UNIVERSITA DEGLI STUDI DI FERRARA

Doctoral School of Graduate Studies
in Mathematic and Computer Sciences
— XXIII Edition —

Parallel Large-Scale Edge-Preserving

Joint Inversion
with PETSc and TAO

by Dr. Ambra Giovannini

Advisor: Prof. Gaetano Zanghirati

Doctoral Thesis
2011

Abstract

The focus of this thesis is on the study and the parallel implementation of a software
package for the Tikhonov’s approach to the joint inversion of multidimensional data, based
on minimum support regularization and built on top of the well known and widely used
high-performance parallel libraries PETSc and TAO.

Studying effective methods and implementing efficient codes for a truly joint inversion
arouses great interest, because multiple types of observations of the same object can be
used at once in a single procedure to recover an estimate of the object itself via non-
invasive inspection. One of the main reasons for this interest is that jointly inverting
different kind of data could allow to reduce both the ill-posedness of data reconstruction
problem and the total number of data to be collected, while still preserving the accuracy
of the results.

This is a relevant goal because the need to get more detailed information about the
structure of the investigated physical systems, via non-invasive observations, is common
to a large number of research and industrial fields such as Biology, Geophysics, Medicine
and many many others; and the same applies to their large-scale scientific applications.

Original contributions are given to both the theoretical aspects and the numerical
implementation of the joint inversion. First of all, we derive the analytical expressions
of first- and second-order derivatives of the proposed joint inversion functional in its
discretized version, to be used with first- and second-order optimization methods. Then
we implemented a Matlab prototype and the HPC parallel code, named Jolnv.

Another important part of the thesis is the design and the implementation of a PETSc-
compliant recursive procedure for the structure prediction of sparse matrices products of
every dimension, in both the sequential and the parallel cases.

Last, but not least, we provide the implementation of the well known Scaled Gradient
Projection (SGP) method for simply constrained nonlinear programming problems as a
new TAO solver.

We analyze the performances of all the developed code with respect to the most
important metrics, i.e., speedup, efficiency, Kuck’s function, and DUSD model, by using
simulated data.

A number of further research developments are outlined at the end, with the perspec-
tive in mind of using the code with large-scale real-world data that will be hopefully made
available by interested people.

Contents

Introduction 1
1 Mathematical setting of edge-preserving joint inversion 11
1.1 The reasons for edge-preserving regularization 11
1.2 Discretization and linearityo 15
1.3 Discrete derivatives computation 16

2 Sparsity structures of JoInv matrices 29
2.1 Sparsity structures of FD operators, 29
2.1.1 Sparsity structures of discrete operators 29

2.1.2 Sparsity structure of matrices C; 32

2.1.3 Sparsity structure of vectors w ™) 39

2.1.4 Sparsity structure of matrices like [Cid ... Cyd] 43

2.1.5 Hessian matriceso 43

2.2 Sparsity structures of CD operators 45
2.2.1 Sparsity structures of discrete operators 45

2.2.2 Sparsity structure of matrices C; 46

2.2.3 Sparsity structure of vectors w ™) 53

2.2.4 Sparsity structure of matrices like [Cid ... Cyd] 55

2.2.5 Hessian matriceso e 55

2.3 About alternative representations 58

3 HPC implementation 59
3.1 Jolnv Matlab prototype 59
3.2 What libraries?o 59
3.3 Jolnv implementation choices 63
3.4 Jolnv structure L 63
3.5 From sequential to parallel code 65
3.5.1 Input and output 65

3.5.2 Parallel vectors and matrices 65

3.6 Jolnv basic usage 67
3.6.1 Initialization and finalization 68

3.6.2 Setting 68

3.6.3 Solve 69

3.6.4 Jolnvoptions 69

ii CONTENTS
4 Structure prediction of sparse matrix products 75
4.1 Structure prediction using graph theoryo L. 75
4.2 Structure prediction without graph 76
4.3 Sequential implementation Lo 80
4.4 Parallel implementation o000 81
4.4.1 Parallel algorithm description 82

4.4.2 Performance analysis o L0 90

5 SGP implemented as a new TAO solver 93
5.1 Scaled Gradient Projection method 93
5.1.1 Basic propertieso Lo 94

5.1.2 The SGP algorithm o o L 95

5.2 SGP implemented as a TAO solver 99
5.3 Steplength and scaling matrix L. 105
5.4 Troubleshooting 109
5.4.1 How-to: Register a new solver with TAO 109

5.4.2 How-to: Access to the underlying PETSc vector 109

5.4.3 How-to: Set the gradient vector 109

5.4.4 How-to: TAO_APPLICATION dynamic cast sequence 110

5.4.5 How-to: Add/Query an object to/from the Tao Application 110

5.5 SGP performance analysiso L0000 111
55,1 DUSD modelon SGP. 119

6 Jolnv performance analysis 123
Conclusions 127
A MPI, PETSc and TAO libraries 131
A.1 MPI (Message Passing Interface) 131
A.2 PETSc (Portable, Extensible Toolkit for Scientific Computation) 133
A.3 TAO (Toolkit for Advanced Optimization) 136

B Measuring parallel performance 139
B.1 Speedup e 139
B.1.1 Fixed-size speedup 140

B.1.2 Fixed-time speedup o 140

B.1.3 Memory-bounded speedup oL 141

B.1.4 Amdahl's Law 141

B.1.5 Gustafson’ speedup model oL L 142

B.2 Efficiency 142
B.3 Kuck’s function 142
B4 Cost . . . e 143
B.5 Scaling efficiency o 143
B.5.1 Strongscalingo oL 143

B.5.2 Weak scalingo 144

B.6 Full timingmodel L 144
B.7 Dimensionless Universal Scaling Diagram (DUSD) 145

CONTENTS

iii

List of Figures
List of Tables
List of Algorithms

List of Listings

147

149

151

153

iv

CONTENTS

Introduction

Motivations

In Applied Sciences, the need for more detailed information about the structure of the
investigated physical systems (no matter if they are the internal structure of the Earth,
the Universe, the quarks distribution inside the hadrons or the human body) has forced
the researcher to simultaneously collect various kind of non-invasive observational data.
For instance, in Geophysics it is common to acquire magnetic, gravity or seismic data; in
Medicine, MRI', PET! and CT' scans are extensively used in attempting more reliable
diagnosis; in Astrophysics, acquisition of the same sky region at different wavelengths are
tried to improve the accuracy of stars position reconstructions. As it is well-known, the
process of recovering the system’ structure from the observed data, called data inversion,
is mathematically ill-posed. In general, all the multiple data sets acquired are aimed
to provide extra information in order to reduce the ill-posedness of data reconstruction.
However, until very recently, data inversions are performed separately and a matching
of the results is attempted only afterwards, through a number of different techniques,
that are most often strongly problem-dependent (e.g., one can obtain the radar waves
velocity distribution in a given volume and then compare it with the electrical conductivity
distribution).

In the joint inversion a unique inversion procedure is adopted instead, which uses all
the available data at once. Basically, it is possible to distinguish two main procedures to
perform the joint inversion: the non-structural and the structural approaches. To sketch
the ideas, let’s consider the easiest case where only two properties of the volume of interest
are measured and let’s call models the unknown distributions of these properties. These
models are thought as scalar functions of the spatial position & € R", where usually
n = 3. In some contexts (such as Geophysics) the image in M C R of each of these
functions is called model space and we sometimes use this name for easier reading. In
the former approach the inversion is performed by using traditional methods, but with
the following observation: if an explicit relationship ¢ is known to exist between the two
properties, that is m®) = gp(m(l)), then the model space M of m(Y is mapped onto the
model space M@ of m®. For instance, if m™) = m®(z) is the velocity distribution and
m® = m(z) is the conductivity distribution of an electromagnetic wave in the soil, then
such a ¢ exists. The key point here is that, if any known relationship exists, it is often
empirical (e.g., a strongly nonlinear ¢ is often roughly approximated with a polynomial as
in [23]) and not always it is very reliable. On the other hand, the idea behind the structural
approach introduced in [61] is the geometrical assumption that both the measured physical

'MRI: Magnetic Resonance Imaging. PET: Photon Emission Tomography. CT: Computerized To-
mography.

2 Introduction

properties tend to change in the same locations, often called transition zones. Even if this
is not always the case, in many situations one can assume the spatial matching of these
transition regions for the different properties, that is the matching of the boundaries
separating the sub-volumes where each m) has different (almost) constant values. In
other words, it is assumed that if any inhomogeneity is present in the investigated system,
then it modifies the values of both the physical properties in the same sub-volume, even if
not necessarily in the same way (amount and/or versus). When this happens, we say that
m® and m® have the same structure and the data sets can be jointly inverted. Here
we will follow the structural approach and we will implement a focusing technique for
the joint inversion in the case of the reconstruction of blocky targets. The literature on
edge-preserving inversion is really huge and successful approaches have been extensively
studied and experimented, such as total variation, Mamford-Shah and cross-gradient, just
to mention some of the most known. In the next subsections we briefly comment on these
approaches and our choice, which is none of them.

Studying effective methods and implementing efficient codes for a truly joint inver-
sion arouses great interest. One of the main reasons is that jointly inverting different
kind of data could allow to reduce the total number of data to be collected, without los-
ing the accuracy of the results. In fact, data of the same nature are often “dependent”,
that is to say they bring almost the same information. Thus, one can think to collect
fewer data with a smaller burden of information, completing them with richer data of
different nature and then invert them jointly. The development of such a technology
would have several spin-offs. For instance, in Medical Imaging it would be possible to
accurately reconstruct the size and the position of SPECT *-detected functional anoma-
lies within anatomic structures, by compensating the spatial low-resolution limitations of
SPECT data with the spatial high-resolution of CT data. A true joint inversion would
increase the result’s informative content with respect to that obtained by separate in-
versions, because it would provide correlations between anatomy and functionality by a
truly integrated processing of the two data sets, in place of just overlapping the separated
final images. Another example is in Geophysics, where jointly using the information from
compressional-body-waves (P-waves) arrival and the information from surface (Rayleigh)
waves allow to construct the most reliable near-surface seismic model to be used for the
computation of statics correction, which is important for the seismic reflection analysis.

The main research goal of this thesis is the parallel implementation of a software pack-
age for the minimum support Tikhonov approach to joint inversion of 3D data, building
it on top of the well known and widely used high-performance parallel libraries PETSc
and TAQO. This is a relevant goal and a meaningful contribution because these technolo-
gies are the today common core of a large number of large-scale scientific applications,
challenging scientists in a wide variety of research and industrial fields such as Biology,
Nanotechnology, Geophysics, Medicine and many many others. Moreover, as we just
mentioned, a large part of these applications relies on the solution of difficult inverse
problems. Nevertheless, at the time this thesis is written no such package is available
yet in PETSc and TAO libraries, so we hope contributing to fill this gap with a flexible,
extensible and well founded package. As it will be seen, both the theoretical formulation
and the numerical implementation are quite difficult. Furthermore, the joint inversion we
implemented involves eight parameters that have to be chosen by the user, accordingly

2SPECT: Single-Photon Emission Computerized Tomography.

Introduction 3

with the particular application at hand and the a priori information he/she has about the
problem solution. It is also well known that there is no single rule for parameter choice
which is effective in all situations, even in the simplest case of standard inversion, but a
number of methods are extensively used in practice such as F-test, L-curve, generalized
cross validation (GCV), discrepancy principle, just to mention some. Beside this fact,
the value of each one of these parameter matters a lot: sometimes, even small changes in
their values make the difference between recovering a satisfactory model and getting an
unsolvable problem. Validating an inversion method always involves reconstruction com-
parisons. However, this is a different job, which first needs the underlying computational
support, and goes beyond the scope of this thesis. This thesis provides the previously

unavailable tools to make that further investigation possible.

Each of the six main chapters contains some original contributions. In Chapter 1 we
derive the analytical expressions of first- and second-order derivatives of the proposed
joint inversion functional in its discretized version.

In Chapter 2 we deeply analyze the sparsity structure of all arrays involved in the
actual computations, providing detailed description for both forward and central difference
discretization schemes.

In Chapter 3 we design the high-performance computing (HPC) code structure for
joint inversion, in both the sequential and the MPI-based parallel environments, based on
the PETSc and TAO libraries. Here, detailed information is also given on what is missing
there for our purposes and what solutions we found.

In Chapter 4 we design, analyze and implement a PETSc-compliant recursive proce-
dure for the structure prediction of sparse matrices products. It is extremely effective in
the sequential settings, but we are also able to maintain a correct recursion in the parallel
settings, even if communications due to the PETSc data distribution slightly degrades
the performances. To the best of our knowledge, no such code was previously available
anywhere, neither in sequential nor in parallel versions.

In Chapter 5 we provide the implementation of the well known Scaled Gradient Pro-
jection (SGP) method for simply constrained nonlinear programming problems as a new
TAO solver. This first-order solver has shown to be very effective in solving classical imag-
ing inverse problems in many fields, where it often outperforms other standard iterative
solvers. Its implementation thus widens the TAO set of first-order solvers by adding a
new state-of-the-art gradient-based approach.

In Chapter 6 we analyze the performances of the implemented joint inversion code,
named Jolnv. The tests run on 3D synthetic data. Unfortunately, no sufficiently large real
data sets are available to the author at the moment of writing this thesis. However, we
hope that people dealing with large-scale real-world data sets will find this work interesting
and try the code on their data soon after the publication of this material.

The original parts of this work are still unpublished, but they will hopefully appear
soon in upcoming papers.

Background

As it is mentioned by Bertero and Boccacci [12], from the mathematical perspective there
is a degree of ambiguity in the concept of inverse problems. According with J.B. Keller
[74], we recognize two problems as inverses of one another if the mathematical formulation

4 Introduction

of each one involves part or the whole solution of the other. Even if, mathematically
speaking, the two problems could be generally seen at the same level because they are
related by a sort of duality, in the sense that one problem can be derived from the other by
exchanging the role of the unknowns and the data, from a physical viewpoint the situation
is different. In fact, in Physics the forward problem (or direct problem) is identifying the
problem expressing the cause-effect sequence, so that the corresponding inverse problems
relates to the reversal process, that is finding the unknowns that generated the known
consequences [125]. Hence, the physical laws governing the cause-effect sequence are
assumed to be known or at least sufficiently well approximated. This work follows this
point of view. Another key point in this context is that the physical forward problem
generating the data is unavoidably directed towards a loss of information, due to the
“transition” from one physical quantity with a certain information content to another
physical quantity with a smaller content. Then, even an “exact” solution of the inverse
problem can hardly provide the starting point (that is the right cause generating the
data), because this would correspond to a gain of information. This is the source of the
mathematical property called ill-posedness, affecting all real-world inverse problems.

We refer the reader for instance to [12, 106] for excellent introductions to the subject
and for a list of illuminating examples.

There are more abstract problems that can be mathematically formulated as forward-
inverse pairs, but they heavily involve advanced theoretical Mathematics and will not be
considered in this work.

In what follows we only recall the basic formal definitions of the mathematical objects
we will deal with in the rest of the work.

The forward problem

The forward problem describes how the data are generated by the “observed” object. In the
physical context this always implies the use of an inspection system and of a corresponding
detection system. For instance, in electro microscopy the inspection system is the optical
system, while the detection system is a photomultiplier tube (PMT) or an avalanche
photo-diode (APD) [11,31,32,113]. The detection process introduces sampling and noise,
which are the responsible for the loss of information.

The forward problem is generally modeled by a function or an operator (that is a
mapping between vector spaces) applied to the object m:

A(m) =d.

It can be a linear or a nonlinear mapping: if it is linear, then a number of theoretical
results are known. If it is nonlinear, as it is often the case in real-world applications, then
things are more complicated from both a theoretical and a numerical viewpoints.

The inverse problem

We now recall the mathematical definitions of the concepts briefly outlined before. For
formal and much deeper discussions on the subject we refer the reader to classical and
recent books such as [12,35,36,56,65,76,78,98, 119, 124, 134].

Introduction 5

Definition 1 Let H, and Ho be Hilbert spaces and let A : Hi — Ha be a linear or
nonlinear operator. Given d € Hs, an inverse problem is to find m € Hi such that

d=A(m).

The operator A describes the relationship between the data d € Hy and the model
parameters m € H;y, and it is a representation of the physical system generating the data.

One well known example of inverse problem is the Fredholm integral equation of the
first kind, that in one dimension on the interval]a, b[C R can be written as

d(t) = / k(t, 5)m(s)ds

The two-variable function k(¢,s), called the kernel, and the data d(t) are given; the goal
is to find the model function m(s). Sometimes, the definition of the problem is helpful
in defining suitable forms that have known solutions. For instance, in the case of space-
invariant kernels (that is k(¢,s) = k(t — s)) and infinite intervals, the previous equation
becomes
+00
d(t) = / k(t — s)m(s)ds = (k*xm)(t)
—00

which is the convolution product of £ and m. In this case an analytic solution based on
direct and inverse Fourier transforms of the data d and the kernel % is known. However,
this is not always the case and most often one can only try to compute an approximated
solution.

The concept of ill-posedness, as introduced by Hadamard [62, 03], can be formally
stated as follows.

Definition 2 Let H, and Ho be Hilbert spaces and let A : Hi — Ho be a linear or
nonlinear operator. The operator equation

d= A(m)

is said to be well-posed provided that ¥d € Ho:

1. there exists m € H,, called a solution, such that d = A(m);

2. the solution m s unique;

3. the solution m depends continuously on d, that is if d = A(m) and d, = A(m,),
then d — d, = m — m,. One can also say that the solution m s stable with
respect to perturbations on d.

A problem that is not well-posed is said ill-posed.

An equivalent, more compact form of the previous definition is the following *:

Definition 3 Let H; and Ho be Hilbert spaces and let A : Hi — Ho be a linear or
nonlinear operator. The operator equation

d= A(m)

is said to be well-posed if A is bijective® (that is, if the inverse mapping A™1 1 Hy — Hy
exists) and the inverse operator A~ Hy — Hy is continuous.

3Notice that the results are usually given for the more general class of normed spaces, However, one
can always consider an Hilbert space as a normed space equipped with the norm induced by its inner
product.

6 Introduction

The nature of ill-posedness is then easily recognized:

e if A is not surjective, then the equation is not solvable for all d € Hy (nonezistence);

e if A is not injective, then the equation may have more than one solution for the
same d € Ha (nonuniqueness);

e if A~! exists, but it is not continuous, then the solution m € H; of the equation
does not depend continuously on the data d € Hy (instability).

From a mathematical viewpoint, the well-posedness of a problem is a property of the
operator A together with the solution space H; and the data space Hs, including their
norms [78].

Most inverse problems are ill-posed. It is worth emphasizing that the previous prop-
erties are stated in a continuous setting: in particular, the non-continuous dependence of
the solution on the data is a property that clearly requires infinite-dimensional spaces.
However, in practice the problems are discrete, obtained by discretization of the spaces
and the operator equation. Thus, discrete problems have to be solved, but the very bad
mathematical properties of the continuous problems they come from make them extremely
ill-conditioned. More precisely, the fact that an operator A does not have a bounded in-
verse means that the condition numbers of its finite-dimensional approximations grow
with the quality of the approximation. Increasing the degree of discretization, i.e., in-
creasing the accuracy of the approximation for the operator A, will cause the approximate
solution of the equation A(m) = d to become less and less reliable. This comes directly
from the Picard’s Theorem [100], as a consequence of the fact that the continuous op-
erator has singular values decreasing to zero. From a strictly mathematical viewpoint,
the discrete problems are well-posed (because whatever will be their size, their smallest
singular value is strictly positive); however, due to their very large condition number,
we will observe a lack of stability when we start resolving the finite-dimensional prob-
lem numerically [3,35,65,78|. This fact in turn implies that standard linear or nonlinear
solvers are unable to provide an acceptable answer, because they either do not compute
a solution at all, or the solution they compute is meaningless (physically or in any other
respect). In this situation, the way to face the problem’s ill-posedness and ill-conditioning
is to include in the problem formulation additional information, in the form of constraints
that the desired solution has to satisfy [12]. These constraints come from the physics of
the problem and are aimed to compensate for the loss of information that generated the
bad mathematical properties. There are two main ways to introduce such an additional
information: one is the class of reqularization methods, where the constraints are explicitly
included in the problem formulation, and the other is the class of Bayesian methods, where
the additional information is of statistical nature. Both of them are extremely powerful
tools and today’s knowledge on their properties is noticeable with respect to both the
theoretical and the computational sides. In this work, we will follow the former approach.

4We recall that amap A : X — YV is said bijective if it is injective and surjective, that is if Va1, 20 € X,
r1 # x2 = A(r1) # A(xz) (injectivity) and Vy € Y 3z € X such that y = A(z) (surjectivity). The
two conditions can equivalently be expressed together as Vy € Y Jlz € X such that y = A(z). The
surjectivity is also stated as A(X) = Y, that is by saying that the range (or image) of A is the whole
codomain).

Introduction 7

Regularization

Regularization techniques are aimed to provide acceptable solutions to ill-posed (ill-
conditioned) inverse problems, by transforming them into stable problems. Without
regularization, the computed approximations are usually dominated by noise and are
therefore meaningless or useless.

According with Tikhonov [12,35,65,78,124], the basic idea of regularization consists of
considering a family of approximated solutions depending on a positive parameter, called
the regularization parameter. The main property of this family is that, under suitable
hypothesis, the approximations sequence converge to the inverse problem solution as the
regularization parameter goes to zero, if the data are noise-free. Unfortunately, noise-free
data are quite uncommon in practical applications. However, the power of these methods
is that even when the data are noisy they can still provide an optimal approximation of
the problem solution for a nonzero value of the regularization parameter. Most often
inverse problems are deconvolution problems: for this class, Tikhonov-like regularization
techniques are essentially spectral filtering techniques, for which we refer the reader to the
wide literature available (see for instance [2,3,12,35,50,56,064-60,76,77,93,97, 131], just
to mention some of the most known references, in an absolutely non-exhaustive list).

From the mathematical viewpoint, given an injective bounded linear operator A, a
classical regularization method for the operator equation .A(m) = d requires finding an ap-
proximation of the unbounded inverse operator A~! : A(?—[l) — H1 by a family {RA}/\>0
of bounded linear operators Ry : Ho — H1 with the property of pointwise convergence

;i_r% Ry (A(m)) =m VYm € Hq

or, equivalently,

Ry(d) — A7Md) Vd € A(Hy).

One needs to assume that A(#;) is dense in #H,. For noisy data d,, = d + n under suit-
able conditions there exists an optimal value A* such that the corresponding computed
solution m* minimizes the regularization function, providing the best solution approx-
imation which is compatible with both the data and the noise. How to find such a
parameter value is a matter of fact and all available methods are essentially of heuristic
nature, even if some of them are clever and based on theoretical justifications, such as for
instance the Morozov’s discrepancy principle [91,95], the Miller method [92|, the gener-
alized cross validation (GCV) and others (see also [12,35,65]). Another key point is how
to include the additional information into the regularization method. In the Tikhonov
approach, this is done by adding explicit constraints to the operator equation, in the form
of a penalization term added to a data-fitting measure and/or of direct constraints on
the required solution. Summarizing, the classical Tikhonov-like regularized problem has
Ry(dy; A) = T1(A(m), dy) + ATJ2(m) and can be expressed as a minimization problem of
the form

mirglienglzize T (A(m), d,) + ATa(m)

where Q) C H4, J; is a measure of the data fidelity and 75 is the regularizing penalization
term. The role of this last term is to impose to the solution some constraints on its size,
or its smoothness, or its localization, or a mix of these. The actual numerical solution of
such a problem for different regularization parameter values often shows what is known
as semiconvergence, a behavior that allows to estimate the optimal value * [35,65, 131].

8 Introduction

In this work, we deal with non-standard Tikhonov-like regularization, in the sense
that the regularized functional involves more than one data set, coming from different
operator equations applied to the same object, and also depends on a set of regularization
parameters. As will be better explained later on, the idea is the same as that of classical
regularization, but the deriving mathematical problem becomes more difficult. At the
time this work is written, to the best of our knowledge there is not a well established
theory for this approach, even if in the last 15 years some very interesting results have
been given and the research on this topic is very appealing and continuously growing. We
will not investigate on the convergence properties of the method, as well as on possible
strategies for choosing the regularization parameters. Rather, we concentrate on the
Computer-Science-oriented task of building a suitable software tool, that will allow the
user to experiment this very promising technique and investigate its computational side.

Work structure

This thesis has 6 main chapters and two appendices, structured as follows.

In Chapter 1 we present the new mathematical formulation of a joint inversion problem
and develop its derivatives. To simplify notations and reasoning, the two models case only
is described and analyzed, but extension of all results to an arbitrary number of models is
straightforward. Even if everything is first presented for the general case, the development
after discretization is described for linear inverse problems only. The nonlinear case,
however, differs only in the misfit parts.

Chapter 2 is a specific discussion about the structure of the matrices involved in JoInv
computations; their patterns are important in order to correctly preallocate the memory,
so that good performance can be reached.

In Chapter 3 there is a short review of the differences between the sequential and the
parallel JoInv code and we highlight the strategies used for an efficient parallel implemen-
tation.

Chapter 4 is dedicated to a general discussion about sparse matrix allocation, sequen-
tial and parallel, when such a matrix is the result of a multiplication of sparse matrices.
Standard graph theory is briefly described and than a new approach that does not need
graph theory is presented. The last part of this chapter shows the analysis of the se-
quential and parallel performance of this new approach. This method enables an efficient
memory preallocation, that is essential even when PETSc data structures are used.

Chapter 5 introduce the SGP (Scaled Gradient Projection) method and explains how
it has been implemented as a standard TAO solver.

Chapter 6 focuses on the parallel performances evaluation of the Jolnv code on a
distributed-memory strictly coupled parallel machine. We remind here that we are in-
terested in parallel performances only and completely disregard all reconstruction-related
evaluations, which are strongly dependent upon parameter settings.

Finally, two appendices are provided, where relevant information are given to non-
expert people. In Appendix A we recall the basic structure, the syntax and the use of
MPI, PETSc, and TAO HPC libraries. These technologies are used all over the work.
Appendix B gives a review of the most important performance analysis metrics, including
some less known very interesting recent proposals.

Introduction 9

Test machine system architecture

We tested all the developed software on an IBM-SP6 cluster hosted at CINECA Super-
computing Center (Bologna, Italy). Its main hardware and software features are the
following;:

e Model: TBM pSeries 575

e Architecture: IBM P6-575 Infiniband Cluster
e Processor Type: IBM Power6, 4.7 GHz

e Peak performance: over 100 Tflops

e Operating System: AIX 6.1 (IBM UNIX)

e Internal Network: Infiniband x4 DDR

e Computing Nodes: 168; 16 chips dual core / node = 32 cores/node = 5376 cores in
total

e RAM: 1.2 TB (128 GB/node)
e Disk Space: 1.2 PB

e SMT: Hardware support for Simultaneous Multi-Threading; in some cases can dou-
ble the number of processes per core (i.e. upto 64 virtual cpu/node).

For more detailed information about SP6 cluster see |1 15].

Notation

From a notational viewpoint, when not otherwise stated, bold lowercase Roman or Greek
letters represent column vectors, while the non-bold ones are scalars, scalar functions
and /or vector components depending on the context. Calligraphic uppercase letters are
usually reserved to sets and operators. Roman uppercase letters are matrices or discrete
nonlinear operators. If not otherwise stated, || - || is the Euclidean norm for both vectors
and functions.

Chapter 1

Mathematical setting of
edge-preserving joint inversion

1.1 The reasons for edge-preserving regularization

To simplify reasoning and notation, in this chapter we only consider the case where two
data sets are available for the same domain and two models have to be recovered from
these data.

In this thesis, we follow the classical Tikhonov’s idea to face ill-posed problems by
minimizing a regularized functional [12,35, 76=78, 106, 119,124, 134].

Suppose we want to investigate the hidden structure of an “object” and we have avail-
able two data sets d), j = 1,2, obtained by some known and non-invasive observations
of the object. We assume that a (possibly approximated) functional expression exists and
is known of each transformation producing the observed data. We want to recover the
object structure from the data or, better, we want to estimate a “model” of this structure,
as accurate as possible.

In the joint inversion problem we use a functional that depends upon the two models,
m® and m®, whose minimization provides the approximate solution of the ill-posed
problem. The idea we follow aims to write the required functional as the sum of the
functionals used for the two separated inversions, plus one “joining” term involving both
m™ and m(® simultaneously. Concerning the two functionals of the separated inversions
we use the following:

JA(m) = dll 4+ ASis (11, mape, €) (1.1)

Here, the first term is the misfit term (the Euclidean distance from the estimated and
the observed data) where the forward operator A can be either a linear or a nonlinear
operator expressing the process generating the observed data from the unknown object.
The second term in (1.1) is the regularization term (sometimes called also stabilization
term): here we choose the Minimum Support Functional (MSF) introduced and studied
in [57,82, 102,144, which is defined as

MSF(m, map,, &) = /

o (=) 4 &2 dV (1.2)

where m,,, is a given a priori estimate of the expected model and § is a scalar called
focusing parameter. The estimate mayp, is often set to a constant background value, but it

12 Mathematical setting of edge-preserving joint inversion

can possibly include a rough idea of the structure of the region being investigated. The
focusing parameter has a twofold goal. First, since it’s easily seen that MSF(m, map, §) —
supp(m — mapy) as & — 0, then & enables the operator to asymptotically identify the
support (that is the volume) where m differs from ma,p,; hence, setting the latter to the
background one would asymptotically reconstruct exactly the volume of hidden anomalies.
Second, strict positiveness of £ guarantees the existence of operator derivatives. The MSF
operator is particularly suitable for structures with sharp boundaries and its properties
are deeply studied and analyzed in [129, 111 145].

Other largely known and studied choices are possible for the regularization func-
tional, such as for instance the Total Variation (TV) regularization |12,50,93, 131], or
the Mumford-Shah regularization [96, 97]. Alternatively, one could also consider the
cross-gradient-constrained nonlinear generalized least-squares formulation of the joint in-
version | |. Each of these approaches has its own peculiarities (such as smoothing
capabilities, or easier computations), but whether these becomes advantages or disad-
vantages usually depends on the application at hand. We stress here that we target
the detection of blocky hidden structures and our goal is to emphasize the “volumetric
relationship” we expect to hold between the collected data, within the well established
Tikhonov setting.

The Lagrange multiplier A in (1.1), multiplying either the misfit or the regularization
term, represents the trade off between the minimization of one or another. How to choose
the value of this parameter is a matter of fact [6] and a huge literature exists, which
mainly provides more or less heuristic procedures. For instance, in denoising problems a
quite well understood discrepancy principle can be used if a suitable estimate of the noise
level is known (see for instance [12,13,129]). In general the parameter value is determined
by requiring that the equation

|@(m, d)| = ¢ (1.3)
is satisfied, where ®(m, d) is a given discrepancy function and ¢ is the error on the exper-
imental measurements.

In the case of joint inversion, two Lagrange multipliers are usually needed because
two such equations (1.3) have to be solved for the relative misfit of the two models, as it
happens for the case of elastic and electromagnetic travel-time joint inversion (a method
for a unique, less restrictive equation can be found in [61], but it needs strong monotonicity
assumptions).

Let us motivate now the choice for the joint functional. One of the main issues in
solving inverse problems is how to include into the formulation and/or the solution addi-
tional a priori information that can be available. In the present case of joint inversion,
this additional a priori information that we want to use on the models is that their vari-
ations in the investigated volume occur in the same regions. For instance, an anomaly of
the radar-waves slowness distribution with respect to the background corresponds to an
anomaly of the elastic-waves slowness distribution and vice versa. Notice that this is the
only information we impose: we don’t know, in fact, if the variations of the two models are
both positive or negative; moreover, also the relative variations with respect to the back-
ground can be different for the two models. To use the information, as proposed in [(1],
we first introduce a structure operator S(m). Qualifying features for a good structure
operator are that it is independent on the variation magnitude of the properties charac-
terizing the hidden structures (such as anomalies) and that it is independent on the versus
of this change along the structure boundaries. For instance, in a Geophysical setting, it

1.1 The reasons for edge-preserving regularization 13

is reasonable not to expect that if the propagation velocity of the electromagnetic waves
in a ground anomaly becomes 10 times smaller than the one in the background, then also
the electric conductivity change of the same amount, or even that it actually decreases.
Hence, structure operators are designed to address at least these features. Another desir-
able property is that such an operator maps the models in the [0, 1] interval. In [61]|, S
depends on the modulus of the Laplacian of the models. Here, we use the following form
for the structure operator:

’Vx m)
‘Vm m(j)‘z + 5]2

{ 2

S(mY, &) = (1.4)

which operates exactly as the structure operator used in [(1], but using the modulus of the
gradient in place of the modulus of the Laplacian. It has been shown that this particular
choice is good to reconstruct blocky targets in which the model changes discontinuously.
The operator (1.4) is also known as Minimum Gradient Support (MGS) operator: its
expression is similar to the gradient of the TV regularizer, but they are not the same.
The operator (1.4) could also be used in the following form

|Vm (mY) — m;%)r)lz
IV (m©) — m)[* + &2

S(m(j)7m;()£r75j) = (15)

that matches the previous one if m%)r is constant, due to linearity of the gradient. From
a computational viewpoint this form is easily implemented by just adding a vector differ-
ence, but it seems to provide no relevant benefits with respect to (1.4), so we retain that
form. Notice also that other structure operators can be chosen from a theoretical view-
point (provided that reasonable regularity conditions hold true): we could have chosen a
polynomial as in [(1] or a Fermi function, without affecting the reasoning. However, the
choice can be of computational impact after problem discretization. A suitable choice of
the Joining Functional (JF) comparing the structures of the two models can be the norm
of the structures difference, as in [61], because the minimization of this functional gives
models having “similar” structures. This choice have been demonstrated to be effective
to reconstruct also smooth anomalies. In our case, since we are interested in anomalies
having sharp boundaries, instead of minimizing the difference between the structure of
the two models, we want to minimize the volume in which the two models have different
structure. This, of course, is not the same goal: the models’ structure difference can be
small but spread over a large volume, while, on the contrary, it could be even not too
small in value, but in a localized volume. For this reason, we use again the analytic form
of MSF": in place of the difference between m and m,,, we use this time the difference
between the structures of the two models. Hence, the JF functional finally reads:

JF(m(l), gl,m@)’ &, 53)
(5m®.€) ~ S(m®. &))" (1.6)

= L av
(Sm0.&) = S(m,8)) +¢

Q

where &3 is again a focusing parameter.

14 Mathematical setting of edge-preserving joint inversion

In the continuous setting, the two-models joint inversion problem with minimum sup-
port edge-preserving regularization can be written as follows:

P(m®,m®,d®, d® mQ) m®, A €) =

» 'Papry M Papr
2 2
[A1 (m®M) — dD||” + || Az (m®) — d?|| (1.7a)
2 2
Y 2 PN (i R
e o e @O\ o (1.75)
(m _mapr) +§1 (m _mapr> +€2
((%m) (%m®)® Y
VemO) + & (Gm®) 18
Y () +&)"+ & qv (1.70)

((W m®)? (W, m®)?)2 ;
2 o 2 + &
(Vo) +& (Vem®)” + &

Here one can easily detect the elements of the traditional inversion for the two separated
models: the sum of the first terms in (1.7a) and (1.7b) is the objective function of the
classical regularization problem for model m(Y, while the sum of the rightmost terms in
(1.7a) and (1.7b) is the objective function of the classical regularization problem for model
m®. On the contrary, the term (1.7c) represents the joining term, that is the additional
regularization function: it explicitly binds the solution to meet the geometrical require-
ment of spatial matching between transition zones of the two models. The parameters to

be chosen are XA = (A1, Ay, A3)T and € = (&,...,&)T.

Remark 1.1 Actually, even if from a mathematical viewpoint the focusing parameters
are aimed to allow differentiability, from a physical viewpoint they should rely on local
characteristics of the model, such as its magnitude. Then, strictly speaking, each focusing
parameter should be considered as a scalar function of the spatial position & = &;(x).
Howewver, the treatment would become overly complex and it is often so difficult to estimate
good values even for the constant case, that it is common practice to consider focusing
parameters just constants. In the rest of the work we will adhere to this practice.

Note that most often the two misfit terms are quite different from each other and of
different scales. As an example, d) could be potential difference measured in Volts (as
in the case of electrical resistivity tomography), while d® a time in nanoseconds (as in
the case of time propagation tomography). This is the reason why it is useful to keep
distinct regularization parameters A; and Ay. An alternative could be to find a way to
normalize the data. We briefly digress now on this idea. If some estimate ¢ of the absolute
error in measurements (that is the noise) is available, then the constraint here can be the
discrepancy ||.A(m) — d|| = 6. To simplify the problem we assume that ¢ is the same for
all kind of measurements, but in general we have an error vector d of the same size as the
data, that is each measurement can have a different absolute error estimate. By scaling
the operators and the data by the error we get:

Ay(m0)

. ~ d
B;(mYW) = and dU):T j=1,2

1.2 Discretization and linearity 15

hence the misfit and the discrepancy constraint become

. ~ 12) ~ 112
HBj(m(J))) and HBj(m(])) — 4V =1

respectively, 7 = 1,2. Notice that these are dimensionless quantities. However, in general
the noise depends on the single datum because one can have a different error estimate for
each measurement. Thus the noise should be a function or, after discretization, a vector
0 the same length as d. Then the misfit term after discretization reads as

2
2

A;(m@) — dv

. A (m) 4O
dj

)]

_ HBj(m(j)) B E(J')

where vector quotients are intended as the vector of componentwise division. Unfortu-
nately, the noise estimate is often not available and, moreover, while this normalization
removes two terms from the overall joint inversion functional, it adds two extra nonlinear
constraints to the problem, that in turn requires a more sophisticated solver for general
equality constrained problems. Hence, in the following we will not follow this way.

The goal is thus to minimize P in (1.7) subject to suitable constraints. The constraints
can be of different kind, but they are intended to provide the additional information to
recover the model from the data. One kind of such an information is provided by the
support of the gradient function of each model, that is the subdomain where each model
changes its value. If we can assume that both the models change approximately in the
same spatial positions (even if not necessarily of the same amount), then we can try to
recover the anomaly domain by minimizing this support.

1.2 Discretization and linearity

We now leave the continuous setting and consider a discretized domain and a correspond-
ing discrete problem. We further assume that the domain we investigate is a rectangle or
a parallelepiped large enough to completely surround the hidden structures we would like
to reconstruct.

For the space discretization we assume a rectangular grid (either 2D or 3D), with
possibly different grid steps h; in the different spatial dimensions x;. The domain is then
partitioned into a number L of cells with either a 2D rectangular or a 3D parallelepiped
shape.

When dealing with derivatives discretization we will use forward or central finite dif-
ferences computed at the cells center; inside each cell, the model is supposed to assume
a constant value equal to the value at its center. The models now become vectors mU),
j = 1,2, by stacking in one column the cell values, following a natural (lexicographic)
ordering, as it will be better described later.

Let’s further assume from now on that the forward operators are linear: it means that
A(m) = Am, where A is a matrix of suitable size. Tt is finally assumed that the data of
both models are acquired with the same number N of samples.

Under these assumptions, one could notice that, by rearranging the operators, the
models and the data in the form

A1 0 m(l) d(l)
A — (O AQ) 5 X — (m(2) 5 and Y — d(2) (18)

16 Mathematical setting of edge-preserving joint inversion

the misfit terms could be shortened to |AX — Y'||*. However, this representations does
not provide any computational benefit and we no longer use it here.
The discretization of the minimum support functionals gives the following terms

() () 2
pr)

L
m —m; a
SMS E

=1 L zapr) + 62

j=12.

In a similar way we can discretize the joining term in (1.7¢). Then, the discretized joint
inversion functional can be written as

P(mY,m® dv d? %Lgaxa (1.9a)
2
— HA (m) — H +)AQ)—d(2)H (1.9b)
L (1) 1) 2 L (2) 2) \2
(mi - mi,apr) (mz —m; apr)
1= % ,apr 1= % 2,apr
((Ve m“’)z (Ve ;)2)
L 2 B ()2 4 ¢2

— (1>2 o (vmmz(‘Q))Q)2+£2
(V] mﬁ) +& (GmP)? e ’

In the next section we see how the function is used to seek the required models estimates.

1.3 Discrete derivatives computation

We plan to face the solution of the joint inversion problem, that is the minimization of the

discrete joint functional (1.9), by first- or second-order iterative solvers. For this reason,

we need to compute (or, better, approximate) functional derivatives with respect to the

model and to the space. As it will be shown shortly, while discrete derivatives of the misfit

terms and also of the regularization terms are not too difficult to compute, the first and

second derivatives of the joining term (1.9d) involves more complicated computations.
Define the diagonal matrices

Wj = We (m®) = diag ((m? —m@?+)) j=12 (110)
Then
M (1) _) 2
Snis(m) :Z (m o) = [[W;(m© —m@)|. j=12 (111

2
=1 mgja)pr) + 5]2

Now, for easier notation we ignore in the next few equations the index j, since everything
holds true for j = 1,2. From the vector calculus and the chain rule we have

Vi (W (m = map)|2) = Vim ((W(m —) (W (m — mam))) (1.12)

— (Vm (W(m — mapr))) W(m — myyp,) . (1.13)

1.3 Discrete derivatives computation 17

Since

my — My apr My — MM apr T
Wm—mar = 2 N 2 1.14
(P) \/(T)’Ll — ml,apr) + 52 \/(mM - mM,apr) + {2 ()

and given that

0 my; — My apr
8mg \/(mz - mi,apr)2 + 52

((7’)’1,Z - mi7apr)2 + §2)1/2 - (mz - mi,apr) |:%2(mz - mi,apr) ((mz - mi,apr>2 + 52)_1/2:|

(mi - mi,apr>2 + §2
(mi - mz’,apr)2 + 52 — (ml — mi,apr)Q
((mi — Miapr)® + 52)3/2

_ ¢ -
o ((mi — M ape)? + 52)3/2 bt e

where d;; is the Kroneker’s symbol', we have

0 mi — My apr

omi \/(mz - mi,apr)2 + &2

Vi (W(m — myyp,)) = diag

e

. £
=d 1.16
e < ((mz - 777/1’,34)1")2 + 52)3/2>i:1 M ()

.....

which is a M x M matrix. Getting back to (1.13), it follows that

2T (¥))1 o=) =

. £
=2d
e (((m, — Miapr)? + 52)3/2>i1 M

1
/2 P
((mi — Myapr)® + 52) i=1,..,M

: £
=2d - apr
e (((ml — Miapr)? + 52)2> i=1,..,M = e

= 2§2W4(m — M)

T
. 2£2 (m1 — Miapr My — MM apr) (1 17)
= 5y 5 .
((m1 — mlyapr)2 + §2) ((mM - mM,apr)2 + 52)
gy {1 if 0 =i,

0 otherwise.

18 Mathematical setting of edge-preserving joint inversion

which is a M x 1 column vector. Summarizing:

Vo (|13 (m — Q) [}) = 2603 —mfp) =12

apr
To compute also the second derivatives we observe that, by using (1.15), we have
0 My — My apr
omy (M — M ape)? + 52)2
((mi = Miape) + €2)” = (M — Miape) 2 (M3 = Miape)? + €2)°2 (Ms — M)
((mi — My apr)? + 54)4
Mi — My apr)? + 2 — 4(m; — My apr)?
((mi = i ape)? + 1)
£2 — 3(mi — My ape)”
((mi — miape)? + 52)3

Hence, for the Hessian we have (j = 1,2):
Vo ([W; (m —m{)) H;)
= % (260 (0~ m))

2 _ 3 (J) _ (J) 2
= 2¢2diag (i 5 (m, 5 n;pz - (1.19)
((mz - mi,apf) + 5]) i=1.... M

= 0y

= 5&(

(i=1,...,M. (1.18)

— 04

_ 2§?M/Jﬁdiag<<§? —3(mf —mi,)") M) (1.20)
which is a M x M matrix. Note that there are not mixed derivatives in the Hessian because
the gradient of mU) depends on m) only. Hence, we have the explicit expression of the
first and second derivatives of the minimum support stabilizing term for both models:
they will be needed in the application of gradient-like methods for the joint functional
minimization.

Now we have to consider the mizing term. As we mentioned before, this functional is
based on a model structure function y(m) which depends on the spatial gradient of the
model itself. In the following results we consider the case where the spatial derivative is
approximated by a forward difference. The reasoning will be next generalized to other
discretization schemes.

Lemma 1.1 Suppose that the spatial derivative discretization steps h,,, t = 1,2,3, are
strictly positive and small enough. Assume also that & > 0 V¢ = 1,....5. Then the
gradient with respect to the model of the joining functional can be written as

Vo) MIX = (—1)714¢2,,¢2 l(@ ® IM> DTD(JM ® m<j>>] (1.21)

. - -2
- diag (((HVw mEJ)H% + fj2+2))Z.:1 M) Wé(y(l) _ y(2)) .

1.3 Discrete derivatives computation 19

Proof. To compute the derivatives, we first re-formulate the expression in terms of its
component functions and then we use the chain rule. The joining functional accounts for
the support where the structure functions of the two models differ: that’s why we apply
the minimum support stabilizer to the difference of the two model structure functions.
So, by defining

. _ . mP?
yz(a) _ y(m?)) _ H Tj)mg H2 j=1,2 (1_22)
[V mi” [, + 6 1o
and y) = (yij), e ,y](\f})T we can write the mixing term as
M) (2))2
(yi s) . (m(1)>
MIX(m) = with m = : (1.23)
; (" =) + & m?

Again, by introducing the matrices

.) 1
Wit = We,,, (mY) = diag — =12, (1.24)
VIenfven)
1
W5 = We,(m) = diag : (1.25)
1) _ @)2 | 2
(yi Yi) +&5 1. M
we can further simplify the MIX term expression as
2
MIx(m) = W5 (y") ~ @) . (1.26)

To compute the first derivative of the joining term with respect to the j-th model, 7 =1, 2,
we can apply again the chain rule, having

Vi) MIX = 2 (me y“’) (Vym (Ws(y™ — y@)))) Ws(yM — y@)), (1.27)

because V) y*) = 0 when k # j. We can write

CRNC) S RNC) T

" o Y1~ Y Yv —Yum
Ws(y'" —y'?) = 2 Y 2 (1.28)
\/ (v - o) + & \/ (i) —oi) + &
and by proceeding in the same way as for (1.15) we have for j =1
9 o _ @ 2
Yi Yi = 0y & i=1,...,M

o (1) 2 9 3/2
VO) (-)
(1.29)

20 Mathematical setting of edge-preserving joint inversion

For 7 = 2 we have instead

0 v~y

(2) 2
% \\J (" —) + &
1 2 1/2 1 2 1 2 1 2) 1/2
(" =2+ = Y =y - =) (Y -)+)"

() =P + &
B 0 ek U et 0
(" =)+ €)™

—&

= Oy li=1,..., M. (1.30)
3 2) Y)
(D P+)’
Hence, in both cases
P y(l) %(2) - —3/2 .
. — (-1 (W — oy + &) j=12,
Ay m_ @ >
¢ \/(yz — Y) + &5
(1.31)

where ;i = 1,..., M, and J; is again the Kroneker’s symbol (related to the cell index,
in this case). Thus, it follows that

-3/2
Y0 <W5 (y") - y<2>)) = (~1)"'¢} diag (((yf”) 5?))
i M
= (-)gnw? (1.32)

which is a M x M diagonal matrix.
Now we have to compute the gradient of y¥) with respect to m"), that is the matrix

. X . T
V. y?D =V, o y(m9) =V) (yﬁ”, . ,y%}) j=1,2. (1.33)

We forget once again for easier notation the superscript j (hence what follows applies
to each model mU) separately) and we recall here that the spatial gradient V, m is

approximated by a (forward) finite difference operator G = (GT GT GT) such that

ailml(a:) %mg(w) 821mM(az) (lem(:c))T
Vem= | Zmi(z) Zma(x) ... Zmulx) |~ | (Gpm(x) (1.34)
() ma(x) . my(x)) \(Gm(x)”

where G, is the M x M matrix of the forward finite difference approximation of the
model derivative with respect to the spatial coordinate z;, t = 1,2,3. The form of these
discrete operators is well known and depends on the ordering chosen to number the spatial
cells of the discretized volume: we return on the explicit form of G later in the section.
Considering first the spatial gradient approximation of each i-th model component m;(x)
we have

T
Ve & ((Gay)om, (Go)om, (Go)om) = (SGym=g, i=1,....M, (1.35)

1.3 Discrete derivatives computation 21

where (Gy,),, is the i-th row of the matrix G,,, t = 1,2,3, and S; is the corresponding
selection matriz sized 3 x 3M, that is

el 0 1...0[(0 010 0
Si=lel, |={0..... 0/0...1...0[0 0],
el 0 . ovn 000 000 ...1...0 (1.36)
)))
) M+ 2M + 1

so that S;G is a 3 x M matrix and g, is a 3 X 1 column vector, for all 7 = 1,... M.
Computing the gradient with respect to the model we get

Vi (Ve 1) % Vi 9, = Vi (S,Gm) = (V) (5,6)" = G757 (1.37)
We can write

Vi (1% mil3) ~ Vin (979.) = 2(%m 9,)9,
2(5,G)" g; = 2(S:G)" (S:G)m (1.38)

which is a M x 1 column vector. Moreover, by letting
2(my) = [Vemull; and g = 2(my)/ (2(mi) + €2)
(where £ is &3 or &), from the chain rule it’s easy to see as in (1.14) that

y; 0 z(m;) £2 P |
oh (2mi) + ¢) o (Z(mi) + 52)2 omy <Z(mi)> Gi=1,....M.

a’fng N amg
(1.39)

Thus we obtain

Vo i(m) = (Vi 20m9) (5 0i(2)
dz
~ 2(52 (z(m;) + 52)_2>GTSiTSiGm i=1,...,M. (1.40)
By substituting (1.40) in (1.33) we get for j = 1,2,
Vi Y9 ~ [GTSTS,GmY) ... GTSES,Gm)]

(1.41)

=1,...

which is a M x M matrix, indeed. We can re-write (1.41) in a slightly different way with
the goal of isolating mY): we define

$G
D= — diag ((S:G),_,_) (1.42)

22 Mathematical setting of edge-preserving joint inversion

.....

[GTSTS,:Gm) .. GTSTSyGmW] =
GTSTS,\G m0)
= (In ... In) : 5
GT ST SuG m)
= (15 @ L) D™D (Iy 2 m), (1.43)

where 13y = (1,...,1)7 is sized M x 1 and I, is the M x M identity matrix.

Thus, by substituting (1.32), (1.41) and (1.43) into (1.27) we finally have the expression
for the gradient of the joining term with respect to the j-th model:

Vo) MIX =2 (me y(j)> (Vym (Ws(y(l) _ y(2)))) W5(y(1) _ y(2)) (1.44)

[e -)
= (—1)714€7,,8 [GTSTS1GmY) . GTSTSyGmU)) (1.45)
. 1 —2
g (P + €))L)W - o)

= (—1)714€7 6 [(1§4 ® IM> DTD (IM ® m(j)ﬂ (1.46)

. j —2
ing (P B+ €))L) Wi - o)

S R

,,,,,

which is a M x 1 column vector for each j =1,2. =

We now compute the Hessian matrix of the joining functional. Differently from the
case of the two independent regularization terms, we will see that the Hessian of the
joining term is not (block) diagonal, because the gradients with respect to m() and m®
depend on both the models through the term y™ — y). Moreover, in what follows we
will look for derivatives with respect to the model, so there will be no need for discrete
second order spatial derivatives and operators.

Lemma 1.2 In the same hypothesis of Lemma 1.1 the Hessian matrixz with respect to the
model of the joining functional can be written as

Hl(l,l) +H2(1,1) +H§Ll) H§1,2)

V2 mMIX ~ 1.47
Y < H§271) H1(2,2) i Hé2,2) I H?SZ’Q)) ()

where v # 0 is a constant.

1.3 Discrete derivatives computation 23

Figure 1.1: Pictorial representations of 3D arrays Hg.

Proof. Consider (1.45) and let 7; = (—1)7714£7,,63. By applying the chain rule we have:

Vi m MIX = Vi <Vm<j> MfX) (1.48)
2%{ (VmW [GTSTSiGm) ... GTS}QSMGm(j)])
. j -2
g (P + €))L)W - o)
(1.49)
+ [GTSTSGmD .. GTSTSyGmUY)] (1.50)
. () -2
. (me diag <<(HVz m |3 + € 1a))1:1,...,1\4))
Wy —y®)
+ [GTSTS;.GmD .. GTSTSyGmUY)] (1.51)

diag (((nvm P+)) M>

Vi (Wé(y(l) - y(z))> }

We begin by computing the derivatives in (1.49): here the gradient is applied to a matrix.
From the tensor calculus we immediately have that the result is a three-dimensional array,
but tensor calculus is component-oriented and it is sometimes not easy to understand
the object structure. However, in this case it is not difficult to directly compute the
derivatives, and the array products with the next matrices. To compute the whole gradient
just consider that V&) has to be applied to each separate column: it will then generate
a matrix in the third array dimension. To simplify notation, we let C; = (S;G)?(S;G),
1=1,...,M, and H(Gk’j) =V, .k [Clm(j) e C’M'm(j)]: the matrices C; are very sparse
matrices sized M x M, whose elements come from the forward finite difference operators
G, t =1,2,3. We will look at their sparsity structure in Chapter 2.

24 Mathematical setting of edge-preserving joint inversion

Then, from V,u (C;mY) = 6,;CT Vi it follows

(Hg’j))*, = 0k Cf

30y%

where (Hg)*i* is the ¢-th “layer” along the second direction of the three-dimensional

array Hg, in Matlab-like notation (see Figure 1.1 for a pictorial representation). The
matrix-vector product in (1.49) results in a column vector:

| . : -2
V) = diag <((HVw mz(])Hg + 32+2>)i:l

2y

) Wiy —y®) =12

with components

‘ @ _ @
V) = Yi Yi i=1,....M.

- . 2 2
(I m@l; +&20) (67 o)’ +)

Then, from the tensor calculus, the product of the 3D array Hg with the column vector
v is well defined and is a M x M matrix

H) — 5kj[CTol) CTol) ... CT oyl] (1.52)

Consider now the term in (1.50): once again, the gradient operator applied to the
diagonal matrix results in a 3-dimensional array. Using the same reasoning and the same
notation as before we can see that the operator V ,& applied to each column of the
diagonal matrix generate a square M x M matrix in the third dimension of the 3D array.
However, given that in the ¢-th column of the diagonal matrix only the i-th element is
nonzero, in the generated matrix the only nonzero column is the -th column. More
precisely, using (1.38) we have, for all i =1,..., M,

. -2 . -3 .
Vot (1% mP13+2)) =200, (1% [+ 212) o (1%)
~ —40y; (va mi||> + §§+2) “oim) (1.53)
— (5kjw(i,j)

which is an M x 1 column vector. Once again, due to the sparsity of the matrices C;, also
the vectors w, and hence the Hessian matrix, are very sparse: their sparsity structure is
considered later in Chapter 2.

As before, by defining the three-dimensional array

j . j -2
R T O (AT R N

we have that its i-th layer along the second dimension is given by
(HS“’”) o~ [0 0 w0 L 0}

i-th column

1.3 Discrete derivatives computation 25

(M)

Hp

Figure 1.2: Pictorial representations of 3D arrays Hp.

which is a M x M matrix (see figure Figure 1.2 for a pictorial representation of Hp).
Clearly, this matrix is identically zero for k # j.
Once again, we observe that s = Wi (y®") — y®@) is a column vector with components
1) 2)

5 = Yi_ " Yi i=1,... M.

(6 - +g)

By following the rules for tensor products we then have

Hg‘?vj)s ~ 6]4:] |: Slw(l’j) Sgw(z’j) .. SMw(M’j) i|
which is a M x M matrix. It follows that (1.50) is well defined and is a M x M matrix:

Hék’j) = 5kj[Cym) CymV) ... Cyml) }
(1.54)
. [slw(l’j) Sgw(Q’j) SMw(M’j)] :

Finally, consider the term in (1.51). By proceeding as in (1.29)—(1.31) we have

J ! =y
()
o \ (W) + &)

= ou(P2+ g) [(—1) o -y + &)

=" = y2(=)+ @)2(u - yi@))(—l)j_l}
= (! = o7+ €) 0l o € - al -

&-30" - o)
3
((yg) y)? +£§>

= (=1)" 16, j=1,2, Li=1,..., M.

26 Mathematical setting of edge-preserving joint inversion

Hence

Vy(j) (ng <y(1) _ y(2))) — (—1)j_1diag

ey

From (1.41) we also have

V5 y(j) ~ 5kj [Clm(j) ce CMm(j)] diag <<2£?+2(HV:B mz(J)Hg + 532'+2)_2) 1 M))
(1.56)
Thus we get

Vin®) (ng(y(l) - y(2))) ~ [Clm(k) CMm(k)}

=Ly

.(_Dh4w@dmg<(& (z nyQLzl M>

= (-2, [Cvm® o Cym®W] WP
(2)\2
- diag (£5 Ek — Y)2> (1.57)
(”Vm m; H2+€k+2) i=1,..,M

,,,,,

which is a M x M matrix. Using (1.57) in (1.51) gives

) — [Cym© ... CymU)]
diag (((HV m?|3 +&1a)) 777777 M)
(=D, [Cm® L CymW) W

2 ol () (22
tne (@ 3)2>
(1% m{® |13 + F2))

.....

- (-1,

.[Clm(j) ... CymU) dlag(va ||2+§J+2))i:l...M)

. [C’lm(’“) ... Cym® dlag

=1,...,

- Widiag <<§§ (1) 2))

1.3 Discrete derivatives computation 27

where
2 a(yD) _ 22
1@mm@}ﬂ@9—¢%ﬁ:m% & @12%>3 . (158)
(=) +2)
i=1,....M
It follows that
2
. a , o ‘ L
Héj’]) ~ (—1) 12§?+2([C'1m(3) C’Mm(f)} - diag <(||VCc mgj)Hg + £J2-+2)))
-M@dhg((ﬁ——3@f)—y?»2)‘l M). (1.59)

Hence all Hék’j) are M x M square matrices and we have in general Hék’j) = 0 also for
k #j.

We then have the final expression of the Hessian of the mixing term with respect to
the models:

H(Ll) O H(lvl) 0 H(lvl) H(172)
ViumMIX =~ { (10 22 + 20 22 + H%Q,l) H%Q’Q) (1.60)
1 2 3 3
1,1 1,1 1,1 1,2
(Y Hy ” (1.61)
H§2,1) H§2,2) + H§2,2) + H?EQ,Z)

which is a 2M x 2M matrix with each block dependent on both m™) and m?, as expected.
n

Chapter 2

Sparsity structures of Jolnv matrices

The dynamic process of allocating new memory and copying from the old storage area
to the new one is intrinsically very expensive. Thus, to obtain good performance when
assembling an AlJ matrix, it is crucial to preallocate the memory needed for the sparse
matrix. In this context it is necessary to know and to understand the structure of the
matrices we are going to use. Most of the JoInv matrices are very sparse because their
structure comes from the stencil of finite difference problems, so a good preallocation can
avoid the use of unnecessary extra memory and improve the performance. We can know
in advance the sparsity structure by precomputing the information using a few lines of
code; the overhead of determining the nonzero structure is quite small compared to the
overhead of the inherently expensive malloc operations and data movements that are
needed for dynamic allocation during matrix assembly.

We will return on structure prediction in Chapter 4.

To visualize and better understand the sparsity structure of the matrices that we
use, we show and discuss here the pattern of some of them, for both those coming from
forward finite differences and from central finite differences. All these figures are generated
by supposing that the domain is rectangular and it is discretized in rectangular cells.
Moreover, we suppose these cells are numbered in a natural way, that is first by x;, than
by x5 and finally by x3. The volume used to generate the plots has 5 x 4 x 3 cells and it
is shown in Figure 2.1.

2.1 Sparsity structures of JoInv matrices using Forward
Differences

2.1.1 Sparsity structures of discrete operators

First of all we consider the form of the discrete spatial derivative operators G,,, t = 1,2, 3.
As we said before, we suppose that the domain is a parallelepiped, large enough to contain
the whole volume of interest, and that it is discretized with parallelepiped cells. Moreover,
we suppose these cells are numbered in a natural way, that is first by z;, then by x5 and
finally by x3. We additionally assume here that the discrete derivatives inside each cell
are constant and that their values can be approximated by the values computed at the
cells center.

Then, the forward finite difference operators in the three spatial directions are com-

30 Sparsity structures of JoInv matrices

X
1
1 2 3 4 5
X, p 7 8 9 10
Pl 12 13 14 15 3
16 17 18 19 20 10
15
20
16 17 18 19 20 %
30
35
40
36 37 38 39 40 " 4
— 55 7
JRe w|
s6, 7 57 58 59 60 v
7
X
3

Figure 2.1: 3D volume used to generate the sparsity structures of the Jolnv matrices
shown in the next spy plots.

pletely defined for all the cells, but those located at the boundary positions of the domain:
precisely, these cells are those belonging to the three “boundary faces” that do not contain
the cell number 1. How to deal with these positions is a matter of boundary conditions.
Among the possible choices, each of which affects some elements of the discrete derivatives
operators, we choose here the constant boundary conditions: we thus assume that at the
boundary faces the model does not change. It means that the spatial (discrete) gradient
at these boundary cells has a zero component in the direction towards the exterior of the
domain.

Under these hypothesis, we can easily derive the form of the discrete operator G. For
simplicity’s sake we consider a cell grid which is uniform in each spatial direction (even
if the size can be different in the three directions): we call hy = h,,, t = 1,2,3, the
three constant cell sizes. Moreover, let’s call L, = L,,, t = 1,2,3, the number of cells in
each spatial direction. Clearly, L = LiLsL3 is the total number of cells in the domain.
Consider now the first spatial direction, x,: the L; adjacent cells in this directions have
consecutive numbers in the chosen ordering, so the discrete derivative is given by

8m,(w) ~ A . M1 — My
_ (Iilmi e
81‘1 hl

for all the L; — 1 cells, but the last one, where it is zero. Hence the discrete partial
derivative operator for these cells can be written as

1 _
L L; — 1 rows (2.1)

-1 1
L1><L1

By repeating the reasoning for all the other adjacent cells along the first spatial direction,
we have the discrete partial derivative operator for the whole domain as a block diagonal

2.1 Sparsity structures of FD operators 31

matrix

B
1) LxL

with Ly L3 blocks. It follows that A, m(x) = G,,m.

Consider now the second spatial direction, x5: here the difference between the indices
of two adjacent cells is L, for all cells but those of the boundary face with largest x,,
where the partial discrete derivative will be zero. For the former cells we thus have

om;(x)
8£U2

Miyp, — My

ho

~ szmi -

Thus, we can write the discrete partial derivative operator for all the cells in each “layer”
of the cell grid parallel to the x;z3 plane as

-1 I

Ly Ly

-1, I
1 Ly
— 1 block
B, — Ly — 1 block rows (2.3)

Ll (L1L2)><(L1L2)

where I, and 0, are the Ly X Ly identity matrix and null matrix, respectively. By
repeating the reasoning for all the other “layers” of the cell grid parallel to the zix3 plane
one has the discrete partial derivative operator in the second direction for the whole
domain, again as a block diagonal matrix

Ba, LxL
with Ls blocks. It follows that A,,m(x) = G,,m.

Last, consider the third spatial direction, x3: the difference between the indices of
adjacent cells in this direction is now L;Ls, for all cells but those of the boundary face
with largest |z5|, where the partial discrete derivative will be zero (using the modulus the
discussion applies to both the upside and the downside ordering modes). For the former

cells we have
aml(w) MitriL, — My

833'3 h3
The discrete partial derivative operator for all the cells in each “layer” of the cell grid
parallel to the x1x5 plain as

=~ Ammi =

1

Boy= 3 (~Tos o)
3 h3 LiLy LiLg (L1 L2)x2(L1L2)

(2.5)

where [, , is the identity matrix sized (LiLs) x (L1L2). By repeating the reasoning
for all the other “layers” of the cell grid parallel to the x;x, plain we obtain the discrete

32 Sparsity structures of JoInv matrices

partial derivative operator in the third spatial direction for the whole domain, as a block
upper bidiagonal matrix

B,
B,
Ggy =
B,
OL L
1%2/ LxL
2.6
o (2.6)
-1 1
B) L3 — 1 block rows
-1 1
0

LxL

where 0, , is the (LiLa) X (L1 Lg) null matrix. It follows that A,;m(z) = G,,;m.

Note that in case of nonuniform rectangular grids everything remains the same, except
that the cell size h; cannot be grouped anymore: instead, the nonzero elements 41 and
—1 in the operators have to be substituted with the reciprocal of the distance between
the centers of the corresponding adjacent cells in that direction. Moreover, note that
usually in the actual computations only those cells which are effectively needed in the
solution of the inverse problem are considered, all the other being neglected. The number
M of these “selected” cells determines the model size in the minimization process. When
computing the discrete spatial gradient, neighboring cells are involved to compute the
discrete derivatives: hence, in this steps the full-length model vector is always needed.

Figure 2.2 shows the sparsity structures of the discrete spatial derivative operator G,.

2.1.2 Sparsity structure of matrices C;

We now describe the sparsity structure of matrices C;, 1 =1,..., M.

Once again, to help the understanding we sketch the structures on the toy example
depicted in Figure 2.1.

According to (1.34), the spatial gradient V, m becomes

Dm(x) Gema(®) ... Femas(x) (Goymi(z))”
Vem = | 3Zmy(x) Zma(x) ... Zmas(x) |~ (zem(w)); (2.7)
L) Lma(@) .. mg(@)) \(Comi@))

where G, is the M x M (i.e. 60 x 60) matrix of the forward finite difference approximation
of the model derivative with respect to the spatial coordinates ;.
We also recall the selection matrix S; in (1.35), sized 3 x 3M = 3 x 3 - 60:

el 0...1...0/0 0[0 0
Si=leh |=10....... 0[0...1...0[0 0],
el 60si 0 0/0 00 ...1... 0 (2.8)
T T T

2.1 Sparsity structures of FD operators

33

Up (Up
10f 10f
20f 20f
301 30r
40¢ 401
50r 50r
60t ‘ ‘ ‘ ‘ ‘ 4 60t ‘ ‘ ‘ ‘ ‘ d
0 10 20 30 40 50 60 0 10 20 30 40 50 60
nz =96 nz =90
(a) Operator G, (b) Operator G,
Ore
10f
201
30+
40t ®e
50r
60t ‘ ‘ ‘ ‘ ‘ J
0 10 20 30 40 50 60
nz =80

(c) Operator G,

Figure 2.2: Sparsity structures of the discrete spatial derivative operator G,, (forward

difference).

so that S;G is a 3 x M (3 x 60) matrix and g, is a 3 X 1 column vector, for all i = 1, ... 60.
Moreover, remember that we define C; = (S;G)7(S;G), i =1,...,60 and we call L; =
5, Ly = 4, L3 = 3, the number of cells in each spatial direction. Clearly, L = LiLsL3 = 60
is the total number of cells in the domain.
The discrete partial derivative operator of our example with respect to zq, for the first
Ly cells can be written as

5 — 1 rows (29)

5X5H

By repeating the reasoning for all the other adjacent cells along the first spatial di-

34 Sparsity structures of JoInv matrices

rection, one has the discrete partial derivative operator for the whole domain as a block
diagonal matrix

11 0 0 0
0 -1 1 0 0
0 0 -1 1 0
0 0 0 -11
0 0 0 0 0
G,, = (2.10)
11 0 0 0
0 -1 1 0 0
0 0 -1 1 0
0 0 0 -11
0 0 0 0 0/,

By multiplying G, and m we get a 40 x 1 column vector that in the i-th cell contains
mMip1 — MMy
h

In the same way, we can write the other matrices B,,, G,,, B,,, G4, as:

-1 0 0 O 0 1 0O0O0O0)
O -1 0 0O 0O O010O00O0
O 0 -1 0 0 00100
0 0O 0 —=1 0 00010 4 — 1 block rows
. 0O 0 O O -1 00001
B,, = —
h)
2 00000
0 00O0O O
0 00O0O O
000O0O0
000O00O O 20x320
(2.11)
B,
—_ Bx2
Ga, = B., (2.12)
B@ 60x60
-1 1
B ! - ! 2.13
—1
20x40
B,
G. — B }3—1block rows (2.14)
T3 T3 .
0 60x60

Now, for each i = 1... M, we can compute S;G, that is a (3 x 108) - (108 x 36) = 3 x 36
sparse matrix.

2.1 Sparsity structures of FD operators 35

Let’s return to the explicit form of the C; sparse matrices. For each i-th cell, we can
calculate S;G, that is a (3 x 3M) - (3M x M) =3 x M sparse matrix.

In the first row of S;G, only the columns with indices ¢ and ¢+ 1 have nonzero elements,
namely —1 and 1, respectively, for ¢ # kL;, with k = 1,..., Ly L3. In other words, this is
true for each cell which is not at the border on the right in the x; direction: we refer to
this situation as Property 1. By the common Matlab-like notation, this row can also be
written as

(SZ) 1,*G - (Sz) l,leGm1

where (Sz) is the first row of S; and (SZ)
columns.

In the second row of S;G the only nonzero columns are the i-th,and the (i + L;)-
th, containing —1 and 1, respectively, for i # {k(LiLs), k(L1Ls) — 1, k(L1L2) — 2},
k=1,...,Ls. Again this sparsity pattern holds true for each cell that is not at the right
border in the x5 direction. We name this situation as Property 2.

Finally, the nonzero elements of the third row of S;G are positioned in columns 7 and
i+ Ly Ly with values —1 and 1, respectively, for ¢ # (L1 LoLs) —k, k=0,...,(L1Ls) — 1.
We refer to this sparsity pattern as Property 3, which is common to all cells that are not
at the right border in the z3 direction.

Analogously to the first row, the second and third rows of S;G can be written as

(5),.G = (5) G,, and (S), G=(S) G

2,M~+1:2M — %2 3% 3,2M+1:3M %3

Now we can see how the M x M sparse matrices C; = (S;G)T(S;G),i=1,..., M, look
like. Let’s consider a cell with index ¢ which is not at the right border of any direction.
The elements of the matrix C; are the following:

is its sub-vector having just the first M

1, 1,1:M

(Ci),, = L/hi +1/h3 +1/h; (2.15a)
(Ci)y e = 1/03, k=i+1, (2.15b)
(€)= 1/, k=i+ Ly, (2.15¢)
(Ci) o = L/ D3, k =i+ LLy, (2.15d)
(€)= (C),y = —1/0, k=i+1, (2.15¢)
(Ci)y, = (Ci),y = —1/h3, k=i+ Ly, (2.15¢)
(C’)Im - (Cl)zkj = —1/h3, k =i+ LiLs. (2.15g)
For instance, consider the case i = 1: the 60 x 60 matrix C; = (S;G)7(5,G) becomes
(i) (i+1) (i 4 L) (i 4+ L1Lo)
. . } !
VR AR+ 1R 1R . =R .. 1R | « ()
o -1/ 1/h? — (i+1)
—1'/h§ 1/h3 — (i+ L)
—1./h§ 1/h3) <« (i+ LiLy)

(2.16)

36 Sparsity structures of JoInv matrices

where the only nonzero elements are explicitly reported (that is, all the other positions
in the matrix contain zeroes, included those marked by dots). This sparsity pattern is
shared by all domain cells such that no one of the Properties 1, 2 and 3 holds true, that
we call Group 1.

Let’s consider now the case of a cell 7 at the border only of the x; direction, that is
Property 1 is true, while properties 2 and 3 are false. We say that the matrices C; resulted
from a cell ¢ with those properties belong to Group 2. For the sparse matrix C; we can
write:

(Ci),, = 1/h5 +1/h3 (2.17a)
(Cz)kk— 1/h3, k=i+ L, (2.17h)
(Ci) i = 1/h3, k =i+ LiLy, (2.17¢)
(Ol)lm = (Cl)z,k = —1/h3, k=1i+ Ly, (2.17d)
(Cl)kz - (Cl)i,k = _1/]7%7 k =i+ LiLs. (2.17e)

For instance, for the cell ¢ = 10 of the our example volume the 60 x 60 sparse matrix
Cs = (S3G)T(S3G) is as follows:

(i) (i41) (i 4 Ly) (i + L1 Ly)
\J 3 \J }
1/h3 + 1/h? o . —1:/h§ . —1:/h§ — (i)
C3 = 0 0 — (i+1)
—1:/h§) 1/h3 — (i+ Ly)
—1:/h§) 1/h2) <« (i+ LiLy)
(2.18)

Being a border cell, there are additional zero elements with respect to C; in (2.16).

Consider now a cell ¢ which is at the right border in the xy direction only, that is
Property 1 and 3 are not satisfied, while Property 2 holds true. We say that the matrices
C; resulted from a cell ¢ with those properties belong to Group 3. The elements of the
matrix C; in this case can written as:

(Ci),, = 1/hi +1/h3 (2.19a)
(C’Z)kk—l/h k=i+1, (2.19Db)
(Ci)yp = 1/13, k =i+ LiLy, (2.19¢)
(Ci)y, = (Gi),, = —1/hl, k=i+1, (2.19d)
(C’)kz = (CZ)Z,k = —1/h3, k=14 LiLo. (2.19e)

For instance, the cell with index ¢ = 36 of the our example volume has the following

2.1 Sparsity structures of FD operators 37

sparse matrix C7 = (S;G)T(S,;G):

(i) (1+1) (i+ Ly) (it + L1Ls)
1 { ! 4
R <R 0 .~z)
Cy = —1/h% 1/h% — (i+1)
0 | 0 — (i+Ly)
1 /n2 e) it Ll

(2.20)

Analogously, for a cell ¢ which is at the right border in the z3 direction only we have
that Property 3 holds true and properties 1 and 2 are not satisfied. We say that the
matrices C; resulted from a cell ¢ with those properties belong to Group 4. The elements
of the matrix C; in this case can written as:

(Ci),, = 1/hi+1/h; (2.21a)
(Cew= UM k=it (2.21b)
(l)kk_ 1/h3, k =1+ L, (2.21¢)
(€)= (Ci); = —1/h1, k=i+1, (2.21d)
(Ci)y, = (i), =—1/h3, k=i+Ly. (2.21e)

For instance, the cell with index ¢ = 47 in the toy example has the following sparse matrix

047 = (547G>T(S47G):

©) (i+1) (i + Ly) (i + LiLy)
¢ $ \ +
UK+ 1/h <R ... —1h2 ... 0] «()
Cop= | - —1/h? 1/h? — (i+1)
—1./h§ o /h3 — (i+ Ly)

(2.22)

There are now to consider the cases of cells that are simultaneously at the right
border of multiple coordinate directions. We consider first those cells that are at the right
border of x; and x5 directions. In these cases the properties 1 and 2 are both satisfied,
while Property 3 is not. We say that the matrices C; resulted from a cell ¢ with those
properties belong to Group 5. The nonzero elements in the corresponding matrices C; are

38 Sparsity structures of JoInv matrices

the following:

(C:),; = 1/h3 (2.23a)
(Ci)yp =1/05, k=i+LiLs, (2.23b)
(Cl)lm = (C’Z)MC = —1/h§, k =1+ LiLs. (2.23¢)

In our example, one of these cells has index ¢ = 20, for which the sparse matrix Cyy =

(520G>T(SQ()G) is:

(i) (i+1) (i + Ly) (i+ L1Lo)
\x \J 3 \J
0 0 i) e
Co= |- 0 0 — (i+1) . (2.24)
(:)) 0 — (i+ L)
—1:/h§ .. 1/h3) « (i+ L1Lo)

We then consider the cells that are at the right border of z; and z3 directions, where
properties 1 and 3 are both satisfied, while Property 2 is not. We say that the matrices
C; resulted from a cell ¢ with those properties belong to Group 6. The nonzero elements
in the corresponding matrices C; are the following:

(Cl)“ = 1/h§ (2.25a)
(Ci) = 1/h3, k=i+ Ly, (2.25h)
(Ci)ki - (CZ)Zk = —1/h;, k=i+ L. (2.25¢)

In the example, one of these cells has index ¢ = 50 and the corresponding sparse matrix
050 = (S50G)T(S50G) looks like

(1) (+1) (14 L) (i + L1Lo)
) }) \
1/:h§ (:) . —1:/h§ . (:) — (i)
Cyz= |- 0 0 “@+1) . (2.26)
—1:/h§) 1/h3 — (i+ Ly)

Considering now the cells that are at the right border of x5, and x3 directions, where
properties 2 and 3 are both satisfied and Property 1 hold false, the nonzero elements in
the corresponding matrices C; are the following:

(Ci),; =1/hi (2.27a)
(C) =1/P, k=i+1, (2.27h)
(Cl)lm - (Cl)zk = _1/h%> k=1+1. (2.27¢)

2.1 Sparsity structures of FD operators 39

We say that the matrices C; resulted from a cell ¢ with those properties belong to Group
7. In our example, the cell with index ¢ = 58 is in such a position, thus its matrix
058 = (558G)T(S58G) is:

(i) (i+1) (i + Ly) (i + L1Ly)
i } } }
1/:h§ —1:/h§ o 0 — (i)
Cas = —1/hy 1/h3 —(i+1) (2.28)
(:)) 0 — (i+ Ly)

Finally, the last cell of the discretized domain is at the extreme corner, that is at the right
border of all the three coordinate directions simultaneously. This cell does not have any
successor to compute the forward difference approximation of the directional derivative we
are considering in this paper. Therefore, the corresponding matrix C7, is the identically
null matrix. For our example this means Cgy = 0; this is the only matrix in Group 8.

Figure 2.3 shows the sparsity structures of the C; matrices.

2.1.3 Sparsity structure of vectors w!’)

We can derive the explicit forms of the vectors w?), which are different depending on
the position of the cell within the discretization grid, that is depending on whether its
index ¢ is at the border of some coordinate spatial direction.

We will develop first the case for the forward difference approximation scheme.

Let’s consider a cell with index ¢ which is not at the right border of any direction. The
elements of the vector w?) are the following:

() () () () ())
(i5) _ [M4 m; me T My Mignn, 999
w, <hf+h§+h§) (h%+h§+ n2 (2.29a)
())
(i.9) m; mi
wi) = =t (2.29b)
AT
())
(i.5) m; My,
w; = - 2.29
i+L1 h% + h% (C)
())
L, =+ ik (2.29d)
hs hs

Consider now the case of a cell 7 at the border only of the z; direction, that is Property

40 Sparsity structures of JoInv matrices

0 0
10} 10
207, . 4 20f
30¢ 1 30t
40¢ 1 40t
50¢ 1 50t
60t ‘ ‘ ‘ ‘ ‘ 4 60k ‘ ‘ ‘ ‘ ‘ J
0 10 20 30 40 50 60 0 10 20 30 40 50 60
nz =10 nz="7
(a) C; in group 1 (b) C; in group 2
0 : 0
10 1 10t
20¢ 1 20t
30r 1 30t
40} 1 40t .
. .
50¢ 1 50t
60t ‘ ‘ ‘ ‘ ‘ 4 60t ‘ ‘ ‘ ‘ ‘ J
0 10 20 30 40 50 60 0 10 20 30 40 50 60
nz="7 nz=7
(¢) C; in group 3 (d) C; in group 4

Figure 2.3: Sparsity structures of matrices C; (forward difference) (cont.).

1 is true, while properties 2 and 3 are false. For the sparse vector w7 we can write:

(4) () (4) (9)
(i.4) m; m; M, ML, L,
’ <h§+h§> <h§+ P2 (2.50a)
wi) =0 (2.30D)
) (4)
(i,5) m; miir,
ig) _ _ 2.30
wz+L1 h% h% (C)
) ()
ij m; mMiir, L
w§+]12)1L2 TR + 221) (2.30d)
3 3

Consider now a cell ¢ which is at the right border in the x5 direction only, that is Property
1 and 3 are not satisfied, while Property 2 holds true. The elements of the vector w7

2.1 Sparsity structures of FD operators 41
0 0
10 10}
20+ 1 20}
30 1 300
40t 1 40
50t 1 5o
60+ ‘ ‘ ‘ ‘ ‘ 4 60t ‘ ‘ ‘ ‘ ‘]
0 020 0 5 6 o 020 0w 5 6
(e) C; in group 5 (f) C; in group 6
0 0
10} 10}
20} 1 20}
30(1 30
40t 1 40t
50t 1 s0f
60t ‘ ‘ ‘ ‘ R | ‘ ‘ ‘ ‘ ‘]
0 02 30 w0 506 0 0 2 30 40 506
(g) C; in group 7 (h) C; in group 8
Figure 2.3: Sparsity structures of matrices C; (forward difference) (cont.).
in this case can written as:
() () () ()
wi) = (M M) (M, Thitnin (2.31a)
o\t T\ s
())
(ig) _ My Mit1
W1 = — h% n2 (2.31b)
wi) =0 (2.31c)
() ()
w7 = — h; + ’h; 2 (2.31d)
3 3

Analogously, for a cell ¢ which is at the right border in the x3 direction only we have that
Property 3 holds true and properties 1 and 2 are not satisfied. The elements of the vector

42

Sparsity structures of JoInv

matrices

w9) in this case can written as:

5)
w(%]) — <mz

[h%
()

w') — _my
i+1 h%
()

w'®™) — _mi]
i+L1 h%

(G3)
wi—‘,—Lng - 0

o0 (i,
h3 h h3
mg-)l
hi
(4)
mi+L1
h3

(2.32a)

(2.32h)

(2.32¢)

(2.32d)

There are now to consider the cases of cells that are simultaneously at the right border
of multiple coordinate directions. We consider first those cells that are at the right border
of 1 and x5 directions. In these cases the properties 1 and 2 are both satisfied, while
Property 3 is not. The nonzero elements in the corresponding vectors w7 are the
following;:

)

m(J) m

(Z:J) _ i it La Lo 2.33
w't) =0 (2.33b)
w!’) =0 (2.33c¢)
- DI
(), =T —thle (2.334)
h’3 h3

We then consider the cells that are at the right border of z; and w3 directions, where
properties 1 and 3 are both satisfied, while Property 2 is not. The nonzero elements in
the corresponding vectors w7 are the following:

() ()

(7'7]) — my o m’i+L1 2.34
w'h) =0 (2.34D)
() ()
() _ MYy miyy,
w;, =~ h2 + h2 : (2.34c¢)
w?) =0 (2.34d)

Considering now the cells that are at the right border of x5 and z3 directions, where
properties 2 and 3 are both satisfied and Property 1 hold false, the nonzero elements in
the corresponding vectors w7 are the following:

) (4)

(g) _ 1Yy m;iy
i) - T 2.35
wz h% h% (a)
) (4)
(4.9) m; m;iy
\d) 2.35b
w; 2 + 2 ()
w(i) =0 (2.35¢)
w(i) =0 (2.35d)

2.1 Sparsity structures of FD operators 43

Finally, the last cell of the discretized domain is at the extreme corner, that is at the right
border of all the three coordinate directions simultaneously. This cell does not have any
successor to compute the forward difference approximation of the directional derivative we
are considering in this paper. Therefore, the corresponding vector w7 is the identically
null vector.

2.1.4 Sparsity structure of matrices like [Cid ... C)d]

Some Jolnv matrices derive from the multiplication of the C; matrices by a dense vector d:
[Cid Chd ... Cyd), ie.(1.52), (1.53). The standard pattern of those kind of matrices
is shown in Figure 2.4.

Ors
10t .
2%
20f,
30 %o, %, %,
‘. ‘. (13
40t .’.. *e .::o.
50+
60L ‘ ‘ ‘ % L e %%
0 10 20 30 40 50 60

nz =192

Figure 2.4: Pattern of the matrices [Cid Cod ... Cyd.

2.1.5 Hessian matrices
Misfit term Hessian

From the (formula 7?77) is easy to see that the Hessian of the misfit term depend only on
the operator Aj, therefore we can’t know in advance its structure.

Regularization term Hessian

As you can see from (1.20), the regularization term is always a diagonal matrix, hence its
implementation is trivial.

Coupling term Hessian

The structure of the coupling term Hessian is made up several pieces (1.47). The first one is
the term in (1.52); once again, we have the same sparsity pattern of [Cld Cod ... C’Md]
(Figure 2.5(a)). Consider now the term in (1.54); its structure is also well known, because
it is built multiplying two matrices with the same structure Cd (Figure 2.5(b)). Finally,
consider the term in (1.59): it has the same patter of the last Hessian matrix, only scaled

44 Sparsity structures of JoInv matrices

by a constant value and some diagonal matrices (Figure 2.5(c)). The final expression of
the Hessian of the mixing term (1.61) is shown in Figure 2.5(d); since the nonzero struc-
ture of H; is a subset of Hy and Hj structure, in each of the four block we have same
nonzero pattern.

10f e, %,
201, %o %%,

30 . %, 5%

40+
. %,
50 L .. .‘..:.‘.
el '.., .'0..::: 1 ool '.‘, '.‘. :‘3, .‘, %, fis, |
0 10 20 30 40 50 60 0 10 20 30 40 50 60
nz =192 nz =376
(a) Hi (b) H>
Ors
H 0

204

40

60

80

01 . . 7S 1 1004
®e %% \
601 ‘ % L% %% 120E
0 10 20 30 0 20 40 60 80 100 120
nz =376 nz = 1504
(c) Hs (d) V2,,,, MIX

Figure 2.5: Sparsity structures of V2, MIX and of its blocks.

2.2 Sparsity structures of CD operators 45

2.2 Sparsity structures of JoInv matrices using Central
Differences

In this section we consider how the sparsity structure of the matrices C; and the vectors
w7 change if the central finite difference discretization scheme is used in place of the
forward finite difference.

2.2.1 Sparsity structures of discrete operators

Consider now the first spatial direction, x,: the L; adjacent cells in this directions have
consecutive numbers in the chosen ordering, so the discrete derivative is given by

dm,(x) Miyh — Mip
(91'1 11 2h1

for all the L; — 2 cells, but the first and the last one, where it is zero. Hence the discrete
partial derivative operator for these cells can be written as

B, = — — 2.36
1 2h1 ..‘ .“ . Ll 2 rows ()

L1 ><L1

By repeating the reasoning for all the other adjacent cells along the first spatial direction,
one has the discrete partial derivative operator for the whole domain as a block diagonal
matrix

G,y = . (2.37)
B,

with Ly L3 blocks. It follows that A,, m(x) = G,,m.

Consider now the second spatial direction, x5: here the difference between the indices
of two adjacent cells is L1, for all cells but those of the boundary face, where the partial
discrete derivative will be zero. For the former cells we thus have

—3 mi(x) ~A,Lm = Mirry = M-y
81’2 2h2
Thus, we can write the discrete partial derivative operator for all the cells in each “layer”
of the cell grid parallel to the x5 plain as

0

LXxL

L1
_ILl OL1 ILl
1 -1 0 I
B,, = — o Ly — 2 block rows (2.38)
2hsy
~1, 0, I,
0

Ly (LlLQ)X(L1L2)

46 Sparsity structures of JoInv matrices

where I, and 0, are the Ly X L identity matrix and null matrix, respectively. By
repeating the reasoning for all the other “layers” of the cell grid parallel to the xx3 plain
one has the discrete partial derivative operator in the second direction for the whole
domain, again as a block diagonal matrix

B,,
GJC2 =) (2.39)
B“ LxL

with Ls blocks. It follows that A,,m(x) = G,,m.

Last, consider the third spatial direction, x3: the difference between the indices of
adjacent cells in this direction is now LqLs, for all cells but those of the boundary face,
where the partial discrete derivative will be zero. For the former cells we have

amz(m) ~ A . — Mty = Mi—1,1,
8I3 T 2h3 ’
The discrete partial derivative operator for all the cells in each “layer” of the cell grid
parallel to the x;x5 plain as
1

= ___'< =1, 0.,]L L)

2hs3 12 12 172) (L1 La)x3(L1 L2)
where [, , is the identity matrix sized (L;Ls) x (L1L2). By repeating the reasoning
for all the other “layers” of the cell grid parallel to the x;z5 plain we obtain the discrete
partial derivative operator in the third spatial direction for the whole domain

0

LiLo

B, (2.40)

Z3
B,.
Ggy = ’ . Lz — 2 block rows (2.41)

B,

3

Lil2/ LxL
where 0, , is the (LiLa) X (L1Lg) null matrix. It follows that A,,m(x) = G,,;m.
Figure 2.6 shows the sparsity structures of the discrete spatial derivative operator G,.

2.2.2 Sparsity structure of matrices C;

Now we can see how the M x M sparse matrices C; = (S;G)?(S;G), i = 1,..., M, look
like. Let’s consider a cell with index ¢ which is not at the border of any direction, that is
a cell in Group 1. The elements of the matrix C; are the following:

(Ci)k,k =1/(2h3)*, k=i~ LiLy,i+ L1 Ly, (2.42a)
(Co)yy = 1/(2hy)*, k=i—Lii+ L, (2.42b)
(C)pp =1/Chy)% k=i—1i+1, (2.42¢)
Cl’)k,j = (Oi)j,k = —1/(2hy)?, k=1i— LiLy; j =i+ LiLo, (2.42d)
Ci)k,] = (Cz)j,k =—1/(2hy)?, k=i—Ly; j=i+ Ly, (2.42¢)
Ci)y; = (Ci), = —1/(2h)? k=i-1 j=i+1 (2.42f)

2.2 Sparsity structures of CD operators
o : : : : : q0 : : : : : :
of 1o10p ., . 1
20¢ 1 20f 1
30 1 30r]
40t 1 40f]
507 ° | 507 |
60t ‘ ‘ ‘ ‘ ‘ ') ot ‘ ‘ ‘ ‘ ‘ J
0 10 20 30 40 50 60 0 10 20 30 40 50 60
nz=72 nz = 60
(a) Operator G, (b) Operator G,

0 : : | : : ‘

10f]

20f, . |

307 I.... 1

40+ ‘e, ‘ol

50t]

60+ ‘ ‘ ‘ ‘ ‘]

0 10 20 30 40 50 60

nz =40

Figure 2.6:
difference).

Sparsity structures

(c) Operator G,

of the discrete spatial derivative operator G,, (central

48 Sparsity structures of JoInv matrices

In this case the matrix C; becomes

(i—LiLy) (i—Ly) (i—1) (i4+1) (i+ L) (i+ LiLy)

3 } } $ s }
hs? —h3% \ « (i — Ly Ly)
ot hy® . L, (i = L)
g hi —h] — (i—1)
—h;? k2 — (i+1)
—hy? hy? — (i+ Ly)
—hy? hi? |« (i+ LiLy)
(2.43)

where the only nonzero elements are explicitly reported.

Let’s consider now the case of a cell 7 at the border only of the x; direction, that is
Property 1 is true, while properties 2 and 3 are false. We say that the matrices C; resulted
from a cell ¢ with those properties belong to Group 2. For the sparse matrix C; we can
write:

(Ci)pp = 1/(2hy)*, k=i~ LiLy,i+ LiLs, (2.44a)
(Ci)p =1/(2h3)%, k=i—Ly,i+ Ly, (2.44b)
(Ci)k,j - (Z)]k =—1/(2h3)2, k=1i—LiLy; j =1+ LiLo, (2.44c¢)
(Ci)y; = (o), = —1/(2hy)?, k=i—Ly; j=i+ L. (2.44d)

In this case the matrix C; becomes

(i—LiLy) (i—1Ly) (i—1) (i+1) (i+ L) (i+ LiLy)

\J })) \J }
hs? —h3? \ « (i — Ly Ly)
o1 hy? —hy? — (z: — L)
! 0 0 —(i—1)
0 0 —(1+1)
—hy? hy? — (i+4 L)
—h3? hy? |+ (i 4+ LiLy)
(2.45)

again, only nonzero elements are explicitly reported.

Consider now a cell ¢ which is at the border in the x, direction only, that is Property
1 and 3 are not satisfied, while Property 2 holds true (Group 3). The elements of the
matrix C; in this case can written as:

() - 1/ 2h3 2,]{Z - Z - LlLQ,i + LILQ, ()
(z)M_1/(2h1 P, k=i—1,i+1, (2.46b)
(C) = —1/(2hy)*, k=1i— LiLy; j =i+ LyLo, (2.46¢)
(Ci),,=-1/Cm)* k=i-1 j=i+1. (2.46d)

2.2 Sparsity structures of CD operators 49

In this case the matrix C; becomes

(i—LiLy) (i—1Ly) (i—1) (i+1) (i+ L) (i+ LiLy)

\J \: \J \J \J 1
h3_2 —h;2 — (Z — L1L2)
C— 1 0 0 — (i—Ly)
4 hi? —hy? — (i—1)
~hi* hy? — (i4+1)
0 0 — (i+ L)
—th h52 — (Z—f-Lng)
(2.47)

Analogously, for a cell ¢ which is at the right border in the x3 direction only we have
that Property 3 holds true and properties 1 and 2 are not satisfied (Group 4). The
elements of the matrix C; in this case can written as:

(Ci)p =1/ (2h)%, k== Ly,i+ Ly, (2.482)
(Ci)y,=1/20)% k=i-Li+1, (2.48D)
(Ci)y,; = (Ci),, = =1/(2hy)*, k=i~ Ly; j=i+ Ly, (2.48¢)
(C),, = (C),, = =1/2h)*, k=i—1; j=i+1. (2.484)

In this case the matrix C; becomes

(i—LiLy) (i—1Ly) (i—1) (i+1) (i+Li) (i+LiLy)

) 3 \J \J \J 1
o1 hy? —hy? — (i — L)
! hi2 —h? — (i—1)
—h{? hp? — (i+1)
—hy? hy? — (i+ L)
(2.49)

There are now to consider the cases of cells that are simultaneously at the border
of multiple coordinate directions. We consider first those cells that are at the border
of 1 and x5 directions. In these cases the properties 1 and 2 are both satisfied, while
Property 3 is not (Group 5). The nonzero elements in the corresponding matrices C; are
the following:

(Ci)k,k =1/(2h3)*, k=1i— LiLa,i+ L1 Ly, (2.50a)
(Ci)y, = (C),p = =1/(2h3)*, k=i—LiLy; j =i+ LiLs. (2.50D)

gk

50

Sparsity structures of JoInv matrices

In this case the matrix C; becomes

(i—L1Ly) (i—Ly) (i—1) (i4+1) (i+ L) (i+ LiLy)
! 1 \J ! ! 3
hs? —h3% \ « (i — Ly Ly)
o1 0 0 (i — Ly)
4 0 0 — (i—1)
0 0 — (i+1)
0 0 — (i+ Ly)
—hy? hi? |« (i+ LiLy)
(2.51)

We then consider the cells that are at the border of x; and z3 directions, where
properties 1 and 3 are both satisfied, while Property 2 is not (Group 6). The nonzero
elements in the corresponding matrices C; are the following:

(Ci)k,k =1/(2h,)*, k=i— Ly i+ Ly, (2.52a)
(C)y; = (Co) = =1/ (2hy)*, k=i—Li; j=i+Ly. (2.52D)
In this case the matrix C; becomes
(i—LiLy) (i—1Ly) (i—1) (i+1) (i+Ly) (i+ LiLy)
J } \J \J \ }
0 0 \¢ (i—LiLy)
o -1 hy® ~hy? — (i—Ly)
' 0 0 “(i—1)
0 0 — (i+1)
—hy? hy? — (i+ L)
0 0 | (i+ LiLy)
(2.53)

Considering now the cells that are at the border of x5 and 3 directions, where proper-
ties 2 and 3 are both satisfied and Property 1 hold false (Group 7), the nonzero elements
in the corresponding matrices C; are the following:

(€)= 1/@)? k=i—1i+1, (2.54a)
(C)y, = (C),, = —1/@M)* k=i-1; j=i+1. (2.54b)
In this case the matrix C; becomes
(i—LiLy) (i—1Ly) (i—1) (i+1) (i+Ly) (i+ LiLy)
\J 1 \J \J \J 2
0 0 \+¢ (i— LiLy)
v hi® —h{? —(i—1)
—h? hy? —(i+1)
0 0 < (Z + Ll)
0 0)« (i+ LiLy)
(2.55)

Finally, the cells of the discretized domain that are at the border of all the three
coordinate directions simultaneously (Group 8). The corresponding matrix C; is the
identically null matrix.

Figure 2.7 shows the sparsity structures of the C; matrices.

2.2 Sparsity structures of CD operators

51

20

30

40

50

20

30

40

50

60 ‘ ‘ ‘ ‘ ‘ 4 60 ‘ ‘ ‘ ‘ ‘ J
0 10 20 30 40 50 60 0 10 20 30 40 50 60
nz=12 nz=_8
(a) C; in group 1 (b) C; in group 2
0 : : : : : -0 : : : : : :
10 110]
20 . 120]
30 130]
40 1 40]
50 150]
60 ‘ ‘ ‘ ‘ ‘ R ‘ ‘ ‘ ‘ ‘ J
0 10 20 30 40 50 60 0 10 20 30 40 50 60
nz=38 nz=238

Figure 2.7: Sparsity structures of matrices C; (central difference) (cont.).

(c¢) C; in group 3

(d) C; in group 4

52

Sparsity structures of JoInv matrices

0 ‘ ‘ ‘ - ‘ O - ‘ ‘ ‘ ‘ ‘
10 1 10}, .]
20 1 20f]
30 1 30f]
40 . 1 4of]
50 1 50t]
60 ‘ ‘ ‘ ‘ ‘ 4 60t ‘ ‘ ‘ ‘ ‘ J
0 10 20 30 40 50 60 0 10 20 30 40 50 60

nz=4 nz=4

(e) C; in group 5 (f) C; in group 6

0 : : : : : -0 : : : : : :
10 1 10}]
20 1 20f]
30 1 30f]
40 1 4ot]
50 1 s0f]
60k ‘ ‘ ‘ ‘ ‘ 4 60t ‘ ‘ ‘ ‘ ‘ J
0 10 20 30 40 50 60 0 10 20 30 40 50 60

nz=4 nz=0

(g) C; in group 7

(h) C; in group 8

Figure 2.7: Sparsity structures of matrices C; (central difference) (cont.).

2.2 Sparsity structures of CD operators

53

2.2.3 Sparsity structure of vectors w!’)

We can derive once again the explicit form of the vectors w7, which look different

depending on whether the cell is at the border of some coordinate direction.

Let’s consider a cell with index ¢ which is not at the border of any direction; the
elements of the vector w7 are the following:

(4,9)
W; 1.1,

)

w:

(i,9)
w;

)

w; .y =

(4.3)
i+Lq

(4.9)
i+L1Lo

_ mgi)LlLQ B mz(i)Lng
4h3 4h3
_ mz(']—)Ll B mgr)Ll
4h3 4h3
_ mz('];)l _ mz(i)l
4h? 4h?
_mz@l I mgi)l
4h? 4h?
_ _mz(]—)Ll I mz('i-)Ll
4h3 4h3
_ _mz(J—)LlLQ mz(i—)Lng
4h3 4h3

(2.56a)
(2.56b)
(2.56¢)
(2.56d)
(2.56¢)

(2.56f)

Let’s consider now the case of a cell ¢ at the border only of the x; direction, that is
Property 1 holds true for it, while properties 2 and 3 are false. For the sparse vector w ()

we can write:

(4,9)
w;
(4,9)
w; .y

w

w9

(6g) _
i+L1 T

i+L1Lo =

_ mz(‘]—)Lle _ mgi—)Lng
ih2 an?
. m’gj—)Ll o mz(‘—ji—)Ll
2 an
=0
mdy mdy
a2 ang
_ mz(]—)Ll Lo mz(i)Ll Lo
4h3 4h3

(2.57a)

(2.57b)

(2.57¢)
(2.57d)

(2.57e)

(2.57f)

Consider now a cell ¢ which is at the border in the x, direction only, that is Property
1 and 3 are not satisfied, while Property 2 holds true. The elements of the vector w7

54

Sparsity structures of JoInv matrices

in this case can written as:

)

() ()

o mi—Ll Lo mi+L1 Lo
Wi 1L, =

4h? 4h2

wl), =0
Wl — Mo mi

L 4R 4R3
w') — _mz@1 I mf%

o 4h3 4h?
wlif, =0
(4,5) _ 777’2(J—)L1Lz mz(i)Llla

Wil = T gz T T

(2.58a)
(2.58b)

(2.58¢)

(2.58d)

(2.58e)

(2.58f)

Analogously, for a cell ¢ which is at the border in the z3 direction only we have that
Property 3 holds true and properties 1 and 2 are not satisfied. The elements of the vector

w9 in this case can written as:

W; 1.1,

(4,9)

w; 7, =

(1.9) _

w;

(4,9)
wi+]Ll
(4,9)

wi+L1L2

=0
mEJ—)Ll B mz(i-)Ll
4h3 4h3
_ mz@l _ mz@l
4h3 4h?
_ _mz@l i mz(i)l
4h? 4h?
_ _m’E]—)Ll + mz(i-)Ll
4h3 4h3
=0

(2.59)

(2.59b)
(2.59¢)
(2.59d)

(2.59e)

(2.59f)

There are now to consider the cases of cells that are simultaneously at the border of
multiple coordinate directions. We consider first those cells that are at the border of x;
and x5 directions. In these cases the properties 1 and 2 are both satisfied, while Property
3 is not. The nonzero elements in the corresponding vectors w(7) are the following:

(,9)

W, 1,0, =

() ()

_ mi—LlLQ mi+L1L2

402 A2

w;_r,
(i.0)

wzfl = 0

w; 1

(1.4) _

(9) (7)
_mi7L1L2 mi+L1L2

02 02

(2.60a)

(2.60b)
(2.60c)
(2.60d)
(2.60e)

(2.60f)

2.2 Sparsity structures of CD operators

55

We then consider the cells that are at the border of x; and x3 directions, where

properties 1 and 3 are both satisfied, while Property 2 is not.

the corresponding vectors w7 are the following:

The nonzero elements in

w™) =0 (2.61a)
() ()

@g) _ Mz, Miyr, 9 61h
TS BT (2.61b)
w) =0 (2.61¢)
w) =0 (2.61d)

() ()

(4,5) m_y i+L

Wiir, =~ 412 -+ an? . (2.61e)
w) =0 (2.61f)

Considering now the cells that are at the border of x5 and z3 directions, where prop-
erties 2 and 3 are both satisfied and Property 1 holds false, the nonzero elements in the

corresponding vectors w'™) are the following:

wz(iijL)lL2 =0 (2.62a)
w) =0 (2.62b)
() ()
(@) _ Miz1 My 9 69
wlfl 4],’% 4h% (. C)
() ()
(i) mi—y | My
P —— + (2.62d)
1 4h3 4h?
w?) =0 (2.62e)
w!?) =0 (2.62f)

Finally, the last cell of the discretized domain is at the extreme corner, that is at the
border of all the three coordinate directions simultaneously. Therefore, the corresponding

vector w7 is the identically null vector.

2.2.4 Sparsity structure of matrices like [C1d ... C)d]

The structure of the JoInv matrices obtained by the multiplication of the sparse C; ma-

trices by a dense vector d, [Cld Csod

2.2.5 Hessian matrices

Misfit term Hessian

C’Md] , is shown in Figure 2.8.

Since the structure of the Hessian of the misfit term depends only on the operator Aj;,
it doesn’t change switching from a forward difference scheme to the central difference
scheme.

56 Sparsity structures of JoInv matrices

e oo o

o oo o

e oo o
.

20 o %,
30t
40t

50

60t ‘ ‘ ‘ % L %e %o
0 10 20 30 40 50 60
nz=172

Figure 2.8: Pattern of the matrices [C1d Cod ... Cyd].

Regularization term Hessian

As it can be seen from (1.20), the regularization term is again a diagonal matrix, hence
its implementation is trivial.

Coupling term Hessian

The structure of the coupling term Hessian is composed by several pieces (1.47). The first
one is the term in (1.52): once again, we have the same sparsity pattern of [C1d Caod ...
Cpd] (Figure 2.9(a)). Consider now the term in (1.54): its structure is also well known,
because it is built by multiplying two matrices with the same structure C'd (Figure 2.9(b)).
Finally, consider the term in (1.61): it has the same pattern of the last Hessian matrix,
only scaled by a constant value and some diagonal matrices (Figure 2.9(c)). The final
structure of the Hessian of the mixing term (1.61) is shown in Figure 2.9(d); since the
nonzero structure of H; is a subset of Hy and Hj structures, in each of the four block we
have the same nonzero pattern.

2.2 Sparsity structures of CD operators

57

10

201

30r

40t

50

60t

10}

20

301

401

50

60t

o o "o e o o e o
o:c e .o. :o: o:o e c:o .
° o .o. .o. ® . o: o ° . .o.
o... o.. ..o. 10f . ..o.: . ‘e c...
.'o... .o. . :: . ..o. °
’ %e % 120 % % % "
1% AR
'o. e .o: c:o.
. 1 4o W S
% .o: . o: .o. o:o o: .o.
".. S] sl .Z; "o, .ﬂ..:;
.0, 'o. .:.r 60k .'o. .0, o: :::

10

R 0.§ \\\ s%:g DN
e % % e 2
e o ’*
.::: E:: -.....: 20} ~ ..§ ~ ¢*§§
ER \\"ﬁ‘ ‘I\“ﬁ
o, % X
R LTI &Q Mo Q* N
R 3“3* Na &t\
X mente | Y eg .ﬁ
e mE] ol Ny ds N W
10 20 30 40 50 60 0 20 40 6 80 100 120

(c) Hs

0
nz = 1488

(d) V2, MIX

Figure 2.9: Sparsity structures of V2, MIX and of its blocks.

58 Sparsity structures of JoInv matrices

2.3 Comments on alternative representations of
discrete derivative operators

It is well known that there exist alternative ways to represent the discrete derivative
operators related to forward and central difference, both for 2D and 3D models. For
instance, |06, chap. 7] analyze various ways of representing discrete partial derivatives
operators for the regularization term in Tikhonov functionals as tensor products of simple
matrices like identities, diagonals, bi-diagonals, tri-diagonals. For example, the Euclidean
regularizer with forward finite difference for a 2D image Y sized m x n can be easily
represented as || Dyl|3, where y = vec(Y) is the “vectorized” 1D representation of the
image and the derivative operator D is given by

D = (In & Dl,m)
Dl,n ® Im
where I,,, I,,, are identity matrices and the 1D finite difference operators D ,, and D,
are n X n and m x m bi-diagonal matrices, respectively, with the same form of B, in
(2.1), but the last line. Generalization of these representations to 3D data can be found
for example in [17,18]. However, there are some comments:

e the form of the joining term (1.7¢) is much more complicated than classical 2-norm or
Total Variation regularizers and it is far quite whether a similar easy tensor-product
representation could be useful or not, or if it even exists;

e tensor-product operators are known to be quite useful to express the direct solution
of important simple partial difference equations coming from PDEs discretization,
but computations become harder for increasingly difficult operators (the literature
is huge and dates back to '60s and even earlier: see, e.g., [20,69,87,88,90] and more
recently [33,12]);

e in the present work we are also strongly interested in the most compact and effective
implementation suitable to PETSc’s sparse matrices storing scheme, so the actual
positions of nonzero elements matter the most.

For these reasons, we do not investigate further about different expressions for the discrete
objective function gradient and Hessian.

Chapter 3

HPC implementation

3.1 JoIlnv Matlab prototype

First of all, we coded a Matlab prototype; as it is common knowledge, Matlab code is not
efficient, but coding with it is quite simple and fast. A Matlab prototype is convenient
because writing an HPC code starting from an outline code is easier and because we
can check the implementation correctness. For the Jolnv project, Figure 3.1 shows the
streamlined Matlab flowchart.

3.2 What libraries?

The first step of the implementation part was the study of the scientific libraries available
in order to choose the best ones for JoInv. We were looking for a library with the following
features:

e up-to-date;

e C or C++ support;

support for parallel operations using MPI;

portable;
e vector and matrix sequential and parallel operations, such as multiplication;
e linear and nonlinear system solvers.

All the features we were interested in are listed in Table 3.1: PETSc and TAO libraries
are the best choice. See Section A.2 and Section A.3 for more details about these libraries.
In future development we will improve Jolnv performances by adding architecture-
specific libraries, such as MKL and ACML for Intel and AMD, respectively.
How these libraries are related to each other is shown in Figure 3.2.

60 HPC implementation

[Load data]

iter < maxlIter

&& (Iconverg)

Y€S | Compute solution
CG-like

[Save data]

(a) The streamlined Matlab flowchart. We load the data and
set the parameters; then, we compute the solution of our inverse
problem using a gradient-like method. At the end, we save the
result to check if the solution found is comparable to that found

using a standard approach and if it matches with the solution
found using the JoInv HPC implementation.

Compute solution
grad-like

T
I
|
|

\4

Tikhonov-like

functional
! , }
[cum. misfit term] [cum. reg. term } [joining term]
A A
vm vm
A, Y
{ single misfit } [single reg. j

(b) Compute-solution block: we minimize the objective functional following the
Tikhonov approach; therefore, we compute the misfit and the regularization terms
for all models and then the joining term.

Figure 3.1: The streamlined Matlab flowchart.

61

3.2 What libraries?

"S9IM)ed] 1197} pUR d[(e[IeAR SOLIRI]I] dYIJUIIDS UOWIO)) "¢ J[qR],

adnyvy [°o7u] NI 9J0N
A A A A A u IdIN
(9Dx)
SIDA[OS
WIR)SAS
Ieaur
£ u u u u £ £ U | 9ATIRIDI]
wWR)SAS
Teoul]
puaq
(‘wmdQ) IOATOS
MOVAVT A £ £ £ £ £ £ £ u 10011(]
(rwmdQ) sonfea
MOVAVT A £ £ £ £ £ u | (odaTs) 4 u U1
(eoryI0gUL
D) uenuof | (erped) £ £ D& | ++3MOVAYV | ++MOVAVT £ £) ++D
(" MOVAVT (" (" MOVAVT SV1dd MOVAVT
-do) svid svid | -do) svid | -d0) Svid Sv1d Sv1d oSLAd SV1d (¢ a9)) £ qaxv
(‘g MOVAVT (" (" MOVAVT SV1dd MOVAVT
-do) svid svi1d | -do) sv1d | -do) svid sv1d sv1d 2SLAd sv1d (¢ 1aop) 4 Ty
(‘undQ)
(‘g MDOVAVT (" MOVAVT MDOVAVT Svi1dd MOVAVT
-do) svid sv1d | -do) sv1d sv1d sv1d Sv1d OSLAd sv1d (1 1oaop) 4 o
010¢ 600¢ 010C 010C 0002 010¢C 010C 010C <00¢ arepdn
Areaqqy uor)
auIINOIqNG MOVAVT -egndwo))
OYIIUSIIG MOVJIY a[qereos uory OYIIUSIIG sureis
Areaq Lreaqry Areaqry | pue dut [errered ‘08eyNVd -eztunyd() | 10§ NY[OO], -oxdgng
-1 qIeiN [PuIoY OYIIUDIOG -I9omISuy ‘98e3yDVd RIQES[Y pooueApY 9IqISURIXH ®IQR3Y
9100 dINV | YIBIN [PIU] OND (ferrered) IP[OUYY Tegul | 10 JIY[OQ], ‘olqettod | Teaury omseqg
++MDVdYV MOVAV'1
TSSHd MDVdUvd -B9§ Sv1dd
TINDV TN 1SD TSSH MOVdYVY MDOVAVT OVL OSILHJ Sy1d

62 HPC implementation

TAO
PETSc

PARPACK '—1 M
M

GSL 1 PBLAS -

LAPACK P)

_——r = ——

BLAS P | A

| MKL |<- ACML
y
ESSL l

Figure 3.2: Relationship between some well known scientific libraries. Solid black arrow
means “is dependent on”, dotted gray arrow means “contributes to”.

3.3 JoInv implementation choices 63

3.3 Jolnv implementation choices

The Matlab code is only a useful prototype. For the actual HPC version, we made the
following choices:

Programming language: C . The main advantages are:

e speed of the resulting application. C is a compiled language and C source code
can be optimized much more than higher-level languages because the language
set, is relatively small and very efficient;

e simple interaction with PETSc and TAO libraries.
Libraries: MPI, PETSc and TAO

e MPI (Message Passing Interface) is a de facto portable, efficient, and flexible
standard. See Section A.l for more details about this library.

e PETSc (Portable, Extensible Toolkit for Scientific Computation) features in-
clude: parallel vector and matrices (several sparse storage formats and easy,
efficient assembly), parallel linear, nonlinear equation solvers, and ODE inte-
grators. See Section A.2 for more details about this library.

e TAO (Toolkit for Advanced Optimization) is a software for large-scale opti-
mization problems, such as Jolnv, and the current version has algorithms for
unconstrained and bound-constrained optimization. See Section A.3 for more
details about this library.

Documentation: Doxygen

e generates on-line and off-line documentation (I4TEX) directly from the source
code;

e generates graph and diagram directly from the source code.

3.4 Jolnv structure

In Figure 3.3 the streamlined Jolnv call graph is shown. Violet blocks are the only func-
tions called by a JoInv end user; we will came back to a basic JoInv usage in the following
Section 3.6. The black blocks in the top of the graph are the initialization functions, where
the data and the parameters are loaded and set. The application core starts from the
JoinvApplicationSolve violet block; form here we evaluate the Tikohonov-like objective
functional (orange blocks) by computing the misfit term (blue blocks), the regularization
term (green blocks) and the joining term (red block). At the bottom of the graph there
are the finalization functions, that check for options to be called at the conclusion of the
program and print the requested data and parameters.

HPC implementation

64

amdio)uerssapjauto

nduro)yurIa] SuTuro fAuIof

SxyeBurgamdwoyautor

Syyanemumyndwoyantof

/ UEISSH[EAFALY [AUTO[
nduro)yt I NoTeZ1 e[S yAuIo f

—

msnSur ganduoyantof

st @nEmun)amduroyauto

amduwourIap JysTAIOf

«———

X1DUBISSSHNUAUIO[

poseorneDamdwoyautop

‘ders [eo aujo poururear)§ ¢ ¢ oIngry

sIalemere aarjAutor

OJUISIE NI IJAUIO [

IONUOTAATTO[

JRPRIDPUYENJ[PATATY [AT[Of]

azipeurjuoneorddy aurof

/

avjo guonearddyaurof

dwopssennenmypagauor

‘/

urew

1eguoneorddyyaurop

pyseorney Damdwo jaurof

pa 1oreradgiuarpeinamdmwoautof

prIoradoiuarpernamduo)antof

SI2]2WIEIEJ12SPEO JAUIOf

suondQlenautor

nuuonedrddyautop

3.5 From sequential to parallel code 65

3.5 From sequential to parallel code

Since Jolnv is written using PETSc and TAO libraries, that are already designed for
message-passing parallel applications, changing the code from the sequential to the parallel
version was not too difficult: most details of message-passing are hidden within parallel
objects, such as vectors, matrices and solvers. Nevertheless, a number of important
changes have been implemented to optimize parallel computations and minimize process
communications.

3.5.1 Input and output

In the sequential code all the print statements, both on standard output and file, are done
by calling

PetscPrintf (MPI_COMM_SELF, ...)

In the parallel version, when only the first process in the communicator has to print a
message, the call becomes

PetscPrintf (MPI_COMM_WORLD, ...)

Instead, when we need synchronized output from several processors, such as for sorted
outputs, the call becomes

PetscSynchronizedPrintf (MPI_COMM_WORLD, ...)
PetscSynchronizedFlush (MPI_COMM_WORLD)

PetscSynchronizedFlush() flushes the output from all processors involved in previous
PetscSynchronizedPrintf () calls to the screen.

3.5.2 Parallel vectors and matrices
AT B multiplication

In the sequential version the C' = AT B matrix-matrix multiplication is performed by

MatMatMultTranspose(Mat A, Mat B, MatReuse scall, PetscReal fill,
Mat *C)

This routine is currently only implemented for pairs of SeqAIJ matrices, pairs of SeqDense
matrices and classes which inherit from SeqAIJ; therefore we replaced that call with the
following couple of calls, that work on ParAIJ matrices too:

MatTranspose(Mat A, MatReuse reuse, Mat *At)
MatMatMult (Mat At, Mat B, MatReuse scall, PetscReal fill, Mat x*C)

We recall here that these two functions are very expensive in parallel, because they re-
quire a large number of data movement and communications, and that PETSc developers
recommend to avoid them whenever is possible.

66 HPC implementation

Local rows

When parallel vectors and matrices are created, they are distributed over all processes in
the MPI communicator; the number of components that will be stored on each process
are decided by PETSc.

For parallel vectors, that are distributed across the processes by ranges, it is possible
to determine a process local range with the routine

VecGetOwnershipRange(Vec vec, int *low, int *high)

The argument low indicates the first component owned by the local process, while high
specifies one more than the last owned by the local process. This command is useful, for
instance, in assembling parallel vectors or for getting some values from local components,

e.g.:

VecGetArray(Vec x, PetscScalar *al[l)
VecGetValues(Vec x, PetscInt ni, const PetscInt ix[], PetscScalar y[])

For parallel matrices, that are partitioned by default with contiguous rows owned by the
same process, the routine

MatGetOwnershipRange(Mat A, int *firstRow, int *lastRow);

informs the user that all rows from firstRow to lastRow-1 will be stored on the local
process (since the value returned in lastRow is one more than the global index of the
last local row). This function is useful because, even though one may insert values into
PETSc matrices with no regard to which process eventually stores them, for efficiency
reasons it is recommended to generate most of the entries locally to the process that will
own them, so that communications are minimized.

Getting the structure of a matrix row

In the sequential code, to get the compressed row storage indices ¢ and j of sequential
matrices, we call

MatGetRowIJ(Mat mat, PetscInt shift, PetscTruth symmetric,
PetscTruth inodecompressed,
PetscInt #*n, PetscInt *ial], PetscInt* jall,
PetscTruth *done)

This routine is currently implemented only for sequential matrices, therefore we replaced
that call by

MatGetRow(Mat mat, PetscInt row, PetscInt *ncols,
const PetscInt *cols[], const PetscScalar *valsl[])

that gets a row of a parallel matrix.

© o N ;AW N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

3.6 JoInv basic usage 67

3.6 Jolnv basic usage

This chapter discusses the most relevant routines that a JoInv end user should call. They
are: JoinvApplicationInit(), JoinvApplicationFinalize(), JoinvApplicationSet(),
and JoinvApplicationSolve().

In Figure 3.4 violet blocks show the four functions that a user must call to minimize
a functional using JoInv. The black blocks show where the TAO functions are called.
Finally, the blue blocks indicates Jolnv’s core routines.

[JoinvApplicationInit()]—»[PetscTaoTnitialize()]

[JoinvApplicationSet()]—» JoinvLoadSetParam()

|

[JoinvApplicationSolve()]—»[TaoCreateSolveri App]()}

.

[TaoSetObj GradHessFun()}

TaoSolve() JoinvTknvEvalFunAndGradient()

\\\\\\\\\\\$

JoinvTknvEvalHessian()

Y
[JoinvApplicationFinalize() PetscTaoDestroy()

Figure 3.4: Jolnv functions calls from the end user point of view.

A simple example of JoInv usage is provided in Listing 3.1; more details about the
called routines can be found in the next sections.

YAZ]

*

testJoinv.c
Test program for the Joinv pkg.

Petsc my_config:
petsc_scalar: --with-scalar-type=real --with-precision=double

Program usage:
make testJoinw
mpirun -n N ./testJoinv.z [-help] [all options]

EE N . T T N

*
~

#include <stdlib.h>
#include <stdio.h>

#include "JoinvApplication.h"

#undef __FUNCT__
#define __FUNCT__ "main"
int main(int argc, char *xargv([])
{
JoinvErrorCode errInfo;
JoinvAppCtx joinvCtx;

/* JoInv options file name #*/
char joinvOptFile[] = "joinvOptions";

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

68 HPC implementation

/* Initialize JoInv, TA0, PETSc, and MPI +/
errInfo = JoinvApplicationInit(&argc, &argv, joinvOptFile, &joinvCtx);

/* Set and load data and parameters */
errInfo = JoinvApplicationSet (&joinvCtx);

/* Solve the minimization problem */
errInfo = JoinvApplicationSolve(&joinvCtx);

/* Finalize JoInv, TA0, PETSc, and MPI */
errInfo = JoinvApplicationFinalize(&joinvCtx);

return errInfo;

¥

Listing 3.1: Example of JoInv application code. After any call you should check the value
of errInfo because the functions return a nonzero error code when they fail; here is not
done for the sake of simplicity.

3.6.1 Initialization and finalization

The first JoInv routine in any application should be JoinvApplicationInit(). Most
JoInv programs begin with a call to

JoinvAppCtx joinvCtx;

info = JoinvApplicationInit(
int *argc, char *xxxargv,
char *optFile, JoinvAppCtx *joinvCtx) ;

This command initializes JoInv, TAO as well as MPI, PETSc and other packages to which
TAO applications may link (if these have not yet been initialized elsewhere). In particular,
the arguments argc and argv are the command line arguments delivered in all C and
C++ programs; these arguments initialize the options database.

The argument optFile optionally indicates an alternative name for an options file,
which by default is called .petscrc and is placed in the user’s home directory.

The argument joinvCtx is a JoinvAppCtx: it is a struct including all the Jolnv
parameters.

One of the last routines that all JoInv programs should call is

info = JoinvApplicationFinalize(JoinvAppCtx *joinvCtx) ;

This routine finalizes JoInv and any other libraries that may have been initialized during
the JoinvApplicationInit () phase.

3.6.2 Setting

The routine
info = JoinvApplicationSet(JoinvAppCtx *joinvCtx);

sets many Jolnv parameters from the command line arguments or the options file. It
must be called after JoinvApplicationInit() and before JoinvApplicationSolve().

3.6 JoInv basic usage 69

3.6.3 Solve
The routine
info = JoinvApplicationSolve(JoinvAppCtx *joinvCtx) ;

will apply the JoInv algorithm to the application that has been created by the user

3.6.4 Jolnv options

A complete list of JoInv options can be found in Table 3.2, Table 3.3 and Table 3.4. A
sample JoInv options file is the following:

FILE: joinvOptions

-joinv_misfit_type norm2
-joinv_cum_misfit_type weightedSum
-joinv_ml_operator_type 0
-joinv_m2_operator_type 0
-joinv_misfit_weights 1.0,1.0

-joinv_reg_type minimumSupport
-joinv_cum_reg_type weightedSum
-joinv_lambda_1 2.0892
-joinv_lambda_2 0.5755
-joinv_xi_reg 5.0128,0.5012,0.3
-joinv_reg_weights 1.0,1.0

-joinv_joint_type joinvMinimumSupport
-joinv_lambda_jf 1.2
-joinv_xi_jf 0.3,0.3,0.3

-tao_method tao_nls

70 HPC implementation

-tao_nls_ksp_type stcg
-joinv_tao_maxIter 1
-joinv_tao_fatol 1.0e-6
-joinv_tao_frtol 1.0e-6
-joinv_tao_catol 0.0
-joinv_tao_crtol 0.0

-joinv_fd_type forward
-joinv_verbosity 1
-joinv_iter_info 1
-joinv_mat_info O
-joinv_view_tao_solver 1

-joinv_in_A_1 toyModel/ml1/A_matrix_petsc
-joinv_in_A_2 toyModel/m2/A_matrix_petsc
-joinv_in_d_1 toyModel/ml/Traveltimes_petsc
-joinv_in_d_2 toyModel/m2/Traveltimes_petsc
-joinv_in_celNum toyModel/cellNumXYZ.txt
-joinv_in_celDim toyModel/cellDimXYZ.txt
-joinv_in_bckgrndVel_apr toyModel/bckgrndVelApr.txt
#

-joinv_out_params 1

-joinv_out_params_fileName parameterslLoaded.txt
-joinv_out_params_path dataOut/
-joinv_out_hessians 1

-joinv_out_gradients 1

-joinv_monitor 1

-joinv_monitor_solVec monitor-sol_iter-
-joinv_monitor_misfit monitor-misfitVals
-joinv_monitor_reg monitor-regVals
-joinv_monitor_mix monitor-mixVals
-joinv_monitor_tknv monitor-tknvVals

71

3.6 JoInv basic usage

suorpdo OV, pue ‘wie) ururof‘uorjezire[ndol ‘ygsmu AUO[:g°¢ ORI

‘S[te3op
9I0W 10} [Q] TenURW ()Y 90§ ‘SIUIRIISUOD Ul JOIIO OAIYR[DI O[qRMO[[Y 00 a[qnop 70115~ oeq autol-
"S[IR19P AI0W I0§ [g] TenuRW ()Y, 99§ ‘SIUTRIISTOD UT IOIID S[qRMOI[Y 00 arqnop Toaeo~oea~autol-
‘S[IR19p 9I0W I0] [g] [eNURW ()Y, 99§ 90URIO[0) 90USIOATU0D DATIR[OY 9-90'T a[qnop Toaxy oea autol-
“S[TRJOP 210U I0} [g] [enURW ()Y, 99§ 90URIS[0) AOUIFIOATUOD N[0SV 9-90°T a[qnop Tojez-oea~autol-
‘S[TRYOp OI0W I0] [g] [enuew ()Y, 99§ "SUOTIRIOI JO IOQUINT WNWIXRIN 00T Jut Jo3IXew oeg Autol-
‘s[rejep alowr 10y [g] renurw ()Y, 90§ poyew VI - * OR] poylew oeq-

‘sooeds SUTUOAIONUL OU
A sewrwiod YHm pojeredss o jsnur jey) sonfea Jjo Aeiry 93 ‘v3 ‘€3 - a[qnop‘orqnoporqnop Il tx"autol-
(epqurey reuonouny jutof) £y - orqnop 3{"epquer autof-

‘0d £y Teuorjouny jutop

1roddngunururyautof

1roddngunururyautof

adfa7qutol~autol-

‘sooeds SuruaAI9)U

OU UM SO0 YIim pojeredos o ISNUIL JRYY SON[RA [ROX 0M) JO ARIIy 0OT0T 9[qnop‘e[qnop squy3tem~8ex autol-
"sooeds JUIULAIS)UL OU

M sewwod Ypm pajeredes oq snul jer) senfea jo Aeiry -3 pue I3 - o[qunop‘orqnop‘erqnop dex~tx " AuTOl-

ey - o[qnop Z epquel-autol-

'Y - s|qnop 7 epqueT”autof-

‘0d£) w9} uoryRZIIRINGAI SATIRINWIN)) wngpoIyIrom wngpoIyIrom odfq~8ex umo~autol-

‘0d Ay wie) uoryezirendoy jproddngunururim jproddngunururm odfq~8sa"autol-
‘soords uruaAIajul

Ou)M Sewwod ym pojeredos oq 1SN JeY) SON[BA [BSI OM] JO ARIIY 0101 a[qnop‘orqnop s3ySten 3TFsTW Autol-
‘'z [Ppou

Jo wrey ystw ‘(1) 1oyerado Iesurjuou IO (()) IeSUI] UsemIaq 9d10Y)) 0 1]0 odfq~10qeIedo"zw Autol-
‘1" [epouwt

Jo wrey gsta ‘(1) 1ojelodo Ieouruou Io (()) IeSUI] Uoomioq 90107 0 10 edfq~10qe1edo " Ju auto(-

od£) wIv) JysTW LAIIR[NWINY) wngpoyIom wngpoysom adf3 31 FsTW wmno autol-

‘od Ay wLIo) JYSTIN guou guou adf3 q1FsTw AuTO[-

uorpdrIosa(q nejeq sonfeA owreN

HPC implementation

72

‘'suorydo jndno pue jndur ‘Aujor :¢'¢ o[qry,

‘SURISSO

pomndurod oY) Yym soy Areurq ndjino a7y juwem nok ju Suryesrpur Jefq 0 10 sueTssoy qno Autol-
‘sjuoIpeId

pondwod oy} yypm soy Lreurq ndino sy) juem nok j Suryesipur 3efq 0 110 squeTpea8 ano autol-
‘(s1ogourered
[eo0] ‘siojowrered uoryezire[ndor ‘sjydrom Justw ‘odA) SOULIDPIP O)TU
-g ‘odAy quiol ‘edAy uworyezuremngdar ‘od4A) wre) jystw ‘sioe] Jo Jaquunu
‘1oAe] Jod [[90 ‘UOISUOWIpP [[00 ‘JoqUWINU [[09 ‘UOISUSWIP P ‘SUOISUSWIP

V) ‘siejourered pue suolpdo popeol oyl Yim o[9xo1 jndino reuondQ - /yaed ysed suered qno~autol-
"S10309A

pue xujyew popeol oY) yym so[y Areurq jndino syg jo yged peuond(- owreNory/yied | sweyeTTI swered qno-autol-
‘stojowrered pue suorydo poprol oY)

UM so[y Areurq pue 1x9) Indino oy} juem NoA Ju sejedrpul eyl Jerq 0 1]0 surered qno~autol-
‘sooeds SUIUOAIONIL OU Y)IM SRUIUIOD [)Im poajel

-edos o JsnwW JeYY soneA om) Jo AvIIR UR SUTR)UOI ey} o[y jndur 1XoT, - owre Noryg/yyed ade " Teppuidyoq ut autol-

"SUOIIDRIIP Z ‘A ‘X Ul UoISuawIp S[[e9 10} o[y Indul IxaT, - owre Nory/yyed wrgres ut-autol-

"SUOII0RIIP Z ‘A ‘X Ul S[[e0 Jo Iequuinu I0j o[y jndur)Xo, - owre Noryg/yyed umNTeo ut-AuTOo(-
(¢ Ppow jo eyep

PoAIRSO) 101004 Tp 10} (peu1o] 103004 Areulq o§THJ) oy 1ndut Areurg - owre Noryg/yyed Z putr autol-
(1 Ppow jo eyep

PeAIesqO) 10300A Ip 10} (yeurioj 10300A Areulq 9§ Hd) oy ndur Areurg - owre Nory/yyed T p utr autol-
(z 1epow jo 109eredo

Iesul]) Xuew ¢ 10j (9eULIO) XLIpew Areulq 9§ HJ) o[y ndur Areurg - oureNoTy/yred g7y utr autol-
(1 1epowt jo 10geIredo

Ieolul]) Xujew Ty 10j (jemnio] Xugpew Areulq 9§THJ) o[g indut Areurg - oure Noryg/yyed Ty ur autol-

vonydriossa(q | nejoq soneA awre N

73

3.6 JoInv basic usage

‘suorydo 1ojtUOW AUTO[

"TOTYRIINT [oro e pojnd

-0 SOTL[RA [RUOT}OUI] AOUOYLT, 9} SUIRIUOY Je() o[oY} JO oweU o[l - QWIBNO[Y AUYQ~JO0QTUOW AUTO[-
"UOIYRISNT DR

1e poyndwod senfea wIe) Juruliol o) SUIRIUOD Y] S O[3 JO dWRU O[] - ouwre Noy XTw JI0qTUOW AuUTO[-
“UOTYRIVT [oRd e pojnd

-TOD SON[RA WLISY UOIJRZLIR[NGAI 81} SUIRIUOD Jey) o[y oY) JO dwreu o[lq - ouwre Noy Se1~ 103TUOW AUTO[-
"UOTYRINT IR

Je poindurod sonjeA WLI9) JYSTUL 977 SUIRIUOD eI 9[Y 9) JO dWRU I[I] - ouwre N o[y 3T ISTW xojTuow Autol-
“UOTYRISNT

oeo Je poinduiod 103004 UOIN]OS 97} SUTRIU0D Je) o[oY} JO owelU o[l - ouIe N o[l oopTos”x0aTUOW AUTO[-
‘sa[y Areurq pue (1031uow) jndino piepue)s uo pejutid SUOIJRULION] - g
‘(1091uowr) ndgno prepues)s uo Ajuo pejutid suolRULIOJU] - | ‘SUOIpRW
-IOJUI ON - () *(SeT[eA [RUOIJOUNJ AOUOYNLT, ‘sonfea wio) Suturol ‘sonjea
ULI9) UOTJRZIIR[NGOI ‘Soll[RA ULIOY JUSTUI ‘I0J09A UOTIN[OS'9 1) JueM NOA

Op UOI)eIdN)I [Oed Jnoqe uoljeuriojul (ndino yonw moy Juryedipur 3efq 0 gl1lo0 Joatuow AuTol-

9INYONI)S RIRP YIATOS™OV.L oY) Jo Ae[dsIp oy) o[qesIp 10 s[qreuy 0 1/0 JIoATOS oy MOTATAUTO[-

"93RI01S XIIjeUW JNOJR UOIYeULIOul JO ARIASIp o) 9[qRSIP 10 J[qeuy 0 1]0 oFur~qew autol-

"SUOIYRIDIT O} INOYR UOTYeWIOJUl JO ARIASIp o1} J[qeSIP 10 d[qrUH 0 10 oFur~IeqT AuTO[-
‘(pegmooxe Buleq SI 9UIINOI JRYM D "2)

SUOI)eId)I 1) SULINP UOTJRULIOJUT SWOS JO Av[dSIP oY) S[qRSIP 10 J[qeur] 1 10 £q1soqreaautol-

‘s109eI0do JuerpeId oindwos 0} posn odA) SOUSIOPIP 0ITUL] | PIRMIO] | [RIIUOD | PIRMIO] edf1 " pz autol-

uvorydriose(q 7 nneyeq 7 seneA aure N

F7€ 9198l

Chapter 4

Structure prediction of sparse matrix
products

We consider the problem of predicting the nonzero structure of a product of two or more
sparse matrices. The intention is to predict that structure using a low cost procedure be-
fore performing the computation-intensive matrix multiplication. The nonzero structure
can serve as a guide for efficient memory allocation for the output matrix when perform-
ing the actual multiplication. Indeed, extensive literature exists on more efficient storage
schemes and algorithms for matrix operations on sparse matrices (see, e.g., [23,],
just to mention some).

Throughout this chapter we assume that no cancellation occurs. That is, the inner
product of two vectors with overlapping nonzero entries never cancels to zero. This is a
very common assumption in the mathematical programming literature. The justification
is that cancellations are unlikely when computing over real numbers. Furthermore, even
when, due to a singular structure, cancellation occurs, rounding errors may prevent the
resulting computed value from being zero.

We consider the goal of determining the full nonzero structure (that is, the exact
locations of all nonzero entries) of a matrix products in a time proportional to the number
of nonzero elements.

We experimentally tested our method on products of four randomly-generated large
sparse matrices and on products of the matrices used by Jolnv.

4.1 Structure prediction using graph theory

We mention that extensive literature exists on storage schemes and matrix operations
on sparse matrices, and many sparse matrices algorithms have a phase that predicts the
nonzero structure of the solution from the nonzero structure of the problem.

Graph theory is a useful language in which to state and prove structure prediction
results. One reason for this is that the structural effect of a matrix computation often
depends on path structure, which is easier to describe in term of graphs than in terms of
matrices.

One common method used to predict nonzero structure is to represent the matrix A
of dimension n X m by a bipartite graph G 4, with n nodes {vy,...,v,} at the lower level
and m nodes {wy, ..., w,} at the upper level.

76 Structure prediction of sparse matrix products

In this way, a product A = A; ... A can be represented as a layered graph with (L+1)
layers as follows. Suppose A; is of dimensions n; x n;. For 1 <17 < L, the ith layer has n;
nodes and the edges between the ith and the jth layers are as is the bipartite graph Gy,.

For 1 < r < ' < L, consider the sub-product B = A,A,,1...A.. The following
prepositions are immediate:

e Assuming no cancellation, the number of nonzero entries in the ith row of B equals
the number of nodes in layer 7’ 4+ 1 that the 7th node in layer r reaches via directed
paths.

e The number of nonzero entries in the ith column of B is equal to the number of
nodes in layer r that can reach the ith node in layer »' + 1.

For example, consider the following nonzero structures (z denotes a nonzero entry):

0 0 O
0z 0 0 «
z 0 0 O e 2 00 0 z 0 0
A=10 0 z =z B = C=10 0 =z
0 00 O0O0
00 0 0 0 = O
z 0 0 0 =z
z 0 0

The goal is to compute the product R = ABC, so that

R=

o8 K
o O O
o O O

Using the graph representation of the product of Figure 4.1, it can be easily recognized
that from A, ; there are direct paths only to Cy1, via By o or By 5. This means that Ry
is a nonzero entry, where the R indices are the A row index and the C' column index,
respectively. You can also see that the other nonzero entry is Ry, because there is a
direct path from Ay 4 to Cj 1, via Bys.

4.2 Structure prediction without graph

From the graph representation one can figure out that the column indices of A are also
the row indices of B and that the column indices of B are also the row indices of C. We
started from this observation to write an algorithm that finds the nonzero structure of a
matrix products without using the graph theory. The algorithm is shown in Algorithm 4.1
and Algorithm 4.2.

In Figure 4.2 we show how this algorithm works on the matrices A, B, C of the
previous example.

Using this algorithm we can reduce the allocated memory required for the computation,
without the need to create and save the structure of the graph that represents the product
of the matrices, but only a couple of array for storing row and column indices of nonzero
elements.

4.2 Structure prediction without graph 77

cols

TOwWS

cols

Trows

cols

rows

Figure 4.1: The layered graph of the product ABC. From node 1 of a row in A one can
reach, via direct path, the node 1 of a column of C'; this means that the resulting matrix
R has a nonzero element in R;;. It can also be seen that from node 2 of A’s rows one
can reach, via direct path, node 1 of C’s columns; this means that the resulting matrix R
has another nonzero element in Ry ;. In other words, if there is a direct path from the ith
row (node) of the first matrix and the jth column (node) of the last matrix, the resulting
matrix has a nonzero element in position (i, 7).

Algorithm 4.1 Find nonzero structure of matrix products (pseudo-code) — Part 1

1: for all rowA1 rows of the first matrix A; do
m<+ 1
indsCol < column indices of A; nonzero elements in row rowA1l
for all i in indsCol do
indRowNextMat < indsCol[i]
call findNnzRec(m+1, indRowNextMat, outNzColInd)
end for
save Nonzero elements in (rowA1, outNzColInd)
end for

Time complexity analysis

To understand that the time complexity of Algorithm 4.1, doesn’t depend on input data
dimension but on the number of nonzero elements involved in the computation, consider
the product of three sparse matrices A,,xn, Bnxp and Cpyy.

Let’s define R4 as the set of all rows in A with at least one nonzero element and Cy4
as the set of all columns in A with at least one nonzero element:

RA:{ZE {1,,m}|3a”7£0,1 S]S?’L}
Ca={je{l,....,n}|3a;; #0,1 <i < m}
We call the number of rows and columns with at least one nonzero element

va = #Ra and pg = #Ca,

78 Structure prediction of sparse matrix products

Algorithm 4.2 Find nonzero structure of matrix products (pseudo-code) Part 2

function findNnzRec(m, indRow, outNzColInd, lastMat)
indsCol < column indices of A,, nonzero elements in row indRow
if m — lastMat then

return outNzCollnd < indsCol
end if
for all i in indsCol do

indRowNextMat < indsCol[il

call findNnzRec(m+1, indRowNextMat, outNzColInd)
end for

respectively.

We define Rp, Cp, v, ug, Rc, Co, Vo, pic in the same way.

When we compute AB we are interested in the set of elements’ indices that are nonzero
both in the i-th row of A and in the j-th column of B, that are

Nag(i,j) ={k e {1,...,n}|awbr; #0,i € Ra,j € Cp, k € CANRp};

its cardinality is:
UAB(i,j) = #NAB(Z,j)VZ € R4, j €Cp.

In other words, nap(i,j) is the maximum number of elements that are nonzero in both
the i-th row of A and the j-th column of B, that is the maximum number of nonzero
elements in the matrix AB.

Let’s now introduce the sets of indices for each row and for each column with nonzero
elements as:

Ta(i) ={j €{L,...,n}|ay # 0}
and
Ta(j) = {i € {L....m} |a; # O}.

Hence we can rewrite R4 and C4 as

Ra=JTu(),
=1

n
Ca= U Za(j)-
j=1
We can also rewrite their cardinality as

va; = #JTal(i)
and
pag = #La(j).

Next, we define the maximum number x4 of nonzero elements in one row and, analogously,
the number 74 of nonzero elements in one column:

Ka = Max {va;}

4.2 Structure prediction without graph 79

1 2 3 4
1 0 0 0
A 2 o@@
3 0 0
| 1 2 3 4 b5
3%101‘00@
Z:?: 2 x 0 0
b 3 0 0

2@00
C: 3 0 0 =«
4 0 « O
%5@00

Figure 4.2: The sparse matrix products ABC. As seen in Figure 4.1, from A;; nonzero
element it can be reached, using the column index of this entry in A as the row index
of the next matrix B, the nonzero elements B; 5 and Bj5; from these one can find the
nonzero entries C; and C5;. That means that the resulting matrix R has a nonzero
element in R;;. In the same way, from element As,4 one can reach, via Bys, the Cs,
nonzero entry. It follows that the resulting matrix R has another nonzero element in Ry ;.
In other words, if there is a path between a nonzero entry in the ith row of the first matrix
and almost one nonzero entry in the jth column of the last matrix, then the resulting
matrix has a nonzero element in position (i, 7).

and

T4 = max {ray}-

Thus, we can rewrite Nap(i,j) as
NAB(i7j> = {k? S {1, ce ,n} | aikbkj #£0,k € jA(l) ﬂIB(j),Vi € R, Vj € CB}

Its cardinality, that is the maximum number of nonzero elements in the resulting matrix
AB, have an upper bound:

nap(i,j) = #Nap(i,j) < _min {Ja(i),Zp(j)} < min{ra, 75}

i€RA,JECE

Let’s introduce analogous definitions for the matrix C:

po=#{j€{l,...,q}| ey #0,1 <i <p}

© W N LA W N M

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

80 Structure prediction of sparse matrix products

It’s now easy to estimate the number of nonzero elements of the final matrix ABC.
Observe that
max(nnz(AB)) = vaug;

we can write
vap S VA, paB < UB
and
VABC S VAB, MaBc < e
therefore

max(nnz(ABC)) = vappuc < vapic.

We can finally write the time complexity of our algorithm for the matrix products
ABC":
max(#flops) < vaup + vapiic

4.3 Sequential implementation
In Listing 4.1 and Listing 4.2 we report an outline sequential version of the Algorithm 4.1

implemented using PETSc data type and functions.
The time complexity of this implementation is reported in Table 4.1.

VAR
* [in] arrayMat - array of the matrices.
[in] numMatfaz - number of matrices involved in the product.
* [in] nnz - number of nonzero elements.
*# [out] nz_row_ind - row indices of nonzero elements.
* [out] nz_col_ind - column indices of nmonzero elements.
* [return] Error code
*/

int findNnz(Mat* arrayMat, int numMatMax, int* nnz,
PetscInt* nz_row_ind[], PetscInt* nz_col_ind[]){

/7 [0]

matIndex = 0;
MatGetRowIJ (arrayMat [matIndex], O, PETSC_FALSE, PETSC_FALSE,
&matZero_nrow, &ia, &ja, &done);

/7 []

for(i=0; i < matZero_nrow ; i++){ // for each row in arrayMat[0]
j_start = ial[i];
j_end = ial[i+1];
tmp_iter_nnz = 0;

for(j=j_start ; j<j_end ; j++){ // for each nonzero element
indRowNextMat = jaljl;
err = findNnzRec(arrayMat, numMatMax, matIndex+1l, indRowNextMat, i,
Ztmp_iter_nnz, tmp_iter_nz_row_ind, tmp_iter_nz_col_ind);
}
}
gqsort (/#...%/);
unique (/#*...#/);

/701

4.4 Parallel implementation 81

41’} ‘

Listing 4.1: Find nonzero structure of a matrix product.
(C -function findNnz)

1| /*x#*

2| * [in] arrayMat - array of the matrices.

3 # [in] numMatHaz - number of matrices involved in the product.
4| * [in] matIndez - indez of matriz in which to look for nz elements.
5 % [in] indRouw - the row in matIndez you are looking for nz elem.
6| * [in] rowFirstMat - indez of the row of the first matriz considered.
7| ¢ [in,out] nz - number of nonzero elements.

8 *# [in,out] nz_row_ind - row indices of nonzero elements.

9 +# [in,out] nz_col_ind - column indices of nonzero elements.

10| * [return] Error code

11| #/

12| int findNnzRec(Mat* arrayMat, int numMatMax, int matIndex, int indRow,
13 int rowFirstMat, int* tmp_nnz, PetscInt* tmp_nz_row_ind,

14 PetscInt* tmp_nz_col_ind){

15

16 /701

17

18 MatGetRowIJ(arrayMat [matIndex], 0, PETSC_FALSE, PETSC_FALSE,

19 &mat_nrow, &ia, &ja, &done);

20

21 /701

22

23 j_start = ia[indRow];

24 j_end = ial[indRow+1];

25

26 for(j=j_start ; j<j_end ; j++){ // for each nz element in indRow

27

28 if (matIndex == (numMatMax-1)){

29 tmp_nz_row_ind[*tmp_nnz] = rowFirstMat;

30 tmp_nz_col_ind [*tmp_nnz] = jal[jl;

31 ¥tmp_nnz = *tmp_nnz + 1;

32 continue;

33 ¥

34

35 indRowNextMat = jaljl;

36

37 err = findNnzRec(arrayMat, numMatMax, matIndex+l, indRowNextMat,
38 rowFirstMat, tmp_nnz, tmp_nz_row_ind, tmp_nz_col_ind);
39

40 }

41

42 /701

43

44| }

Listing 4.2: Find nonzero structure of a matrix product.
(C -function findNnzRec)

4.4 Parallel implementation

We also implemented the MPI parallel version of our algorithm that finds the nonzero
elements position in a matrix that is the result of a product of any number of sparse
matrices.

As we shown before, that algorithm is split into two functions: the first one, findNnz_mpi (),
works on all the rows of the first matrix; the second one, findNnzRec_mpi(), is the re-
cursive function that works on all the other matrices.

82 Structure prediction of sparse matrix products

Listing \ Line \ Cost \ Times ‘
Listing 4.1 | 14-16 c1 1
Listing 4.1 20 Co R+1
Listing 4.1 | 22-24 C3 R
Listing 4.1 | 28-31 Cy R x 207
Listing 4.1 | 35 O(Zlog 2) 1
Listing 4.1 | 37 0(2) 1
Listing 4.2 | 18-24 Cs 1
Listing 4.2 | 26 Ce Z"+1
Listing 4.2 | 28-35 cr zmr
Listing 4.2 | 37-38 | cg + kT (Z™) znr

Table 4.1: Time complexity of findNnz and findNnzRec functions that find nonzero
elements of sparse matrix product. R is the number of rows of the first matrix; Z% is the
number of nonzero elements of the first matrix in row r; Z™ is the number of nonzero
elements of matrix n in row 7; Z™ is the number of nonzero elements of matrix m = n+1
in row j; k is the number of the next matrices in the product; Z is the number of nonzero
elements in the result matrix.

Note: to achieve an optimal complexity you must use a function that returns the nonzero
elements of a matrix row in constant time like MatGetRowIJ of PETSc, that store the
matrices in the CSR format (Figure A.3).

When we work with parallel sparse matrices using the PETSc¢ MATMPIAIJ matrix for-
mat, each process owns a contiguous portion of the matrix rows (that is a “block distri-
bution” is used); for instance, a 8 x 4 matrix on 3 processes will be partitioned by default
with three rows on the first process, three on the second and two on the last process. Due
to that matrix partitioning across the processes, the parallel version needs communication
between processes in the following situation: suppose there are L factors A, ..., Ay in
the product and the factor A,, 1 < ¢ < L, is currently under investigation; process k, say,
finds a nonzero element in column j and, at the same time, it does not own the row j of
the next matrix Ay, ;. The diagram in Figure 4.3 summarize the MPI communications
between 3 processes when they run findNnz_mpi() and findNnzRec_mpi(); a detailed
explanation of such communications is in Subsection 4.4.1.

4.4.1 Parallel algorithm description

Let’s explain in detail the parallel algorithm shown in Algorithm 4.3, Algorithm 4.4 and
Algorithm 4.5 using the example in Figure 4.4.

We start from Algorithm 4.3. In what follows we describe the steps of the parallel
function findNnz_mpi(), that analyzes the rows of the first matrix and, for each such
row, calls the recursive function.

1. During the first step of the algorithm, each process analyzes one row of the first
matrix. To obtain the indices 7 and j of the compressed row storage for sequential
matrices, we use the PETSc function
MatGetRowIJ(); that function does not work on the MATMPIAIJ matrix type, so in

4.4 Parallel implementation 83

PO P1 P2
P TETeen orreene P RSN : \
rows 1 to 16 Oq
=
: : : O
* ; : o
row 17 [: MPI_Alltoall() | i 2,
row 18 : 8
: : g
row 19 [i findNnz_reci)] =
- - =
=
rows 20 to 23 .C.D.?
|8
: w
: : : <+
row 18 [: Exchange indices] =
' ' 2
row 19 : =.
=
V.. \ v.i
(a) Algorithm 4.3, £indNnz_mpi () MPI communications
PO P1 P2
[eeeen ‘4 R LEEITELS
1 & E \
rows 1 to 10 \ _
i H H
- MPI_Isend() 4 < ‘
: | o e
o rows 11 to 19 < /
o MPI_Irecv() & 1
q - 3
= ~ 0
3 N N
£ : : l 2
4 - - Q
row 20 (i MPI_Waitall6) | =
H : B
o
rows 21 to 38 s
.\
F
g rows 2 to 16
T < row 17 (L MPI_Alltoall() |
:| I ! I : | :
% row 18 [. findNnz_rec®)]
N 1
h v v

(b) Algorithm 4.4 and Algorithm 4.5, findNnzRec_mpi() MPI communications

Figure 4.3: MPI communications between three processes (P0, P1, P2) when running
findNnz_mpi() and findNnzRec_mpi() functions. Rectangle shapes indicate MPI block-
ing calls; split arrows indicate nonblocking send and receives calls.

84 Structure prediction of sparse matrix products

/
0 X
PO <1 O 1 2 3 4 5
> 0 ®
— PO
£ é@ﬂml ®
P1< 4 P12
s ™ P®
6 B
P2
7

4 5
' ® -
PO X PO <
! & i ©,
S — ==
Pl <2 2@
— Pl <
P2 <3 X 8 X
-
P2 <
\—>5
N

C

Figure 4.4: The parallel sparse matrix product ABC. Each matrix is split into group of
contiguous rows that are owned by a single process; in this example PO has got the first
three rows of A, P1 has the second group of three rows, and P2 owns the last two rows; B
and C' are spread among processes in the same way. As it was seen in Section 4.2, starting
from every nonzero element in position A, ;, we can find what will be the coordinates of
nonzero elements in the resulting matrix R of a product of matrices. All the rows of the
first matrix A are parsed by Algorithm 4.3, one row at a time. For each nonzero value
with coordinate A; ;, we use the column index j as row index of the next matrix B; then
Algorithm 4.4 and Algorithm 4.5 recursively parse the next matrices: for each nonzero
value B;, we use the column index £ as row index of the next matrix C. Since C' is the
last matrix in the product R = ABC, if there are nonzero values in Cj,, there will be
nonzero entries in R;,. The crucial point of the parallel version is that, from the second
matrix to the last, one process needs to know from the other processes if there are rows it
must analyze and what they are: this involve MPI nonblocking communication between
processes in a recursive function.

4.4 Parallel implementation 85

the parallel version we use MatGetRow (), that returns the structure of a single local
row. In our example, PO finds one nonzero element in column 1 and P1 finds two
nonzero elements, one in column 1 and one in column 3, and two nonzero entries
on row 5 in columns 0 and 1 (following iterations). Note. Let 77; the maximum
number of local rows of the first matrix in all processes: then, each process that
owns less than 7 local rows of the first matrix (because of the block distribution),
at the first step must perform in any case this iterative scheme exactly m; times,
because the subsequent MPI_Al11ltoall() communication needs contribution from
all the processes. Pseudo-code lines: from 1 to 9.

2. After that call, each process needs to know, for the column index j of each nonzero
element, what process owns the j-th row (in global indexing) in the next matrix. The
column indices found are stored in one send buffer, named sendBuf [k], different for
each process k that will receive those indices. In the send buffer, after each column
index, also the index of the row in the first matrix from which the elements come
is stored. Pseudo-code lines: from 10 to 15. In this way, PO puts 1 (column index)
in sendBuf [0][0] and O (row index of the first matrix) in his sendBuf[0] [1].
Similarly, P1 puts 1 (column index) and 3 (row index of first matrix) respectively in
his sendBuf [0] [0] and sendBuf [0] [1] locations and 3 (column index) and 3 (row
index of first matrix) in his sendBuf [2] [0] sendBuf [2] [1] locations, respectively.
Each process also stores another array, howManyNzRow, sized K, where it saves the
number of nonzero indices that is going to send to each other process.

3. At this point there is the first MPI_A11toall() communication, in which are sent,
from each process to each other, the number of indices that are going to be ex-
changed. After this call each process know exactly how many requests it is going to
receive from each other process; these values are stored in the array howManyNzRecv.
Pseudo-code line: 17. In the example, PO knows that it must receive one message
from itself, P1 does not have request and P2 must receive messages from PO and
P1.

4. Now each process is ready to call the recursive function on the next matrix, that
will return the number of nonzeros and their indices for one row of the first matrix.
Pseudo-code line: 19.

5. When the recursive function findNnzRec_mpi () returns, each process adds the new
nonzero indices to the previous ones. Pseudo-code lines: from 20 to 22.

6. When all the local rows of the first matrix have been analyzed, each process has the
list of nonzero elements that it found in the last matrix. In our example, the list on
PO is {(3,2)}, the list on P1is {(5,0)} and the list on P2 is {(0,0), (3,0), (5,0)}.
It’s easily seen that some processes lists row indices that do not match with its
local row indices. So, in these cases other communications are needed to reallocate
the position of each nonzero element to the right process. After those MPI non-
blocking calls, the algorithm sort the nonzero indices found and stops. At the end,
the list of nonzero indices belonging to PO is {(0,0)}, the one belonging to P1 is
{(3,0), (3,2), (5,0)} and the one on P2 is empty. Pseudo-code lines: from 24 to 25.

86 Structure prediction of sparse matrix products

Algorithm 4.3 Calculate nonzero structure of matrix product (parallel pseudo-code);
function findNnz_mpi ().

1: call MATGETOWNERSHIPRANGE(): mats[ind] — myRowStart, myRowEnd
2: r < myRowEnd — myRowStart

3: call MATGETOWNERSHIPRANGES(): mats|ind + 1] — rangesFirstMat

4: Compute R // maximum number of rows owned by one proc

5: 1 < myRowStart

6: for 2 =0 to 12 < R do

7. howManyNzRowl[] < 0

8 if 4 <r then

9 call MATGETROW(): ¢ — nColsInRow, jal|

10: for j =0 to 7 <nColsInRow do

11: find what process k owns the ja[j]-th row in the next matrix
12: sendBuf[k][howManyN zRow[k]] < jalj]

13: sendBufk][howManyN zRow[k] + 1] < i

14: howManyN zRow|k] <— howManyN z Row[k] + 2

15: end for

16: end if

17: call MPT_ArrTtoALL(): howManyN zRow|| — howManyN zRecv|]

18: aterNnz <0

19: call FINDNNZREC MPI() mats|ind + 1] — iter Nnz, iter N zRow][], iter NzCol]|| .
20: tmpNnz < tmpNnz + iter Nnz

21: tmpNzRow]| + tmpN zRow][] + iter N z Row]

22: tmpNzCol]| +— tmpNzCol[] + iter NzCol|]

23: end for

24: Exchange the nonzero indices found between processes

25: Sort and unique on the nonzero indices found

4.4 Parallel implementation 87

We now describe the steps of the parallel recursive function
findNnzRec_mpi (), shown in Algorithm 4.4 and Algorithm 4.5, that analyzes the matri-
ces from the second to the last and returns the number of nonzeros and their row and
column indices. Other inputs and outputs of this function are: the next matrix index, the
maximum number of matrices involved in the product, the arrays howManyNzRow, sendBuf
and howManyNzRecv.

1. During the first step of the recursive parallel function there are other MPI commu-
nications to exchange the indices that are needed to analyze the current matrix:

e cach process P/, 0 < ¢ < K — 1 checks in howManyNzRow [k], for each 0 < k£ <
K —1, if it must send the data in sendBuf [k] to process k. In the case, it calls
the nonblocking function MPI_Isend (). Obviously, for £ = /¢ it simply copies
sendBuf [k] in recvBuf [k]. Pseudo-code in Algorithm 4.4, lines from 1 to 10.

e Each process P{ then checks in howManyNzRecv [k] if it must receive something
in recvBuf [k] form process k, 0 < k < K — 1: if howManyNzRecv[k] # 0,
it calls the nonblocking function MPI_Irecv(). Pseudo-code in Algorithm 4.4,
lines from 11 to 19.

e At the end, before continuing, every process must waits for all given communi-
cations to complete, by calling MPT_Waitall(). Pseudo-code in Algorithm 4.4,
line 20.

2. If the process is working on the last matrix involved in the product, Aj, for each
element in recvBuf it must call MatGetRow (), set the output array of rows and
columns indices of nonzero elements found and their total number. This completes
the inspection and stops the recursion. Pseudo-code in Algorithm 4.4, lines from 21
to 38.

3. If the process is not at the last matrix, for each row index it repeats the steps 1-4
shown in the description of the function findNnz_mpi (), Algorithm 4.3. The only
difference from those steps is that it has to analyze only the rows whose indices have
just been received in its recvBuf array, in place of analyzing all rows as it is the
case when the first matrix is inspected. Pseudo-code in Algorithm 4.5, lines from 2
to 18.

Remark 4.1 We underline that the recursive structure of the code allows to predict the
sparsity structure of the product of any number of matrices, of any size, dense and sparse,
local or distributed, with the only limitation given by stack memory.

The recursion is guided and synchronized by the factor matrices involved: this ensures
the correctness of the recursion, that is the guarantee that it will eventually stops. While
this is easily understood if the number of factors is finite, a formal proof can be given and
will be addressed in an upcoming work.

This is a relevant contribution to large-scale computation because there is nothing
stmilar in the literature and no code available at all, at the best of our knowledge at the
time this work is written.

88 Structure prediction of sparse matrix products

Algorithm 4.4 Recursively compute the structure of matrix product (parallel pseudo-
code); function findNnzRec_mpi() - part 1.

1: for £ =0 to nProcs do

2: if Kk == myRank then
3: recoBuf[k] < send Buf|[k]
4: continue
3: end if
6: nSend < howManyN zRowlk|
7. if nSend > 0 then
8: call MPI_TseEND(): send sendBuf[k] to process k
9: end if
10: end for
11: for kK = 0 to nProcs do
12: if kK == myRank then
13: continue
14: end if
15: nRecv < howManyN zRecv[k]
16: if nRecv > 0 then
17: call MPI IRECV(): receive in recvBuf[k| from process k
18: end if
19: end for
20: call MPI_WAITALL()
21: if is the last matrix then
22: tmpNnz <0
23: for k=0 to nProcs do
24: nRecv <— howManyN z Recv[k]
25: for : = 0 to nRecv do
26: indNextRow < recvBuf[k]|[i]
27: call MATGETROW(): indNextRow — nColsInRow, ja]
28: 773+ 0
29: for j = tmpNnz to tmpNnz + nColsInRow do
30: iter NzCol[j] < jaljj]
31: iter NzRow|[j] <— recvBuf[k][i + 1]
32: Jj++
33: end for
34: j=tmpNnz < tmpNnz + nColsInRow
35: end for
36: end for
37: iterNnz < tmpNnz
38: end if

39: // see Algorithm 4.5 for the second part of this function

4.4 Parallel implementation

89

Algorithm 4.5 Recursively compute the structure of matrix product (parallel pseudo-
code); function, findNnzRec_mpi() - part 2.

1:
2:
3:
4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

// see Algorithm 4.4 for the first part of this function
call MATGETOWNERSHIPRANGES(): mats|ind + 1] — rangesFirstMat
howManyN zRowl| < 0
for kk = 0 to nProcs do
nRecv <— howManyN zRecv|kk]
for : = 0 to nRecv do
indNextRow < recvBuf[kk][i]
call MATGETROW(): indNextRow — nColsInRow, jal]
for 7 =0 to j < nColsInRow do
find what process k owns the ja[j]-th row in the next matrix
sendBuf[k][howManyN zRow|[k|| < jalj]
sendBuf[k][howManyN zRow[k| 4+ 1] < recvBuf[kk][i + 1]
howManyN zRow|k] <— howManyN z Row[k] + 2
end for
end for
end for
call MPI _ALLTOALL(): howManyN zRow[] — howManyN zRecu|]
call FINDNNZREC_ MPI(): mats[ind 4+ 1] — iter Nnz, iter NzRow]|, iter N 2Col|]
return

90 Structure prediction of sparse matrix products

4.4.2 Performance analysis

We already had expected beforehand that the parallel implementation of the program
that determines the sparsity of the matrix products would be slower than in the sequential
one: the computational content of the two functions is almost negligent, which means that
there will hardly be any gain in subdividing the work over many cores. Furthermore, the
amount of processing per process is decreasing linearly with p, the number of processes,
while in findNnz_mpi() the communication alone already grows with p?. Nevertheless,
we tested the performance for the sake of completeness.

We tested both the sequential and the parallel version of this code on an IBM-SP6,
that is a cluster of 168 Power6 575 nodes that has a peak performance of just over 100
Tflops and an Infiniband 4x DDR network; SP6 is hosted at CINECA Supercomputing
Center. For more specific information about SP6 cluster see [118] and the Introduction.

The five matrices used for the experiments are generated randomly by a Matlab code;
their dimensions, nonzero elements density, and averaged execution times are reported in
Table 4.2.

N. procs Execution time
Test 1 Test 2 Test 3

1 0.001206 | 0.001068 0.001160

2 0.160565 | 0.096530 | 104.348488

4 0.128353 | 0.074954 | 33.962100

8 0.093475 | 0.059371 9.037792
16 0.073490 | 0.052483 2.543933
32 0.119439 | 0.141998 0.943525
64 0.363801 | 0.405729 0.792933
128 1.883175 | 1.958538 1.582866
256 3.789214 | 4.289629 4.920911

Table 4.2: Execution time of the parallel Algorithm 4.4 and Algorithm 4.5 tested on
five sparse random matrices with dimensions: A = 5635 x 5721, B = 5721 x 6648,
C' = 6648 x 7513, D = 7513 x 6619, E = 6619 x 4257. For test 1, density of A is 0.001
and density of B, C, D, E is 0.0001; for test 2 the density of all the matrices is 0.0001.
For test 3 the matrices dimensions are: A = 25635 x 18721, B = 18721 x 16648, C' =
16648 x 17513, D = 17513 x 16619, E = 16619 x 24257; their density is 0.0001.

As it can be seen in Table 4.2, the sequential code is more efficient than the parallel
one: this behavior is due to the communication overhead and the use of a different PETSc
call in the two versions.

During the analysis of the first matrix, in the sequential code the search of rows with
nonzero elements is performed by

MatGetRowIJ(Mat mat, PetscInt shift, PetscTruth symmetric,
PetscTruth inodecompressed,
PetscInt #*n, PetscInt *ial], PetscInt* jall,
PetscTruth *done)

4.4 Parallel implementation 91

that returns the compressed row storage ia and ja indices for sequential matrices. In this
way we can iterate only on the nonzero rows returned in ia.

Unfortunately, that function works for sequential matrices only; so in the parallel
version, during the analysis of the first matrix, we must iterate over all rows and call the
following function, to know if and where there are nonzero elements in one row:

MatGetRow(Mat mat, PetscInt row,
PetscInt *ncols, const PetscInt *colsl[],
const PetscScalar #*valsl[])

That variation brings on some extra computation, especially on the first matrix involved
in the product.

All the other extra-time is spent in communication between processes. The first heavy
block of communication is performed for exchanging the column indices that will be the
row indices in the next matrix. The second block of communication is performed when
the processes have found the final nonzero elements positions. As explained before, some
processes have row indices of nonzero elements that do not match any local row index
of the result matrix. So the algorithm requires additional communications to reallocate
each nonzero element position to the right process. Moreover, the MPI_A11toall() call
should be avoided because it is not scalable, and it should be replaced by MPI_Isend()
and MPI_Irecv().

The Scalasca software tool [122] confirms this performance analysis. Figure 4.5 shows
two screenshots of the Scalasca report browser CUBE3 [121]| with the summary analysis
report of computation and communication. The examination of the computation per-
formance summary reveals that almost all the computation is done in the main() func-
tion (red square), when the matrices are loaded and spread over the processors; whereas
the function findnnz_mpi() does not give a significant contribute to the computational
elapsed time (blue square). On the other hand, looking at the communication performance
summary we see that almost all the communications are performed in findnnz_mpi () (red
square): therefore, these communications are the bottleneck of this algorithm, but, as one
can see in Algorithm 4.4 and Algorithm 4.5, they are strictly necessary.

The algorithm’s communication part dominates the computation part: hence, it’s hard
to get good performance when it runs in parallel. However, since it takes advantage of
the PETSc matrix formats, it’s very portable and it can be useful when the dimension
of the problem becomes too large for a sequential system. At last, the benefits given by
a good and exact memory preallocation justify a little extra computation; here it’s also
important to emphasize that usually this kind of analysis is performed only once at the
initialization step, thus the overhead due to the computation of the nonzero structure
does not affect the performance of the master code and is usually completely negligible
when problem sizes become larger and larger.

92

Structure prediction of sparse matrix products

lAbsqute

+ | |Absolute

2| [Absolute

L1

Metric tree

14.78 Time

1.02e5 Visits

@ 5 Synchronizations
4.06e4 Communications
9.32eb Bytes transferred

rs

E/|0.07 Computational imbalance]

-

Calltree | Flat view

& @ 0.06 main B

& O] 0,00 MP1_Init
— [0.00 MPI_Bcast
— [0.00MPI_Barrier
— [0.00MPI_Comm_dup
- [0.00 MPI_Allgather
- [0.00 MPI_Comm_free
-] 0.00 MP1_Send
— [0.00 MPI_Scan
— [0.00MPI_Allreduce
- [0.00 MPI_Irecy
— [0.00MPI_Isend
— [0.00 MP1_WWaitall
— [0.00 kP Waitany
- O 0,00 MPI_Send_init
L[] 0.00 MPI_Recy_init
=+ [0.00 findMnz

EI[0.07 findlinz_rnpi]
-] 0.00MP|_Recy
- [0.00 MPI_Request_free
& [0.00 MPI_Finalize

-

System tree | Topology 0 L

[»

(4]

(4]

DN

[«

DN

(4] [+]

(a) Computation performance summary.

lAbsulute

2| | Absolte

2| | Absole

L1

Metric tree

@ 1478 Time

1.02e5 Visits

B Synchronizations
m|4.05e4 Communications]
9.32eb Bytes transferred

0.07 Computational imbalance

rs

-

Call tree | Flat view

B 10 main B

&] 0 MPIInit
- [168 MPI_Bcast
~ [0 MPI_Barrier
- [0 MPI_Cormim_dup
- [600 MPI_Allgather
- 0MPI_Comm_free
- @ 963 MPI_Send
- [40 hPI_Scan
- [368 MPI_Allreduce
- [0 0 MPI_Irecy
— [560 MPI_Isend
- @ 280 MP1_Waitall
- [280 MPI_\Waitany
- O 0 MPI_Send_init
- [0 MPI_Recv_init
& O 0 findhnz
= E[EEded findinz_mpi)
— [953 MPI_Reoy
- O 0 MPI_Reguest_free
& [0 MPI_Finalize

-

System tree | Topology 0

[»]—

[4]

D

£

D

(b) Communication performance summary.

Figure 4.5: Scalasca screenshot of the runtime behavior of Algorithm 4.4 and Algo-

rithm 4.5.

Chapter 5

SGP implemented as a new TAO solver

5.1 Scaled Gradient Projection method

The image formation can be modeled as a Fredholm integral equation of the first kind.
After discretization, we can focus the attention on a system of linear equations

Am =b, (5.1)

where a two-dimensional image X € R™*" is represented by the vector m = (m;,...,my) €
RY, N = n?, as a result of stacking the entries of X column by column. The matrix
A € RV*Y represents the physical effects of the imaging system. The resulting image b
is the sum of two terms: b = g + 1, g € R" being the blurred image that would have
been recorded in absence of noise and 7 € R" denoting the noise affecting the image
acquisition. The image restoration problem is then to obtain an approximation of m,
knowing A and b.

Since the system (5.1) is given by the discretization of an ill-posed problem, the matrix
A could be very ill-conditioned and a trivial approach that looks for the solution of (5.1)
is in general not successful.

An alternative strategy is the recent Scaled Gradient Projection (SGP) method [19]
suited for the constrained minimization problems like the following:

min J(m)

sub. to m > 0, (5-2)

or
min J(m)
sub. to m >0 (5.3)
Zﬁil m; = ¢,
or

min J(m)

sub. to m € (), (5-4)

where J(m) is a continuously differentiable convex function measuring the difference
between reconstructed image and measured data and, possibly, containing a penalty term
expressing additional information on the solution, while the constraint force the non-
negativity of the solution and, in case of problem (5.3), the so-called flux conservation
property. In case of problem (5.4), © C RY is a closed convex set. We are interested in

the case where the feasible region 2 is described by simple constraints.

94 SGP implemented as a new TAO solver

Gradient projection type method are appealing approaches for these problems for two
main reasons. Firstly, the special structure of the constraints makes the projection of a
vector on the feasible region a non too expensive operation. Secondly, the recent advances
on step length selection in gradient methods allow to improve the convergence rate of these
scheme.

The main feature of SGP consist in the combination of non-expensive diagonally scaled
gradient directions with steplength selection rules specially designed for these directions.
Moreover, global convergence properties are ensured by exploiting a non-monotone line
search strategy along the feasible direction.

5.1.1 Basic properties

Throughout the description, the 2-norm of vectors and matrices is denoted by || - || while
| - ||p indicates the vector norm associated to a symmetric positive definite matrix D:
|m|p = VmTDm.

Let Q C RY be a closed convex set and D be a symmetric positive definite N x N
matrix, we define the projection operator Po p : RN — Q as

1
Poo(m) = argyin ly ~ mlp = argyin (6(0) = 3" Dy -y Dm) . (69

We observe that, given the set 2 and the point m, the operator Pq p(m) is a continuous
function with respect to the elements of the matrix D. From the definition of stationary
point and the strict convexity of the function ¢ introduced in (5.5), we have that Pg p(m)
is defined also by

(Po.p(m) —m)" D (Pgp(m) —y) <0, Vy e Q. (5.6)

This can be proved by evaluating the gradient of the function ¢ in the point Pq p(m)
V¢ (Po,p(m)) = D (Po,p(m) —m)

Since from definition P p(m) is a constrained stationary point for the problem (5.5), we
have:

~V¢(Po,p(m))" (y —Pop(m)) <0, VyeQ,
and from the symmetry of D and the previously evaluated gradient:

(Po,p(m) —m)" D(Pg,p(m) —y) <0, Vye.

Let Dy, C RV*N be the compact set of the symmetric positive definite N x N matrices
such that ||D]| < L and ||[D7!|| < L, for a given threshold L > 1. The next two lemmas
state some properties of the projection operator defined in (5.5).

Lemma 5.1 If D € Dy, then
[Po,p(m) — Po,p(2)| < L?|lm — z|| (5.7)
for any m,z € RV,

Lemma 5.2 A vector m, € § is a stationary point of the problem (5.4) if and only if
m, =Py p-1(m, —aDVJ(m.,)) for any positive scalar o and for any symmetric positive
definite matriz D.

More details about Lemma 5.1 and Lemma 5.2 can be found in [19] and [139].

5.1 Scaled Gradient Projection method 95

5.1.2 The SGP algorithm

The Lemma 5.2 shows the effect of the projection operator Pg p-1 on the points (m, —
aDVJ(m,)), a > 0, when m, is a stationary point of (5.4). In the case m € Q is
a non-stationary point, Pq p-1(m — aDV.J(m)) can be exploited to generate a descent
direction for the function J in m. This idea serves as the basis for the method described
in Algorithm 5.1. In particular, given Dy € Dy, and oy, € [nin, Qmaz), the SGP algorithm
makes use of the following direction:

d® =Py, 1 (m" — DV I (m®)) —m®) (5.8)

The properties of this direction are proved in Lemma 5.3, while the behavior of the
sequence {d®} is inspected in Lemma 5.4,

Algorithm 5.1 SGP (Scaled Gradient Projection Method Algorithm)

1: Choose the starting point m© € Q

2: Set the parameters 5,60 € (0,1), 0 < min < Mz

3: Fix a positive integer M.

4: for all £=1,2,3,... do

5. STEP 1 Choose ay € [min, @maz| and the scaling matrix Dy, € Dy, ;

6: STEP 2 Projection: y® =]P’Q’D?(m(k) — ap Dy VJ(m®));
If ||y® — m®)|| < Tol then stop; m® is a stationary point;
STEP 3 Descent direction: d®) = y®) — m®);

: STEP 4 Set A\, = 1 and Jp0p = MaXo<j<min(k,M—1) J(mE=9));
9: STEP 5 // Backtracking loop:
10: if J(m® + 2 d™) < Jpaw + LAV I (m®)Td®) then

11: go to Step 6;

12: else

13: set A\, = 0\, and go to Step 5;

14: end if

152 STEP 6 Set m*+) = m® 4 \,d®,
16: end for

Looking at the general form of SGP, it is worth stressing that any choice of the
steplength oy, in a closed interval and of the scaling matrix D, in the compact set Dy, is
permitted. This is very important from a practical point of view since it allows one to
make the updating rules of «j and Dy problem related and oriented at optimizing the
performance. For what concerns the steplength selection, we refer to Section 5.1.2, where
we recall the strategy adopted by SGP.

The choice of the scaling matrix takes into account the effective form of the function
J we are minimizing, as well as some additional properties of the optimization problem
that has to be solved; some hints about the choice of the matrix D) are exposed in
Section 5.1.2.

Before to discuss the convergence properties of the method, some considerations about
its main steps can be useful.

If the projection performed in step 2 returns a vector y*) equal to m®), then Lemma 5.2
implies that m®) is a stationary point and the algorithm stops. When y*) #+ m® it

96 SGP implemented as a new TAO solver

is possible to prove that dj, defined in (5.8) is a descent direction for J in m®) (see
Lemma 5.3) and the backtracking loop in step 5 terminates with a finite number of runs;
thus the algorithm is well defined.

The nonmonotone line search strategy implemented in step 5 ensures that J(m®+Y)
is lower than the maximum of the objective function on the last M iterations [55]; of
course, if M =1 then the strategy reduces to the standard monotone Armijo rule [15].

SGP convergence

In this section we will focus on the case in which the algorithm generates an infinite
sequence of iterates, denoted by {m(k)}. The main SGP convergence result is stated
in Theorem 5.1, whose proof is based on some crucial properties reported in the next
lemmas.

The first two lemmas are concerned with the descent condition and the boundedness
of the directions d®, respectively.

Lemma 5.3 Assume that d® # 0. Then, d™ is a descent direction for the function J
at m®, that is, V.J(m")Td® < 0.

Lemma 5.4 If the sequence {m®} is bounded, then also the sequence {d(k)} is bounded.

In the next lemmas some properties of the accumulation points of the sequence {m(k)}
generated by SGP are recalled.

Lemma 5.5 Assume that the subsequence {m(k)}keK, K C N, is converging to a point
m, € Q. Then, m, is a stationary point of (5.4) if and only if

lim V.J(m®)Td® = 0.
keK

Lemma 5.6 Let m, € Q be an accumulation point of the sequence {m®™} such that
limpex m* = m,, for some K C N. If m, is a stationary point of (5.4), then m., is an
accumulation point also for the sequence {m* ")} i for any r € N. Furthermore,

lim [|[d*™)| =0, VreN.
keK

A convergence result for SGP is the following Theorem 5.1:

Theorem 5.1 Assume that the level set Qy = {m € Q : J(m) < J(m)} is bounded.
Every accumulation point of the sequence {m®} generated by the SGP algorithm is a
stationary point of (5.4).

5.1 Scaled Gradient Projection method 97

Update the scaling matrix

The choice of the scaling matrix D;, in SGP must be a non-excessively expensive task and
should improve convergence rate. A diagonal scaling allows one to make the projection
in step 2 of Algorithm 5.1 a non-significant computational cost; thus, we will concentrate
on such kind of scaling matrices. A classical choice is to use a scaling matrix D, =

diag (dgk), dgk), e ,d%’?) that approximates the inverse of the Hessian matrix V2J(x;y),

for example by requiring

—1
w (0 (x™) —1.... N
di N((8@‘1)2 y 1 = go ooy .

In this case an updating rule for the entries of Dy could be

2 (N 1
dgk)zmin{L,maX{%,(%> }}7 i=1...,N, (5.9)

where L is an appropriate threshold ensuring that Dy € Dy.

The EM method [112], also known as Richardson-Lucy method [0, 107] suggests a

definition of the scaling matrix; by following this idea we may introduce the updating rule
1

at® :min{L,max{z,xEk)}}, i=1,...,N. (5.10)

From a computational viewpoint, the updating rule (5.9) is more expensive than (5.10),
due to the computation of the diagonal entries of the Hessian.

Update the steplength

Steplength selection rules in gradient methods have received an increasing interest in
the last years from both the theoretical and the practical point of view. Following the
original ideas of Barzilai and Borwein (BB) |7], we can regard the matrix B(ay) as an
approximation of the Hessian VQJ(:L'(’“)) and derive two updating rules for a4 by forcing
quasi-Newton properties on B(ay):

apP®l = argmin || B(ay)s Y — ¢ (5.11)
ap€eR
and
ap®? = argmin ||s* Y — B(ag)t2* Y| | (5.12)

ap€ER

where s~V = (z® — gk=1) and z*D = (VJ(z®)) — VJ(x*)).
Using B(ay) = (agDg)~'in (5.11) and (5.12), the steplengths

BE1 _ S(kfl)TDllegls(kfl)

(8%
k S(kq)TD’;lz(kq)

(5.13)

and .
BB2 S(k_l) Dkz(k_l)

6% =
" 26T DDy a1

(5.14)

98 SGP implemented as a new TAO solver

Algorithm 5.2 SGP Steplength Selection

IF k=0 THEN

set ag € [Qmin, Qmaz), 71 € (0,1) and a nonnegative integer M,;

ELSE
T ~_ _
IF S(kil) Dk 1z(k 1) < 0 THEN
BB1 .
(69X = Omax;
ELSE
k=0T p=1p=14(k-1)
BB1 __) : s k Pk 8 .
(o5 —max{ozmm,mln{ s(k*UTD;lz(’“*l) y Omag)
ENDIF

i s* D7D, 2= < 0 THEN

BB2 __ .
(67 = Qmagz;

ELSE

BB2 _ ‘ . stt=0Tp (k1) .
ak = max {amlTLJ min { z<k*1)TDkaz(k*1) 9 amaz)
ENDIF

IF aPP?/aPBl < 7 THEN

Qy, = min {oszQ, j=max{l,k— M,},..., k:} : Thy1 = 71 * 0.9;
ELSE
BB1. i
Qp = Q) The1 = Tg * 115
ENDIF
ENDIF

are obtained; that reduce to the standard BB rules in case of non-scaled gradient methods,
that is when Dy is equal to the identity matrix for all &:

k=1)T (k1) - k=T 5 (k-1)

(
BBl _ S
Qo5 o A 5.15
k s(k—1)T 5 (k—1) ke S (k=1)T 5 (k—1) (5.15)

Several steplength updating strategies have been devised to accelerate the slow conver-
gence exhibited in most cases by standard gradient methods, and a lot of effort has been
put into explaining the effects of these strategies |27, 28,37, 10,41, 116]. On the other
hand, numerical experiments on randomly generated, library and real-life test problems
have confirmed the remarkable convergence rate improvements involved by some BB-like
steplength selections [27,28 40, 111,138, 141, 146].

At this point, inspired by the steplength alternations implemented in the framework
of non-scaled gradient methods, an updating rule for SGP is proposed, which adaptively
alternates the values provided by (5.13) and (5.14). The details of the SGP steplength se-
lection are given in Algorithm 5.2. This rule decides the alternation between two different
selection strategies by means of the variable threshold 7 instead of a constant parameter
as done in [10] and [116]. This trick makes the choice of 7y less important for the SGP
performance and seems able to avoid the drawbacks due to the use of the same steplength
rule in too many consecutive iterations.

[l RN B

11
12
13
14
15
16
17
18
19
20

5.2 SGP implemented as a TAO solver 99

5.2 SGP implemented as a TAO solver

New optimization solvers can be added to TAO, that provides tools for facilitate the
implementation of a solver. The advantages of implementing a new solver using TAO are
several.

1. TAO includes many optimization solvers with an identical interface, so we may
conveniently switch solvers to compare their effectiveness in Jolnv applications.

2. TAO provides line searches, convergence tests, monitoring routines and other tools
which are helpful within an optimization algorithm.

3. TAO offers vectors, matrices, index sets and linear solvers that can be used by
the solver. These objects are standard mathematical constructions that have many
different implementations. The objects may be distributed over multiple proces-
sors, restricted to a single processor, have a dense representation, use a sparse data
structure or vary in many other ways. The solvers apply the operations through
an abstract interface that leaves the details to TAO and external libraries. This
abstraction allows solvers to work seamlessly with a variety of data structures while
allowing application developers to select data structures tailored for their purposes.

4. TAO supports an interface to PETSc and allows the integration of other libraries
as well.

SGP implemented as TAO solver is written in C++ and include several routines with
a particular calling sequence, as explained in the TAO manual [3].

In each of these routines except the initialization routine, there are two arguments.
The first argument is always the TAO structure. This structure may be useful to obtain
the vectors used to store the variables and the function gradient, evaluate function and
gradient, solve a set of linear equations, perform a line search, and apply a convergence
test.

The second argument is specific to this solver. This pointer will be set in the initialization
routine and cast to an appropriate type in the other routines. The following structure
Listing 5.1 is used by SGP algorithm:

typedef struct {

TaoVec *g; /// Gradient wvector

TaoVec *d; /// Search direction or diag. of the scaling matriz
TaoVec *s; /// (Current - prev) solution estimate

TaoVec *y; /// (Current - prev) gradient estimate

TaoVec *w; /// Work wector

TaoVec *c; /// Linear constrain

double lambda; /// Nonmonotone line search parameter

double xBoundLower; /// Lower bound on solution wector
double xBoundUpper; /// Upper bound on solution wvector
TaoVec *xVecBoundLower; /// Lower bound on solution wvector

TaoVec *xVecBoundUpper; /// Upper bound on solution vector

void *steplengthctx; /// Steplength contezt
void *scalingmatrixctx; /// Scaling matriz context

} TAO_SGP;

© 0N D LA W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
14
45
16
47
48
49
50
51
52

100 SGP implemented as a new TAQO solver

Listing 5.1: Context for Scaled Gradient Projection method.
(Actual source code sgp.h)

Solver Routine

All TAO solvers have a routine that accepts a TAO structure and computes a solution.
TAO will call this routine when the application program uses the routine TaoSolve () and
pass to the solver information about the objective function and constraints, pointers to
the variable vector and gradient vector, and support for line searches, linear solvers, and
convergence monitoring. The following code Listing 5.2 solves a minimization problem
using the SGP method explained in Section 5.1.

#undef __FUNCT__
#define __FUNCT__ "TaoSolve_SGP"
static int TaoSolve_SGP(TAO_SOLVER tao, void *solver)
{
TAO_SGP #*sgp = (TAO_SGP #*)solver;

TAQO_STEPLENGTH_BB* sl = (TAO_STEPLENGTH_BB*) sgp->steplengthctx;

TaoVec *x;
TaoVec *x_o0ld;

TaoVec *g = sgp->g;
TaoVec *d = sgp->d;
TaoVec *s = sgp->s;
TaoVec *y = sgp->Yy;
TaoVec *w = sgp->w;

TaoTerminateReason reason;
double alpha = sl->initdAlpha;

double £,
f_full,
gnorm,
cnorm, // the infeasibility of the current solution
// with regard to the boz constraints.
step = 1.0;

int info = 03
TaoInt status = 0;
TaoInt iter

]
[«}

double gdx;
TaoFunctionBegin;

// Get wectors we will need
info = TaoGetSolution(tao, &x); CHKERRQ(info);

// Check convergence criteria
info = TaoComputeFunctionGradient(tao, x, &f, g); CHKERRQ(info);

info = g->Norm2(&gnorm); CHKERRQ(info);
if (TaoInfOrNaN(f) || TaoInfOrNaN(gnorm)) {
SETERRQ(1, "User provided compute function generated Inf or Nal");

}

// Check boz feasibility of the initial point
info = x->Clone(&x_o0ld); CHKERRQ (info);
info = sgpProject(sgp, x);

5.2 SGP implemented as a TAO solver 101

53 info = x_old->Axpy(-1.0, x); CHKERRQ(info);

54 info = x_o0ld->Norm2(&cnorm); CHKERRQ(info);

55

56 info = TaoMonitor(tao, iter, f, gnorm, cnorm, step, &reasomn);
57 if (reason != TAO_CONTINUE_ITERATING) {

58 TaoFunctionReturn (0);

59 }

60

61 // Scaling matriz

62 info = TaoApply_ScalingMatrix(tao, x, d, (voidx) sgp->scalingmatrixctx);
63

64 while (1){

65

66 // in: d <- scaling matriz

67 info = d->PointwiseMultiply(d, g); CHKERRQ(info);

68

69 // d = & - alpha * d

70 info = d->Aypx(-alpha, x); CHKERRQ(info);

71 info = sgpProject(sgp, d); CHKERRQ(info);

72 // out: d <- search dir

73

74 // in: d <- search dir

75 // d = d - &z

76 info = d->Axpy(-1.0, x); CHKERRQ(info);

7

78 // check if d == 0 (i.e. projection(z)==¢) then stop

79 d->Norm2 (&step); CHKERRQ(info);

80 if (step<TAO_ZER_SAFEGUARD){

81 step = 0.0; // the nexzt call to TaoMonitor will stop the algorithm
82 }

83

84 info = TaoMonitor(tao, iter, f, gnorm, 0.0, step, &reason);
85 if (reason !'= TAO_CONTINUE_ITERATING) {

86 TaoFunctionReturn (0);

87 }

88

89 info = y->CopyFrom(g); CHKERRQ(info);

90

91 // in: d <- search dir ; z = z_k ; g = g_.k ; d = d_k

92

93 // check if the input parameter gdz is negative;

94 info = g->Dot(d, &gdx);

95 if (gdx>=0)1{

96 PetscPrintf (PETSC_COMM_WORLD, "WARNING: d is not a descent direction,
97 using the gradient \n");
98 info = d->CopyFrom(g); CHKERRQ(info);

99 ¥

100

101 step = 1.0;

102 info = TaolLineSearchApply(tao, x, g, d, w, &f, &f_full, &step, &status);
103 CHKERRQ (info);

104 // output: ¢ = e_{k+1} ; g = g_.{k+1} ; d = d_k

105

106 if (status){

107 PetscPrintf (PETSC_COMM_WORLD, "WARNING: Linesearch failed \n");
108 ¥

109

110 info = g->Norm2(&gnorm); CHKERRQ(info);

111 if (TaoInfOrNaN(f) || TaoInfOrNaN(gnorm)) {

112 SETERRQ(1, "User provided compute function generated Inf or NaN");
113 }

114

115 info = TaoMonitor (tao, ++iter, f, gnorm, 0.0, step, &reason);
116 if (reason != TAO_CONTINUE_ITERATING) {

117 TaoFunctionReturn (0) ;

118 ki

119

120 // s_k = step ¥ d_k = z_{k+1} - z_k

121 // in: d <- search dir

122 info = s->CopyFrom(d); CHKERRQ(info);

123 info = s->Scale(step); CHKERRQ(info);

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

© WD LA W N

WoWw NN NN NN NN NN R S R S e e e e e
= O © 0 N0 U A W®N RO ©OMNO W AW = O

102 SGP implemented as a new TAQO solver

// y_k = g_{k+1} - g_k
/Ty =g -y
info = y->Aypx(-1.0, g); CHKERRQ(info);

// Scaling matriz

// in: d <- search dir

info = TaoApply_ScalingMatrix(tao, x, d, (void*) sgp->scalingmatrixctx);
// out: d <- scaling matriz

// BB step
// d <- scaling matrigz
info = TaoApply_SteplLength(tao, s, y, d, &alpha,
(void*) sgp->steplengthctx);

}
sl->alpha = alpha;
info = TaoVecDestroy(x_old); CHKERRQ(info);

TaoFunctionReturn (0);

}

Listing 5.2: SGP solver routine.
(Actual source code sgp.c)

In lines 9, 62, 131 and 136 we use a steplength and scaling matrix explained in Sec-
tion 5.1.2 and Section 5.1.2. More details on steplength and scaling matrix implementa-
tions are in Section 5.3.

Creation Routine

The TAOQO solver is initialized for a particular algorithm in a separate routine. The routine
that creates the SGP algorithm shown above is implemented as follows in Listing 5.3.

EXTERN_C_BEGIN

#undef __FUNCT__
#define __FUNCT__ "TaoCreate_SGP"

int TaoCreate_SGP(TAO_SOLVER tao)
{

TAO_SGP *sgp;

int info;

TaoFunctionBegin;
info = TaoNew(TAO_SGP, &sgp); CHKERRQ(info);

// routines

info=TaoSetTaoSolveRoutine(tao, TaoSolve_SGP, (void *)sgp);
CHKERRQ(info);

info=TaoSetTaoSetUpDownRoutines (tao, TaoSetUp_SGP, TaoDestroy_SGP);
CHKERRQ(info);

info=TaoSetTaoOptionsRoutine(tao, TaoSetOptions_SGP);
CHKERRQ(info);

info=TaoSetTaoViewRoutine (tao, TaoView_SGP);
CHKERRQ (info);

// options

info = TaoSetMaximumIterates (tao, 100); CHKERRQ (info);
info = TaoSetMaximumFunctionEvaluations(tao, 4000); CHKERRQ(info);
info = TaoSetTolerances(tao, le-4, le-4, 0, 0); CHKERRQ (info);

// line search
info = TaoCreateProjectedArmijoLineSearch(tao); CHKERRQ(info);

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

© o N T AW N =

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

5.2 SGP implemented as a TAO solver 103

// steplength and scaling matriz

info = TaoNew(TAO_STEPLENGTH_BB, &(sgp->steplengthctx));
CHKERRQ (info);

info = PetsclLogObjectMemory(tao, sizeof (TAO_STEPLENGTH_BB));
CHKERRQ (info);

info = TaoCreateStepLengthBB(tao, (void*) sgp->steplengthctx);

info = TaoNew(TAO_SCALINGMATRIX_BZZ, &(sgp->scalingmatrixctx));
CHKERRQ (info);

info = PetscLogObjectMemory(tao, sizeof (TAO_SCALINGMATRIX_BZZ));
CHKERRQ (info);

info = TaoCreateScalingMatrixBZZ(tao, (void#*) sgp->scalingmatrixctx);

// default values
sgp->xBoundLower le-10;
sgp->xBoundUpper = le+10;
sgp->linconstr = PETSC_FALSE;

TaoFunctionReturn (0);

¥

EXTERN_C_END

Listing 5.3: SGP creation routine.
(Actual source code sgp.c)

This routine sets the pointers to the actual SGP functions, sets default values and
convergence tolerances, creates a line search supported by TAO and creates a steplength
and a scaling matrix. More details on steplength and scaling matrix can be found in
Section 5.3.

SetUp Routine

Since this routine has been set by the initialization routine, TAO will call it during the
TaoSetApplication(). SGP setup routine has the following form (Listing 5.4):

#undef _FUNCT

#define __FUNCT__ "TaoSetUp_SGP"

static int TaoSetUp_SGP(TAO_SOLVER tao, void *solver)
{

TAO_SGP #*sgp = (TAO_SGP *)solver;

TaoVec *x;

int info;

TaoFunctionBegin;

info = TaoGetSolution(tao, &x); CHKERRQ(info);
info = x->Clone(&sgp->g); CHKERRQ (info);
info = x->Clone (&sgp->d); CHKERRQ (info);
info = x->Clone(&sgp->s); CHKERRQ(info);
info = x->Clone (&sgp->y); CHKERRQ (info);
info = x->Clone(&sgp->w); CHKERRQ(info);
if (sgp->linconstr == PETSC_TRUE){

info = x->Clone(&sgp->c); CHKERRQ (info);
}

info = x->Clone(&sgp->xVecBoundLower); CHKERRQ(info);
info = x->Clone (&sgp->xVecBoundUpper); CHKERRQ(info);

sgp->xVecBoundLower ->SetToConstant (sgp->xBoundLower); CHKERRQ(info);
sgp->xVecBoundUpper ->SetToConstant (sgp->xBoundUpper); CHKERRQ(info);

info = TaoSetVariableBounds(tao, sgp->xVecBoundLower, sgp->xVecBoundUpper);
CHKERRQ (info);

31
32
33
34
35
36
37
38

WD LA W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

L I N R N

104 SGP implemented as a new TAQO solver

info TaoSetLagrangianGradientVector(tao, sgp->g); CHKERRQ(info);
info = TaoSetStepDirectionVector(tao, sgp->d); CHKERRQ(info);

info TaoCheckFG(tao); CHKERRQ(info);

TaoFunctionReturn (0);

¥

Listing 5.4: SGP setup routine.
(Actual source code sgp.c)

This routine is used to allocate the work vectors, the gradient vector and the step
direction vector. In order to use tao_sgp as any other TAO solver, the calls to the
functions in lines 32, 33 are mandatory, even if they are not in the TAO manual example

[4].
Destroy Routine

For the SGP method, the following routine (Listing 5.5) destroys the data structures
created by earlier routines.

#undef _ _FUNCT__

#define __FUNCT__ "TaoDestroy_SGP"

static int TaoDestroy_SGP(TAO_SOLVER tao, void *solver)

{
TAO_SGP #*sgp = (TAO_SGP *)solver;
int info;
TaoFunctionBegin;
info = TaoVecDestroy(sgp->g); CHKERRQ (info);
info = TaoVecDestroy(sgp->d); CHKERRQ(info);
info = TaoVecDestroy(sgp->s); CHKERRQ(info);
info = TaoVecDestroy(sgp->y); CHKERRQ (info);
info = TaoVecDestroy(sgp->w); CHKERRQ (info);
if (sgp->linconstr == PETSC_TRUE){

info = TaoVecDestroy(sgp->c); CHKERRQ (info);

}
info = TaoVecDestroy(sgp->xVecBoundLower); CHKERRQ(info);
info = TaoVecDestroy(sgp->xVecBoundUpper); CHKERRQ(info);
// steplength and scaling matriz
info = TaoDestroy_StepLength(tao, (void*) sgp->steplengthctx);
info = TaoDestroy_ScalingMatrix(tao, (void*) sgp->scalingmatrixctx);
TaoFunctionReturn (0);

}

Listing 5.5: SGP destroy routine.
(Actual source code sgp.c)

Set Options Routine

The routine that sets solver options, such as the bounds or the parameters, is not manda-
tory, but it is very useful; SGP sets option functions as follows (Listing 5.6).

#undef _FUNCT

#define __FUNCT__ "TaoSetOptions_SGP"

static int TaoSetOptions_SGP(TAO_SOLVER tao, void *solver)
{

© W D

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

© 0N D ;A W N

e e e
D A W N = O

5.3 Steplength and scaling matrix

105

TAO_SGP =*sgp = (TAO_SGP *)solver;
int info;
TaoFunctionBegin;
info = TaoOptionsHead("SGP method"); CHKERRQ(info);
info = TaoOptionDouble("-tao_sgp_lambda", "nonmonotone line search param.",
""", sgp->lambda, &sgp->lambda, 0);
CHKERRQ (info);
info = TaoOptionDouble("-tao_sgp_xBoundLower", "minimum value for scaling",
"", sgp->xBoundLower , &sgp->xBoundLower, 0);
CHKERRQ (info);
info = TaoOptionDouble("-tao_sgp_xBoundUpper", "maximum value for scaling",
"", sgp->xBoundUpper, &sgp->xBoundUpper, 0);
CHKERRQ (info);
// steplength e scaling matriz
info = TaoSetOptions_StepLength(tao, (void*) sgp->steplengthctx);
info = TaoSetOptions_ScalingMatrix(tao, (void*) sgp->scalingmatrixctx);
// linesearch
info = TaolineSearchSetFromOptions(tao); CHKERRQ(info);
TaoFunctionReturn (0);
3

Listing 5.6: SGP set options routine.
(Actual source code sgp.c)

View Routine

v

Another useful routine is the view routine (Listing 5.7) , that views informations about

the SGP solver steps.

#undef __FUNCT__

#define __FUNCT__ "TaoView_SGP"

static int TaoView_SGP(TAO_SOLVER tao, void *solver)

{
int info;
TAO_SGP x*sgp = (TAO_SGP *)solver;
info = TaoView_StepLlength(tao, (void*) sgp->steplengthctx);
info = TaoView_ScalingMatrix(tao, (void*) sgp->scalingmatrixctx);
info = TaolLineSearchView(tao); CHKERRQ(info);
TaoFunctionReturn (0);

}

Listing 5.7: SGP view routine.
(Actual source code sgp.c)

5.3 Steplength and scaling matrix

As seen in Section 5.1, SGP algorithm needs a steplength and a scaling matrix. Since other
solvers may also need them, like many solvers need a line search, we tried to implement
the steplength and the scaling matrix following the structure of the TAO line searches.

Studying the TAO line search implementations written in the TAO source files /src/
interface/line.c.html,

106 SGP implemented as a new TAQO solver

/src/linesearch/impls/morethuente/morethuente.c.html and
/src/linesearch/impls/morethuente/morethuente.h.html, we find out that all the
line searches share the same interface written in 1ine.c. The routines declared there are
wrappers of the implemented line search routines, for example, the Moré-Thuente source
code is in morethuente.c and its structure is declared in morethuente.h.

The TAO source code /src/tao_impl.h contains the declaration of the
struct _p_TAO_SOLVER, that is the main TAO solver context; Listing 5.8 shows a part
of this declaration.

struct _p_TAO_SOLVER {

[...1

/* --- User-provided Info ---%/

/#* --- Routines and data that are unique to each particular solver --- #/
void *data; /¥ algorithm implementation-specific data */

int (*setup)(TAO_SOLVER,void*); /* set up the nonlinear solwer */

int (*solve)(TAO_SOLVER,voidx*); /* a nonlinear optimization solver #/

int (*setdown)(TAO_SOLVER,voidx*); /# destroys solver x/
int (*setfromoptions)(TAO_SOLVER,void*); /* sets options from database */
int (*view)(TAO_SOLVER,void*); /* views solver info #/

TaoTruth setupcalled; /* true if setup has been called */
TaoTruth set_method_called; /#flag indicating set_method has been called*/

[...]
/* --- Line Search Contezt ---#/

/* Line Search termination code and function pointers #/

void *linectx;

TaoInt lsflag; /* Line search termination code (set line=1 on success) */

int (*LineSearchSetUp) (TAO_SOLVER,voidx*);

int (*LineSearchSetFromOptions) (TAO_SOLVER ,voidx*);

int (*LineSearchApply) (TAO_SOLVER,TaoVec#*,TaoVec*,TaoVec#*,TaoVec*,
double*,double*,double*,Taolnt*,voidx*);

int (*LineSearchView) (TAO_SOLVER,voidx*);

int (*LineSearchDestroy) (TAO_SOLVER,void*);

[...]

};

Listing 5.8: A piece of the struct _p_TAO_SOLVER.
(Actual source code /src/tao_impl.h)

As you can see, in line 24 a line search context is declared and in lines 28-33 there are
the functions related to its context.

In order to implement the steplength and the scaling matrix following the schema just
explained, one should write a steplength interface, a matrix scaling interface and than
write at least one implementation for each of the new solver’s objects.

We are not able to strictly follow that schema because in /src/tao_impl.h there is
not a generic void *context that can be used by a user to add new objects, however
Figure 5.1 and Figure 5.2 show how the steplength and the scaling matrix implementation
should be.

We temporary implemented the steplength and the scaling matrix context without the
interface middle step; however we wrote all the required functions:

5.3 Steplength and scaling matrix 107

sgp.c interface/steplength.c impls/steplengthBB.h
ITaoCreate soB(.) i ltypedef struct | 5
i - ! !} TAO_STEPLENGTH; !
___________________________ raosetstaptengen| T | e

v
I
I
H TAO_SOLVER,

\ int (*setup) (TAO SOLVER, void*),
i

'

'

'

i
I
i
I
i
I
int (*options) (TAO_SOLVER,void*), !
int (*slApply) (TAO_SOLVER,TaoVec*, |
TaoVec*, TaoVec*,double*, 9
i
I
I
I
I
i
i
I
i
i

T
fmm e -
E TaoInt*,void*) | TaoCreateStepLengthBB \
i int (*viewit) (TAO SOLVER,void*), d (TAO_SOLVER) H
! int (*destroy) (TAO_ SOLVER,void*), - i
V void *ctx)
SRS
__________________________ - l______________________*____T________________W
:TaoSetC)ptions SGP(...) ' | TaoStepLengthSetFromOptions :_
: - : ! (TAO_SOLVER) /]
——————————————————————————— L |
e |
e * ______________________ ! TaoSetOptions_StgpLength !
——————————————————————————] ' TaoStepLengthApply H T (TAO_SOLVER, void*) H
i lve SGP(..) ' ! ! : !
1 TaoSolve : ; ! (TAO_SOLVER, TaoVec*, e i
e e ! \ TaoVec*,TaoVec*,double*, TaoInt*) i
| e b
| TacApply StepLength !
v —|>: (TAO SOLVER, TaoVec*,TaoVec*, !
-------------------------- Bl T o T T T e s s e e e e m e - e — .
| TaoView SGP(..) ' | TaoStepLengthView (TAO SOLVER) | |1 Taovec*,double*,TaoInt*,void*t) !
e ;
v ettt bl
e Tt ! e | TaoView StepLength H
1 TaoDestroy_ SGP(..) : ! TaoStepLengthDestroy (TAO SOLVER) i__—lj (TAOigoLVER, void*) '
e ' S ! H
T e T s amtumny]
:TaoStepLengthSetUp (TAO_SOLVER) '
e e)
. . . s . . .
Figure 5.1: SGP solver calls the interface’s routines implemented in

interface/steplength.c, that are wrappers of the BB steplength routines, im-
plemented in impls/steplengthBB.c. The TAO_STEPLENGTH data structure is declared
in impls/steplengthBB.h.

int (*XXXSetUp) (TAO_SOLVER, void*);
int (*XXXSetFromOptions) (TAO_SOLVER, voidx);
int (*XXXApply) (TAO_SOLVER, TaoVeck,
TaoVec*, TaoVec*, doublex, voidx);
int (xXXXView) (TAO_SOLVER, voidx);
int (*XXXDestroy) (TAO_SOLVER, voidx*);

because in this way it will be quite simple and fast adding the missing interface step as
soon as there will be the necessary data declaration in /src/tao_impl.h.

108 SGP implemented as a new TAQO solver

sgp.c interface/scalingmatrix.c impls/scalingmatrixBZZ.h
__________________________ - e
| TaoCreate SGP(..) ! typedef struct { i
' - ' !} TAO_SCALINGMATRIX; !
e e e e e e —————— 1 1 1
moTTTITT T Aol juftfieieieie it H B e e e e
__________________________ 1 TaoSetScalingMatrix (i ~
| TaoSetUp SGP(..) H i TAO_SOLVER, ' '
! - ' , int (*setup) (TAC_SOLVER, void*), ! .
"""""""""""""" i int (*options) (TAO_SOLVER,void*), !]]]
! int (*slApply) (TAO SOLVER,TaoVec*, ! impls/scalingmatrixBZZ.c
! _
BEE TaoVec*, TaoVec*,double*, B P -
' TaoInt*,void*) i 1TaoCreateScalingMatrixBZZ '
! int (*viewit) (TAO SOLVER,void*), i ¥ (TAO_SOLVER) 1
! int (*destroy) (TAO SOLVER,void*), : '
V. void *ctx) 1
e]
__________________________ |______________________t_____________________'|
| TaoSetOptions SGP(.) ! ! TaoScalingMatrixSetFromOptions i
! - ' ' (TAO_SOLVER) n
--------------------------- e
Im e
______________________ Y oo |TaoSetOptions_ ScalingMatrix i
T . . 7 7 - 5
e EEEE LR . 1TaoScalingMatrixApply i| T (TRO_SOLVER,void*) |
1 TaoSolve SGP(..) ; ! (TAO_SOLVER, TaoVec*, e T SR i
a1 ! \ TaoVec*,TaoVec*,double*, TaoInt*) i
S T T T T ST T ST T ST T T T T T T T T T T e T T
' TaoApply_ScalingMatrix i
t L (TAO SOLVER, TaoVec*,TaoVec*, !
-------------------------- Bl P] — .
| TaoView SGP(..) ! | TaoScalingMatrixView (TAO SOLVER) |]I TaoVecr,double*,TaoInt*,void*) |
S :
[= A
e e et Bl P e L e b) |TaoView ScalingMatrix H
1 TaoDestroy_SGP(..) : ! TaoScalingMatrixDestroy (TAO SOLVER) i__—l>: (TAO_EOLVER, void*) '
[| H | !
. . . , . . .
Figure 5.2 SGP solver calls the interface’s routines implemented in

interface/scalingmatrix.c, that are wrappers of the BZZ scaling matrix rou-
tines, implemented in impls/scalingmatrixBZZ.c. 'The TAO_SCALINGMATRIX data
structure is declared in impls/scalingmatrixBZZ.h.

5.4 Troubleshooting 109

5.4 Troubleshooting

Even if the TAO manual section that explain how to add a solver is quite comprehensive,
some implementation details are missing.

5.4.1 How-to: Register a new solver with TAO

You need to register the new solver with TAQO; you can do this with
TaoRegisterDynamic ()

If you have a new solver compiled into a dynamic library, then you need to give the path
argument. If you are linking the new solver directly with your application, then you need
to give the fourth argument (name of creation routine).

For the tao_sgp solver the following line

TaoRegisterDynamic("tao_sgp", 0, "TaoCreate_SGP", TaoCreate_SGP);
is added before
TaoCreate (PETSC_COMM_WORLD, "tao_sgp", &tao);

in the file that use the solver.
Then you will also have to declare this creation function as extern "C":

extern "C" int TaoCreate_SGP(TAO_SOLVER) ;

See src/interface/tao_reg.c.html for an example.

5.4.2 How-to: Access to the underlying PETSc vector

Since when you write a new TAQO solver you use TaoVec type instead of the Vec PETSc
type, sometimes you need to access to the underlying PETSc vector. You should use the
following call sequence:

TaoVec *tv;
TaoVecPetsc *tvp = dynamic_cast<TaoVecPetsc*>(tv);

if (!'tvp) {/* Send Error Message */}
Vec px = tvp->GetVec();

See src/unconstrained/impls/neldermead/neldermead.c for a complete example.
In taopetsc.h is declared the function TaoVecGetPetscVec (), but it is not implemented
anywhere.

5.4.3 How-to: Set the gradient vector

In the solver’s setup routine you should call
TaoSetLagrangianGradientVector (TAO_SOLVER solver, TaoVecx* gg);

that sets a pointer to the address of a TaoVec that contains the gradient, otherwise you’ll
get a runtime null pointer error because the vector specified here is actually use by TAO
as gradient vector and it’s returned whenever TaoGetGradient () is called.

110 SGP implemented as a new TAQO solver

5.4.4 How-to: TAO_APPLICATION dynamic cast sequence

When you use TAO within PETSc, you usually set your TAO_APPLICATION as follows:

TAO_SOLVER tao;
TAO_APPLICATION taoapp;

[...]

info = TaoSetApplication(tao, taoapp); CHKERRQ(info);

Then, if you need to access your TAO_APPLICATION and you have only the TAO_SOLVER,
you must write the following cast sequence:

TaoApplication *tapp;
TaoPetscApplication *tpapp;
TAO_APPLICATION app;
[...]

info = TaoGetApplication(tao, &tapp); CHKERRQ(info);
tpapp = dynamic_cast<TaoPetscApplication*>(tapp);
if (!tpapp) {
SETERRQ(1,
"Could not cast TaoApplication* to TaoPetscApplicationx");
}

app = tpapp->papp;

See src/interface/fdtest.c for a complete example.

5.4.5 How-to: Add/Query an object to/from the Tao Application

You can add an object to your Tao Application calling:

TaoAppAddObject (TAO_APPLICATION taoapp,
char x*key, void *ctx, TaoInt *id)

and query the TAO Application for an object calling:

TaoAppQueryForObject (TAO_APPLICATION taoapp,
char *key, void **ctx)

Inside the query call, an object is identified by comparing the key values. Since this
comparison is performed by

PetscStrncmp(const char al[l, const char b[],
size_t n, PetscTruth *t)

that only compare up to size_t n char and n is set to 10, the key strings must be shorter
than 10 character, otherwise you will not able to identify the needed object.

5.5 SGP performance analysis 111

5.5 SGP performance analysis

We tested SGP on an image deblurring problem; the original image is shown in Figure 5.3
and has dimensions 311 x 149; the other four images are generated duplicating the original
image 2 (Figure 5.4), 8, 16, and 24 times in both directions; we refers to these images as
Avxr, Aoxa, Agxs, Aioxie, A2axaa Tespectively.

Blurred image SGP solution

50 100 150 200 250 300 50 100 150 200 250 300

Real deblurred image

Figure 5.3: SGP test images. In the top left corner there is the blurred image; on the top
right corner there is the image deblurred by SGP; on the bottom there is the real image
that is been blurred.

In order to evaluate the SGP performance, we measure the execution times, the relative
and scaled speedup (Section B.1), the efficiency (Section B.2), and the Kuck’s function
(Section B.3).

The speedup accounts for how much a parallel algorithm is faster than a sequential
one; best performances (i.e. linear speedup) are obtained when S(p) = p, where p is the
number of processors used for running the program.

The efficiency estimates how well the given processors are exploited in solving the problem,
compared with the overhead due to communications and synchronizations; best perfor-
mances are obtained when FE(p) is close to 1, superoptimal behavior when E(p) > 1.
Finally, the Kuck’s function refers to how advantageous the parallel implementation re-
mains as the number of processors increases. The maximizer of the Kuck’s function is
interpreted as the largest number of processors suitable for the parallel implementation
to solve the given particular problem.

The main conclusion that can be drawn from Figure 5.5, Figure 5.6, Figure 5.7, Fig-
ure 5.8, Figure 5.9 is that SGP shows a very good scaling property: indeed the more the
data grows, the more processors are efficiently used.

112 SGP implemented as a new TAQO solver

Blurred image SGP solution

Figure 5.4: SGP duplicated test image. In the top left corner there is the blurred image;
on the top right corner there is the image deblurred by using SGP; on the bottom there
is the real image that is been blurred.

For example, if we analyze the execution times (Figure 5.5(a)), the relative speedup (Fig-
ure 5.6(a)), and the efficiency plots (Figure 5.7(a)) relative to Ajyx; we can see a good
behavior till 16 processors, that is in accord to the Kuck’s function of Figure 5.8(a). If
we now look at the same plots but relative to Asyo dataset, (Figure 5.5(b) Figure 5.6(b)
Figure 5.7(b)), that is four times bigger than A;.; dataset, we can see a good behavior
till 64 processors, that is in accord to the Kuck’s function of Figure 5.8(b).

The speedup, efficiency, and Kuck’s function charts relatives to Aigx1g Aoax24 are
missing because, when run on one processor, they exceed the core’s memory quota.

Scaled speedup recognizes that an increase in the number of processors brings with it
an increase in the problem size. As seen in Figure 5.9, the scaled speedups for the SGP
algorithm is observed to be nearly linear.

Moreover, in order to evaluate the correctness of the SGP implementation on more
processors, we measure for each test the relative reconstruction error, defined as

2k — Zsotl] / || 2s0l]|

where x4, is the image to be reconstructed, xz; is the reconstruction, and ||-|| is either
||| or ||-||.- The measured reconstruction errors show that this SGP implementation
has the same behavior both on single and on p processors.

5.5 SGP performance analysis 113

0.7

e e < o <
) w IS W o
: T : T T
s s s s s

Execution time (sec.)

o
:
s

12 4 8 16
Number of processors

(=)

(a) SGP execution times; Ajx1

N
W
\

‘

[\
T
I

—_
T
L

Execution time (sec.)
—_
(9,1
‘

12 4 8 16 32
Number of processors

(b) SGP execution times; Asyo

Execution time (sec.)
[} (O8] P [
S & & S

—_
(=)

1 816 32 64 128
Number of processors

(=)

(c) SGP execution times; Agxs

Figure 5.5: SGP execution times on various dataset.

114 SGP implemented as a new TAQO solver

—_ —
[\e] ~
I

—_
(=]
T
I

Execution time (sec.)

64 128 256 512
Number of processors

(d) SGP execution times; A1gx16

16

14

—
[\

—_
=]

Execution time (sec.)

0128612 1024 2048 4096
Number of processors

(e) SGP execution times; Asgxo4

Figure 5.5: SGP execution times on various dataset (cont.).

5.5 SGP performance analysis

115

20

15t

Speedup
S

0 12 4 16
Number of processors
(a) SGP relative speedup; Ajx1

35

307 /,’ i

25} 1
§20¢ 1
] -
3
a 15} -]

12 4 8 16
Number of processors

(b) SGP relative speedup; Asxs

140¢

1201 e

1001 -

Speedup
o ®
S S
- ‘
N
N
N
N
\
N
N

1 816 32 64
Number of processors

(c) SGP relative speedup; Agxs

Figure 5.6: SGP relative speedup measured on various dataset.

128

116 SGP implemented as a new TAQO solver

Efficiency
o o
o 9

o
W
‘

04 12 4 8 16

Number of procesors

(a) SGP efficiency; Ajx1

Efficiency
e o 9
W [=)) ~

o
~
‘

o
w
‘

e
()

16 32
Number of procesors

(b) SGP efficiency; Aaxa

oo b

12 4

Efficiency
S o 9
W (=) ~

N
~
:

.

1 816 32 64 128
Number of procesors

(c) SGP efficiency; Agxs

Figure 5.7: SGP efficiency measured on various dataset.

5.5 SGP performance analysis

117

2.5¢

[\
T

—
o
T

Kuck function

0.5

1 2 4 8 16

Number of processors

(a) SGP Kuck’s function; Ajx1

Kuck function

16 32
Number of processors

N
o

(b) SGP Kuck’s function; Agx2

Kuck function

16 32 64 128
Number of processors

(c) SGP Kuck’s function; Agxs

Figure 5.8: SGP Kuck’s function measured on various dataset.

118 SGP implemented as a new TAQO solver

256

Number of processors

Figure 5.9: SGP scaled speedup, where A is the total number of elements in the test
matrix A.

5.5 SGP performance analysis

119

5.5.1 DUSD model on SGP

To asses the correctness of our experimental performance analysis, we compute here the
theoretical optimal number p of processors for the SGP algorithm on the input matrix
A1y using the DUSD model (Section B.7).

The IBM-SP6 hardware parameters that describe the computation rate r3_ for floating-
point operations, the asymptotic communication bandwidth r¢ , and the message latency

t; are reported in Table 5.1.

’ What \ Symbol \ Value
Comput. rate, peak performance T3 101 Tflop/s
Asymptotic communic. bandwidth S, 16 Gb/s or 250 Mword/s (64-bit precision)
Message latency 5 2.103 ps

Table 5.1: IBM-SP6 hardware parameters.

We also estimate the following SGP code parameters:

s°(N;p) =

20N + 6N?

)

p

s°(N;p) = 15Np,

¢“(N;p) =50 - (3p),

where s°(N;p) is the number of floating point operations, s°(N;p) is the number of words
being communicated, and ¢°(N;p) is the number of communications.

The related factorization are:

1
si(N) =20N +6N?, si(p) = —
p
sy (N) = 15N, sp(p) =p
q5(N) = 50, q,(p) = 3p
Hence the resulting dimensionless execution time is:
— 1 63
T(N;p) = 63—+ —p+ 3p, (5.16)
p 0
with the value 0, d3 expressed as:
5 — 20N + 6N2re, Su 20N +6N?% 1
TN ey P50 st

The optimal number p of processors is derived by differentiating (5.16) with respect to p:

_ | 6103
p= 301 + 93

120 SGP implemented as a new TAQO solver

A dimension | Dimensionless parameters | Optim. num. of proc. p
(51 (53
A 41.1068 237.7548 D
Agwo 164.4328 3804.344 12
Asxs 657.7063 60864.94 25

Table 5.2: DUSD parameters for SGP

and the speedup on this optimal number of processors is (B.5) :

1 p 3p!
Sp(61,65,0) = 5 + 5% + 5—7;
The next step is to draw the contour plot, using the data in Table 5.1 and Table 5.2, as
it is shown in Figure 5.10.

The optimal number of processors required by SGP for the data Ajy1, Asxo, and Agys
is 6, 13, and 26, respectively. This is consistent with the optimal number of processors
that can be guessed observing the execution times and speedup plots in Figure 5.5 and
Figure 5.6.

5.5 SGP performance analysis 121

T

e e Qe e m o mm o m -

A A8x
kii: 2%2 &*‘* &;

KAIXI

I I I
0 100 200 300 400 500 600 700
1

(a) The blue dotted lines represent the contour of the optimal number of processor;
the magenta dashed lines represent the contour of the optimum speedup. The red
stars are the optimal number of processors for Ajx1, Aaxo, and Agxs.

] speedup
] optimal p

30~
201
10— 0
0+
-2 0 2 4 0
6 1000
. 5 8 10 1
x 10 3

(b) The blue dotted lines of Figure 5.10(a) are the contour plot generated by the blue
surface, that represents the optimum number of processors as d; and d3 change; The
magenta dotted lines of Figure 5.10(a) are the contour plot generated by the magenta
surface that represents the speedup as d; and d3 change.

Figure 5.10: DUSD model on SGP

Chapter 6

Jolnv performance analysis

We tested JoInv’s performance on a synthetic dataset (Figure 6.1) generated by the Matlab
code SeismicTomo [129, 131, 115] written by Giulio Vignoli. The test set is characterized
by a blocky structure embedded in a uniform background. A series of 12 transmitters
(the circles) is vertically aligned on one side of the domain and another series of 22
receivers (the stars) is vertically aligned at the opposite side of the blocky structure. The
simulated data are radar and elastic waves. The domain is discretized into 15 x 16 x 22
parallelepiped cells. The blocky structure to be detected involves 64 cells and encloses a
volume with different medium density such that the radar wave is decreased with respect
to the background, while the elastic wave is increased with respect to the background.
We tried to find a real geophysical dataset but we could not.

o -~ Synthetic dataset

09

S 3k K 3K Kok 3K Kk sk kKK K K ek

16

00 0 0O 0O/0 00O

Figure 6.1: Synthetic dataset used for JoInv performance evaluation. The circles indicate
the transmitters and the stars indicate the receivers.

Unfortunately, even if the Matlab code that build the synthetic dataset can manage

124 JoInv performance analysis

3D volumes much larger, we can only generate a 3D test with five thousands cells, that
is not so much compared with a real dataset. Nevertheless it is enough for a basic per-
formance evaluation because the elements of the matrices involved in the inverse problem
are about 1.2 millions (the size depends both on the cells number and the number of
the observed data). The results shown in the following plots refer to the Jolnv perfor-
mance when running over 150 iterations on the synthetic dataset previously described;
performance results have been obtained on the IBM-SP6 cluster hosted at the CINECA
Supercomputing center |1 15].

The software performances are evaluated by the following standard measures: the
execution times, the speedup (Section B.1), the efficiency (Section B.2), and the Kuck’s
function (Section B.3), that are illustrated in Figure 6.2, Figure 6.3, Figure 6.4, and
Figure 6.5, respectively.

350

300 3

200 3

Exec. time (sec.)

1007 3

+ $
8 64 128 246 512 1024
Number of procs

Figure 6.2: Jolnv execution times.

The plots demonstrate good scaling property up to 1024 processors; over this threshold,
the performance is limited by the startup of the program (data loading, data preallocation,
computation of the data that do not change during the execution, sequential run-time
portion of the code) and the communications between the processors.

The super-linear speedup and the very high efficiency on 2, 4, and 8 processors are
due to the cache effects (memory latency and locality, both spatial and temporal), best
load balancing between processes, and efficient communication.

Even though the parallel speedup, from 32 to 2048 processors, will never reach the 1:1
ratio of the ideal curve, the whole job is still being processed in a fraction of the time that
would be required for a serial simulation, that often is not possible due to the memory
requirements of large cell budgets.

In agreement to the speedup, a high degree of efficiency is obtained in parallel execution
up to 1024 processors.

The Kuck’s function clearly shows that up to 1024 processors can be effectively ex-
ploited by the parallel program on the given simulations. Little improvement is obtained

125

25007

20001~

1500~

Speedup

1000

5001~

| | | |
8 64 128 246 512 1024 2048
Number of procs

Figure 6.3: JoInv speedup.

Efficiency

o
%

0.7

0.6

0.5"
8 64 128 246 512 1024 2048
Number of procs

Figure 6.4: Jolnv efficiency.

by providing additional processors, even though the performance degrades because the
computational load on each processor becomes too small compared with the communica-
tion time.

However, as we have seen for SGP, this measure is less accurate than the DUSD
estimate, so we feel that the optimal number of processors to be used with this test
set should still be lower than that proposed by Kuck’s function. In any case, providing
accurate estimates of the DUSD parameters for the JoInv code is quite more difficult than
for the SGP code, so we leave this activity as a future development.

126 JoInv performance analysis

600 T

500~ 3

400~ 3

Kuck’s function
(%)
=)
S
T
|

2001~ 3

100~ 3

|
8 64 128 246 512 1024 2048
Number of procs.

Figure 6.5: JoInv Kuck’s function.

Conclusions

In this thesis the problem of jointly inverting multiple multidimensional data is consid-
ered from the high-performance computing viewpoint. The parallel implementation of a
Tikhonov-like approach is proposed, built on top of the well know high-performance li-
braries PETSc and TAO. This choice allows the proposed software to be widely portable
on different HPC architectures. Equally important, the large number of large-scale scien-
tific application that have already been developed so far on top of the PETSc structure
can easily integrate the proposed software, thus accessing a powerful tool to reconstruct
hidden object from multiple sets of observations. Particular attention has been given to
provide an effective implementation of the edge-preserving regularization based on the
minimum-gradient-support functional, which is suitable to recognize blocky structures.
Both first- and second-order derivatives have been analytically studied and implemented
for the two-models case: this in turn allows the user to investigate a particular problem by
using either the first-order or the second-order class of solvers available in the underlying
libraries. The theoretical results as well as the practical implementation are easily exten-
sible to the case of more than two models (and the corresponding data sets), provided
that enough memory is available to store the additional arrays.

Even if we do not deal with the relevant tasks of how to select appropriate values for
the regularization and the focalization parameters, our parallel implementation makes it
possible to experiment whatever strategy the user would like to apply for this goal, thus
providing a quantitative way to asses the merits and the demerits of classical as well as
new criteria.

A large range of application fields can benefit from the study and the outcome of this
thesis: from Geophysics to Medicine, from Chemistry to Astronomy, from Microscopy to
Engineering. The proposed method and implementation makes it finally possible for the
first time in an HPC environment to follow the approach of using the extra information
provided by the multiple data sets acquired to perform the data inversion at once, as the
cure for the problem ill-posedness. There are obvious large potential advantages in this
approach: for example, jointly inverting different kind of data could allow to reduce the
total number of data to be collected, without losing the accuracy of the results.

Our performance tests on the developed software show that the parallel implementa-
tion of the joint inversion is quite efficient and scalable, as long as the data size are large
enough for the selected number of processing elements.

On the way of this main contribution, we have developed additional results which are
of independent interest.

Concerning the sparse matrices preallocation problem, we studied and implemented a
recursive method that allows to determine the full nonzero structure (that is, the exact
locations of all nonzero entries) of a matrices product in a time proportional to the num-

128 Conclusions

ber of nonzero elements, without the use of graph theory and structures. That method,
summarized in Chapter 4, does not show great performance on a parallel environment,
because the algorithm’s communication part dominates the computation part; neverthe-
less, since it takes advantage of the PETSc matrix formats, it’s very portable and it can
be useful when the dimension of the problem becomes too large for a sequential system.
Moreover, when problem scale matters, the benefits given by a good and exact memory
preallocation largely justifies little extra computations; here it’s also important to em-
phasize that usually this kind of analysis is performed only once at the initialization step,
thus the overhead due to the computation of the nonzero structure does not affect the
performance of the master code and it is usually completely negligible when problem size
becomes larger and larger. A particular aspect of this memory preallocation algorithm
is that the strategy we developed preserves its recursive nature also in parallel: this is a
quite unusual good feature for a situation where the tasks on different processors are not
independent, as it is the case here.

Furthermore, we have implemented the effective Scaled Gradient Projection (SGP)
method as a TAO solver for simply constrained smooth minimization problems. This
contributes a new first-order iterative method to the TAQ library, that can clearly be
used independently of the joint inversion code. The implementation involves a number of
classical features of descent methods, but it has been hard to code because the general
structures available for first-order iterative methods in TAO do not explicitly support the
use of more than one parameter-choice routine per method, while SGP needs at least
two of them. We propose a flexible approach to overcome the problem, by introducing
additional structures that are dynamically instantiated together with the solver when the
problem object is initialized. This kind of implementation has several advantages: it
preserves the code portability, it directly interfaces with PETSc, and it does not change
the invocation syntax conventions of the TAO solvers, so that it’s easy also for existing
applications to test on it. The effectiveness of the provided SGP implementation has been
demonstrated independently on the joint inversion code, on a set of artificially generated
test problems of increasing size. The tests show good speedup and scalability properties,
until the computational load of the single processor becomes too little to compensate for
the communication time. It is worth noticing that we provide deep performance analysis
of this solver by using the very accurate estimates provided by the dimensionless universal
scaling diagram (DUSD). This model allows to carefully take all sequential and parallel
aspects of the algorithm into consideration and can foresee its parallel potential better
than other performance models. To do that, it requires an effort to get good estimates of
some code measures that are uncommon to other models and sometimes hard to obtain.
Nevertheless, we found it a useful tool, that surely deserves more attention than that it
got.

It is our hope that the tools we developed in this thesis are helpful for both the
practitioners and the theoretical scientists, by providing the formers with a more advanced
tool for solving their inverse problems, while providing the others with a flexible test bench
to study and experiment, for instance, new parameter-selection criteria suitable for the
joint inversion. Hopefully, the developers of TAO and PETSc could consider to add the
presented tools as official features of their effective libraries.

Conclusions 129

Future developments

The present work can be expanded in a number of directions. First of all, a fully non-
linear operator can be considered in the forward problem: this clearly impacts on both
the derivatives computations and the code development. In fact, from an implementation
viewpoint a nonlinear operator requires to be applied by means of a routine call in place
of the matrix-vector multiplication we used for the linear case explicitly analyzed here.
Moreover, the theory of nonlinear ill-posed problems is more complicated and less ad-
vanced than that available for linear ill-posed problems: as a consequence, few algorithms
are available for their solution (see for instance |35, 103-105]). However, many real-world
inverse problems are nonlinear in nature, so they call for suitable solvers, possibly imple-
mented for HPC systems. The provided code can then be taken as an advanced starting
point to build the required software.

Second, most of today’s HPC architectures are multiprocessor systems equipped with
multicore CPUs, generally grouped in nodes; each CPU has access to its own local memory,
but often there is also shared memory available at a node level. This kind of hybrid systems
have shown to be very effective in a number of respects and, most important, it seems
reasonable to foresee that their potential for computational power will still grow quite a
lot in the near future. To exploit this superior computing power one needs to use a hybrid
coding paradigm, where both the inter-CPU and the inter-core parallelism are suitably
used for the computations. Hence, another development direction of this project is surely
the investigation of whether and how the code can be best adapted to the MPI/OpenMP
hybrid programming paradigm.

Third, additional data distribution should be studied in cooperation with the PETSc
developers team. The reason for that is twofold: on one hand, this could be necessary in
order to be able to suitably implement effective parallel codes for the hybrid architectures
we just mentioned here before and, on the other hand, it could allow the integration of
other relevant features in the parallel library, such as fully parallel Fast Fourier Trans-
form (FFT) ' or wavelet transforms. These tools appear increasingly often in large scale
inversion problems, because in certain conditions they allow to greatly lower the compu-
tational burden due to the application of the forward operator A. For instance, it often
happens that the data formation process can be modeled as a Fredholm integral equation
of the first kind: after operator discretization, assuming periodic boundary conditions,
the obtained matrix A is block-circulant with circulant blocks. Having a suitable data
distribution, in many cases the matrix-vector products involving A can be performed in
O(N log N) time (N being the total number of pixels/voxels) by using the FET [29], or a
fast trigonometric transform such as the Discrete Cosine Transform (DCT) or the Discrete
Sine Transform (DST) [115]. As it is well known, spatially-invariant point spread func-
tions (PSF) generate structured (Toeplitz-like) matrices: this class of problems includes
an important part of applications, so it would be a meaningful improvement to provide
specialized tools, even if our choice for the present work has been to implement a pretty
general approach, suitable also for spatially not-invariant cases, for which those structures
no longer appear.

Fourth, additional data-fidelity functionals should be considered, other then the least
squares loss, to provide the code better flexibility in facing a wider class of inversion
problems. Moreover, also additional regularizing functional have to be implemented,

I'PETSc team recently added support for parallel FFTW in real and complex precision

130 Conclusions

such as the pure total variation (TV) as well as its many variants [131]. Connected to
this, some emerging, less classical regularization approaches could be considered for the
solution of the joint inversion, such as the FDTR-TV method recently proposed (see for
instance |[79-81].

Fifth, other tensor-product-based representations can be considered when computing
derivatives of discretized multidimensional domains. This could be useful for example
when direct solvers can be applied in place of iterative solvers, when least-squares-like
loss functions or constraints are considered in the regularized functional. Recent results
make this a promising way to face the solution of huge-sized problems on very powerful
architectures [12].

Sixth, the DUSD analysis of the SGP method could be extended to estimate the
parallel performance of the full joint inversion algorithm. This is surely a difficult task,
but it would provide the user with a meaningful tool to foresee what sort of computational
benefit to expect by applying such a complex procedure to his/her data, using a given
underlying HPC platform.

Seventh, a multithread version of the code could also be useful. Even far from large
HPC systems such as the IBM SP6 or BlueGene, today’s servers equipped with multi-CPU
motherboards can reach considerable performances. They are often part of complex de-
tection machines such as magnetic resonance imaging (MRI) systems, so a multithreaded
implementation would allow the joint inversion approach to fully exploit the available
hardware. Within this context, considering the increasing number of libraries and tools
that have been developed worldwide in the last decade, even a porting to other emerging
environments such as the Java world for scientific computing can be considered, along the
lines of other similar efforts such as Parallel COLT | -

Eighth, from the prototyping point of view, an interesting potential extension of the
Matlab implementation is to integrate it with advanced packages dedicated to inverse
problems, such as the Sparco project |10], the AIR Tools toolbox [110], the MOORe Tools
toolbox [68,71], the object oriented Restore Tools package [70], the mxTV package [20],
the TVReg package [72] just to mention some of the most known.

Some of the highlighted development directions are easier than others and the list is
certainly not exhaustive. However, they overall confirm how appealing, interesting and
growing this fascinating research field is. We hope that the present work contributes to
make the joint inversion approach more accessible for a wider set of applications, and
helps for advances in both the computational and the theoretical sides.

Appendix A
MPI, PETSc and TAO libraries

A.1 MPI (Message Passing Interface)

The Message Passing Interface Standard (MPI) is a message passing library standard
based on the consensus of the MPI Forum [38], which has over 40 participating organi-
zations, including vendors, researchers, software library developers, and users. The goal
of the Message Passing Interface is to establish a portable, efficient and flexible standard
for message passing that will be widely used for writing message passing programs. The
advantages of developing message passing software using MPI closely match the design
goals of portability, efficiency, and flexibility. MPI is not an IEEE or ISO standard, but
has in fact become the “industry standard” for writing message passing programs on HPC
platforms [16].

MPI is an interface specification for the developers and users of message passing li-
braries. By itself, it is not a library but rather the specification of what such a library
should be. Simply stated, the goal of the Message Passing Interface is to provide a widely
used standard for writing message passing programs. Interface specifications have been
defined for C / C++ and Fortran programs.

History and Evolution

e April 1992: Workshop on Standards for Message Passing in a Distributed Mem-
ory Environment, sponsored by the Center for Research on Parallel Computing,
Williamsburg, Virginia. The basic features essential to a standard message passing
interface were discussed and a working group established to continue the standard-
ization process. Preliminary draft proposal developed subsequently.

e November 1992: Working group meets in Minneapolis. MPI draft proposal (MPI-1)
from ORNL presented. Group adopts procedures and organization form the MPI
Forum. MPIF eventually comprised of about 175 individuals from 40 organizations
including parallel computer vendors, software writers, academia, and application
scientists.

e November 1993: Supercomputing 93 conference. Draft MPI standard presented.

e May 1994: Final version of draft released.

132 MPI, PETSc and TAO libraries

e 1996: MPI-2 picked up where the first MPI specification left off and addressed topics
which go beyond the first MPI specification.

e Today, MPI implementations are a combination of MPI-1 and MPI-2. A few imple-
mentations include the full functionality of both.

At present, the standard has several popular versions: version 1.2 (shortly called MPI-
1), which emphasizes message passing and has a static runtime environment, and MPT 2.1
(MPI-2), which includes new features such as parallel /O, dynamic process management,
and remote memory operations. MPI-2 specifies over 500 functions and provides language
bindings for ANSI C , ANSI Fortran (Fortran90), and ANSI C++ . Object interoperability
was also added to allow for easier mixed-language message passing programming. A
side-effect of MPI-2 standardization (completed in 1996) was clarification of the MPI-
1 standard, creating the MPI 1.2. Note that MPI-2 is mostly a superset of MPI-1,
although some functions have been deprecated. MPI1.2 programs still work under MPI
implementations compliant with the MPI-2 standard.

Reasons for using MPI

Standardization MPI is the only message passing library which can be considered a
standard. It is supported on virtually all HPC platforms. Practically, it has replaced
all previous message passing libraries.

Portability There is no need to modify your source code when you port your application
to a different platform that supports (and is compliant with) the MPI standard.

Performance Opportunities Vendor implementations should be able to exploit native
hardware features to optimize performance.

Functionality Over 115 routines are defined in MPI-1 alone.

Availability A variety of implementations are available, both vendor and public domain.

Programming model

e All parallelism is explicit: the programmer is responsible for correctly identifying
parallelism and implementing parallel algorithms using MPI constructs.

e The number of tasks dedicated to run a parallel program is static. New tasks can
not be dynamically spawned during run time. (MPI-2 addresses this issue).

e MPI uses objects called communicators and groups to define which collection of
processes may communicate with each other. Most MPI routines require you to
specify a communicator as an argument.

e Within a communicator, every process has its own unique, integer identifier assigned
by the system when the process initializes. Ranks are contiguous and begin at zero.
Used by the programmer to specify the source and destination of messages. Often
used conditionally by the application to control program execution (if rank=0 do
this / if rank=1 do that).

A.2 PETSc (Portable, Extensible Toolkit for Scientific Computation) 133

e MPI environment management routines are used for an assortment of purposes, such
as initializing and terminating the MPI environment, querying the environment and
identity, etc.

e MPI point-to-point operations typically involve message passing between two, and
only two, different MPI tasks. One task is performing a send operation and the
other task is performing a matching receive operation. There are different types of
send and receive routines used for different purposes, i.e. synchronous send, blocking
send /blocking receive, nonblocking send/nonblocking receive, buffered send, com-
bined send /receive.

e Collective communication are used for different purpose, such as synchronization
(processes wait until all members of the group have reached the synchronization
point), data movement (broadcast, scatter/gather, all to all), collective computation
(one member of the group collects data from the other members and performs an
operation on that data). Collective operations are blocking.

MPICH2 as example of a widespread MPI implementation

MPICH2, developed by ANL (Argonne National Laboratory) [91], is a high-performance
and widely portable implementation of the Message Passing Interface (MPI) standard
(both MPI-1 and MPI-2). The goals of MPICH2 are:

1. to provide an MPI implementation that efficiently supports different computa-
tion and communication platforms including commodity clusters (desktop systems,
shared-memory systems, multicore architectures), high-speed networks, and propri-
etary high-end computing systems;

2. to enable cutting-edge research in MPI through an easy-to-extend modular frame-
work for other derived implementations.

MPICH? is distributed as source (with an open-source, freely available license). It has
been tested on several platforms, including Linux, Mac OS/X (PowerPC and Intel), Solaris
(32- and 64-bit), and Windows.

We mention here MPICH2 as an example of a widespread MPI implementation. There
are also other widespread implementation, e.g. OpenMPI, versions 1.4 and 1.5.1 [120],
that nowadays are at least as widespread. In addition, most vendors have their own
implementations, sometimes based on either of them but optimized for their particular
node structure and network capabilities. In that respect MPICH2 has no special role.

A.2 PETSc (Portable, Extensible Toolkit for Scientific
Computation)

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data
structures and routines that provide the building blocks for the implementation of large-
scale application codes on parallel (and serial) computers; see, i.e., |5 |1] [0] for a com-
prehensive discussion and references.

134 MPI, PETSc and TAO libraries

PETSc has successfully demonstrated that the use of modern programming paradigms
can ease the development of large-scale scientific application codes in Fortran, C , and
C++ . Begun several years ago, the software has evolved into a powerful set of tools
for the numerical solution of partial differential equations and related problems on high-
performance computers. PETSc consists of a variety of libraries (similar to C++ classes).
Each library manipulates a particular family of objects (for instance, vectors) and the
operations one would like to perform on the objects. Some of the PETSc modules deal
with

e index sets, including permutations, for indexing into vectors, renumbering, etc;
e vectors;

e matrices (generally sparse);

e distributed arrays (useful for parallelizing regular grid-based problems);

e Krylov subspace methods;

e preconditioners, including multigrid and sparse direct solvers;

e nonlinear solvers;

e timesteppers for solving time-dependent (nonlinear) PDEs.

Each consists of an abstract interface (simply a set of calling sequences) and one or more
implementations using particular data structures. Thus PETSc provides clean and ef-
fective codes for the various phases of solving PDEs, with a uniform approach for each
class of problems. This design enables easy comparison and use of different algorithms
(for example, to experiment with different Krylov subspace methods, preconditioners, or
truncated Newton methods). Hence PETSc provides a rich environment for modeling
scientific applications as well as for rapid algorithm design and prototyping. The libraries
enable easy customization and extension of both algorithms and implementations. This
approach promotes code reuse and flexibility, and separates the issues of parallelism from
the choice of algorithms. The PETSc infrastructure creates a foundation for building
large-scale applications. It is useful to consider the interrelationships among different
pieces of PETSc. Figure A.1 is a diagram of some of these pieces; Figure A.2 presents
several of the individual parts in more detail. These figures illustrate the library’s hier-
archical organization, which enables users to employ the level of abstraction that is most
appropriate for a particular problem.

PETSc uses the MPI standard for all message-passing communication.

PETSc uses routines from

BLAS ;

LAPACK;

LINPACK - dense matrix factorization and solve;

MINPACK - sequential matrix coloring routines for finite difference Jacobian eval-
uations;

A.2 PETSc (Portable, Extensible Toolkit for Scientific Computation) 135

Application Codes

\/ TS

PDE Solvers (Time Stepping)
g SNES SLES
'§ (Nonlinear Equation Solvers) (Linear Equation Solvers)
Z KSP PC

T D
:é (Krylov Subspace Methods) (Preconditioners) raw
g
3 Matrices Vectors Index Sets
BLAS LAPACK MPI

Figure A.1: Organization of the PETSc Libraries.

Nonlinear Solvers Time Steppers
Newton-based Methods .
Other Euler Balgkizvard Ps;:udo Time Other
Line Search | Trust Regon uler tepping

Krylov Subspace Methods

GMRES | CG ‘ CGS | Bi-CG-STAB | TFQMR | Richardson | Chebychev | Other

Preconditioners

Additive Block LU
Schwartz Jacoby Jacoby ILU lcc (Sequential Only) Other
Matrices
Compressed Sparse Blocked Compressed Block Diagonal
Row (AL)) Sparse Row (BALI) (3DIAG) Dense | Other
Index Sets
Vectors
Indices Block Indices | Stride | Other

Figure A.2: Numerical libraries of PETSc.

e SPARSPAK - matrix reordering routines;

e libtfs - the efficient, parallel direct solver developed by Henry Tufo and Paul Fischer
for the direct solution of a coarse grid problem (a linear system with very few degrees

of freedom per processor).

PETSc provides a variety of matrix implementations because no single matrix format
is appropriate for all problems. Currently it supports dense and sparse storage (both
sequential and parallel versions), as well as several specialized formats. The default matrix

136 MPI, PETSc and TAO libraries

representation within PETSc is the general sparse AIJ format, also called the Yale sparse
matrix format or Compressed Sparse Row format, CSR. In the PETSc ALJ matrix formats,
the nonzero elements are stored by rows, along with an array of corresponding column
numbers and an array of pointers to the beginning of each row (Figure A.3). Note that
the diagonal matrix entries are stored with the rest of the nonzeros (not separately).

0123456178

Tl i W NN — O

value

index
0 4 7 12 15

19
1]3[4]8

row pointer

Figure A.3: Compressed Sparse Row format (CSR) or also called the Yale sparse matrix
format or AIJ format.

24

A.3 TAO (Toolkit for Advanced Optimization)

The Toolkit for Advanced Optimization (TAO) focuses on the design and implementation
of optimization software for the solution of large-scale optimization applications on high
performance architectures; see |3| for a comprehensive discussion and references.

The TAO design philosophy places strong emphasis on the reuse of external tools where
appropriate. This design enables bidirectional connection to lower-level linear algebra
support (e.g. parallel sparse matrix data structures) provided in toolkits such as PETSc as
well as higher-level application frameworks. That design decisions are strongly motivated
by the challenges inherent in the use of large-scale distributed memory architectures and
the reality of working with large and often poorly structured legacy codes for specific
applications. Figure A .4 illustrates how the TAO software works with external libraries
and application code.

The TAO solvers use four fundamental objects to define and solve optimization prob-
lems: vectors, index sets, matrices, and linear solvers. The concepts of vectors and matri-
ces are standard, while an index set refers to a set of integers used to identify particular
elements of vectors or matrices. An optimization algorithm is a sequence of well defined
operations on these objects. These operations include vector sums, inner products, and
matrix-vector multiplication. TAO makes no assumptions about the representation of

A.3 TAO (Toolkit for Advanced Optimization) 137

[Application Driver }

TAO Optimization Solvers |
(Unconstrained, Bound, Least Squares, Complementarity)

[Vectors] [Matrices] [Index Sets] [Linear Solvers}

[Application Initialization J [Function and Derivative Evaluation} [Post-Processing]

Figure A.4: TAO design.

these objects by passing pointers to data-structure-neutral objects for the execution of
these numerical operations. With sufficiently flexible abstract interfaces, TAO can sup-
port a variety of implementations of data structures and algorithms. These abstractions
allow the user to more easily experiment with a range of algorithmic and data structure
options for realistic problems, such as within this case study. Such capabilities are critical
for making high-performance optimization software adaptable to the continual evolution
of parallel and distributed architectures and the research community’s discovery of new
algorithms that exploit their features. The current TAO implementation uses the paral-
lel system infrastructure and linear algebra objects offered by PETSc, which uses MPI
for all interprocessor communication. The TAO design philosophy eliminates some of
the barriers in using independently developed software components by accepting data
that is independent of representation and calling sequence written for particular data
formats. The user can initialize an application with external frameworks, provide func-
tion information to a TAO solver, and call TAO to solve the application problem. The
use of abstractions for matrices and vectors in TAO optimization software also enables
the developers to leverage automatic differentiation technology to facilitate the parallel
computation of gradients and Hessians needed within optimization algorithms.

Appendix B

Measuring parallel performance

There are various methods that are used to measure the performance of a certain parallel
program. No single method is usually preferred over another since each of them, as
will be seen later on, reflects certain properties of the parallel code. There is extensive
literature regarding those methods, e.g. [117], [39], [126], [127], [128], [99], [59], [1], [67];
in this appendix are summarized some useful concepts related to the parallel performance
measuring.

B.1 Speedup

The most obvious benefit of using a parallel computer is the reduction in the running
time of the code. Therefore, when considering the performance of a parallel program on a
given machine, it is usually compared to the performance of the same program on a single
processor of that machine [99] [128] [126] [59]. A measure of the running time reduction
is given by the ratio of the execution time on a single processor (the sequential version)
to that on a multicomputer. This ratio is defined as the speedup factor and is given as

where ¢, is the execution time on a single processor and ¢, is the execution time on
a parallel computer using p processors. S(p) therefore describes the scalability of the
system as the number of processors is increased.

The ideal speedup is p when using p processors, i.e. when the computations can be
divided into equal duration processes with each process running on one processor (with
no communication overhead). This is called embarrassingly parallel computing.

A parallel program is considered to be quite good if its speedup is close to p.

In some cases, super-linear speedup (S(p) > p) may be encountered [59]. Usually this
is caused by either using a suboptimal sequential algorithm or some unique specification
of the hardware architecture that favors the parallel computation. For example, one
common reason for super-linear speedup is that the sub-problem size to be handled by
each processor core has become so small that it fits for a significant part into the cache of
that core. As the cache memory is much faster and, more important, the memory latency
is orders of magnitude lower, the waiting time for operands is much reduced, resulting in
a higher performance per core.

140 Measuring parallel performance

There are also more specific definition of speedup. One definition focuses on how much
faster a problem can be solved with p processors. Thus, it compares the best sequential
algorithm with the parallel one under consideration. This definition is referred as absolute
speedup:

t
Sa(p) _ be;tSeq
P
Another speedup, called relative speedup, deals with the inherent parallelism of the parallel
algorithm under consideration. It is defined as the ratio of elapsed time of the parallel
algorithm on one processor to elapsed time of the parallel algorithm on p processors:

Lip=1
Sr(p>: (i)
p

We can write the speedup in term of time required for the sequential and parallel
operations of a program.
Let T represent the time required for the sequential operations of a parallel program and
let T}, represent the amount of time required to complete all the operations that can be
done in parallel, but as done in sequentially. Thus, the total time for the program to
execute on a sequential machine should be computed as

Ty =T, +T,.
Now if p is the number of processor that this program can use in parallel, then the total
execution time in parallel can be computed as

T
ﬂot:Ts+_p-
b

Substituting the values for ¢ and ¢, into the previous equation for speedup yields

T AT,
]
T+ %

S(p)

B.1.1 Fixed-size speedup

This viewpoint emphasizes shortening the time a problem takes to solve by parallel pro-
cessing. With more and more computation power available, the problem can be solved
in less and less time. Speedup formulation based on this philosophy is called fized-size
speedup. The fixed-size speedup is based on relative speedup. Amdahl’s Law (see Subsec-
tion B.1.4) is an example of fixed-time speedup.

B.1.2 Fixed-time speedup

For some application we may have a time limitation, but we may not want to solve the
problem as soon as possible. If we have more computation power, we may want to increase
the problem size, do more operations, get a more accurate solution and keep the execution
time unchanged. This viewpoint leads to the speedup model called fized-time speedup [59].

One good example is weather forecasting. With more computation power, we may not
want give the forecast earlier. Rather, we may wish to add more factors into the weather
model giving a more precise forecast.

B.1 Speedup 141

Gustafson’s scaled speedup (see Subsection B.1.5) is a fixed-time speedup. It fixes the
response time and is interested in how large a problem could be solved within this time.

Another common definition of fixed-time speedup is the scaled speedup:

tp(w)

S)\()‘7p7w) =)\t)\p(Aw)J

w>0 A>1

where ¢,(w) is the execution time on p processors for running an algorithm with w data
and ty,(Aw) is the execution time on Ap processors for running the same algorithm with
Aw data.

The scaled speedup curve is a function of how the size of the problem is allowed to grow.
A good scaled speedup should be near to A.

B.1.3 Memory-bounded speedup

When solving an application with one processor, the problem size is more often bounded by
the memory limitation than by the execution time limitation. With more nodes available,
instead of keeping the execution time fixed, we may want to meet the memory capacity
and increase the execution time. In this case, when the problem size is scaled up with
system size, we speak of memory-bounded speedup.

B.1.4 Amdahl’s Law

Amdahl’s law, also known as Amdahl’s argument, is used to find the maximum expected
improvement to an overall system when only part of the system is improved. It is often
used in parallel computing to predict the theoretical maximum speedup using multiple
processors |73, because the speedup of a program using multiple processors in parallel
computing is limited by the time needed for the sequential fraction of the program.

According to [|1|, Amdahl’s law states that if « is the proportion that cannot be
parallelized (i.e. cannot benefit from parallelization) and (1 — «) is the proportion of a
program that can be made parallel (i.e. benefit from parallelization), then the maximum
speedup that can be achieved by using p processors is

In the limit, as p tends to infinity, the maximum speedup tends to 1/a. As an example,
if v is only 10%, the problem can be speed up by only a maximum of a factor of 10, no
matter how large the value of p used.

(1 —) can be estimated by using the measured speedup S(p) on a specific number of
processors p using

Pi_q) can be used in Amdahl’s law to predict speedup for a different number of processors.

142 Measuring parallel performance

B.1.5 Gustafson’ speedup model

It is often the case that one would like to solve a large problem or to gain a better accuracy
when mode processors are available instead of reducing the execution time. Based on this
thought Gustafson introduced a speedup model that scales up the workload with the
increasing number of processors in such a way to preserve the execution time.
According to [58] [73], the parallel fraction of the program (1 — «) is problem dependent.
Therefore, the normalized execution time on a single processor is expressed as:

ts=a+(1—a)p

and on p processors:
tp:a+—(1_a)p =1
p
Accordingly, the speed up is
Sp)=p—alp—-1)
In this model, the scalability analysis can be used to determine how far the problem
size can be scaled up with the increasing number of processors in order to preserve the

execution time.

B.2 Efficiency

The efficiency of a parallel system describes the fraction of the time that is being used by
the processors for a given computation, 7.e.how well-utilized the processors are in solving
the problem, compared to how much effort is wasted in communication and synchroniza-

tion [126] [99]. Tt is defined as
ts
E(p) —

() =~ o

where ¢ is the execution time using one processor and ¢, is the execution time using p
processors. By substituting in this equations the previous speedup formulation we obtain

An ideal value for E(p) would be 1, meaning S(p) = p and that the processors are
100% utilized throughout the execution of the program and there is not a parallelization
overhead. An efficiency of less than p is expected because not all parts of a program can
be run in parallel. For instance, input and output are often done by a single processor or
many time is spent in communication.

There are also more specific definition of efficiency, absolute efficiency and relative
efficiency, depending on which speedup, absolute or relative, we use.

B.3 Kuck’s function

The Kuck’s function refers to how advantageous the parallel implementation remains as
the number of processors increases. It is defined as

S2(p
p

~—

K(p)=S(p) x E(p) =

B.4 Cost 143

The maximizer of the Kuck’s function is interpreted as the largest number of processors
suitable for the parallel implementation to solve the given particular problem.

B.4 Cost

The cost of a computation [99] in a parallel environment is defined as the product of the
number of processors used times the total execution time:
C(p) =pxt,
The above equation can be written as a function of the efficiency:
t
Cp) = &
E(p)

B.5 Scaling efficiency

A common task in HPC [123] is measuring the scalability (also referred to as the scaling
efficiency) of an application. This measurement indicates how efficient an application is
when using increasing numbers of parallel processing elements (CPUs / cores / processes
/ threads / etc.).

There are two basic ways to measure the parallel performance of a given application,
depending on whether or not one is cpu-bound or memory-bound. These are referred to
as strong and weak scaling, respectively.

When scaling of parallel codes is discussed it is normally strong scaling that is being
referred to, that is for a fixed system size how does the time to solution vary with the
number of processors. Weak scaling, on the other hand, is how the time to solution varies
with processor count with a fixed system size per processor. So in a weak scaling study
when one doubles the number of processors one also doubles the system size.

B.5.1 Strong scaling

In this case the problem size stays fixed but the number of processing elements is increased.
This is used as justification for programs that take a long time to run (something that is
cpu-bound). The goal in this case is to find a "sweet spot" that allows the computation
to complete in a reasonable amount of time, yet does not waste too many cycles due to
parallel overhead.
In strong scaling, a program is considered to scale linearly if the speedup (in terms of
work units completed per unit time) is equal to the number of processing elements used
(p)-
In general, it is harder to achieve good strong-scaling at larger process counts since the
communication overhead for many /most algorithms increases in proportion to the number
of processes used.

If the amount of time to complete a work unit with 1 processing element is t,, and the
amount of time to complete the same unit of work with p processing elements is ¢,, the
strong scaling efficiency (as a percentage of linear) is given as:

SSE(p) =p x i—p x 100%.

S

144 Measuring parallel performance

B.5.2 Weak scaling

In this case the problem size (workload) assigned to each processing element stays constant
and additional elements are used to solve a larger total problem (one that wouldn’t fit in
RAM on a single node, for example). Therefore, this type of measurement is justification
for programs that take a lot of memory or other system resources (something that is
memory-bound).
In the case of weak scaling, linear scaling is achieved if the run time stays constant while
the workload is increased in direct proportion to the number of processors.
Most, programs running in this mode should scale well to larger core counts as they
typically employ nearest-neighbour communication patterns where the communication
overhead is relatively constant regardless of the number of processes used; exceptions
include algorithms that employ heavy use of global communication patterns, e.g.FFTs
and transposes.

If the amount of time to complete a work unit with 1 processing element is t,, and
the amount of time to complete p of the same work units with p processing elements is
t,, the weak scaling efficiency (as a percentage of linear) is given as:

WSE(p) = ’i—p « 100%

S

B.6 Full timing model

A parallel system is defined as a combination of a parallel algorithm and parallel archi-
tecture on which the algorithm is implemented. Therefore, performance of the parallel
system should consider the parallel architecture as well as the algorithm.

This is the underlying concept of DUSD model (see Section B.7). The execution time
in DUSD model is based on three hardware and three software parameters, named as

3-parameter timing model [67]. This execution time of a parallel program on N problem
size using p processors is |07] [128] [73]:
s*(N;p s°(N;p e e
T(N;p) = <TS) + (TC) +t59°(N; p)

where the hardware parameters are:
e 15 is the computation rate (flop/s);
e 7% is the asymptotic communication bandwidth (byte/s);
e {{ is the message latency (s);
and the program parameters are:
e s°(N;p) is the number of floating point operations (flop);
e s°(N;p) is the the number of words being communicated (byte);

e ¢°(N;p) is the number of communications (1);

B.7 Dimensionless Universal Scaling Diagram (DUSD) 145

Now assume that the functions s*(N;p), s°(N;p) and ¢°(N;p) are separable in N and p.
We can write T'(N;p) as

(v = S50 | A0

o0

+ toqn (N) g, (p) (B.1)

By differentiating (B.1) with respect to p and setting

T (N;p)

=0
op

we are able to find the optimum p* and therefore an optimal temporal performance

1

Fr = T*(N;p*(N))

which is only dependent on N.

B.7 Dimensionless Universal Scaling Diagram (DUSD)

By making (B.1) dimensionless we can reduce the number of parameter in out timing
model from three hardware parameters (75, t§) and three software parameters (s°(N;p)
s(N;p) ¢¢(N;p)) to only two dimensionless ratio [128] [73]. This is achieved by divid-
ing (B.1) by t5¢%(N); the resulting equation is termed as dimensionless execution time

expressed as:

T(N;p) = d355(p) + d255(p) + ¢ (p) (B.2)

with)
s (N

So(N; 6, re)) = —N

(N o) = e (N,
sy(V)

O3(N; 6, rs) = — N2

SN 1) = e Nt

where &5 represents the dimensionless message length and 63 is the dimensionless work.
Hockney defined a parameter that represents the ratio of d3 and &y as dimensionless
computational intensity o, that is formulated as:

s (N) (rc)
0 (N;tg,15) = N
{3 o) = S

Substituting d; into (B.2) yields the following expression:

T(N:p) = dusi(0) + 2255(0) + 50 (B.3)

The optimum number of processors in order to achieve a minimum execution time is
computed by differentiating the dimensionless execution time in (B.3) with regards to the
optimum number of processors.

146 Measuring parallel performance

Speedup of the parallel program is quantified by comparing execution time on a sin-
gle processor to execution time on optimum number of processors. Hence, in terms of
dimensionless time the speedup is defined as:

T(N;1)
Sp(N;p) = =7 (B4)
" T(N:p)
with
T(N;1) = d3s5(1) (there is no communication)

Sp(02, 03, p) can be expressed in term of dy 3 as follows:

(5382(1)
d355(p) + 0255(p) + q5(p)

Sp<527 537p) -

and for optimum p:

Sp(02, 03, (02, 03)) = e
pl02, 03, P\02, 03 §3sz(ﬁ)+525§(ﬁ)+q5(ﬁ)

We can also write the speedup formula for optimum number of processors in terms of
91 and J3 substituting (B.3) in (B.4):

sp(1)
S, (61, 63,) = 5 (7) (B.5)
o1 s5(p) 03 s5(P)

The representation of the this speedup can be conveniently done in a 2-D graph where
the variables on the axes are §; = d3/d, and d,. This graph is calls Dimensionless Universal
Scaling Diagram (DUSD).

Any programs that posses the same ratios d, and d3 ((51)~ will have the same optimum

number of processors p and the same optimum speedup S,. Such programs all called
Computationally Similar.

List of Figures

1.1
1.2

2.1

2.2

2.3
2.3
2.4
2.5
2.6

2.7
2.7
2.8
2.9

3.1
3.2
3.3
3.4

4.1
4.2
4.3

4.4
4.5

5.1
5.2
5.3
5.4
)

Pictorial representations of 3D arrays Hg. 23
Pictorial representations of 3D arrays Hp. 25

3D volume used to generate the sparsity structures of the Jolnv matrices

shown in the next spy plots. oL 30
Sparsity structures of the discrete spatial derivative operator G,, (forward

difference). 33
Sparsity structures of matrices C; (forward difference) (cont.). 40
Sparsity structures of matrices C; (forward difference) (cont.). 41
Pattern of the matrices [C1d Cod ... Cyd]. . . o o o o 0000 0oL 43
Sparsity structures of V2 MIX and of its blocks. 44
Sparsity structures of the discrete spatial derivative operator G, (central

difference). 47
Sparsity structures of matrices C; (central difference) (cont.). 51
Sparsity structures of matrices C; (central difference) (cont.). 52
Pattern of the matrices [C1d Cod ... Cyd]. . . . o o o o000 0oL 56
Sparsity structures of VZ, MIX and of its blocks. 57
The streamlined Matlab flowchart. 60
Relationship between some well known scientific libraries. 62
Streamlined JoInv call graph. 64
JoInv functions calls from the end user point of view. 67
The layered graph of the product ABC. 7
The sparse matrix products ABC.. 79

MPIT communications between three processes (P0, P1, P2) when running
findNnz_mpi() and findNnzRec_mpi() functions. Rectangle shapes indi-
cate MPI blocking calls; split arrows indicate nonblocking send and receives

calls. . . Lo 83
The parallel sparse matrix product ABC.. 84
Scalasca screenshot of the runtime behavior of Algorithm 4.4 and Algo-

rithm 4.5, e 92
Outline of the steplength implementation. 107
Outline of the BZZ scaling matrix implementation. 108
SGP test images. e 111
SGP duplicated test images. L o 112
SGP execution times on various dataset. 113

148 LIST OF FIGURES
5.5 SGP execution times on various dataset (cont.). 114
5.6 SGP relative speedup measured on various dataset. 115
5.7 SGP efficiency measured on various dataset. 116
5.8 SGP Kuck’s function measured on various dataset. 117
5.9 SGP scaled speedup. 118
5.10 DUSD model on SGP 121
6.1 Synthetic dataset used for Jolnv performance evaluation. 123
6.2 Jolnv execution times. Lo 124
6.3 Jolnv speedup. L 125
6.4 Jolnv efficiency. 125
6.5 Jolnv Kuck’s function.o 126
A.1 Organization of the PETSc Libraries. 135
A.2 Numerical libraries of PETSc. 135
A.3 Compressed Sparse Row format (CSR). 136
A4 TAO design. o 137

List of Tables

3.1 Common scientific libraries available and their features. 61
3.2 Jolnv misfit, regularization,joining term, and TAO options. 71
3.3 Jolnv, input and output options.o 72
3.4 Jolnv monitor options.o 73
4.1 Time complexity of findNnz and findNnzRec functions. 82
4.2 Execution time of the parallel Algorithm 4.4 and Algorithm 4.5. 90
5.1 IBM-SP6 hardware parameters. 119

5.2 DUSD parameters for SGP 0oL 120

150 LIST OF TABLES

List of Algorithms

4.1
4.2
4.3
4.4
4.5

5.1
5.2

Find nonzero structure of matrix products (pseudo-code) Part 1 7
Find nonzero structure of matrix products (pseudo-code) — Part 2 78
Calculate nonzero structure of matrix product (parallel pseudo-code); func-

tion findNnz_mpi (). 86
Recursively compute the structure of matrix product (parallel pseudo-

code); function findNnzRec_mpi() - part 1. 88
Recursively compute the structure of matrix product (parallel pseudo-

code); function, findNnzRec_mpi() - part 2. 89
SGP (Scaled Gradient Projection Method Algorithm) 95
SGP Steplength Selection o Lo 98

152 LIST OF ALGORITHMS

List of Listings

3.1

4.1

4.2

5.1

5.2

2.3

5.4

2.5

5.6

5.7

0.8

Example of Jolnv application code. After any call you should check the
value of errInfo because the functions return a nonzero error code when

they fail; here is not done for the sake of simplicity. 67
Find nonzero structure of a matrix product.

(C -function findNnz) 80
Find nonzero structure of a matrix product.

(C -function findNnzRec) o v i 81
Context for Scaled Gradient Projection method.

(Actual source code sgp.h) L 99
SGP solver routine.

(Actual source code Sgp.C) 100
SGP creation routine.

(Actual source code Sgp.C) Lo 102
SGP setup routine.

(Actual source code SgP.C)o 103
SGP destroy routine.

(Actual source code sgp.c) 104
SGP set options routine.

(Actual source code Sgp.C) o 104
SGP view routine.

(Actual source code SgP.C)o 105

A piece of the struct _p_TAO_SOLVER.
(Actual source code /src/tao_impl.h) 106

154 LIST OF LISTINGS

Bibliography

[1]

2]

3]

4]

5]

[6]

7]

18]

[9]

[10]

Gene Myron Amdahl. Validity of single-processor approach to achieving large-
scale computing capability. In Proceedings of the AFIPS, Spring Joint Computer
Conference, pages 483-485, 1967.

Richard Aster, Brian Borchers, and Clifford Thurber. Parameter Estimation and
Inverse Problems. International Geophysics Series. Academic Press, Burlington,

MA, USA, 2005.

A. B. Bakushinsky and A. V. Goncharsky. Ill-Posed Problems. Theory and Appli-
cations, volume 301 of Mathematics and Its Applications. Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 1994.

Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong
Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 3.0.0, Ar-
gonne National Laboratory, 2008.

Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G.
Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc web
page, 2009. www.mcs.anl.gov/petsc.

Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Effi-
cient management of parallelism in object oriented numerical software libraries. In
E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in
Scientific Computing, pages 163-202. Birkh&user Press, 1997.

Jonathan Barzilai and Jonathan Michael Borwein. Two point step size gradient
methods. IMA J. of Numer. Anal., 8(1):141-148, 1988.

Steve Benson, Lois Curfman Mclnnes, Jorge Moré, Todd Munson, and Jason
Sarich. TAO user manual (revision 1.9). Technical Report ANL/MCS-TM-242,
Mathematics and Computer Science Division, Argonne National Laboratory, 2007.
www.mcs.anl.gov/tao.

F. Benvenuto, Riccardo Zanella, Luca Zanni, and Mario Bertero. Nonnegative
least-squares image deblurring: improved gradient projection approaches. Inverse
Problems, 26(2):025004, February 2010.

E. van den Berg, M. P. Friedlander, G. Hennenfent, F. Herrmann, R. Saab, and
O. Yilmaz. Sparco: A testing framework for sparse reconstruction. Technical Report

156

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]
|16]

[17]

18]

[19]

[20]

21]

22]

23]

[24]

TR-2007-20, Dept. Computer Science, University of British Columbia, Vancouver,
October 2007. www.cs.ubc.ca/labs/scl/sparco/index.php/Main/HomePage.

Mario Bertero, Patrizia Boccacci, , Gabriele Desidera, and G. Vicidomini. Image
deblurring with poisson data: from cells to galaxies. Inverse Problems, 25:123006,
20009.

Mario Bertero and Patrizia Boccacci. Introduction to Inverse Problems in Imaging.
Institute of Phisics Publ., Bristol, UK, 1998.

Mario Bertero, Patrizia Boccacci, Giorgio Talenti, Riccardo Zanella, and Luca
Zanni. A discrepancy principle for poisson data. Inverse Problems, 26(10):105004,
October 2010.

Mario Bertero, H. Lantiéri, and Luca Zanni. Iterative image reconstruction: a point
of view. In Proc. of “Mathematical Methods in Biomedical Imaging and Intensity-
Modulated Radiation Therapy (IMRT)”, Pisa, Italy, 2007. Pubbl. Centro De Giorgi.

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, 1999.

Lawrence Livermore National Laboratory Blaise Barney. Message Passing Interface
(MPI), 2010. https://computing.lInl.gov/tutorials/mpi/.

Silvia Bonettini and Valeria Ruggiero. A discrepancy principle for Poisson data:
uniqueness of the solution for 2D and 3D data. Technical Report 195, Department
of Mathematics, University of Ferrara, Italy, 2010.

Silvia Bonettini and Valeria Ruggiero. On the uniqueness of the solution of image
reconstruction problems with Poisson data. In ICNAAM 2010: International Con-
ference on Numerical Analysis and Applied Mathematics 2010, volume 1281 of AIP
conference proceedings, pages 1803—1806. Institute of Phisics Publ., 2010.

Silvia Bonettini, Riccardo Zanella, and Luca Zanni. A scaled gradient projection
method for constrained image deblurring. Inverse Problems, 25(1):015002, January
20009.

Nicolas Bourbaki. Algebre, Chap. I, Algébre Miltilinéaire. Herman, Paris, France,
1948.

Paola Brianzi, Fabio Di Benedetto, and Claudio Estatico. Improvement of space-
invariant image deblurring by preconditioned landweber iterations. SIAM J. Scien-
tific Computing, 30:1430-1458, 2008.

Rogério Brito. The official manual for the algorithms package, 2009. www.ctan.
org/get/macros/latex/contrib/algorithms/algorithms.pdf.

Edith Cohen. Structure prediction and computation of sparse matrix products.
Journal of Combinatorial Optimization, 2:307-332, 1999.

D. Colombo and M. De Stefano. Geophysical modeling via simultaneous joint in-
version of seismic, gravity, and electromagnetic data: Application to prestack depth

imaging. The Leading Edge, 26(3):326-331, March 2007.

BIBLIOGRAPHY 157

[25]

26]

27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

138

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction To Algorithms. The MIT Press, Cambridge, MA, USA, 2nd edition,
2001.

J. Dahl, P.C. Hansen, S.H. Jensen, and T.L. Jensen. Algorithms and software for

total variation image reconstruction via first-order methods. Numerical Algorithms,
53:67 92, 2010.

Yu-Hong Dai and Roger Fletcher. New algorithms for singly linearly constrained
quadratic programming problems subject to lower and upper bounds. Math. Pro-
gramming, 106(3):403-421, 2006.

Yu-Hong Dai, William W. Hager, Klaus Schittkowski, and Hongchao Zhang. The
cyclic Barzilai-Borwein method for unconstrained optimization. IMA J. Numer.
Anal., 26:604-627, 2006.

Philip J. Davis. Circulant Matrices. John Wiley & Sons, New York, NY, USA,
1979.

JR De Mey, P Kessler, Julien Dompierre, FP Cordelires, Alain Dieterlen,
JL. Vonesch, and Jean-Baptiste Sibarita. Fast 4D microscopy. Methods in Cell
Biology, 85:83-112, 2008.

Nicolas Dey, Laure Blanc-Féraud, Christophe Zimmer, Zvi Kam, Pascal Roux, Jean-
Christophe Olivo-Marin, and Josiane Zerubia. Richardson-Lucy algorithm with
total variation regularization for 3D confocal microscope deconvolution. Microscopy
Research Technique, 69:260-266, April 2006.

Nicolas Dey, Laure Blanc-Féraud, Christophe Zimmer, Pascal Roux, Zvi Kam, Jean-
Christophe Olivo-Marin, and Josiane Zerubia. 3D microscopy deconvolution using
Richardson-Lucy algorithm with total variation regularization. Research Report
RR-5272, INRIA, Sophia Antipolis Cedex, France, 2004.

Fabio Di Benedetto. The mth difference operator applied to [? functions on a finite
interval. Linear Algebra and its Applications, 366:173 198, 2003.

Fabio Di Benedetto, Claudio Estatico, and Stefano Serra Capizzano. Superoptimal
preconditioned conjugate gradient iteration for image deblurring. SIAM J. Scientific
Computing, 26:1012—-1035, 2005.

Heinz W. Engl, Martin Hanke, and Andreas Neubauer. Regularization of Inverse
Problems, volume 375 of Mathematics and Its Applications. Kluwer Academic Publ.,
Dordrecht, The Netherlands, 2000.

Joel Feldman and Gunther Uhlmann. [Inverse problems. http://www.math.ubc.
ca/~“feldman/ibook, 2005.

Roger Fletcher. On the Barzilai-Borwein method. Technical Report NA /207, Uni-
versity of Dundee, 2001.

MPI Forum. Message Passing Interface (MPI) forum home page. www.mpi-forum.
org.

158

BIBLIOGRAPHY

[39]

|40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

Lloyd D. Fosdick, Carolyn J. C. Schauble, and Elizabeth R. Jessup. Computer
performance: a tutorial, 1994.

Giacomo Frassoldati, Gaetano Zanghirati, and Luca Zanni. New adaptive step-

size selections in gradient methods. J. of Indutrial and Management Optimization,
4(2):299 312, 2008.

Ana Friedlander, José Mario Martinez, Brigida Molina, and Marcus Raydan. Gradi-
ent method with retards and generalizations. SIAM Journal on Numerical Analysis,
36(1):275-289, 1998.

Michael P. Friedlander and Kathrin Hatz. Computing non-negative tensor factor-
izations. Optimization Methods € Software, 23(4):631 647, August 2008.

Luis Alonso Gallardo. Joint two-dimensional inversion of geoelectromagnetic and
setsmic refraction data with cross-gradients constraint. PhD thesis, Lancaster Uni-
versity, 2004.

Luis Alonso Gallardo. Multiple cross-gradient joint inversion for geospectral imag-
ing. Geophys. Res. Lett., 34:1.19301, 2007.

Luis Alonso Gallardo and M. A. Meju. Characterization of heterogeneous near-
surface materials by joint 2d inversion of dc resistivity and seismic data. Geophys.
Res. Lett., 30(13):1658—-1-4, 2003.

Luis Alonso Gallardo and M. A. Meju. Joint two-dimensional dc resistivity and
seismic travel time inversion with cross-gradients constraints. J. Geophys. Res.,
109:03311, 2004.

Luis Alonso Gallardo and M. A. Meju. Joint 2d cross-gradient imaging of magne-
totelluric and seismic travel-time data for structural and lithological classification.
Geophys. J. Int., 169:1261-1272, 2007.

Luis Alonso Gallardo, M. A. Meju, and Marco A. Perez-Flores. A quadratic pro-
gramming approach for joint image reconstruction: mathematical and geophysical
examples. Inverse Problems, 21:435-452, 2005.

Luis Alonso Gallardo, Marco A. Perez-Flores, and Enrique Gomez-Trevino. A ver-
satile algorithm for joint 3-d inversion of gravity and magnetic data. Geophysics,
68:949-959, 2003.

Donald Geman and Chengda Yang. Nonlinear image recovery with half-quadratic
regularization. IEEE Trans. Image Proc., 4(7):932-946, July 1995.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions and
the bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6(6):721-741, November 1984.

John R. Gilbert. Predicting structure in sparse matrix computations. SIAM J.
Matriz Anal. Appl, 15:62-79, 1994.

BIBLIOGRAPHY 159

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

|62]

[63]

|64]

[65]

[66]

|67]

[68]

John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in Matlab:
Design and implementation. STAM J. Matriz Anal. Appl, 13:333 356, 1992.

John R. Gilbert, Esmond G. Ng, and G. Ng. Predicting structure in nonsymmetric
sparse matrix factorizations. In Graph Theory and Sparse Matriz Computation,
pages 107-139. Springer-Verlag, 1992.

Luigi Grippo, Francesco Lampariello, and Stefano Lucidi. A nonmonotone line
search technique for Newton’s method. SIAM Journal on Numerical Analysis,
23(4):707-716, 1986.

Charles W. Groetsch. Inverse Problems in the Mathematical Sciences. Informatica
International, Inc., Vieweg, Braunschweig, 1993.

A. Guillem and V. Manichetti. Gravity and magnetic inversion with minimization
of specific functional. Geopysics, 49(8):1354-1360, August 1984.

John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31:532 533, May
1988.

John L. Gustafson. Fixed time, tiered memory, and superlinear speedup. In Pro-
ceedings of the Fifth Distributed Memory Computing Conference (DMCC5), 1990.

Eldad Haber, Uri M. Ascher, and Doug Oldenburg. 3-d electromagnetic inversion
based on quasi-analytical approximation. Inverse Problems, 16(5):1297-1322, Oc-
tober 2000.

Eldad Haber and Doug Oldenburg. Joint inversion: A structural approach. Inverse
Problems, 13:63 77, 1997.

Jaques Hadamard. Sur les problémes aux dérivées et leur signification physique.
Bulletin of the Princeton University, 13(1-20), 1902.

Jaques Hadamard. Lectures on Cauchy’s Problem in Linear Partial Differential
FEquations. Yale University Press, New Haven, CT, USA, 1923.

Martin Hanke and Per Christian Hansen. Regularization methods for large-scale
problems. Surveys of Mathematics for Industry, 3:253-315, 1993.

Per Christian Hansen. Rank-deficient and discrete ill-posed problems: numerical as-
pects of linear inversion. Monographs on Mathematical Modeling and Computation.
SIAM, Philadelphia, PA, USA, 1998.

Per Christian Hansen, James G. Nagy, and Dianne P. O’Leary. Deblurring Images.
Matrices, Spectra and filtering. STAM, Philadelphia, PA, USA, 2006.

Roger W. Hockney. The Science of Computer Benchmarking. STAM, Philadelphia,
PA, USA, 1996.

M. Jacobsen. Modular Regularization Algorithms. PhD thesis, Informatics and
Mathematical Modelling, Technical University of Denmark, DTU, Richard Petersens
Plads, Building 321, DK-2800 Kgs. Lyngby, 2004. Supervised by Prof. Per Christian
Hansen.

160

BIBLIOGRAPHY

[69]

[70]

[71]

[72]

73]

[74]

|75]

[76]

7]

78]

[79]

[80]

81]

82]

Nathan Jacobson. Lecturs in Abstract Algebra. Vol. 2. Linear Algebra. Van Nos-
trand, Princeton, N.J, USA, 1953.

Emory University James Nagy. RestoreTools - An Object Oriented Matlab Package
for Image Restoration, 2007. www.mathcs.emory.edu/ nagy/RestoreTools/.

T. K. Jensen. Stabilization Algorithms for Large-Scale Problems. PhD thesis, In-
formatics and Mathematical Modelling, Technical University of Denmark, DTU,
Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, 2006. Supervised by
Per Christian Hansen, IMM.

T. L. Jensen, J. H. Jorgensen, P. C. Hansen, and S. H. Jensen. Implementation of
an optimal first-order method for strongly convex total variation regularization. In

submitted to BIT, 2011.

Maria A. Kartawidjaja. Analyzing scalability of parallel matrix multiplication using
DUSD. Asian Journal of Information Technology, 9:78-84, 2010.

Joseph B. Keller. Inverse problems. American Mathematical Monthly, 83:107 118,
1976.

Samir Khuller and Uzi Vishkin. On the parallel complexity of digraph reachability,
December 1994.

Andreas Kirsch. An introduction to the mathematical theory of inverse problems,
volume 120 of Applied Mathematical Sciences. Springer-Verlag, New York, NY,
USA, 1996.

Andreas Kirsch and Natalia Grinberg. The Factorization Method for Inverse Prob-
lems, volume 36 of Ozford Lecture Series in Mathematics and its Applications. Ox-
ford University Press, New York, NY, USA, 2008.

Rainer Kress. Linear Integral Equations, volume 82 of Applied Mathematical Sci-
ences. Springer-Verlag, New York, NY, USA, 2nd edition, 1999.

Germana Landi and Elena Loli Piccolomini. A fast projected quasi-Newton method
for nonnegative Tikhonov regularization. International J. of Mathematics and Com-
puter Science, 3(3):199-213, 2008.

Germana Landi and Elena Loli Piccolomini. An algorithm for image denoising with
automatic noise estimate. J. of Mathematical Imaging and Vision, 34(1):98 106,
2009.

Germana Landi, Elena Loli Piccolomini, and Fabiana Zama. A Total Variation-
based reconstruction method for dynamic MRI. Computational and Mathematical
Methods in Medicine, 9(1):69 80, 2008.

B. J. Last and K. Kubik. Compact gravity inversion. Geophysics, 48(6):713-721,
June 1983.

BIBLIOGRAPHY 161

[83]

[84]

85]

[86]

[87]

83

[89]

[90]

|91

192]

93]

194]

|95]

[96]

[97]

Roy Lopamudra, Mrinal K. Sen, Kirk McIntosh, Paul L. Stoffa, and Yosio Naka-
mura. Joint inversion of first arrival seismic travel-time and gravity data. J. Geo-
physics and Engineering, 2(3):277 290, 2005.

I. Loris, Mario Bertero, Christine de Mol, Riccardo Zanella, and Luca Zanni. Accel-
erating gradient projection methods for ¢;-constrained signal recovery by steplength
selection rules. Applied and Computational Harmonic Analysis, 27:247-254, 2009.

Shuai Lu, Sergei V. Pereverzev, and Ronny Ramlau. An analysis of Tikhonov regu-
larization for nonlinear ill-posed problems under a general smoothness assumption.
Inverse Problems, 23(1):217 230, February 2007.

Leon B. Lucy. An iterative technique for the rectification of observed distributions.
Astronom. J., 79:745-754, 1974.

Robert E. Lynch, John R. Rice, and Donald H. Thomas. Direct solution of partial
difference equations by tensor product methods. Numerische Mathematik, 6:185—
199, 1964.

Robert E. Lynch, John R. Rice, and Donald H. Thomas. Tensor product analysis
of alternating direction implicit methods. SIAM J., 6:185-199, 1964.

M. Maceira, C. A. Rowe, B. Borchers, and L. K. Steck. Simultaneous joint inversion
of multiple geophysical data sets and 3d tomography. In AGU Fuall Meeting 2008,
pages S23A-1868. American Geophysical Union, 2008.

Marvin Marcus. Basic Theorems in Matriz Theory, volume 57 of Applied Mathe-
matics Series. National Bureau of Standards, Washington, D.C., USA, 1960.

ANL Mathematics and Computer Science Division. The Message Passing Interface
(MPI) standard, 2010. www.mcs.anl.gov/research/projects/mpi/.

Keith Miller. Least squares methods for ill-posed problems with a prescribed bound.
SIAM J. on Mathematical Analysis, 1(52 74), 1970.

Jean-Michel Morel and Sergio Solimini. Variational methods in image segmentation,
volume 14 of Progress in Nonlinear Differential Equations and Their Applications.
Burkh auser, Boston, MA, USA, 1995.

V. A. Morozov. On the solution of functional equations by the method of regular-
ization. Soviet Dokledy Mathematics, 7(414-417), 1966.

V. A. Morozov. Regularization Methods for Ill-Posed Problems. CRC Press, Boca
Raton, Florida, USA, 1993.

David Mumford and Jayant Shah. Boundary detection by minimizing functionals.
In Proc. IEEE Conference on Computational Vision and Pattern Recognition, pages
22-26, 1985.

David Mumford and Jayant Shah. Optimal approximations by piecewise smooth
functions and associated variational problems. Comm. Pure Appl. Math., 42:577—
685, 19809.

162

BIBLIOGRAPHY

98]

199]

[100]

[101]

[102]

[103]

[104]

[105]

106

107]

108

109

[110]

111]

112]

Frank Natterer. The mathematics of computerized tomography, volume 32 of Classics
in Applied Mathematics. STAM, Philadelphia, PA, USA, 2001.

CFD online. Parallel computing. www.cfd-online.com/Wiki/Parallel_
computing.

Charles Emile Picard. Sur un théoréme générale relatif aux équations intégrales de
premiére espéce et sur quelques problémes de physique mathématique. Rendicont:
del Circolo Matematico di Palermo, 29(79-97), 1910.

N. Polydorides. Image Reconstruction Algorithms for Soft-Field Tomography. PhD
thesis, Manchester University, 2002.

Oleg Portniaguine and Michael S. Zhdanov. Focusing geophysical inversion images.
Geophysics, 64(3):874-887, 1999.

Ronny Ramlau. TIGRA an iterative algorithm for regularizing nonlinear ill-posed
problems. Inverse Problems, 19(2):433-465, 2003.

Ronny Ramlau. Regularization of Nonlinear Ill-Posed Operator Equations: Methods
and Applications. PhD thesis, Center of Technomathematics, Bremen, Germany,
January 2004.

Ronny Ramlau and G. Teschke. Tikhonov replacement functionals for iteratively
solving nonlinear operator equations. Inverse Problems, 21(5):1571 1592, 2005.

Alexander G. Ramm. [Inverse Problems. Mathematical and Analytical Techniques

with Applications to Engineering. Springer Science + Business Media, Inc., Boston,
MA, USA, 2005.

William Hadley Richardson. Bayesian-based iterative method of image restoration.
J. Opt. Soc. Amer. A, 62(1):55-59, 1972.

Liam Roditty and Uri Zwick. Improved dynamic reachability algorithms for directed
graphs. In Foundations of Computer Science, pages 679-688, 2002.

Valeria Ruggiero, Thomas Serafini, Riccardo Zanella, and Luca Zanni. Iterative
regularization algorithms for constrained image deblurring on graphics processors.
Journal of Global Optimization, 48:145-157, 2010.

Maria Saxild-Hansen. AIR Tools - A matlab Package for Algebraic Iterative Recon-
struction Techniques. PhD thesis, Technical University of Denmark, Department of
Informatics and Mathematical Modeling, Scientific Computing, 2010.

Thomas Serafini, Gaetano Zanghirati, and luca Zanni. Gradient projection meth-
ods for quadratic programs and applications in training support vector machines.
Optimization Methods and Software, 20(2-3):343-378, 2005.

Larry A. Shepp and Yehuda Vardi. Maximum likelihood reconstruction for emission
tomography. IEEE Transaction on Medical Imaging, 1(2):113-122, 1982.

BIBLIOGRAPHY 163

[113]

[114]

115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Jean-Baptiste Sibarita. Deconvolution microscopy. Adv. Biochem. Eng./Biotechnol.,
95:201 243, 2005.

Derrick Stolee, Chris Bourke, and N. V. Vinodchandran. A log-space algorithm
for reachability in planar acyclic digraphs with few sources. In Proceedings of the
2010 IEEE 25th Annual Conference on Computational Complexity, CCC 10, pages
131 138, Washington, DC, USA, 2010. IEEE Computer Society.

Gilbert Strang. The discrete cosine transform. SIAM Review, 41(1):135-147, 1999.

Wei-Jia Su and Adam M. Dziewonski. Simultaneous inversion for 3-d variations in
shear and bulk velocity in the mantle. Physics of The FEarth and Planetary Interiors,
100(1 4):135 156, March 1997.

Xian-He Sun and Lionel M. Ni. Another view on parallel speedup. Proceedings of
the 1990 ACM/IEEE conference on Supercomputing, pages 324-333, 1990.

Cineca support. Cineca sp6 user guide. hpc.cineca.it/content/
ibm-sp6-user-guide.

Albert Tarantola. Inverse Problem Theory and Methods for Model Parameter Esti-
mation. SIAM, Philadelphia, PA, USA, 2005.

Open MPI Team. Open MPI: Open Source High Performance Computing, 2010.
WWW.open-mpi.org/.

Scalasca team. Cube, a performance report explorer for scalasca. /www.
fz-juelich.de/jsc/datapool/scalasca/CubeGuide.pdf.

Scalasca team. Scalasca, a software tool that supports the performance optimization
of parallel programs by measuring and analyzing their runtime behavior. www.
scalasca.org/start.html.

SharcNet Team. Measuring parallel scaling performance. www.sharcnet.ca/help/
index.php/Measuring_Parallel_Scaling_Performance.

Andrei Nikolaevich Tikhonov and Vasilt IA kovlevich Arsenin. Solutions of ill-posed
problems. John Wiley & Sons, Winston, UK, 1977.

V. F. Turchin, V. P. Kozlov, and M. S. Malkevich. The use of mathematical-
statistics methods in the solution of incorrectly posed problems. Soviet Physics
Uspekhi, 13(6):681-703, 1971.

Aad J. van der Steen. Lecture 1: Metrics, methodology and presentation of results.
/www.phys.uu.nl/"steen/vecp2k.html.

Aad J. van der Steen. Lecture 2: Low-level performance parameters and bench-
marks. /www.phys.uu.nl/"steen/vecp2k.html.

Aad J. van der Steen. Lecture 5: Scaling and computational similarity. www.phys.
uu.nl/"steen/vecp2k.html.

164 BIBLIOGRAPHY

[129] Giulio Vignoli. Focusing Inversion Techniques - Theory And Applications To Trav-
eltime Tomography And Electrical Impedance Tomography. PhD thesis, Ferrara
University, 2005.

[130] Giulio Vignoli and Giuseppe Pagliara. Focusing inversion techniques applied to
electrical resistance tomography in an experimental tank. arXiv:physics, 0606234:1
4, 2006.

[131] Giulio Vignoli and L. Zanzi. Focusing inversion technique applied to radar tomo-
graphic data. arXiv:physics, 0606243:1-4, 2006.

[132] Giulio Vignoli and Michael S. Zhdanov. Sharp boundary imaging in croswell seismic
tomography. In Proc. Ann. Mtg. Consortium for Electromagnetic Modeling and
Inversion, pages 155-172, 2004.

[133] Giulio Vignoli and Michael S. Zhdanov. Sharp boundary inversion in 3-d traveltime
tomography. In Proc. Ann. Mtg. Consortium for Electromagnetic Modeling and
Inversion, pages 229-243, 2005.

[134] Curtis R. Vogel. Computational methods for inverse problems, volume 10 of Fron-
tiers in Applied Mathematics. STAM, Philadelphia, PA, USA, 2002.

[135] Piotr Wendykier. High Performance Java Software for Image Processing. PhD
thesis, James T. Laney School, 2009.

[136] Piotr Wendykier and James G. Nagy. Large-scale image deblurring in Java. In
Marian Bubak, Geert Dick van Albada, Jack Dongarra, and Peter M. A. Sloot,
editors, Proceedings of the 8th International Conference on Computational Science
- I1CCS 2008, Krakow, Poland, 2008. Springer.

[137] Piotr Wendykier and James G. Nagy. Parallel COLT: A high-performance Java
library for scientific computing and image processing. ACM Transaction on Math-
ematical Software, 37(3):1-22, September 2010.

[138] Stephen J. Wright, Robert D. Nowak, and Mario A. T. Figueiredo. Sparse recon-
struction by separable approximation. IEEE Trans. Signal Process., 57(7):2479—
2493, 2009.

[139] Riccardo Zanella. Scaled Gradient Projection methods for image and signal recon-
struction. PhD thesis, University of Modena and Reggio Emilia, 2009.

[140] Riccardo Zanella, Patrizia Boccacci, Luca Zanni, and Mario Bertero. Efficient gra-

dient projection methods for edge-preserving removal of poisson noise. Inverse
Problems, 25(4):045010, April 2009.

[141] Luca Zanni. An improved gradient projection-based decomposition technique for
support vector machines. Computational Management Science, 3:131-145, 2006.

[142] Michael S. Zhdanov. Geophysical Inverse Theory and Regularization Problems.
North-Holland /American Elsevier, Amsterdam, NL, 2002.

BIBLIOGRAPHY 165

[143] Michael S. Zhdanov and Gabor Hursan. 3-d electromagnetic inversion based on
quasi-analytical approximation. Inverse Problems, 16(5):1297 1322, October 2000.

[144] Michael S. Zhdanov and Ekaterina Tolstaya. ~ Minimum support nonlinear
parametrization in the solution of 3-d magnetotelluric inverse problems. Inverse
Problems, 20:937 952, 2004.

[145] Michael S. Zhdanov, Giulio Vignoli, and T. Ueda. Sharp boundary inversion in
crosswell travel-time tomography. J. Geophysics and Engineering, 3(2):122 134,
2006.

[146] Bin Zhou, Li Gao, and Yu-Hong Dai. Gradient methods with adaptive step-sizes.
Comput. Optim. Appl., 35(1):69 86, 2006.

166 BIBLIOGRAPHY

Acknowledgements

My warmest thanks to the CINECA Supercomputing Center (Casalecchio di Reno, Ttaly),
for having provided me with both the financial and the technical support during the three
years of my Ph.D.: it has been an exciting experience, which would be wonderful to
continue. But on top of this experience, my profound gratitude goes to Dr. Giovanni
Erbacci, head of the CINECA’s HPC Team: he trusted my research project and let my
hope for study and research activities became the reality.

I'm extremely grateful also to Dr. Giulio Vignoli, currently assistant professor at the
Earth Sciences Department, King Fahd University of Petroleum and Minerals, Dhahran,
Saudi Arabia, that involved me in his enthusiastic passion for the joint inversion idea
when he was still a fellow of the “Mathematics for Technology” center of the University
of Ferrara: the interesting discussion we had inspired my research work from the very
beginning.

I would also like to thank Riccardo Zanella from University of Ferrara (Italy) who
has been so helpful and willing to take some time to help me on SGP method, from the
algorithm theory to the technical support during the implementation and the test stages.

I wish to thank the two referees, Prof. Hong Zhang and Prof. Aad van der Steen,
for their many helpful suggestions and useful comments, that contributed to improve the
quality of my work. A particular thank to Prof. Hong Zhang, for having given me the
great opportunity to work with her for three months at the Argonne National Laboratory
and also to cooperate with Lois Curfman McInnes. I really hope this collaboration can
proceed in the future.

I would like to express my deep and sincere gratitude to my supervisor, Professor
Gaetano Zanghirati, University of Ferrara (Italy). His wide knowledge and his logical
way of thinking have been of great value for me. His understanding, encouraging and
personal guidance have provided a good basis for the present thesis.

All my colleagues deserve a loud mention: you have been great friends and psycholo-
gists for my academic (and not only) paranoia! I owe you many, many cakes!

My special gratitude is due to my parents Federico Giovannini and Nadia Robustini,
to my brother Emanuele Giovannini, my fiancé Valerio Bellagamba, and their family for
their loving support. Without their encouragement and understanding it would have been
impossible for me to finish this work.

