined that multiple associations, not necessarily 

at the same variants, but also at adjacent variants, may underlie shared genetic causes between 

different phenotypes. 

Cardiometabolic phenotype loci can be grouped according to the combination of their multi-

phenotype effects 

Our efforts aiming at the evaluation of the effects of hundreds of established cardiometabolic 

genetic variants on more than 20 respective phenotypes through single-phenotype summary GWAS 

results suggested that loci fall into multiple groups according to the alterations of correlated 

metabolic phenotypes. MetS is just one possible combination of effects and several other 

unexpected combinations might be observed, for example healthy obesity/unhealthy leanness, 

lower height/skeletal growth and higher total/HDL-cholesterol, high BMI/obesity and low HDL/blood 

pressure/glycaemic traits. 
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Genetic loci with similar cardiometabolic effects are involved in shared biological pathways 

Pathway analysis revealed that some groups of loci with similar cardiometabolic effects are also 

enriched for factors that impact the same biological processes. These pathways may be expected - 

for example, regulation of lipids metabolism or cholesterol transport for groups of loci with strong 

effects on lipids, or circulatory system processes for genes near blood pressure-association signals - 

but sometimes also counterintuitive, as for example regulation of cellular processes for a group of 

loci with effects on obesity and anthropometric traits. 

This enriched connectivity was particularly true for small groups of loci (around 10-20 members) and 

revealed potential candidate genes or tissues of action that are more likely for causality. 

Many T2D loci are related to beta-cell function 

The pathophysiological abnormalities observed in T2D patients include processes reflecting both 

insulin resistance (IR) and beta-cell function. For example, from the comparison that we reported in 

Scott et al. 2012
18

, the insulin-raising allele was also associated with lower HDL and higher 

triglyceride levels; for some loci we also observed association with high levels of glucose, as well as 

of insulin, of β-cell functionality and insulin-resistance homeostasis, all hallmark combination in 

insulin-resistant individuals. On the other hand, we observed a group of loci implicated in 

insulin/proinsulin secretion and β-cell/pancreatic islets development which, if altered, cause an 

impaired production of insulin even if high levels of glucose are present in the blood, supporting the 

hypothesis that defects in the functionality of β-cells (rather than on insulin resistance), may lead to 

an hyperglycaemic status with consequent increased risk of developing T2D
19,99

. 

There is a causal relationship between adiposity and cardiometabolic phenotypes 

Through the comparison of univariate GWAS meta-analysis results for multiple phenotypes and 

through multivariate analyses within the ENGAGE consortium, we investigated the effects of the 

FTO locus on many metabolic and cardiovascular phenotypes, and demonstrated that the 

association between FTO and cardiometabolic phenotypes is mediated by adiposity and, thus, that 

there is a causal effect of adiposity (measured by BMI) on other phenotypes. These results 

confirmed previous conclusions reported in the literature and obtained by using Mendelian 

randomisation approaches
89,90

. There could be many other loci with similar effects and at which 

dissection of their effects on multiple phenotypes is required; an example is FADS1, at which we 

observed strong effects on lipids and glycaemic traits and, after multivariate analysis, we concluded 

that multiple effects of this locus on cardiometabolic phenotypes are due to its independent effect 

on total cholesterol and triglycerides. 

Many cardiometabolic phenotype associated variants constitute potential multi-phenotype allelic 

heterogeneity 

Our results highlighted that a substantial proportion of metabolic phenotype loci incorporate 

complex patterns of potential multi-phenotype allelic heterogeneity. This result suggests that it is 

important to take into account this mechanism when evaluating cross-phenotype effects at genomic 

loci. 
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4.1.3 What remains uncovered, future directions for the study of pleiotropy 

and its applications 

4.1.3.1 Additional methods and fields to explore 

Our GWAS approaches, undertaken in the projects explained in this thesis, presented some 

limitations: (1) they poorly capture low frequency and rare variants, even if imputed data were 

used; (2) identified common variant signals have modest estimated effects on phenotypes and 

explain only a limited proportion of phenotypic variability, this can be partially due to the fact that 

more effects on other phenotypes remain uncovered; (3) identified cross-phenotype effects and the 

analysis of their underlying mechanisms remain to be confirmed with further analysis and through 

functional characterisation. 

To overcome these limitations, several approaches can be adopted in the future. 

 

Extending observations of CP effects to a wider range of phenotypes is an emerging area, for 

example. One of its next challenges lies in the development of robust meta-analytical approaches 

for data derived from multi-phenotype univariate and multivariate analyses, with special 

ramification focused on detection of low frequency and rare variants, such as collapsing tests
224,225

 

or aggregation methods
226

. 

Systematic and unbiased phenome-wide association studies (PheWASs) then, where a SNP with an 

established association with a phenotype is tested for association with hundreds of other 

phenotypes, are now underway
6
. An example is PAGE: The Population Architecture using Genomics 

and Epidemiology network
9
. 

 

As sequencing methods are becoming faster and cheaper, the field will move towards sequencing-

based association studies. Through them, we will have the opportunity to directly identify the causal 

alleles underlying CP effects, and thus to distinguish between their different types more accurately. 

Sequencing will also allow us to better interrogate lower-frequency variants
6
. 

 

Functional characterisation of identified variants showing cross-phenotype effects (as explained in 

chapter “2.2.3.3_Functional characterisation”) and understanding the underlying mechanism 

remains a major challenge in the field. 

Although many resources are available for characterising protein-coding variants, experiments in 

animal or cellular models are generally necessary to establish causality. 

Moreover, new publicly available databases, such as the Encyclopedia of DNA Elements (ENCODE) 

project, provide valuable resources for characterising non protein-coding variants and regulatory 

elements
93

. 

In addition, examining eQTLs in relevant tissues for each phenotype of a cross-phenotype effect can 

help to elucidate the functional consequence and to distinguish between mediation and pleiotropy
6
. 

 

Finally, high-throughput “omics” data are rapidly becoming available with lowered costs and 

improvements in technology. Overall, omics data brings a promise of novel biomarker identification 



Dissection of pleiotropic effects in genome-wide association studies of phenotypes related to 

cardiometabolic health 

174 4 | Final discussion and conclusions 

 

based on patterns of change in tissue DNA methylation, microRNAs, transcriptome, proteasome and 

metabolome. Defining ways for combining omics data with genetic data in relation to multiple 

phenotype effects may help better uncover complex mechanisms behind phenotypic variability. 

 

4.1.3.2 Clinical implications of cross-phenotype effects and pleiotropy 

Our research represents a new way of relating genetic variability to metabolic health, considering 

phenotypes as an organic network of complex interactions, rather than single phenomena, and it 

aims to contribute to a better understanding of dysmetabolism, with the definition of target groups 

of patients for the application of more specific therapies, with consequent reduction of adverse 

reactions and remarkable impact on patients’ health and on public health costs for prevention and 

management of such conditions. 

 

In this context we highlight the importance of pleiotropy in human quantitative traits and diseases 

and, more generally, of understanding cross-phenotype effects, which can provide insight into the 

mechanisms of shared physiology and pathophysiology. 

A better clarification of pleiotropic phenomena will have several impacts on different field. 

For example, from an evolutionary point of view, it will help the reconstruction of evolutionary 

processes that led to pleiotropy; its application in physiology will allow to discover models of 

regulation for different tissues and different periods of life, to shed light on the underlying cellular 

processes
 
that are behind phenotypes, and to discover novel biological processes and new 

interactions between factors. 

 

The idea of stratified medicine, through translational research techniques and understanding of the 

physiopathology of diseases at a molecular level, has unified researches from various fields in the 

development of new drugs and personalised therapies, based on genetic and epigenetic profile, 

gene expression and exposition to influencing factors. Research of pleiotropy will highly contribute 

to these efforts. 

First, it may have clinically relevant implications for the classification (nosology) of medical 

disorders, and the goal of an aetiology-based classification may become more feasible. 

The growing catalogue of genetic variants with pleiotropic effects will have important implications 

for genetic testing and personal genomics: clinicians and medical genetics professionals will take 

into account that genetic tests for one disease may reveal information for risks of other diseases. 

Moreover, distinguishing between cross-phenotype effects caused by single versus multiple 

independent causal variants can improve the accuracy of genetic tests and the interpretation of 

results
6
. 

 

Characterising the molecular mechanisms of cross-phenotype effects will undoubtedly expand our 

understanding of the underlying biology of complex diseases and will have clinical implications for 

drug discovery
6
: on one hand, drugs developed for one disorder could be repurposed to treat 

another disorder, if the therapeutic target is found to be common to the biology of both disorders; 
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on the other hand, new information about pleiotropy and mediation can be used for the 

development of new medicines followed by clinical trials and also for preventive measures, as the 

use of diagnostic biomarkers or new targets of action. 
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4.2 Main conclusion of my PhD experience 
 

The 3-years programme of the PhD in Evolutionary and Environmental Biology conducted at the 

Department of Life Sciences and Biotechnology of the University of Ferrara highly contributed to my 

formation as a researcher in the field of human genetics and bioinformatics. 

Of particular importance was my training at the Wellcome Trust Centre for Human Genetics 

(WTCHG), University of Oxford, where I started working with international large-scale genetic 

analyses and meta-analyses of quantitative metabolic traits/diseases. 

During the PhD period, I significantly advanced my knowledge in programming languages, and in the 

use of programmes for large-scale genome-wide genetic analysis, dealing also with the newest 

analytical approaches and statistical techniques. I applied this knowledge on high scientific impact 

research projects, which led and will lead us to publications in important scientific journals
18,227

. 

During the PhD, I successfully applied for several grants (Italian 5x1000 funds for the research, 

European Foundation for the Study of Diabetes travel grant, ENGAGE Exchange and mobility 

program, funds for Internationalisations projects) that allowed me to create a strong collaborative 

network between my group at the University of Ferrara and other researchers in Europe; in 

particular, I established an active and productive connection with Doctor Inga Prokopenko and her 

group at the Imperial College of London, with Professor Andrew Morris and his group at the WTCHG 

of Oxford, and with Doctor Reedik Magi from the Estonian Genome Center, Tartu, Estonia. I also 

worked in collaboration with international consortia for the study of diabetes, metabolic 

phenotypes and their epidemiology (MAGIC, DIAGRAM, XC-Pleiotropy group, ENGAGE). 

My junior leadership in pleiotropy projects within the XC-Pleiotropy group (Projects 1 and 2 of this 

thesis) allowed me to improve my capacity in leading and managing research, as well as my 

communicating and writing skills. 

During the PhD, I had the possibility to participate in numerous advanced courses and workshops, as 

well as to attend international congresses in Europe, where I presented some of the described 

results. I was also involved in several academic efforts, such as tutor activities and students training. 

In conclusion, the PhD experience gave me a solid background, fundamental for the continuation of 

my research projects and of my scientific career and for my education as independent researcher. 
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  SNP CHR Position HG18 (UCSC Build 36) PHENO EA NEA EAF LOCUS CITATION NOTES

rs10923931 1 120319482 T2D t g 0.058 NOTCH2 Voight et al (Nature Genetics 2010)

rs340874 1 212225879 T2D c t 0.542 PROX1 Dupuis et al (Nature Genetics 2010)

rs780094 2 27594741 T2D c t 0.6 GCKR Dupuis et al (Nature Genetics 2010)

rs11899863 2 43472323 T2D c t 0.917 THADA Voight et al (Nature Genetics 2010)

rs7578597 2 43586327 T2D t c 0.908 THADA Voight et al (Nature Genetics 2010)

rs243088 2 60422249 T2D_metabochip_MEN t a 0.45 BCL11A  Morris et al (Nature Genetics 2012)

rs243021 2 60438323 T2D a g 0.45 BCL11A Voight et al (Nature Genetics 2010)

rs7593730 2 160879700 T2D c t 0.825 RBMS1 Qi et al (Human Molecular Genetics 2010)

rs3923113 2 165210095 T2D_metabochip_WOMEN a c 0.642 GRB14 Kooner et al (Nature Genetics 2011),  Morris et al (Nature Genetics 2012) South Asian

rs13389219 2 165237122 T2D_metabochip c t 0.6 GRB14  Morris et al (Nature Genetics 2012)

rs7578326 2 226728897 T2D a g 0.675 IRS1 Voight et al (Nature Genetics 2010)

rs2943641 2 226801989 T2D c t 0.667 IRS1 Voight et al (Nature Genetics 2010)

rs13081389 3 12264800 T2D a g 0.967 PPARG Voight et al (Nature Genetics 2010)

rs1801282 3 12368125 T2D c g 0.908 PPARG Voight et al (Nature Genetics 2010)

rs7612463 3 23311454 T2D c a 0.933 UBE2E2 Yamauchi et al (Nature Genetics 2010) Japaneese

rs831571 3 64023337 T2D c t 0.758 PSMD6 Cho et al (Nature Genetics 2012) East Asian

rs6795735 3 64680405 T2D c t 0.517 ADAMTS9 Voight et al (Nature Genetics 2010)

rs4607103 3 64686944 T2D c t 0.8 ADAMTS9 Voight et al (Nature Genetics 2010)

rs11708067 3 124548468 T2D a g 0.8 ADCY5 Dupuis et al (Nature Genetics 2010)

rs1470579 3 187011774 T2D c a 0.275 IGF2BP2 Voight et al (Nature Genetics 2010)

rs16861329 3 188149155 T2D c t 0.883 ST6GAL1 Kooner et al (Nature Genetics 2011) South Asian

rs10010131 4 6343816 T2D g a 0.667 WFS1 Voight et al (Nature Genetics 2010)

rs1801214 4 6353923 T2D t c 0.667 WFS1 Voight et al (Nature Genetics 2010)

rs459193 5 55842508 T2D_metabochip g a 0.75 ANKRD55  Morris et al (Nature Genetics 2012)

rs4457053 5 76460705 T2D g a 0.317 ZBED3 Voight et al (Nature Genetics 2010)

rs7754840 6 20769229 T2D c g 0.3 CDKAL1 Voight et al (Nature Genetics 2010)

rs10440833 6 20796100 T2D a t 0.25 CDKAL1 Voight et al (Nature Genetics 2010)

rs9470794 6 38214822 T2D c t 0.108 ZFAND3 Cho et al (Nature Genetics 2012) East Asian

rs1535500 6 39392028 T2D t g 0.5 KCNK16 Cho et al (Nature Genetics 2012) East Asian

rs17168486 7 14864807 T2D_metabochip_MEN t c 0.142 DGKB  Morris et al (Nature Genetics 2012)

rs6960043 7 15019385 T2D_metabochip_putative_2ndary c t 0.508 DGKB  Morris et al (Nature Genetics 2012)

rs2191349 7 15030834 T2D t g 0.558 DGKB Dupuis et al (Nature Genetics 2010)

rs849134 7 28162747 T2D a g 0.508 JAZF1 Voight et al (Nature Genetics 2010)

rs4607517 7 44202193 T2D a g 0.217 GCK Dupuis et al (Nature Genetics 2010)

rs6467136 7 126952194 T2D g a 0.508 GCC1/PAXA4 Cho et al (Nature Genetics 2012) East Asian

rs972283 7 130117394 T2D g a 0.542 KLF14 Voight et al (Nature Genetics 2010)

rs516946 8 41638405 T2D_metabochip c t 0.8 ANK1 Morris et al (Nature Genetics 2012)

rs896854 8 96029687 T2D t c 0.492 TP53INP1 Voight et al (Nature Genetics 2010)

rs13266634 8 118253964 T2D c t 0.717 SLC30A8 Voight et al (Nature Genetics 2010)

rs3802177 8 118254206 T2D g a 0.717 SLC30A8 Voight et al (Nature Genetics 2010)

rs7041847 9 4277466 T2D a g 0.542 GLIS3 Cho et al (Nature Genetics 2012) East Asian

rs17584499 9 8869118 T2D t c 0.225 PTPRD Tsai et al (Plos Genetics 2010) Chinese

rs944801 9 22041670 T2D_metabochip_putative_2ndary c g 0.575 CDKN2A/B  Morris et al (Nature Genetics 2012)

rs10965250 9 22123284 T2D g a 0.758 CDKN2A/B Voight et al (Nature Genetics 2010)

rs10811661 9 22124094 T2D t c 0.742 CDKN2A/B Voight et al (Nature Genetics 2010), Morris et al (Nature Genetics 2012)

rs13292136 9 81141948 T2D c t 0.942 CHCHD9/TLE4 Voight et al (Nature Genetics 2010)

rs2796441 9 83498768 T2D_metabochip g a 0.617 TLE1  Morris et al (Nature Genetics 2012)

rs12779790 10 12368016 T2D g a 0.225 CDC123/CAMK1D Voight et al (Nature Genetics 2010)

rs1802295 10 70601480 T2D t c 0.342 VPS26A Kooner et al (Nature Genetics 2011) South Asian

rs12571751 10 80612637 T2D_metabochip a g 0.558 ZMIZ1  Morris et al (Nature Genetics 2012)

rs1111875 10 94452862 T2D c t 0.592 HHEX/IDE Voight et al (Nature Genetics 2010)

rs5015480 10 94455539 T2D c t 0.583 HHEX/IDE Voight et al (Nature Genetics 2010)

rs7903146 10 114748339 T2D t c 0.308 TCF7L2 Voight et al (Nature Genetics 2010), Grant et al (Nature Genetics 2006)

rs2334499 11 1653425 T2D t c 0.417 DUSP8 Kong et al (Nature 2009)

rs231362 11 2648047 T2D g a 0.458 KCNQ1 Voight et al (Nature Genetics 2010)

rs231361 11 2648076 T2D_metabochip_putative_2ndary a g 0.233 KCNQ1  Morris et al (Nature Genetics 2012)

rs163184 11 2803645 T2D/T2D_metabochip_MEN g t 0.483 KCNQ1 Voight et al (Nature Genetics 2010), Morris et al (Nature Genetics 2012)

rs5215 11 17365206 T2D c t 0.433 KCNJ11 Voight et al (Nature Genetics 2010)

rs1552224 11 72110746 T2D a c 0.867 ARAP1/CENTD2 Voight et al (Nature Genetics 2010)

rs1387153 11 92313476 T2D t c 0.233 MTNR1B Voight et al (Nature Genetics 2010)

rs10830963 11 92348358 T2D g c 0.217 MTNR1B Voight et al (Nature Genetics 2010)

rs11063069 12 4244634 T2D_metabochip- MEN g a 0.25 CCND2  Morris et al (Nature Genetics 2012)

rs10842994 12 27856417 T2D_metabochip c t 0.833 KLHDC5  Morris et al (Nature Genetics 2012)

rs1531343 12 64461161 T2D c g 0.1 HMGA2 Voight et al (Nature Genetics 2010)

rs4760790 12 69921061 T2D a g 0.258 TSPAN8/LGR5 Voight et al (Nature Genetics 2010)

rs7957197 12 119945069 T2D t a 0.85 HNF1A/TCF1 Voight et al (Nature Genetics 2010)

rs1359790 13 79615157 T2D g a 0.733 SPRY2 Shu et al (Plos Genetics 2010)

rs7163757 15 60178900 T2D c t 0.542 C2CD4A Yamauchi et al (Nature Genetics 2010) Japaneese

rs7178572 15 75534245 T2D g a 0.683 HMG20A Kooner et al (Nature Genetics 2011) South Asian

rs7177055 15 75619817 T2D_metabochip a g 0.708 HMG20A  Morris et al (Nature Genetics 2012)

rs11634397 15 78219277 T2D g a 0.617 ZFAND6 Voight et al (Nature Genetics 2010)

rs2028299 15 88175261 T2D c a 0.283 AP3S2 Kooner et al (Nature Genetics 2011) South Asian

rs8042680 15 89322341 T2D a c 0.242 PRC1 Voight et al (Nature Genetics 2010)

rs11642841 16 52402988 T2D a c 0.458 FTO Voight et al (Nature Genetics 2010)

rs7202877 16 73804746 T2D_metabochip t g 0.908 BCAR1  Morris et al (Nature Genetics 2012)

rs391300 17 2163008 T2D c t 0.692 SRR Tsai et al (Plos Genetics 2010) Chinese

rs4430796 17 33172153 T2D g a 0.492 HNF1B/TCF2 Voight et al (Nature Genetics 2010)

rs12970134 18 56035730 T2D_metabochip a g 0.275 MC4R  Morris et al (Nature Genetics 2012)

rs11873305 18 56200172 T2D_metabochip_putative_2ndary a c 0.987 MC4R  Morris et al (Nature Genetics 2012)

rs10401969 19 19268718 T2D_metabochip c t 0.092 CILP2  Morris et al (Nature Genetics 2012)

rs3786897 19 38584848 T2D a g 0.608 PEPD Cho et al (Nature Genetics 2012) East Asian

rs8108269 19 50850353 T2D_metabochip_WOMEN g t 0.242 GIPR  Morris et al (Nature Genetics 2012)

rs6017317 20 42380380 T2D g t 0.2 FITM2/R3HDML/HNF4A Cho et al (Nature Genetics 2012) East Asian

rs4812829 20 42422681 T2D a g 0.2 HNF4A Kooner et al (Nature Genetics 2011) South Asian

rs5945326 23 152553116 T2D a g 0.767 DUSP9 Voight et al (Nature Genetics 2010)

Appendix table 1: T2D genome-wide significant (p-value < 5x10
-8

) SNPs reported from published GWAS (before 

October 2012). PHENO: phenotype; EA: effect allele; NEA: non-effect allele; EAF: effect allele frequency in CEU 

population (from 1000G data, pilot 1). 
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SNP CHR Position HG18 (UCSC Build36) PHENO EA NEA EAF LOCUS CITATION NOTES

rs9727115 1 98949841 Fasting Pro-insulin_adjFG g a 0.575 SNX7 Strawbridge et al (Diabetes 2011)

rs2779116 1 156852039 HbA1C t c 0.283 SPTA1 Soranzo et al (Diabetes 2010)

rs340874 1 212225879 FGlu c t 0.542 PROX1 Dupuis et al (Nature Genetics 2010)

rs2820436 1 217707303 FIns c a 0.658 LYPLAL1 Scott et al (Nature Genetics 2012) 

rs2785980 1 217767142 FIns t c 0.65 LYPLAL1 Manning et al (Nature Genetics 2012)

rs4846565 1 217788727 FInsadjBMI g a 0.667 LYPLAL1 Scott et al (Nature Genetics 2012) 

rs1371614 2 27006378 FGlu t c 0.275 DPYSL5 Manning et al (Nature Genetics 2012)

rs1260326 2 27584444 2hGlu t c 0.417 GCKR Saxena et al (Nature Genetics 2010)

rs780094 2 27594741 FGlu/FIns c t 0.6 GCKR Dupuis et al (Nature Genetics 2010)

rs1530559 2 135472099 FIns a g 0.608 YSK4 Scott et al (Nature Genetics 2012) 

rs10195252 2 165221337 FIns/FinsadjBMI t c 0.583 COBLL1/GRB14 Scott et al (Nature Genetics 2012) 

rs7607980 2 165259447 FIns t c 0.867 COBLL1/GRB14 Manning et al (Nature Genetics 2012)

rs560887 2 169471394 FGlu c t 0.692 G6PC2 Dupuis et al (Nature Genetics 2010)

rs552976 2 169499684 HbA1C g a 0.642 G6PC2 Soranzo et al (Diabetes 2010)

rs2943634 2 226776324 FIns c a 0.683 IRS1 Manning et al (Nature Genetics 2012)

rs2943645 2 226807424 FIns t c 0.658 IRS1 Scott et al (Nature Genetics 2012) 

rs2972143 2 226824609 FIns g a 0.667 IRS1 Scott et al (Nature Genetics 2012) 

rs17036328 3 12365484 FInsadjBMI t c 0.908 PPARG Scott et al (Nature Genetics 2012) 

rs11715915 3 49430334 FGlu c t 0.775 AMT Scott et al (Nature Genetics 2012) 

rs11708067 3 124548468 FGlu a g 0.8 ADCY5 Dupuis et al (Nature Genetics 2010)

rs11717195 3 124565088 2hGlu t c 0.8 ADCY5 Saxena et al (Nature Genetics 2010)

rs11920090 3 172200215 FGlu t a 0.867 SLC2A2 Dupuis et al (Nature Genetics 2010)

rs7651090 3 186996086 FGlu/2hGlu g a 0.275 IGF2BP2 Scott et al (Nature Genetics 2012) 

rs3822072 4 89960292 FInsadjBMI a g 0.458 FAM13A Scott et al (Nature Genetics 2012) 

rs974801 4 106290513 FInsadjBMI g a 0.4 TET2 Scott et al (Nature Genetics 2012) 

rs9884482 4 106301085 FIns c t 0.4 TET2 Scott et al (Nature Genetics 2012) 

rs4691380 4 157939574 FIns c t 0.592 PDGFC Manning et al (Nature Genetics 2012)

rs6822892 4 157954125 FInsadjBMI a g 0.583 PDGFC Scott et al (Nature Genetics 2012) 

rs4865796 5 53308421 Fins/FInsadjBMI a g 0.717 ARL15 Scott et al (Nature Genetics 2012) 

rs459193 5 55842508 FInsadjBMI g a 0.75 ANKRD55/MAP3K1 Scott et al (Nature Genetics 2012) 

rs7708285 5 76461623 FGluadjBMI g a 0.333 ZBED3 Scott et al (Nature Genetics 2012) 

rs4869272 5 95565204 FGlu t c 0.675 PCSK1 Scott et al (Nature Genetics 2012) 

rs13179048 5 95568482 FGlu c a 0.675 PCSK1 Manning et al (Nature Genetics 2012)

rs6235 5 95754654 Fasting Pro-insulin g c 0.317 PCSK1 Strawbridge et al (Diabetes 2011)

rs1019503 5 96280573 2hGlu a g 0.55 ERAP2 Scott et al (Nature Genetics 2012) 

rs17762454 6 7158199 FGlu t c 0.225 RREB1 Scott et al (Nature Genetics 2012) 

rs9368222 6 20794975 FGlu a c 0.25 CDKAL1 Scott et al (Nature Genetics 2012) 

rs1800562 6 26201120 HbA1C g a 0.967 HFE Soranzo et al (Diabetes 2010)

rs6912327 6 34872900 FInsadjBMI t c 0.75 C6orf107/UHRF1BP1 Scott et al (Nature Genetics 2012) 

rs4646949 6 34953427 FIns t g 0.733 UHRF1BP1 Manning et al (Nature Genetics 2012)

rs2745353 6 127494628 Fins t c 0.542 RSPO3 Scott et al (Nature Genetics 2012) 

rs2191349 7 15030834 FGlu t g 0.558 DGKB/TMEM195 Dupuis et al (Nature Genetics 2010)

rs1799884 7 44195593 HbA1C t c 0.217 GCK Soranzo et al (Diabetes 2010)

rs6975024 7 44198411 2hGlu c t 0.217 GCK Scott et al (Nature Genetics 2012) 

rs4607517 7 44202193 FGlu a g 0.217 GCK Dupuis et al (Nature Genetics 2010)

rs6943153 7 50759073 FGlu t c 0.258 GRB10 Scott et al (Nature Genetics 2012) 

rs1167800 7 75014132 FIns a g 0.533 HIP1 Scott et al (Nature Genetics 2012) 

rs983309 8 9215142 Fglu t g 0.108 PPP1R3B Scott et al (Nature Genetics 2012) 

rs983309 8 9215142 FIns t g 0.108 PPP1R3B Scott et al (Nature Genetics 2012) 

rs4841132 8 9221006 FIns a g 0.075 PPP1R3B Manning et al (Nature Genetics 2012)

rs4841132 8 9221006 FGlu a g 0.075 PPP1R3B Manning et al (Nature Genetics 2012)

rs2126259 8 9222556 FInsadjBMI t c 0.092 PPP1R3B Scott et al (Nature Genetics 2012) 

rs11782386 8 9239197 2hGlu c t 0.883 PPP1R3B Scott et al (Nature Genetics 2012) 

rs6474359 8 41668351 HbA1C t c 0.975 ANK1 Soranzo et al (Diabetes 2010)

rs4737009 8 41749562 HbA1C a g 0.267 ANK1 Soranzo et al (Diabetes 2010)

rs11558471 8 118254914 FGlu a g 0.708 SLC30A8 Dupuis et al (Nature Genetics 2010)

rs11558471 8 118254914 Fasting Pro-insulin a g 0.708 SLC30A8 Strawbridge et al (Diabetes 2011)

rs7034200 9 4279050 FGlu a c 0.542 GLIS3 Dupuis et al (Nature Genetics 2010)

rs10811661 9 22124094 FGlu t c 0.742 CDKN2B Scott et al (Nature Genetics 2012) 

rs16913693 9 110720180 FGlu t g 0.983 IKBKAP Scott et al (Nature Genetics 2012) 

rs306549 9 134459997 Fasting Pro-insulin_WOMEN c g 0.292 DDX31 Strawbridge et al (Diabetes 2011)

rs3829109 9 138376587 FGlu g a 0.625 DNLZ Scott et al (Nature Genetics 2012) 

rs16926246 10 70763398 HbA1C c t 0.9 HK1 Soranzo et al (Diabetes 2010)

rs10885122 10 113032083 FGlu g t 0.875 ADRA2A Dupuis et al (Nature Genetics 2010)

rs4506565 10 114746031 FGlu t a 0.333 TCF7L2 Dupuis et al (Nature Genetics 2010)

rs7903146 10 114748339 FIns c t 0.692 TCF7L2 Strawbridge et al. (Diabetes, 2011), Scott et al (Nature Genetics 2012)

rs12243326 10 114778805 2hGlu c t 0.267 TCF7L2 Saxena et al (Nature Genetics 2010)

rs11605924 11 45829667 FGlu a c 0.533 CRY2 Dupuis et al (Nature Genetics 2010)

rs10501320 11 47250375 Fasting Pro-insulin g c 0.742 MADD Strawbridge et al (Diabetes 2011)

rs10838687 11 47269468 Fasting Pro-insulin t g 0.858 MADD Strawbridge et al (Diabetes 2011)

rs7944584 11 47292896 FGlu a t 0.725 MADD Dupuis et al (Nature Genetics 2010)

rs1483121 11 48289936 FGlu g a 0.858 OR4S1 Manning et al (Nature Genetics 2012)

rs174550 11 61328054 FGlu t c 0.625 FADS1 Dupuis et al (Nature Genetics 2010)

rs11603334 11 72110633 FGlu g a 0.867 ARAP1 Scott et al (Nature Genetics 2012), Manning et al (Nature Genetics 2012)

rs11603334 11 72110633 Fasting Pro-insulin a g 0.133 ARAP1 Strawbridge et al (Diabetes 2011)

rs1387153 11 92313476 HbA1C t c 0.233 MTNR1B Soranzo et al (Diabetes 2010)

rs10830963 11 92348358 FGlu g c 0.217 MTNR1B Dupuis et al (Nature Genetics 2010)

rs2657879 12 55151605 FgluadjBMI g a 0.217 GLS2 Scott et al (Nature Genetics 2012) 

rs35767 12 101399699 FIns g a 0.9 IGF1 Dupuis et al (Nature Genetics 2010)

rs10747083 12 131551691 FGlu a g 0.708 P2RX2 Scott et al (Nature Genetics 2012) 

rs11619319 13 27385599 FGlu g a 0.242 PDX1 Scott et al (Nature Genetics 2012) 

rs2293941 13 27389198 Fasting Pro-insulin a g 0.242 PDX1 Manning et al (Nature Genetics 2012)

rs576674 13 32452302 FGlu g a 0.1 KL Scott et al (Nature Genetics 2012) 

rs7998202 13 112379869 HbA1C g a 0.175 ATP11A/TUBGCP3 Soranzo et al (Diabetes 2010)

rs3783347 14 99909014 FGlu g t 0.775 WARS Scott et al (Nature Genetics 2012) 

rs17271305 15 60120272 2hGlu g a 0.425 FAM148B/VPS13C/C2CD4A/B Saxena et al (Nature Genetics 2010)

rs4502156 15 60170447 Fasting Pro-insulin t c 0.542 FAM148B/VPS13C/C2CD4A/B Strawbridge et al (Diabetes 2011)

rs11071657 15 60221254 FGlu a g 0.608 FAM148B/VPS13C/C2CD4A/B Dupuis et al (Nature Genetics 2010)

rs1549318 15 68896201 Fasting Pro-insulin t c 0.575 LARP6 Strawbridge et al (Diabetes 2011)

rs1421085 16 52358455 FIns c t 0.458 FTO Scott et al (Nature Genetics 2012) 

rs4790333 17 2209453 Fasting Pro-insulin t c 0.433 SGSM2 Strawbridge et al (Diabetes 2011)

rs1046896 17 78278822 HbA1C t c 0.292 FN3K Soranzo et al (Diabetes 2010)

rs731839 19 38590905 FIns/FinsadjBMI g a 0.3 PEPD Scott et al (Nature Genetics 2012) 

rs10423928 19 50874144 2hGlu a t 0.175 GIPR Saxena et al (Nature Genetics 2010)

rs2302593 19 50888474 FGlu c g 0.525 GIPR Scott et al (Nature Genetics 2012) 

rs6113722 20 22505099 FGlu g a 0.942 FOXA2 Scott et al (Nature Genetics 2012) 

rs6048205 20 22507601 FGlu a g 0.925 FOXA2 Manning et al (Nature Genetics 2012)

rs6072275 20 39177319 FGlu a g 0.158 TOP1 Scott et al (Nature Genetics 2012) 

rs855791 22 35792882 HbA1C a g 0.4 TMPRSS6 Soranzo et al (Diabetes 2010)

Appendix table 2: Glycaemic G-W significant SNPs reported from published GWAS (before October 2012). PHENO: 

phenotype; EA: effect allele; NEA: non-effect allele; EAF: effect allele frequency in CEU population (from 1000G data, 

pilot 1). 
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SNP CHR Position HG18 (UCSC Build36) PHENO EA NEA EAF LOCUS CITATION NOTES

rs2815752 1 72585028 BMI a g 0.675 NEGR1 Speliotes et al (Nature Genetics 2010)

rs1514175 1 74764232 BMI a g 0.408 TNNI3K Speliotes et al (Nature Genetics 2010)

rs1555543 1 96717385 BMI c a 0.567 PTBP2 Speliotes et al (Nature Genetics 2010)

rs984222 1 119305366 WHRadjBMI g c 0.567 TBX15/WARS2 Heid et al (Nature Genetics 2010)

rs1011731 1 170613171 WHRadjBMI g a 0.425 DNM3/PIGC Heid et al (Nature Genetics 2010)

rs543874 1 176156103 BMI g a 0.275 SEC16B Speliotes et al (Nature Genetics 2010)

rs2605100 1 217710847 WHR_WOMEN g a 0.675 LYPLAL1 Lindgren et al (PLoS Genetics 2009)

rs4846567 1 217817340 WHRadjBMI g t 0.7 LYPLAL1 Heid et al (Nature Genetics 2010)

rs2867125 2 612827 BMI c t 0.858 TMEM18 Speliotes et al (Nature Genetics 2010)

rs713586 2 25011512 BMI c t 0.508 RBJ Speliotes et al (Nature Genetics 2010)

rs887912 2 59156381 BMI t c 0.325 FANCL Speliotes et al (Nature Genetics 2010)

rs2890652 2 142676401 BMI c t 0.158 LRP1B Speliotes et al (Nature Genetics 2010)

rs10195252 2 165221337 WHRadjBMI t c 0.583 GRB14 Heid et al (Nature Genetics 2010)

rs2943650 2 227000000 PCBFAT c t 0.333 nearIRS1 Kilpeläinen TO et al (Nat Gen 2011) *

rs6784615 3 52481466 WHRadjBMI t c 0.975 NISCH/STAB1 Heid et al (Nature Genetics 2010)

rs6795735 3 64680405 WHRadjBMI c t 0.517 ADAMTS9 Heid et al (Nature Genetics 2010)

rs13078807 3 85966840 BMI g a 0.225 CADM2 Speliotes et al (Nature Genetics 2010)

rs9816226 3 187317193 BMI t a 0.842 ETV5 Speliotes et al (Nature Genetics 2010)

rs10938397 4 44877284 BMI g a 0.45 GNPDA2 Speliotes et al (Nature Genetics 2010)

rs13107325 4 103407732 BMI t c 0.092 SLC39A8 Speliotes et al (Nature Genetics 2010)

rs2112347 5 75050998 BMI t g 0.675 FLJ35779 Speliotes et al (Nature Genetics 2010)

rs261967 5 95876006 BMI c a 0.392 PCSK1 Wen et al (Nature Genetics 2012)  East Asian*

rs4836133 5 124360002 BMI a c 0.517 ZNF608 Speliotes et al (Nature Genetics 2010)

rs6861681 5 173295064 WHRadjBMI a g 0.325 CPEB4 Heid et al (Nature Genetics 2010)

rs1294421 6 6688148 WHRadjBMI g t 0.592 LY86 Heid et al (Nature Genetics 2010)

rs9356744 6 20793465 BMI t c 0.717 CDKAL1 Wen et al (Nature Genetics 2012)  East Asian*

rs206936 6 34410847 BMI g a 0.2 NUDT3 Speliotes et al (Nature Genetics 2010)

rs6905288 6 43866851 WHRadjBMI a g 0.592 VEGFA Heid et al (Nature Genetics 2010)

rs987237 6 50911009 WC g a 0.083 TFAP2B Lindgren et al (PLoS Genetics 2009)

rs987237 6 50911009 BMI g a 0.083 TFAP2B Speliotes et al (Nature Genetics 2010)

rs9491696 6 127494332 WHRadjBMI g c 0.533 RSPO3 Heid et al (Nature Genetics 2010)

rs1055144 7 25837634 WHRadjBMI t c 0.158 NFE2L3 Heid et al (Nature Genetics 2010)

rs545854 8 9897490 WC g c 0.183 MSRA Lindgren et al (PLoS Genetics 2009)

rs10968576 9 28404339 BMI g a 0.358 LRRN6C Speliotes et al (Nature Genetics 2010)

rs11142387 9 72188152 BMI c a 0.55 KLF9 Okada et al (Nature Genetics 2012) East Asian*

rs4929949 11 8561169 BMI c t 0.592 RPL27A Speliotes et al (Nature Genetics 2010)

rs10767664 11 27682562 BMI a t 0.758 BDNF Speliotes et al (Nature Genetics 2010)

rs3817334 11 47607569 BMI t c 0.408 MTCH2 Speliotes et al (Nature Genetics 2010)

rs718314 12 26344550 WHRadjBMI g a 0.25 ITPR2/SSPN Heid et al (Nature Genetics 2010)

rs7138803 12 48533735 BMI a g 0.367 FAIM2 Speliotes et al (Nature Genetics 2010)

rs1443512 12 52628951 WHRadjBMI a c 0.183 HOXC13 Heid et al (Nature Genetics 2010)

rs4771122 13 26918180 BMI g a 0.267 MTIF3 Speliotes et al (Nature Genetics 2010)

rs534870 13 79857208 PCBFAT g a 0.283 nearSPRY2 Kilpeläinen TO et al (Nat Gen 2011) *

rs11847697 14 29584863 BMI t c 0.033 PRKD1 Speliotes et al (Nature Genetics 2010)

rs10150332 14 79006717 BMI c t 0.267 NRXN3 Speliotes et al (Nature Genetics 2010)

rs10146997 14 79014915 WC g a 0.267 NRXN3 Heard-Costa et al (PLoS Genetics 2009)

rs2241423 15 65873892 BMI g a 0.808 MAP2K5 Speliotes et al (Nature Genetics 2010)

rs12444979 16 19841101 BMI c t 0.85 GPRC5B Speliotes et al (Nature Genetics 2010)

rs12597579 16 20165368 BMI c t 0.908 GP2 Wen et al (Nature Genetics 2012)  East Asian*

rs7359397 16 28793160 BMI t c 0.367 SH2B1 Speliotes et al (Nature Genetics 2010)

rs1558902 16 52361075 BMI a t 0.458 FTO Speliotes et al (Nature Genetics 2010)/Heard-Costa et al (PLoS Genetics 2009)

rs8050136 16 52373776 PCBFAT a c 0.45 FTO Kilpeläinen TO et al (Nat Gen 2011) *

rs571312 18 55990749 BMI a c 0.242 MC4R Speliotes et al (Nature Genetics 2010)

rs489693 18 56033767 WC a c 0.625 MC4R Heard-Costa et al (PLoS Genetics 2009)

rs12970134 18 56035730 WC a g 0.275 MC4R Chambers et al (Nature Genetics 2008)

rs29941 19 39001372 BMI g a 0.675 KCTD15 Speliotes et al (Nature Genetics 2010)

rs2287019 19 50894012 BMI c t 0.875 QPCTL Speliotes et al (Nature Genetics 2010)

rs3810291 19 52260843 BMI a g 0.658 TMEM160 Speliotes et al (Nature Genetics 2010)

rs4823006 22 27781671 WHRadjBMI a g 0.525 ZNRF3-KREMEN1 Heid et al (Nature Genetics 2010)

*Not included for project 1, included just for project 3

Appendix table 3: Obesity/anthropometrics G-W significant (p-value < 5x10
-8

) SNPs reported from published GWAS 

(before October 2012). PHENO: phenotype; EA: effect allele; NEA: non-effect allele; EAF: effect allele frequency in 

CEU population (from 1000G data, pilot 1). 
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  SNP CHR Position HG18 (UCSC Build36) PHENO EA NEA EAF LOCUS CITATION NOTES

rs425277 1 2059032 Height t c 0.267 PRKCZ Lango Allen et al (Nature 2010)

rs2284746 1 17179262 Height g c 0.583 MFAP2 Lango Allen et al (Nature 2010)

rs1738475 1 23409478 Height c g 0.675 HTR1D Lango Allen et al (Nature 2010)

rs4601530 1 24916698 Height c t 0.733 CLIC4 Lango Allen et al (Nature 2010)

rs7532866 1 26614131 Height a g 0.7 LIN28 Lango Allen et al (Nature 2010)

rs2154319 1 41518357 Height c t 0.175 SCMH1 Lango Allen et al (Nature 2010)

rs17391694 1 78396214 Height t c 0.125 GIPC2 Lango Allen et al (Nature 2010)

rs6699417 1 88896031 Height t c 0.608 PKN2 Lango Allen et al (Nature 2010)

rs10874746 1 93096559 Height c t 0.633 RPL5 Lango Allen et al (Nature 2010)

rs9428104 1 118657110 Height g a 0.717 SPAG17 Lango Allen et al (Nature 2010)

rs11205277 1 148159496 Height g a 0.417 SF3B4 Lango Allen et al (Nature 2010)

rs17346452 1 170319910 Height c t 0.183 DNM3 Lango Allen et al (Nature 2010)

rs2421992 1 170507874 Height_2ndary t c 0.733 DNM3 Lango Allen et al (Nature 2010)

rs1325598 1 175058872 Height g a 0.55 PAPPA2 Lango Allen et al (Nature 2010)

rs1046934 1 182290152 Height c a 0.333 TSEN15 Lango Allen et al (Nature 2010)

rs10863936 1 210304421 Height g a 0.5 DTL Lango Allen et al (Nature 2010)

rs6684205 1 216676325 Height g a 0.225 TGFB2 Lango Allen et al (Nature 2010)

rs11118346 1 217810342 Height c t 0.525 LYPLAL1 Lango Allen et al (Nature 2010)

rs10799445 1 225978506 Height a c 0.725 JMJD4 Lango Allen et al (Nature 2010)

rs4665736 2 25041103 Height t c 0.442 DNAJC27 Lango Allen et al (Nature 2010)

rs6714546 2 33214929 Height g a 0.717 LTBP1 Lango Allen et al (Nature 2010)

rs17511102 2 37814117 Height t a 0.017 CDC42EP3 Lango Allen et al (Nature 2010)

rs2341459 2 44621706 Height t c 0.258 C2orf34 Lango Allen et al (Nature 2010)

rs12474201 2 46774789 Height a g 0.325 SOCS5 Lango Allen et al (Nature 2010)

rs1367226 2 55943044 Height_2ndary g a 0.608 EFEMP1 Lango Allen et al (Nature 2010)

rs3791675 2 55964813 Height c t 0.75 EFEMP1 Lango Allen et al (Nature 2010)

rs11684404 2 88705737 Height c t 0.308 EIF2AK3 Lango Allen et al (Nature 2010)

rs7567288 2 134151294 Height c t 0.183 NCKAP5 Lango Allen et al (Nature 2010)

rs7567851 2 178392966 Height c g 0.042 PDE11A Lango Allen et al (Nature 2010)

rs1351164 2 217980143 Height t c 0.808 TNS1 Lango Allen et al (Nature 2010)

rs10187066 2 219223003 Height_2ndary g a 0.675 CCDC108/IHH Lango Allen et al (Nature 2010)

rs12470505 2 219616613 Height t g 0.875 CCDC108/IHH Lango Allen et al (Nature 2010)

rs2629046 2 224755988 Height t c 0.517 SERPINE2 Lango Allen et al (Nature 2010)

rs2580816 2 232506210 Height c t 0.742 NPPC Lango Allen et al (Nature 2010)

rs12694997 2 241911659 Height g a 0.683 SEPT2 Lango Allen et al (Nature 2010)

rs2597513 3 13530836 Height c t 0.133 HDAC11 Lango Allen et al (Nature 2010)

rs13088462 3 51046753 Height c t 0.033 DOCK3 Lango Allen et al (Nature 2010)

rs2336725 3 53093779 Height c t 0.442 RFT1 Lango Allen et al (Nature 2010)

rs9835332 3 56642722 Height g c 0.55 C3orf63 Lango Allen et al (Nature 2010)

rs17806888 3 67499012 Height t c 0.908 SUCLG2 Lango Allen et al (Nature 2010)

rs9863706 3 72520103 Height c t 0.75 RYBP Lango Allen et al (Nature 2010)

rs6439167 3 130533446 Height c t 0.758 C3orf37 Lango Allen et al (Nature 2010)

rs9844666 3 137456906 Height g a 0.808 PCCB Lango Allen et al (Nature 2010)

rs724016 3 142588260 Height g a 0.433 ZBTB38 Lango Allen et al (Nature 2010)

rs7652177 3 173451771 Height_2ndary g c 0.517 GHSR Lango Allen et al (Nature 2010)

rs572169 3 173648421 Height t c 0.3 GHSR Lango Allen et al (Nature 2010)

rs720390 3 187031377 Height a g 0.358 IGF2BP2 Lango Allen et al (Nature 2010)

rs2247341 4 1671115 Height a g 0.358 SLBP/FGFR3 Lango Allen et al (Nature 2010)

rs2724475 4 17555530 Height_2ndary t c 0.358 LCORL Lango Allen et al (Nature 2010)

rs6449353 4 17642586 Height t c 0.883 LCORL Lango Allen et al (Nature 2010)

rs17081935 4 57518233 Height t c 0.2 POLR2B Lango Allen et al (Nature 2010)

rs7697556 4 73734177 Height t c 0.508 ADAMTS3 Lango Allen et al (Nature 2010)

rs788867 4 82369030 Height g t 0.292 PRKG2/BMP3 Lango Allen et al (Nature 2010)

rs10010325 4 106325802 Height a c 0.467 TET2 Lango Allen et al (Nature 2010)

rs2353398 4 145742208 Height_2ndary a t 0.492 HHIP Lango Allen et al (Nature 2010)

rs7689420 4 145787802 Height c t 0.817 HHIP Lango Allen et al (Nature 2010)

rs955748 4 184452669 Height g a 0.733 WWC2 Lango Allen et al (Nature 2010)

rs3792752 5 32804391 Height_2ndary g a 0.267 NPR3 Lango Allen et al (Nature 2010)

rs1173727 5 32866278 Height t c 0.542 NPR3 Lango Allen et al (Nature 2010)

rs11958779 5 55037656 Height g a 0.242 SLC38A9 Lango Allen et al (Nature 2010)

rs10037512 5 88390431 Height t c 0.583 MEF2C Lango Allen et al (Nature 2010)

rs13177718 5 108141243 Height c t 0.908 FER Lango Allen et al (Nature 2010)

rs1582931 5 122685098 Height g a 0.542 CEP120 Lango Allen et al (Nature 2010)

rs274546 5 131727766 Height g a 0.633 SLC22A5 Lango Allen et al (Nature 2010)

rs526896 5 134384604 Height t g 0.7 PITX1 Lango Allen et al (Nature 2010)

rs4282339 5 168188818 Height g a 0.783 SLIT3 Lango Allen et al (Nature 2010)

rs6892884 5 170948228 Height_2ndary c t 0.7 FBXW11 Lango Allen et al (Nature 2010)

rs12153391 5 171136043 Height c a 0.75 FBXW11 Lango Allen et al (Nature 2010)

rs889014 5 172916720 Height c t 0.6 BOD1 Lango Allen et al (Nature 2010)

rs422421 5 176449932 Height c t 0.783 FGFR4/NSD1 Lango Allen et al (Nature 2010)

rs6879260 5 179663620 Height c t 0.675 GFPT2 Lango Allen et al (Nature 2010)

rs3812163 6 7670759 Height t a 0.5 BMP6 Lango Allen et al (Nature 2010)

rs1047014 6 19949472 Height c t 0.25 ID4 Lango Allen et al (Nature 2010)

rs806794 6 26308656 Height a g 0.708 Histone_cluster Lango Allen et al (Nature 2010)

rs3129109 6 29192211 Height c t 0.556 OR2J3 Lango Allen et al (Nature 2010)

rs879882 6 31247431 Height_2ndary t c 0.349 MICA Lango Allen et al (Nature 2010)

rs2256183 6 31488508 Height a g 0.558 MICA Lango Allen et al (Nature 2010)

rs6457620 6 32771977 Height g c 0.487 HLA Lango Allen et al (Nature 2010)

rs4711336 6 33767024 Height_2ndary a g 0.467 HMGA1 Lango Allen et al (Nature 2010)

rs2780226 6 34307070 Height c t 0.083 HMGA1 Lango Allen et al (Nature 2010)

rs6938239 6 34791613 Height_2ndary g a 0.133 HMGA1 Lango Allen et al (Nature 2010)

rs6457821 6 35510783 Height c a 0.983 PPARD/FANCE Lango Allen et al (Nature 2010)

rs9472414 6 45054484 Height t a 0.833 SUPT3H/RUNX2 Lango Allen et al (Nature 2010)

rs9360921 6 76322362 Height g t 0.125 SENP6 Lango Allen et al (Nature 2010)

rs310405 6 81857081 Height a g 0.492 FAM46A Lango Allen et al (Nature 2010)

rs7759938 6 105485647 Height c t 0.375 LIN28B Lango Allen et al (Nature 2010)

rs1046943 6 109890634 Height a g 0.617 ZBTB24 Lango Allen et al (Nature 2010)

rs961764 6 117628849 Height g c 0.55 VGLL2 Lango Allen et al (Nature 2010)

rs1490384 6 126892853 Height t c 0.433 C6orf173 Lango Allen et al (Nature 2010)

rs6569648 6 130390812 Height c t 0.225 L3MBTL3 Lango Allen et al (Nature 2010)

rs225694 6 142568835 Height_2ndary c g 0.267 GPR126 Lango Allen et al (Nature 2010)

rs7763064 6 142838982 Height g a 0.692 GPR126 Lango Allen et al (Nature 2010)

rs543650 6 152152636 Height g t 0.6 ESR1 Lango Allen et al (Nature 2010)

rs9456307 6 158849430 Height t a 0.95 TULP4 Lango Allen et al (Nature 2010)

rs798489 7 2768329 Height c t 0.733 GNA12 Lango Allen et al (Nature 2010)

rs4470914 7 19583047 Height t c 0.167 TWISTNB Lango Allen et al (Nature 2010)

rs12534093 7 23469499 Height t a 0.708 IGF2BP3 Lango Allen et al (Nature 2010)

rs1708299 7 28156471 Height a g 0.333 JAZF1 Lango Allen et al (Nature 2010)

rs6959212 7 38094851 Height c t 0.7 STARD3NL Lango Allen et al (Nature 2010)

Appendix table 4: Height G-W significant SNPs reported from published GWAS (before October 2012). Continue. 

PHENO: phenotype; EA: effect allele; NEA: non-effect allele; EAF: effect allele frequency in CEU population (from 

1000G data, pilot 1). 
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  SNP CHR Position HG18 (UCSC Build36) PHENO EA NEA EAF LOCUS CITATION NOTES

rs42235 7 92086012 Height t c 0.333 CDK6 Lango Allen et al (Nature 2010)

rs822552 7 148281567 Height g c 0.217 PDIA4 Lango Allen et al (Nature 2010)

rs2110001 7 150147955 Height g c 0.308 TMEM176A Lango Allen et al (Nature 2010)

rs1013209 8 24172249 Height c t 0.775 ADAM28 Lango Allen et al (Nature 2010)

rs10958476 8 57258362 Height_2ndary c t 0.133 SDR16C5 Lango Allen et al (Nature 2010)

rs7460090 8 57356717 Height t c 0.892 SDR16C5 Lango Allen et al (Nature 2010)

rs6473015 8 78341040 Height c a 0.317 PEX2 Lango Allen et al (Nature 2010)

rs6470764 8 130794847 Height c t 0.767 GSDMC Lango Allen et al (Nature 2010)

rs12680655 8 135706519 Height c g 0.6 ZFAT Lango Allen et al (Nature 2010)

rs7864648 9 16358732 Height t g 0.283 BNC2 Lango Allen et al (Nature 2010)

rs11144688 9 77732106 Height g a 0.875 PCSK5 Lango Allen et al (Nature 2010)

rs7853377 9 85742025 Height g a 0.167 C9orf64 Lango Allen et al (Nature 2010)

rs8181166 9 88306448 Height c g 0.542 ZCCHC6 Lango Allen et al (Nature 2010)

rs2778031 9 90025546 Height t c 0.25 SPIN1 Lango Allen et al (Nature 2010)

rs9969804 9 94468941 Height a c 0.492 IPPK Lango Allen et al (Nature 2010)

rs1257763 9 95933766 Height a g 0.033 PTPDC1 Lango Allen et al (Nature 2010)

rs473902 9 97296056 Height t g 0.925 PTCH1/FANCC Lango Allen et al (Nature 2010)

rs7027110 9 108638867 Height a g 0.233 ZNF462 Lango Allen et al (Nature 2010)

rs1468758 9 112846903 Height c t 0.717 LPAR1 Lango Allen et al (Nature 2010)

rs751543 9 118162163 Height t c 0.7 PAPPA Lango Allen et al (Nature 2010)

rs7466269 9 132453905 Height a g 0.658 FUBP3 Lango Allen et al (Nature 2010)

rs7849585 9 138251691 Height t g 0.358 QSOX2 Lango Allen et al (Nature 2010)

rs7909670 10 12958770 Height c t 0.458 CCDC3 Lango Allen et al (Nature 2010)

rs7916441 10 80595583 Height_2ndary g c 0.542 PPIF Lango Allen et al (Nature 2010)

rs2145998 10 80791702 Height t a 0.55 PPIF Lango Allen et al (Nature 2010)

rs11599750 10 101795432 Height c t 0.608 CPN1 Lango Allen et al (Nature 2010)

rs2237886 11 2767307 Height t c 0.067 KCNQ1 Lango Allen et al (Nature 2010)

rs7926971 11 12654616 Height g a 0.525 TEAD1 Lango Allen et al (Nature 2010)

rs1330 11 17272605 Height t c 0.4 NUCB2 Lango Allen et al (Nature 2010)

rs10838801 11 48054856 Height g a 0.325 PTPRJ/SLC39A13 Lango Allen et al (Nature 2010)

rs1814175 11 49515748 Height t c 0.433 FOLH1 Lango Allen et al (Nature 2010)

rs5017948 11 51270794 Height a t 0.225 OR4A5 Lango Allen et al (Nature 2010)

rs3782089 11 65093395 Height c t 0.967 SSSCA1 Lango Allen et al (Nature 2010)

rs7112925 11 66582736 Height c t 0.592 RHOD Lango Allen et al (Nature 2010)

rs634552 11 74959700 Height t g 0.158 SERPINH1 Lango Allen et al (Nature 2010)

rs494459 11 118079885 Height t c 0.358 TREH Lango Allen et al (Nature 2010)

rs654723 11 128091365 Height a c 0.625 FLI1 Lango Allen et al (Nature 2010)

rs2856321 12 11747040 Height g a 0.425 ETV6 Lango Allen et al (Nature 2010)

rs10770705 12 20748734 Height a c 0.375 SLCO1C1 Lango Allen et al (Nature 2010)

rs2638953 12 28425682 Height c g 0.683 CCDC91 Lango Allen et al (Nature 2010)

rs2066807 12 55026949 Height g c 0.075 STAT2 Lango Allen et al (Nature 2010)

rs1351394 12 64638093 Height t c 0.533 HMGA2 Lango Allen et al (Nature 2010)

rs10748128 12 68113925 Height t g 0.358 FRS2 Lango Allen et al (Nature 2010)

rs11107116 12 92502635 Height t g 0.192 SOCS2 Lango Allen et al (Nature 2010)

rs10859563 12 92644470 Height_2ndary c g 0.567 SOCS2 Lango Allen et al (Nature 2010)

rs7971536 12 100897919 Height t a 0.483 CCDC53/GNPTAB Lango Allen et al (Nature 2010)

rs11830103 12 122389499 Height g a 0.175 SBNO1 Lango Allen et al (Nature 2010)

rs7332115 13 32045548 Height g t 0.375 PDS5B/BRCA2 Lango Allen et al (Nature 2010)

rs3118905 13 50003335 Height g a 0.725 DLEU7 Lango Allen et al (Nature 2010)

rs7319045 13 90822575 Height a g 0.383 GPC5 Lango Allen et al (Nature 2010)

rs1950500 14 23900690 Height t c 0.267 NFATC4 Lango Allen et al (Nature 2010)

rs2093210 14 60027032 Height c t 0.425 SIX6 Lango Allen et al (Nature 2010)

rs1570106 14 67882868 Height c t 0.792 RAD51L1 Lango Allen et al (Nature 2010)

rs862034 14 74060499 Height g a 0.6 LTBP2 Lango Allen et al (Nature 2010)

rs7155279 14 91555634 Height g t 0.642 TRIP11 Lango Allen et al (Nature 2010)

rs16964211 15 49317787 Height g a 0.958 CYP19A1 Lango Allen et al (Nature 2010)

rs7178424 15 60167551 Height c t 0.517 C2CD4A Lango Allen et al (Nature 2010)

rs10152591 15 67835211 Height a c 0.892 TLE3 Lango Allen et al (Nature 2010)

rs12902421 15 69948457 Height c t 0.017 MYO9A Lango Allen et al (Nature 2010)

rs750460 15 72028559 Height_2ndary g a 0.583 PML Lango Allen et al (Nature 2010)

rs5742915 15 72123686 Height c t 0.542 PML Lango Allen et al (Nature 2010)

rs11259936 15 82371586 Height c a 0.5 ADAMTSL3 Lango Allen et al (Nature 2010)

rs16942341 15 87189909 Height c t 0.967 ACAN Lango Allen et al (Nature 2010)

rs2280470 15 87196630 Height_2ndary a g 0.3 ACAN Lango Allen et al (Nature 2010)

rs2871865 15 97012419 Height c g 0.883 IGF1R Lango Allen et al (Nature 2010)

rs4965598 15 98577137 Height c t 0.258 ADAMTS17 Lango Allen et al (Nature 2010)

rs11648796 16 732191 Height g a 0.275 NARFL Lango Allen et al (Nature 2010)

rs26868 16 2189377 Height a t 0.458 CASKIN1 Lango Allen et al (Nature 2010)

rs1659127 16 14295806 Height a g 0.275 MKL2 Lango Allen et al (Nature 2010)

rs8052560 16 87304743 Height a c 0.767 CTU2/GALNS Lango Allen et al (Nature 2010)

rs4640244 17 21224816 Height a g 0.658 KCNJ12 Lango Allen et al (Nature 2010)

rs3110496 17 24941897 Height g a 0.658 ANKRD13B Lango Allen et al (Nature 2010)

rs3764419 17 26188149 Height c a 0.558 ATAD5/RNF135 Lango Allen et al (Nature 2010)

rs17780086 17 27367395 Height a g 0.158 LRRC37B Lango Allen et al (Nature 2010)

rs1043515 17 34175722 Height g a 0.517 PIP4K2B Lango Allen et al (Nature 2010)

rs4986172 17 40571807 Height c t 0.717 ACBD4 Lango Allen et al (Nature 2010)

rs2072153 17 44745013 Height c g 0.3 ZNF652 Lango Allen et al (Nature 2010)

rs4605213 17 46599746 Height c g 0.408 NME2 Lango Allen et al (Nature 2010)

rs227724 17 52133816 Height t a 0.258 NOG Lango Allen et al (Nature 2010)

rs1401796 17 52194758 Height_2ndary c a 0.539 NOG Lango Allen et al (Nature 2010)

rs2079795 17 56851431 Height t c 0.333 TBX2 Lango Allen et al (Nature 2010)

rs2665838 17 59320197 Height g c 0.25 CSH1/GH1 Lango Allen et al (Nature 2010)

rs2070776 17 59361230 Height_2ndary g a 0.65 CSH1/GH1 Lango Allen et al (Nature 2010)

rs11867479 17 65601802 Height t c 0.25 KCNJ16/KCNJ2 Lango Allen et al (Nature 2010)

rs4800452 18 18981609 Height t c 0.75 CABLES1 Lango Allen et al (Nature 2010)

rs9967417 18 45213498 Height g c 0.475 DYM Lango Allen et al (Nature 2010)

rs17782313 18 56002077 Height c t 0.233 MC4R Lango Allen et al (Nature 2010)

rs12982744 19 2128193 Height g c 0.417 DOT1L Lango Allen et al (Nature 2010)

rs7507204 19 3379834 Height c g 0.225 NFIC Lango Allen et al (Nature 2010)

rs891088 19 7135762 Height g a 0.3 INSR Lango Allen et al (Nature 2010)

rs4072910 19 8550031 Height g c 0.567 ADAMTS10 Lango Allen et al (Nature 2010)

rs2279008 19 17144303 Height t c 0.767 MYO9B Lango Allen et al (Nature 2010)

rs17318596 19 46628935 Height a g 0.408 ATP5SL Lango Allen et al (Nature 2010)

rs1741344 20 4049800 Height c t 0.342 SMOX Lango Allen et al (Nature 2010)

rs2145272 20 6574218 Height g a 0.417 BMP2 Lango Allen et al (Nature 2010)

rs7274811 20 31796842 Height g t 0.808 ZNF341 Lango Allen et al (Nature 2010)

rs143384 20 33489170 Height g a 0.308 GDF5 Lango Allen et al (Nature 2010)

rs237743 20 47336426 Height a g 0.342 ZNFX1 Lango Allen et al (Nature 2010)

rs2834442 21 34612656 Height a t 0.608 KCNE2 Lango Allen et al (Nature 2010)

rs4821083 22 31386341 Height t c 0.875 SYN3 Lango Allen et al (Nature 2010)

Appendix table 4: Continuation. 
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  SNP CHR Position HG18 (UCSC Build36) PHENO EA NEA EAF LOCUS CITATION

rs12027135 1 25648320 LDL t a 0.558 TMEM57/LDLRAP1 Teslovich et al (Nature 2010)

rs12027135 1 25648320 TC t a 0.558 TMEM57/LDLRAP1 Teslovich et al (Nature 2010)  **

rs4660293 1 39800767 HDL a g 0.733 MACF1/PABPC4 Teslovich et al (Nature 2010)

rs2479409 1 55277238 LDL g a 0.325 PCSK9 Teslovich et al (Nature 2010)  **

rs2479409 1 55277238 TC g a 0.325 PCSK9 Teslovich et al (Nature 2010)

rs2131925 1 62798530 TG t g 0.617 ANGPTL3/DOCK7 Teslovich et al (Nature 2010)  **

rs3850634 1 62823186 LDL t g 0.625 ANGPTL3–DOCK7 Teslovich et al (Nature 2010)

rs3850634 1 62823186 TC t g 0.625 ANGPTL3–DOCK7 Teslovich et al (Nature 2010)  **

rs7515577 1 92782026 TC a c 0.817 GFI1/EVI5 Teslovich et al (Nature 2010)

rs629301 1 109619829 LDL t g 0.667 CELSR2/PSRC1/SORT1 Teslovich et al (Nature 2010)  **

rs629301 1 109619829 TC t g 0.667 CELSR2/PSRC1/SORT1 Teslovich et al (Nature 2010)  **

rs1801274 1 159746369 TC a g 0.492 FCGR2A Asselbergs et al (The American Journal of Human Genetics 2012)

rs1689800 1 180435508 HDL a g 0.567 ZNF648 Teslovich et al (Nature 2010)

rs2807834 1 219037216 LDL g t 0.683 MOSC1 Teslovich et al (Nature 2010)

rs2807834 1 219037216 TC g t 0.683 MOSC1 Teslovich et al (Nature 2010)

rs4846914 1 228362314 HDL a g 0.608 GALNT2 Teslovich et al (Nature 2010)  **

rs1321257 1 228371935 TG g a 0.383 GALNT2 Teslovich et al (Nature 2010)  **

rs514230 1 232925220 LDL t a 0.45 IRF2BP2/TOMM20 Teslovich et al (Nature 2010)

rs514230 1 232925220 TC t a 0.45 IRF2BP2/TOMM20 Teslovich et al (Nature 2010)

rs1042034 2 21078786 HDL c t 0.2 APOB Teslovich et al (Nature 2010)  **

rs1042034 2 21078786 TG t c 0.8 APOB Teslovich et al (Nature 2010)  **

rs1367117 2 21117405 LDL a g 0.35 APOB Teslovich et al (Nature 2010)  **

rs1367117 2 21117405 TC a g 0.35 APOB Teslovich et al (Nature 2010)  **

rs1260326 2 27584444 TC t c 0.417 GCKR Teslovich et al (Nature 2010)

rs1260326 2 27584444 TG t c 0.417 GCKR Teslovich et al (Nature 2010)  **

rs4299376 2 43926080 LDL g t 0.342 ABCG5/8 Teslovich et al (Nature 2010)  **

rs4299376 2 43926080 TC g t 0.342 ABCG5/8 Teslovich et al (Nature 2010)  **

rs12464355 2 118566320 TC a g 0.9 INSIG2 Asselbergs et al (The American Journal of Human Genetics 2012)

rs6759321 2 136039146 TC t g 0.242 RAB3GAP1 Teslovich et al (Nature 2010)

rs10195252 2 165221337 TG t c 0.583 COBLL1 Teslovich et al (Nature 2010)

rs12328675 2 165249046 HDL c t 0.133 COBLL1 Teslovich et al (Nature 2010)  **

rs2943645 2 226807424 TG t c 0.658 IRS1 Teslovich et al (Nature 2010)

rs1515100 2 226837161 HDL c a 0.333 IRS1 Teslovich et al (Nature 2010)

rs11563251 2 234344123 TC t c 0.1 UGT1A1 Asselbergs et al (The American Journal of Human Genetics 2012)

rs2290159 3 12603920 TC g c 0.8 RAF1 Teslovich et al (Nature 2010)

rs645040 3 137409312 TG t g 0.8 MSL2L1 Teslovich et al (Nature 2010)

rs442177 4 88249285 TG t g 0.608 AFF1/KLHL8 Teslovich et al (Nature 2010)

rs13107325 4 103407732 HDL c t 0.908 SLC39A8 Teslovich et al (Nature 2010)

rs6450176 5 53333782 HDL g a 0.783 ARL15 Teslovich et al (Nature 2010)

rs9686661 5 55897543 TG t c 0.15 ANKRD55/MAP3K1 Teslovich et al (Nature 2010)

rs12916 5 74692295 LDL c t 0.392 HMGCR Teslovich et al (Nature 2010)  **

rs12916 5 74692295 TC c t 0.392 HMGCR Teslovich et al (Nature 2010)  **

rs6882076 5 156322875 LDL c t 0.7 TIMD4/HAVCR1 Teslovich et al (Nature 2010)  **

rs6882076 5 156322875 TC c t 0.7 TIMD4/HAVCR1 Teslovich et al (Nature 2010)

rs1553318 5 156411901 TG c g 0.708 TIMD4/HAVCR1 Teslovich et al (Nature 2010)

rs3757354 6 16235386 LDL c t 0.817 MYLIP Teslovich et al (Nature 2010)

rs3757354 6 16235386 TC c t 0.817 MYLIP Teslovich et al (Nature 2010)

rs1800562 6 26201120 LDL g a 0.967 HFE/HIST1H4C Teslovich et al (Nature 2010)

rs1800562 6 26201120 TC g a 0.967 HFE/HIST1H4C Teslovich et al (Nature 2010)

rs2247056 6 31373469 TG c t 0.703 HLA Teslovich et al (Nature 2010)

rs389883 6 32055439 TG t g 0.7 HLA Asselbergs et al (The American Journal of Human Genetics 2012)

rs3177928 6 32520413 LDL a g 0.181 HLA Teslovich et al (Nature 2010)

rs3177928 6 32520413 TC a g 0.181 HLA Teslovich et al (Nature 2010)

rs2814982 6 34654538 TC c t 0.858 C6orf106 Teslovich et al (Nature 2010)

rs2814944 6 34660775 HDL g a 0.858 C6orf106 Teslovich et al (Nature 2010)

rs9488822 6 116419586 TC a t 0.692 FRK Teslovich et al (Nature 2010)

rs11153594 6 116461284 LDL c t 0.625 FRK Teslovich et al (Nature 2010)

rs605066 6 139871359 HDL t c 0.6 CITED2 Teslovich et al (Nature 2010)

rs1564348 6 160498850 LDL c t 0.208 LPA Teslovich et al (Nature 2010)

rs1564348 6 160498850 TC c t 0.208 LPA Teslovich et al (Nature 2010)

rs3123629 6 160826076 TG a g 0.367 LPA Asselbergs et al (The American Journal of Human Genetics 2012)

rs1084651 6 161009807 HDL g a 0.908 LPA Teslovich et al (Nature 2010)

rs2285942 7 21549442 TC t c 0.142 DNAH11 Teslovich et al (Nature 2010)

rs12670798 7 21573877 LDL c t 0.208 DNAH11 Teslovich et al (Nature 2010)  **

rs2072183 7 44545705 TC c g 0.283 NPC1L1 Teslovich et al (Nature 2010)

rs217386 7 44567220 LDL g a 0.608 NPC1L1 Teslovich et al (Nature 2010)

rs13238203 7 71767603 TG c t 0.975 TYW1B Teslovich et al (Nature 2010)

rs7811265 7 72572446 TG a g 0.833 MLXIPL Teslovich et al (Nature 2010)  **

rs17145738 7 72620810 HDL t c 0.133 MLXIPL Teslovich et al (Nature 2010)

rs4731702 7 130083924 HDL t c 0.45 KLF14 Teslovich et al (Nature 2010)

rs9987289 8 9220768 HDL g a 0.925 PPP1R3B Teslovich et al (Nature 2010)

rs2126259 8 9222556 LDL c t 0.908 PPP1R3B Teslovich et al (Nature 2010)

rs2126259 8 9222556 TC c t 0.908 PPP1R3B Teslovich et al (Nature 2010)

rs11776767 8 10721339 TG c g 0.375 PINX1/XKR6 Teslovich et al (Nature 2010)  **

rs6983129 8 11628545 TG a c 0.508 GATA4 Asselbergs et al (The American Journal of Human Genetics 2012)

rs1961456 8 18299989 TC g a 0.317 NAT2 Teslovich et al (Nature 2010)

rs1495743 8 18317580 TG g c 0.258 NAT2 Teslovich et al (Nature 2010)

rs12679834 8 19864713 HDL_2ndary c t 0.125 LPL Asselbergs et al (The American Journal of Human Genetics 2012) Secondary indipendent signal

rs12678919 8 19888502 HDL g a 0.125 LPL Teslovich et al (Nature 2010)  **

rs12678919 8 19888502 TG a g 0.875 LPL Teslovich et al (Nature 2010)  **

rs1030431 8 59474251 LDL a g 0.3 CYP7A1 Teslovich et al (Nature 2010)

rs1030431 8 59474251 TC a g 0.3 CYP7A1 Teslovich et al (Nature 2010)

rs2293889 8 116668374 HDL g t 0.642 TRPS1 Teslovich et al (Nature 2010)

rs2737229 8 116717740 TC a c 0.717 TRPS1 Teslovich et al (Nature 2010)

rs2954022 8 126551803 LDL c a 0.583 TRIB1 Teslovich et al (Nature 2010)

rs2954022 8 126551803 TC c a 0.583 TRIB1 Teslovich et al (Nature 2010)  **

rs2954029 8 126560154 TG a t 0.575 TRIB1 Teslovich et al (Nature 2010)  **

rs10808546 8 126565000 HDL t c 0.425 TRIB1 Teslovich et al (Nature 2010)

rs7388248 8 144376728 HDL c g 0.242 GPIHBP1 Asselbergs et al (The American Journal of Human Genetics 2012)

rs11136341 8 145115531 LDL g a 0.392 PLEC1 Teslovich et al (Nature 2010)

rs11136341 8 145115531 TC g a 0.392 PLEC1 Teslovich et al (Nature 2010)

rs643531 9 15286034 HDL a c 0.85 TTC39B Teslovich et al (Nature 2010)  **

rs581080 9 15295378 TC c g 0.8 TTC39B Teslovich et al (Nature 2010)

rs1883025 9 106704122 HDL c t 0.783 ABCA1 Teslovich et al (Nature 2010)  **

 (** indicates that this is not the first report of association, but the source of the info reported here)

NOTES

Appendix table 5: Lipids G-W significant SNPs reported from published GWAS (before October 2012). Continue. 

PHENO: phenotype; EA: effect allele; NEA: non-effect allele; EAF: effect allele frequency in CEU population (from 

1000G data, pilot 1). 



Dissection of pleiotropic effects in genome-wide association studies of phenotypes related to 

cardiometabolic health 

184 5 | Appendix tables 

 

  SNP CHR Position HG18 (UCSC Build36) PHENO EA NEA EAF LOCUS CITATION

rs1883025 9 106704122 TC c t 0.783 ABCA1 Teslovich et al (Nature 2010)

rs651007 9 135143696 TC t c 0.233 ABO Teslovich et al (Nature 2010)

rs649129 9 135144125 LDL t c 0.233 ABO Teslovich et al (Nature 2010)

rs10761731 10 64697616 TG a t 0.533 JMJD1C Teslovich et al (Nature 2010)

rs2068888 10 94829632 TG g a 0.525 CYP26A1 Teslovich et al (Nature 2010)

rs11597086 10 101943695 TC c a 0.442 CHUK Asselbergs et al (The American Journal of Human Genetics 2012)

rs1129555 10 113900711 LDL a g 0.275 GPAM Teslovich et al (Nature 2010)

rs2255141 10 113923876 TC a g 0.267 GPAM Teslovich et al (Nature 2010)

rs2923084 11 10345358 HDL a g 0.867 ADM/AMPD3 Teslovich et al (Nature 2010)

rs11024739 11 18602419 LDL a c 0.708 SPTY2D1 Asselbergs et al (The American Journal of Human Genetics 2012)

rs10832963 11 18620817 TC g t 0.708 SPTY2D1 Teslovich et al (Nature 2010)

rs3136441 11 46699823 HDL c t 0.083 LRP4/NR1H3 Teslovich et al (Nature 2010)

rs174546 11 61326406 TG t c 0.383 FADS1–2–3 Teslovich et al (Nature 2010)  **

rs174550 11 61328054 TC t c 0.625 FADS1–2–3 Teslovich et al (Nature 2010)  **

rs174583 11 61366326 LDL c t 0.617 FADS1–2–3 Teslovich et al (Nature 2010)  **

rs174601 11 61379716 HDL c t 0.625 FADS1–2–3 Teslovich et al (Nature 2010)  **

rs11236530 11 75167052 HDL c a 0.883 DGAT2 Asselbergs et al (The American Journal of Human Genetics 2012)

rs964184 11 116154127 HDL c g 0.85 APOA1–C3–A4–A5 Teslovich et al (Nature 2010)  **

rs964184 11 116154127 LDL g c 0.15 APOA1–C3–A4–A5 Teslovich et al (Nature 2010)

rs964184 11 116154127 TC g c 0.15 APOA1–C3–A4–A5 Teslovich et al (Nature 2010)

rs964184 11 116154127 TG g c 0.15 APOA1–C3–A4–A5 Teslovich et al (Nature 2010)  **

rs9804646 11 116170289 HDL_2ndary t c 0.058 BUD13/APOA1 Asselbergs et al (The American Journal of Human Genetics 2012) Secondary indipendent signal

rs12225230 11 116233840 HDL_2ndary c g 0.15 BUD13/APOA1 Asselbergs et al (The American Journal of Human Genetics 2012) Secondary indipendent signal

rs7941030 11 122027585 TC c t 0.425 UBASH3B Teslovich et al (Nature 2010)

rs7115089 11 122035801 HDL g c 0.392 UBASH3B Teslovich et al (Nature 2010)

rs11220462 11 125749162 LDL a g 0.158 ST3GAL4 Teslovich et al (Nature 2010)

rs11220463 11 125753421 TC t a 0.15 ST3GAL4 Teslovich et al (Nature 2010)

rs7134375 12 20365025 HDL a c 0.392 PDE3A Teslovich et al (Nature 2010)

rs11613352 12 56078847 TG c t 0.717 LRP1 Teslovich et al (Nature 2010)

rs3741414 12 56130316 HDL t c 0.275 LRP1 Teslovich et al (Nature 2010)

rs7134594 12 108484576 HDL t c 0.5 MMAB/MVK Teslovich et al (Nature 2010)  **

rs11065987 12 110556807 LDL a g 0.617 BRAP Teslovich et al (Nature 2010)

rs11065987 12 110556807 TC a g 0.617 BRAP Teslovich et al (Nature 2010)

rs1169288 12 119901033 LDL c a 0.292 HNF1A Teslovich et al (Nature 2010)  **

rs1169288 12 119901033 TC c a 0.292 HNF1A Teslovich et al (Nature 2010)

rs4759361 12 121744233 HDL a t 0.158 HCAR2 Asselbergs et al (The American Journal of Human Genetics 2012)

rs4759375 12 122362191 HDL t c 0.108 SBNO1 Teslovich et al (Nature 2010)

rs4765127 12 123026120 HDL t g 0.392 CCDC92/ZNF664 Teslovich et al (Nature 2010)

rs12310367 12 123052631 TG a g 0.617 CCDC92/ZNF664 Teslovich et al (Nature 2010)

rs838880 12 123827546 HDL c t 0.25 SCARB1 Teslovich et al (Nature 2010)

rs9534275 13 31838345 LDL c a 0.525 BRCA2 Asselbergs et al (The American Journal of Human Genetics 2012)

rs2332328 14 23952898 LDL t c 0.533 CBLN3/KIAA1305 Teslovich et al (Nature 2010)

rs2412710 15 40471079 TG a g 0.009 CAPN3 Teslovich et al (Nature 2010)

rs2929282 15 42033223 TG t a 0.017 FRMD5 Teslovich et al (Nature 2010)

rs4775041 15 56461987 HDL_2ndary c g 0.292 LIPC Asselbergs et al (The American Journal of Human Genetics 2012) Secondary indipendent signal

rs1532085 15 56470658 HDL a g 0.392 LIPC Teslovich et al (Nature 2010)  **

rs1532085 15 56470658 TC a g 0.392 LIPC Teslovich et al (Nature 2010)

rs261342 15 56518445 TG g c 0.25 LIPC Teslovich et al (Nature 2010)

rs2652834 15 61183920 HDL g a 0.8 LACTB Teslovich et al (Nature 2010)

rs11649653 16 30825988 TG c g 0.55 CTF1 Teslovich et al (Nature 2010)

rs1421085 16 52358455 HDL t c 0.542 FTO Asselbergs et al (The American Journal of Human Genetics 2012)

rs247616 16 55547091 LDL c t 0.683 CETP Teslovich et al (Nature 2010)

rs3764261 16 55550825 HDL a c 0.308 CETP Teslovich et al (Nature 2010)  **

rs3764261 16 55550825 TC a c 0.308 CETP Teslovich et al (Nature 2010)

rs4783961 16 55552395 HDL_2ndary a g 0.458 CETP Asselbergs et al (The American Journal of Human Genetics 2012) Secondary indipendent signal

rs7205804 16 55562390 TG g a 0.55 CETP Teslovich et al (Nature 2010)

rs16942887 16 66485543 HDL a g 0.108 LCAT Teslovich et al (Nature 2010)  **

rs2000999 16 70665594 LDL a g 0.175 HP/HPR/DHX38 Teslovich et al (Nature 2010)

rs2000999 16 70665594 TC a g 0.175 HP/HPR/DHX38 Teslovich et al (Nature 2010)

rs2925979 16 80092291 HDL c t 0.7 CMIP Teslovich et al (Nature 2010)

rs881844 17 35063744 HDL g c 0.717 STARD3 Teslovich et al (Nature 2010)

rs7225700 17 42746803 LDL c t 0.608 OSBPL7 Teslovich et al (Nature 2010)

rs7206971 17 42780114 TC a g 0.5 OSBPL7 Teslovich et al (Nature 2010)

rs1801689 17 61641042 LDL c a 0.017 APOH Asselbergs et al (The American Journal of Human Genetics 2012)

rs4148008 17 64386889 HDL c g 0.75 ABCA8 Teslovich et al (Nature 2010)

rs4082919 17 73889077 HDL t g 0.542 PGS1 Teslovich et al (Nature 2010)

rs7241918 18 45414951 HDL t g 0.825 LIPG Teslovich et al (Nature 2010)  **

rs7239867 18 45418715 TC g a 0.825 LIPG Teslovich et al (Nature 2010)

rs12967135 18 56000003 HDL g a 0.758 RPS3A/MC4R Teslovich et al (Nature 2010)

rs7255436 19 8339196 HDL a c 0.642 ANGPTL4 Teslovich et al (Nature 2010)  **

rs6511720 19 11063306 LDL g t 0.917 LDLR Teslovich et al (Nature 2010)  **

rs6511720 19 11063306 TC g t 0.917 LDLR Teslovich et al (Nature 2010)  **

rs737337 19 11208493 HDL t c 0.958 DOCK6/LOC55908 Teslovich et al (Nature 2010)

rs10401969 19 19268718 LDL t c 0.908 CSPG3/CILP2/PBX4 Teslovich et al (Nature 2010)  **

rs10401969 19 19268718 TC t c 0.908 CSPG3/CILP2/PBX4 Teslovich et al (Nature 2010)  **

rs10401969 19 19268718 TG t c 0.908 CSPG3/CILP2/PBX4 Teslovich et al (Nature 2010)  **

rs439401 19 50106291 TG c t 0.608 APOE–C1–C2 Teslovich et al (Nature 2010)  **

rs4420638 19 50114786 HDL a g 0.817 APOE–C1–C2 Teslovich et al (Nature 2010)

rs4420638 19 50114786 LDL g a 0.183 APOE–C1–C2 Teslovich et al (Nature 2010)  **

rs4420638 19 50114786 TC g a 0.183 APOE–C1–C2 Teslovich et al (Nature 2010)  **

rs492602 19 53898229 TC g a 0.542 FUT2/FLJ36070 Teslovich et al (Nature 2010)

rs386000 19 59484573 HDL c g 0.183 LILRA3/LILRB2 Teslovich et al (Nature 2010)

rs2277862 20 33616196 TC c t 0.908 ERGIC3 Teslovich et al (Nature 2010)

rs2902940 20 38524901 TC a g 0.742 MAFB Teslovich et al (Nature 2010)

rs2902941 20 38524928 LDL a g 0.742 MAFB Teslovich et al (Nature 2010)  **

rs4297946 20 39244689 TC c g 0.433 TOP1 Teslovich et al (Nature 2010)

rs909802 20 39370229 LDL t c 0.45 TOP1 Teslovich et al (Nature 2010)

rs1800961 20 42475778 HDL c t 0.958 HNF4A Teslovich et al (Nature 2010)  **

rs1800961 20 42475778 TC c t 0.958 HNF4A Teslovich et al (Nature 2010)

rs4810479 20 43978455 TG c t 0.275 PLTP Teslovich et al (Nature 2010)  **

rs6065906 20 43987422 HDL t c 0.808 PLTP Teslovich et al (Nature 2010)  **

rs181362 22 20262068 HDL c t 0.842 UBE2L3 Teslovich et al (Nature 2010)

rs5756931 22 36875979 TG t c 0.583 PLA2G6 Teslovich et al (Nature 2010)

 (** indicates that this is not the first report of association, but the source of the info reported here)

NOTES

Appendix table 5: Continuation. 
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SNP CHR Position HG18 (UCSC Build36) PHENO EA NEA EAF LOCUS CITATION NOTES

rs880315 1 10719453 DBP c t 0.358 CASZ1 Takeuchi et al (Circulation 2010) Japanese

rs4846049 1 11772952 DBP g t 0.642 MTHFR/NPPB Johnson et al (The American Journal of Human Genetics 2011)

rs17367504 1 11785365 SBP a g 0.817 MTHFR-NPPB Newton-Cheh et al (Nature Genetics 2009)

rs13306560 1 11788770 DBP g a 0.358 MTHFR/CLCN6 Tomazewski et al (Hypertension 2010)

rs17030613 1 112992330 DBP c a 0.175 ST7L/CAPZA1 Kato et al (Nature Genetics 2011) East Asian

rs2932538 1 113018066 SBP/DBP g a 0.7 MOV10 Ehret et al (Nature 2011)

rs2004776 1 228915325 HTN t c 0.242 AGT Johnson et al (The American Journal of Human Genetics 2011)

rs16849225 2 164615066 SBP c t 0.75 FIGN/GRB14 Kato et al (Nature Genetics 2011) East Asian

rs13002573 2 164623454 PP a g 0.75 FIGN Wain et al (Nature Genetics 2011)

rs1446468 2 164671732 MAP/SBP/DBP c t 0.517 FIGN Wain et al (Nature Genetics 2011)

rs13082711 3 27512913 DBP c t 0.225 SLC4A7 Ehret et al (Nature 2011)

rs3774372 3 41852418 DBP c t 0.217 ULK4 Ehret et al (Nature 2011)

rs9815354 3 41887655 DBP a g 0.217 ULK4 Levy et al (Nature Genetics 2009)

rs319690 3 47902488 MAP t c 0.525 MAP4_intron Wain et al (Nature Genetics 2011)

rs419076 3 170583580 SBP/DBP t c 0.467 MECOM Ehret et al (Nature 2011)

rs871606 4 54494002 PP t c 0.883 CHIC2 Wain et al (Nature Genetics 2011)

rs1458038 4 81383747 DBP/SBP t c 0.267 FGF5 Ehret et al (Nature 2011)

rs16998073 4 81403365 DBP/HTN t c 0.358 FGF5 Newton-Cheh et al (Nature Genetics 2009), Takeuchi et al (Circulation 2010) in Janapenese population also with HTN

rs13107325 4 103407732 DBP/SBP c t 0.908 SLC39A8 Ehret et al (Nature 2011)

rs6825911 4 111601087 DBP c t 0.217 ENPEP Kato et al (Nature Genetics 2011) East Asian

rs13139571 4 156864963 DBP c a 0.717 GUCY1A3/GUCY1B3 Ehret et al (Nature 2011)

rs1173766 5 32840285 SBP c t 0.45 NPR3 Kato et al (Nature Genetics 2011) East Asian

rs1173771 5 32850785 SBP/DBP/HTN g a 0.475 NPR3-C5orf23 Ehret et al (Nature 2011)

rs11953630 5 157777980 SBP/DBP c t 0.658 EBF1 Ehret et al (Nature 2011)

rs1799945 6 26199158 SBP/DBP/HTN g c 0.125 HFE Ehret et al (Nature 2011)

rs805303 6 31724345 SBP/DBP/HTN g a 0.698 BAT2-BAT5 Ehret et al (Nature 2011)

rs17477177 7 106199094 PP/SBP c t 0.242 PIK3CG Wain et al (Nature Genetics 2011)

rs3918226 7 150321109 DBP t c 0.092 NOS3 Johnson et al (The American Journal of Human Genetics 2011)

rs2898290 8 11471318 SBP c t 0.525 GATA4 Ho et al (Journal of Hypertension 2010)

rs2071518 8 120504993 PP t c 0.208 NOV_3UTR Wain et al (Nature Genetics 2011)

rs4373814 10 18459978 SBP/DBP c g 0.333 CACNB2_5UTR Ehret et al (Nature 2011)

rs1813353 10 18747454 SBP/DBP/HTN t c 0.633 CACNB2_3UTR Ehret et al (Nature 2011)

rs11014166 10 18748804 DBP a t 0.633 CACNB2 Levy et al (Nature Genetics 2009)

rs4590817 10 63137559 SBP/DBP/HTN g c 0.817 C10orf107 Ehret et al (Nature 2011)

rs1530440 10 63194597 DBP c t 0.817 C10orf107 Newton-Cheh et al (Nature Genetics 2009)

rs932764 10 95885930 SBP/HTN g a 0.425 PLCE1 Ehret et al (Nature 2011)

rs1004467 10 104584497 SBP a g 0.908 CYP17A1 Levy et al (Nature Genetics 2009)

rs12413409 10 104709086 DBP/SBP/HTN g a 0.917 CYP17A1/CNNM2 Takeuchi et al  (Circulation 2010) Japanese

rs11191548 10 104836168 SBP t c 0.917 CYP17A1/NT5C2 Newton-Cheh et al (Nature Genetics 2009)

rs2782980 10 115771517 MAP c t 0.817 ADRB1 Wain et al (Nature Genetics 2011)

rs661348 11 1861868 MAP c t 0.4 LSP1/TNNT3 Johnson et al (The American Journal of Human Genetics 2011)

rs7129220 11 10307114 SBP a g 0.117 ADM Ehret et al (Nature 2011)

rs381815 11 16858844 SBP t c 0.317 PLEKHA7 Levy et al (Nature Genetics 2009)

rs633185 11 100098748 SBP/DBP/HTN c g 0.708 FLJ32810/TMEM133 Ehret et al (Nature 2011)

rs11222084 11 129778440 PP t a 0.35 ADAMTS8 Wain et al (Nature Genetics 2011)

rs2681472 12 88533090 DBP/HTN a g 0.9 ATP2B1 Levy et al (Nature Genetics 2009)

rs2681492 12 88537220 SBP t c 0.892 ATP2B1 Levy et al (Nature Genetics 2009)

rs11105354 12 88550654 HTN a g 0.9 ATP2B1 Johnson et al (The American Journal of Human Genetics 2011)

rs17249754 12 88584717 SBP/DBP/HTN g a 0.9 ATP2B1 Ehret et al (Nature 2011)

rs3184504 12 110368991 DBP/SBP t c 0.45 SH2B3 Ehret et al (Nature 2011), Levy et al (Nature Genetics 2009)

rs653178 12 110492139 DBP c t 0.417 SH2B3 Newton-Cheh et al (Nature Genetics 2009)

rs11066280 12 111302166 DBP/SBP t a 1 ALDH2/RPL6/PTPN11 Kato et al (Nature Genetics 2011) East Asian

rs2384550 12 113837114 DBP g a 0.642 TBX5/TBX3 Levy et al (Nature Genetics 2009)

rs10850411 12 113872179 DBP t c 0.683 TBX5/TBX3 Ehret et al (Nature 2011)

rs35444 12 114036820 DBP a g 0.625 TBX3 Kato et al (Nature Genetics 2011) East Asian

rs1378942 15 72864420 DBP c a 0.3 CYP1A1-ULK3 Newton-Cheh et al (Nature Genetics 2009)

rs6495122 15 72912698 DBP a c 0.358 CSK/ULK3 Levy et al (Nature Genetics 2009)

rs2521501 15 89238392 SBP/DBP t a 0.383 FURIN/FES Ehret et al (Nature 2011)

rs13333226 16 20273155 HTN a g 0.808 UMOD Padmanabhan et al (Plos Genetics2010)

rs12946454 17 40563647 SBP t a 0.242 PLCD3 Newton-Cheh et al (Nature Genetics 2009)

rs17608766 17 42368270 SBP c t 0.092 GOSR2 Ehret et al (Nature 2011)

rs12940887 17 44757806 DBP/SBP t c 0.375 ZNF652 Ehret et al (Nature 2011)

rs16948048 17 44795465 DBP g a 0.375 ZNF652 Newton-Cheh et al (Nature Genetics 2009)

rs1327235 20 10917030 DBP/SBP g a 0.508 JAG1 Ehret et al (Nature 2011)

rs6015450 20 57184512 SBP/DBP/HTN g a 0.058 GNAS/EDN3 Ehret et al (Nature 2011)

Appendix table 6: Blood pressure and HTN G-W significant SNPs reported from published GWAS (before October 

2012). PHENO: phenotype; EA: effect allele; NEA: non-effect allele; EAF: effect allele frequency in CEU population 

(from 1000G data, pilot 1). 
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Appendix table 7:.Summary of groups of shared multiple effects and of pathway analysis results for cardiometabolic 

SNPs. Continue. 

Cl set 1 Cl set 2 Cl set 3 Cl set 1 Cl set 2 Cl set 3 Cl set 1 Cl set 2 Cl set 3 Cl set 1 Cl set 2 Cl set 3 Cl set 1 Cl set 2 Cl set 3 Cl set 1 Cl set 2 Cl set 3

rs17145738MLXIPL HDL

rs7811265 MLXIPL TG

rs12679834LPL HDL

rs964184 APOA1–C3–A4–A5 HDL/LDL/TC/TG H25_2 H20_2 H15_3

rs1260326 GCKR 2hGlu/TC/TG/T2D/FGlu/Fins H25_3 H20_3 H15_4

rs4420638 APOE–C1–C2 HDL/LDL/TC

rs629301 CELSR2/PSRC1/SORT1 LDL/TC

rs6511720 LDLR LDL/TC

rs1367117 APOB LDL/TC

rs10830963MTNR1B T2D/Fglu

rs1387153 MTNR1B T2D/HbA1C

rs560887 G6PC2 Fglu

rs6892884 FBXW11 Height

rs3792752 NPR3 Height

rs10010325TET2 Height

rs974801 TET2 FInsadjBMI/Fins

rs17780086LRRC37B Height

rs10187066CCDC108/IHH Height

rs10874746RPL5 Height

rs7515577 GVI1/EVI5 TC

rs35767 IGF1 FIns

rs1167800 HIP1 FIns

rs17036328PPARG FInsadjBMI/T2D

rs13081389PPARG T2D

rs731839 PEPD FIns/FinsadjBMI

rs6450176 ARL15 HDL

rs4865796 ARL15 Fins/FInsadjBMI

rs3786897 PEPD T2D

rs459193 ANKRD55 T2D

rs7944584 MADD FGlu

rs10501320MADD FastingPro-insulin

rs4846567 LYPLAL1 WHR

rs2785980 LYPLAL1 Fins/FInsadjBMI

rs2820436 LYPLAL1 Fins/WHR

rs9491696 RSPO3 WHR/Fins

rs4765127 CCDC92/ZNF664 HDL/TG

rs9686661 ANKRD55/MAP3K1 TG

rs605066 CITED2 HDL

rs1055144 NFE2L3 WHR

rs1011731 DNM3/PIGC WHR

rs718314 ITPR2-SSPN WHR

rs6784615 NISCH/STAB1 WHR

rs4823006 ZNRF3-KREMEN1 WHR

rs1443512 HOXC13 WHR

rs6905288 VEGFA WHR

rs984222 TBX15/WARS2 WHR

rs2943641 IRS1 T2D/Fins/TG/HDL

rs7578326 IRS1 T2D/Fins

rs4731702 KLF14 HDL/T2D

rs3822072 FAM13A FInsadjBMI

rs12328675COBLL1/GRB14 HDL/Fins

rs4691380 PDGFC Fins/FInsadjBMI

rs10195252GRB14 WHR/FIns/FinsadjBMI/TG/T2D

rs3923113 GRB14 T2D

rs439401 APOE–C1–C2 TG

rs10401969CILP2 T2D

rs2954022 TRIB1 LDL/TC/TG/HDL

rs1042034 APOB HDL/TG

rs2000999 HP/HPR/DHX38 LDL/TC

rs4299376 ABCG5/8 LDL/TC

rs1564348 LPA LDL/TC

rs6882076 TIMD4/HAVCR1 LDL/TC/TG

rs11220462ST3GAL4 LDL/TC

rs2479409 PCSK9 LDL/TC

rs217386 NPC1L1 LDL

rs3757354 MYLIP LDL/TC

rs2332328 CBLN3/KIAA1305 LDL

rs2072183 NPC1L1 TC

rs11136341PLEC1 LDL/TC

rs1421085 FTO Fins/HDL/BMI/T2D H25_9 H20_12 H15_18

rs7241918 LIPG HDL/TC

rs1883025 ABCA1 HDL/TC

rs386000 LILRA3/LILRB2 HDL

rs7134594 MMAB/MVK HDL

rs16942887LCAT HDL

rs9804646 BUD13/APOA1 HDL

rs2290159 RAF1 TC

rs514230 IRF2BP2/TOMM20 LDL/TC

rs12027135TMEM57/LDLRAP1 LDL/TC

rs12670798DNAH11 LDL

rs2285942 DNAH11 TC

rs2902940 MAFB TC/LDL

rs1030431 CYP7A1 LDL/TC

rs2737229 TRPS1 TC

rs1169288 HNF1A LDL/TC

rs651007 ABO TC/LDL

rs11065987BRAP LDL/TC

rs3184504 SH2B3 DBP/SBP

rs2287019 QPCTL BMI

rs10423928GIPR 2hGlu

rs29941 KCTD15 BMI

rs1514175 TNNI3K BMI

rs2890652 LRP1B BMI

rs9816226 ETV5 BMI

rs17367504MTHFR-NPPB SBP

rs4846049 MTHFR/NPPB DBP

rs7129220 ADM SBP

rs2681472 ATP2B1 SBP/DBP/HTN

rs11222084ADAMTS8 PP

rs1530440 C10orf107 DBP

rs4590817 C10orf107 SBP/DBP/HTN

rs13139571GUCY1A3/GUCY1B3 DBP

rs4986172 ACBD4 Height

rs12946454PLCD3 SBP

rs2521501 FURIN/FES SBP/DBP

rs6699417 PKN2 Height

rs2932538 MOV10 SBP/DBP

rs17030613ST7L/CAPZA1 DBP

rs13333226UMOD HTN

rs1327235 JAG1 DBP/SBP

rs633185 FLJ32810/TMEM133 SBP/DBP/HTN

rs6495122 CSK/ULK3 DBP

rs1378942 CYP1A1-ULK3 DBP

rs1800562 HFE HbA1C/LDL/TC

rs1799945 HFE SBP/DBP/HTN

rs1490384 C6orf173 Height

rs720390 IGF2BP2 Height

rs849134 JAZF1 T2D

rs1708299 JAZF1 Height

rs11563251UGT1A1 TC

rs1801274 FCGR2A TC

rs11024739SPTY2D1 LDL/TC

rs11597086CHUK TC

rs11599750CPN1 Height

rs581080 TTC39B TC

rs643531 TTC39B HDL

rs12225230BUD13/APOA1 HDL

rs1800961 HNF4A HDL/TC

rs2277862 ERGIC3 TC

rs7532866 LIN28 Height

rs11153594FRK LDL

rs9488822 FRK TC

rs7941030 UBASH3B TC/HDL

rs1129555 GPAM LDL/TC

rs2807834 MOSC1 LDL/TC

rs7206971 OSBPL7 TC

rs7225700 OSBPL7 LDL

rs6759321 RAB3GAP1 TC

rs1530559 YSK4 FIns

rs2814944 C6orf106 HDL/Height

rs2814982 C6orf106 TC

rs2256183 MICA Height

rs7507204 NFIC Height

rs9727115 SNX7 FastingPro-insulin

rs1004467 CYP17A1 DBP/SBP/HTN

rs805303 BAT2-BAT5 SBP/DBP/HTN

rs2796441 TLE1 T2D

rs243088 BCL11A T2D

rs4790333 SGSM2 FastingPro-insulin

rs391300 SRR T2D

rs306549 DDX31 FastingPro-insulin

rs7460090 SDR16C5 Height

rs1582931 CEP120 Height

rs1659127 MKL2 Height

rs11063069CCND2 T2D

rs1325598 PAPPA2 Height

rs2154319 SCMH1 Height

rs2110001 TMEM176A Height

rs4282339 SLIT3 Height

rs10748128FRS2 Height

rs7849585 QSOX2 Height

rs1043515 PIP4K2B Height

rs3129109 OR2J3 Height

rs17318596ATP5SL Height

rs1257763 PTPDC1 Height

rs17806888SUCLG2 Height

rs7155279 TRIP11 Height

rs526896 PITX1 Height

rs494459 TREH Height

rs6959212 STARD3NL Height

rs17081935POLR2B Height

rs2070776 CSH1/GH1 Height

rs10958476SDR16C5 Height

rs9456307 TULP4 Height

rs1351164 TNS1 Height

rs16942341ACAN Height

rs12982744DOT1L Height

rs2353398 HHIP Height

rs2279008 MYO9B Height

rs7971536 CCDC53/GNPTAB Height

rs10859563SOCS2 Height

rs6714546 LTBP1 Height

rs237743 ZNFX1 Height

rs13177718FER Height

rs7916441 PPIF Height

rs1741344 SMOX Height

rs1047014 ID4 Height

rs7864648 BNC2 Height

rs2071518 NOV 3UTR

rs4470914 TWISTNB Height

rs12902421MYO9A Height

rs4072910 ADAMTS10 Height

rs7652177 GHSR Height

rs310405 FAM46A Height

rs12153391FBXW11 Height

rs11830103SBNO1 Height

rs3829109 DNLZ FGlu

rs7697556 ADAMTS3 Height

rs8052560 CTU2/GALNS Height

rs13088462DOCK3 Height

rs11958779SLC38A9 Height

rs2629046 SERPINE2 Height

rs7274811 ZNF341 Height

rs2597513 HDAC11 Height

rs12534093IGF2BP3 Height

rs1046896 FN3K HbA1C

rs16926246HK1 HbA1C

ORIGINAL ASSOCIATIONNEAR LOCUSSNP ID

H25_1 H20_1 H15_1 1 3.65E-10 1 1 LIPIDS

SUB-CLUSTER NAMES DAPPLE SIGNIFICANCE STRING SIGNIFICANCE
GeneMANIA 

SIGNIFICANCE
GOrilla SIGNIFICANCE MULTIPLE EFFECTS DEFINITIONS

H25_4 H20_4

H15_5

0.000999 4.25E-08
H15_6

2.4517E-07 1 LIPIDS

1 GLYCAEMIC

H25_6

H20_6

H15_9

0
1

1

0.01
1

H25_5 H20_5 H15_7 1 1 4.42764E-05

H20_7 H15_11

1

MIXED

METS

H15_10 1 1 1 1 HOUL

1

1
1

1

1
1

HOUL

H15_13 1 0 1 1

H15_14

0

0

1

1

7.83E-14 6.3965E-05

H15_12

0.01

1

0.006 1

1

1

H25_7

H20_8

H20_9

H20_11 H15_17 1 0.017 7.9525E-05 1

H25_8

H20_10

H15_15

0.05

0.01
1

0

0
0

LIPIDS

H15_16 1 1 0 1

0

0
0

1

1
1

H25_10

H20_13

H15_19

0.05

1

LIPIDS 

STRANGE

H15_20 1 0 0 1 LIPIDS

0.04

1

1

1

MIXED

LIPIDS

1

1

0

0

0.06

0

0

0.05

1 1

BMI

H15_22 1 0 0.04 1
BLOOD 

PRESSURE

H20_14

H15_21

1

1

0.03

0

1

1

BLOOD 

PRESSURE

H15_25 0.01 0.02 0.01 1
LIPIDS 

STRANGE

0.05 HEIGHT

H15_24 1 1 1 1

H15_23

0 0

H15_26 0.04

H20_16 H15_29 1 1 6.0491E-06 1

H20_15

H15_28

LIPIDS 

STRANGE

H15_27 0.05 1 1 1 STRANGE

0

0.01

1 0.02 1 1 HEIGHT

HEIGHT
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Cl set 1 Cl set 2 Cl set 3 Cl set 1 Cl set 2 Cl set 3 Cl set 1 Cl set 2 Cl set 3 Cl set 1 Cl set 2 Cl set 3 Cl set 1 Cl set 2 Cl set 3 Cl set 1 Cl set 2 Cl set 3

rs2112347 FLJ35779 BMI

rs12916 HMGCR LDL/TC

rs2131925 ANGPTL3/DOCK7 TG/LDL/TC H15_31

rs389883 C4B TG

rs2247056 HLA TG

rs6457620 HLA Height

rs4297946 TOP1 TC/LDL

rs3177928 HLA LDL/TC

rs4965598 ADAMTS17 Height

rs862034 LTBP2 Height

rs1950500 NFATC4 Height

rs572169 GHSR Height

rs3782089 SSSCA1 Height

rs1468758 LPAR1 Height

rs6457821 PPARD/FANCE Height

rs17511102CDC42EP3 Height

rs1401796 NOG Height

rs750460 PML Height

rs7759938 LIN28B Height

rs6684205 TGFB2 Height

rs2780226 HMGA1 Height

rs2145272 BMP2 Height

rs2079795 TBX2 Height

rs1013209 ADAM28 Height

rs822552 PDIA4 Height

rs9835332 C3orf63 Height

rs3764419 ATAD5/RNF135 Height

rs7319045 GPC5 Height

rs7466269 FUBP3 Height

rs788867 PRKG2/BMP3 Height

rs798489 GNA12 Height

rs3791675 EFEMP1 Height

rs1046934 TSEN15 Height

rs4800452 CABLES1 Height

rs11259936ADAMTSL3 Height

rs1173771 NPR3-C5orf23 SBP/DBP/HTN/Height

rs1173766 NPR3 SBP

rs2280470 ACAN Height

rs10799445JMJD4 Height

rs11107116SOCS2 Height

rs7763064 GPR126 Height

rs7027110 ZNF462 Height

rs7689420 HHIP Height

rs11205277SF3B4 Height

rs143384 GDF5 Height

rs1351394 HMGA2 Height

rs806794 Histone cluster

rs724016 ZBTB38 Height

rs11717195ADCY5 2hGlu

rs11708067ADCY5 T2D/Fglu

rs10965250CDKN2A/B T2D/Fglu

rs7041847 GLIS3 T2D/Fglu

rs516946 ANK1 T2D

rs1294421 LY86 WHR H15_36

rs11619319PDX1 Fglu/FastingPro-insulin

rs11605924CRY2 FGlu

rs6048205 FOXA2 FGlu

rs6113722 FOXA2 FGlu

rs11920090SLC2A2 FGlu

rs17168486DGKB T2D

rs4869272 PCSK1 Fglu/FastingPro-insulin

rs11603334ARAP1 Fglu/FastingPro-insulin/T2D

rs174546 FADS1–2–3 TG/Fglu/TC/LDL/HDL H20_20 H15_38

rs1532085 LIPC HDL/TC

rs4775041 LIPC HDL

rs261342 LIPC TG

rs4783961 CETP HDL H15_40

rs9987289 PPP1R3B HDL/Fins/Fglu/FInsadjBMI/LDL/TC

rs983309 PPP1R3B Fglu/Fins

rs11782386PPP1R3B 2hGlu

rs7138803 FAIM2 BMI

rs13078807CADM2 BMI

rs4836133 ZNF608 BMI

rs887912 FANCL BMI

rs12444979GPRC5B BMI

rs10968576LRRN6C BMI

rs11847697PRKD1 BMI

rs2815752 NEGR1 BMI

rs11873305MC4R T2D

rs10150332NRXN3 BMI/WC

rs7359397 SH2B1 BMI

rs10938397GNPDA2 BMI

rs4929949 RPL27A BMI

rs987237 TFAP2B BMI/WC

rs10767664BDNF BMI

rs543874 SEC16B BMI

rs2867125 TMEM18 BMI

rs12970134MC4R WC/T2D

rs489693 MC4R WC

rs571312 MC4R BMI/HDL/Height

rs3817334 MTCH2 BMI

rs13107325SLC39A8 BMI/DBP/SBP/HDL

rs4771122 MTIF3 BMI

rs206936 NUDT3 BMI

rs2241423 MAP2K5 BMI

rs1555543 PTBP2 BMI

rs3810291 TMEM160 BMI

rs16849225FIGN/GRB14 SBP/PP

rs5215 KCNJ11 T2D

rs4665736 DNAJC27 Height

rs713586 RBJ BMI

rs7332115 PDS5B/BRCA2 Height

SNP ID NEAR LOCUS ORIGINAL ASSOCIATION
SUB-CLUSTER NAMES DAPPLE SIGNIFICANCE STRING SIGNIFICANCE

GeneMANIA 

SIGNIFICANCE
GOrilla SIGNIFICANCE MULTIPLE EFFECTS DEFINITIONS

HOUL1

1

0.02 0 1

H25_11 H20_17

H15_30

0.000999

1

1

H15_32 0

H25_12 H20_18

H15_33

0.000999

0.05

4.72E-07

0

2.3765E-08

0

HEIGHT/MET

S

H15_34 0 0 0 0 HEIGHT

1

4.9367E-07

1

2.99E-10

0.01

HEIGHT/METS

GLYCAEMIC STRANGE

H15_37 0.06 0.01 0.02 1

0.01
0.01

0.01

0.07
0.04

0H15_35

1
1

1

1
1

1

H25_14

H20_21
H15_39

1 0.01

H25_13
H20_19

H25_15 H20_23

H15_42

0.02397602

0.07

0.00098

STRANGE

H20_22 H15_41

0.01 1

METS

H15_43 0.02 0 1 1 HOUL

0

1

1

1

1

MIXED

Appendix table 7:.Continuation.
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 Cl set 1 Cl set 2 Cl set 3 Cl set 1 Cl set 2 Cl set 3 Cl set 1 Cl set 2 Cl set 3 Cl set 1 Cl set 2 Cl set 3 Cl set 1 Cl set 2 Cl set 3 Cl set 1 Cl set 2 Cl set 3

rs17477177PIK3CG PP/SBP

rs6825911 ENPEP DBP

rs12464355INSIG2 TC

rs2302593 GIPR FGlu

rs3783347 WARS FGlu

rs855791 TMPRSS6 HbA1C

rs11649653CTF1 TG

rs645040 MSL2L1 TG

rs442177 AFF1/KLHL8 TG

rs7255436 ANGPTL4 HDL

rs4759361 HCAR2 HDL

rs2925979 CMIP HDL

rs6983129 GATA4 TG

rs11776767PINX1/XKR6 TG

rs2293889 TRPS1 HDL

rs4660293 MACF1/PABPC4 HDL

rs1495743 NAT2 TG

rs1961456 NAT2 TC

rs5756931 PLA2G6 TG

rs492602 FUT2/FLJ36070 TC

rs2657879 GLS2 FgluadjBMI

rs2068888 CYP26A1 TG

rs3123629 LPAL2 TG

rs1367226 EFEMP1 Height

rs13306560MTHFR/CLCN6 DBP

rs9470794 ZFAND3 T2D

rs10747083P2RX2 FGlu

rs871606 CHIC2 PP

rs576674 KL FGlu

rs12779790CDC123/CAMK1D T2D

rs17608766GOSR2 SBP

rs319690 MAP4 intron

rs4737009 ANK1 HbA1C

rs6474359 ANK1 HbA1C

rs7998202 ATP11A/TUBGCP3 HbA1C

rs2779116 SPTA1 HbA1C

rs13082711SLC4A7 DBP

rs880315 CASZ1 DBP

rs11236530DGAT2 HDL

rs1535500 KCNK16 T2D

rs10923931NOTCH2 T2D

rs7957197 HNF1A/TCF1 T2D

rs11634397ZFAND6 T2D

rs13292136CHCHD9/TLE4 T2D

rs661348 LSP1/TNNT3 MAP

rs17584499PTPRD T2D

rs4812829 HNF4A T2D

rs6017317 FITM2/R3HDML/HNF4A T2D

rs381815 PLEKHA7 SBP

rs419076 MECOM SBP/DBP

rs6467136 GCC1/PAXA4 T2D

rs10850411TBX5/TBX3 DBP

rs2384550 TBX5/TBX3 DBP

rs1549318 LARP6 FastingPro-insulin

rs6015450 GNAS/EDN3 SBP/DBP/HTN

rs11953630EBF1 SBP/DBP

rs1446468 FIGN MAP/SBP/DBP

rs1813353 CACNB2 3UTR

rs1458038 FGF5 DBP/SBP/HTN

rs1802295 VPS26A T2D

rs932764 PLCE1 SBP/HTN

rs3774372 ULK4 DBP

rs6861681 CPEB4 WHR

rs2145998 PPIF Height

rs961764 VGLL2 Height

rs10037512MEF2C Height

rs6943153 GRB10 FGlu

rs11715915AMT FGlu

rs1801689 APOH LDL

rs9534275 BRCA2 LDL

rs4430796 HNF1B/TCF2 T2D

rs1359790 SPRY2 T2D

rs2782980 ADRB1 MAP

rs4373814 CACNB2 5UTR

rs654723 FLI1 Height

rs2898290 GATA4 SBP

rs6912327 C6orf107/UHRF1BP1 FInsadjBMI/Fins

rs9967417 DYM Height

rs2871865 IGF1R Height

rs6449353 LCORL Height

rs2665838 CSH1/GH1 Height

rs6470764 GSDMC Height

rs6439167 C3orf47 Height

rs2336725 RTF1 Height

rs1046943 ZBTB24 Height

rs12694997Sep-02 Height

rs879882 MICA Height

rs42235 CDK6 Height

rs9844666 PCCB Height

rs2580816 NPPC Height

rs4640244 KCNJ12 Height

rs3118905 DLEU7 Height

rs11118346LYPLAL1 Height

rs6569648 L3MBTL3 Height

rs751543 PAPPA Height

rs12680655ZFAT Height

rs17391694GIPC2 Height

rs4605213 NME2 Height

rs3110496 ANKRD13B Height

rs2247341 SLBP/FGFR3 Height

rs634552 SERPINH1 Height

rs955748 WWC2 Height

rs227724 NOG Height

rs2856321 ETV6 Height

rs889014 BOD1 Height

rs10770705SLCO1C1 Height

rs7112925 RHOD Height

rs4821083 SYN3 Height

rs7909670 CCDC3 Height

rs2237886 KCNQ1 Height

rs2421992 DNM3 Height

rs2778031 SPIN1 Height

rs10152591TLE3 Height

rs6473015 PEX2 Height

rs2834442 KCNE2 Height

rs274546 SLC22A5 Height

rs26868 CASKIN1 Height

rs7567288 NCKAP5 Height

rs1570106 RAD51L1 Height

rs9472414 SUPT3H/RUNX2 Height

rs12474201SOCS5 Height

rs16861329ST6GAL1 T2D

rs891088 INSR Height

rs543650 ESR1 Height

rs2028299 AP3S2 T2D

rs2004776 AGT HTN

rs545854 MSRA WC

rs7612463 UBE2E2 T2D

rs35444 TBX3 DBP

rs2334499 DUSP8 T2D

rs8042680 PRC1 T2D

rs231361 KCNQ1 T2D

rs2093210 SIX6 Height

rs1738475 HTR1D Height

rs7853377 C9orf64 Height

rs1814175 FOLH1 Height

rs10838801PTPRJ/SLC39A13 Height

rs5017948 OR4A5 Height

rs422421 FGFR4/NSD1 Height

rs9863706 RYBP Height

rs11144688PCSK5 Height

rs1330 NUCB2 Height

rs7926971 TEAD1 Height

rs4601530 CLIC4 Height

rs3812163 BMP6 Height

rs2638953 CCDC91 Height

rs11684404EIF2AK3 Height

rs9360921 SENP6 Height

rs11867479KCNJ16/KCNJ2 Height

rs8181166 ZCCHC6 Height

rs16964211CYP19A1 Height

rs2066807 STAT2 Height

rs9969804 IPPK Height

rs10863936DTL Height

rs17346452DNM3 Height

rs6879260 GFPT2 Height

rs9428104 SPAG17 Height

rs473902 PTCH1/FANCC Height

rs11648796NARFL Height

rs4711336 HMGA1 Height

rs5742915 PML Height

rs12470505CCDC108/IHH Height

rs2341459 C2orf34 Height

rs2724475 LCORL Height

rs2284746 MFAP2 Height

rs6065906 PLTP HDL

rs4810479 PLTP TG

rs4846914 GALNT2 HDL/TG

rs2929282 FRMD5 TG

rs2412710 CAPN3 TG

rs11613352LRP1 TG/HDL

rs4759375 SBNO1 HDL

rs7134375 PDE3A HDL

rs4148008 ABCA8 HDL

rs2923084 ADM/AMPD3 HDL

rs1689800 ZNF648 HDL

rs7388248 GP1HBP1 HDL

rs737337 DOCK6/LOC55908 HDL

rs1084651 LPA HDL

rs2652834 LACTB HDL

rs4082919 PGS1 HDL

rs10761731JMJD1C TG

rs10838687MADD FastingPro-insulin

rs3136441 LRP4/NR1H3 HDL

rs6072275 TOP1 FGlu

rs225694 GPR126 Height

rs425277 PRKCZ Height

rs7567851 PDE11A Height

rs13238203TYW1B TG

rs12940887ZNF652 DBP/SBP

rs2072153 ZNF652 Height

rs16913693IKBKAP FGlu

rs17762454RREB1 FGlu

rs11899863THADA T2D

rs10885122ADRA2A FGlu

rs340874 PROX1 T2D/Fglu

rs6960043 DGKB T2D

rs1483121 OR4S1 FGlu

rs1019503 ERAP2 2hGlu

rs11071657FAM148B/VPS13C/C2CD4A/BFGlu

rs4502156 FAM148B/VPS13C/C2CD4A/BFastingPro-insulin/T2D

rs7178424 C2CD4A Height

rs17271305FAM148B/VPS13C/C2CD4A/B2hGlu

rs1111875 HHEX/IDE T2D

rs7651090 IGF2BP2 FGlu/2hGlu/T2D

rs9368222 CDKAL1 Fglu/T2D

rs7754840 CDKAL1 T2D

rs7202877 BCAR1 T2D

rs4760790 TSPAN8/LGR5 T2D

rs10842994KLHDC5 T2D

rs12571751ZMIZ1 T2D

rs8108269 GIPR T2D

rs944801 CDKN2A/B T2D

rs831571 PSMD6 T2D

rs1531343 HMGA2 T2D

rs163184 KCNQ1 T2D/T2D

rs896854 TP53INP1 T2D

rs7593730 RBMS1 T2D

rs7178572 HMG20A T2D/T2D

rs10010131WFS1 T2D

rs231362 KCNQ1 T2D

rs4457053 ZBED3 T2D/FGluadjBMI

rs4607103 ADAMTS9 T2D

rs6795735 ADAMTS9 WHR/T2D

rs881844 STARD3 HDL

rs838880 SCARB1 HDL

rs181362 UBE2L3 HDL

rs1371614 DPYSL5 FGlu

rs7205804 CETP TG

rs247616 CETP LDL/HDL/TC

rs1799884 GCK HbA1C/2hGlu/T2D/Fglu

rs552976 G6PC2 HbA1C

rs12243326TCF7L2 2hGlu

rs4506565 TCF7L2 Fglu/T2D/Fins

rs13266634SLC30A8 T2D/Fglu/FastingPro-insulin

SNP ID NEAR LOCUS ORIGINAL ASSOCIATION
SUB-CLUSTER NAMES DAPPLE SIGNIFICANCE STRING SIGNIFICANCE

GeneMANIA 

SIGNIFICANCE
GOrilla SIGNIFICANCE MULTIPLE EFFECTS DEFINITIONS

STRANGE1111H15_57H20_30H25_19

GLYCAEMIC STRANGE

H25_16

H20_24

H15_44

1

1

1

H15_45 1

H15_46 1

H20_26

H15_48

1

1

H20_25 H15_47 0.01798202

H20_27 1

1H15_51

H15_53 1

0.04

0

0.01

0.05

1 1 0.0431

1

0 0.03

0.07

1

1

1

1

1

1 1

0 1

0

GLYCAEMIC GLYCAEMIC

MIXED

MIXED

METS

1 METS

H15_50 1 0.03 1 1 LIPIDS

1

1

MIXED

HOUL

H15_49 1 0.05 1 1 HEIGHT

MIXED

0.03

1

1

1 T2D/METS

H15_54 0.07 1 1 1

0

1

1

1

GLYCAEMIC 

STRANGE

GLICAEMIC 

STRANGE

1 1
GLYCAEMIC 

STRANGE

GLYCAEMIC 

STRANGE

0.06

0

H15_52 1

H25_18 H20_29 H15_56 1 1 1 1

H25_17 H20_28 H15_55

Appendix table 7:.Continuation. 
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