FORAMINIFERAL SHELL STRUCTURES: ADDITIONAL CAVITY SYSTEMS PRODUCED BY SUPPLEMENTAL SKELETONS

Envede Basili (1), Anna Fugugnoli (1) and Lukas Hottinger (2)

(1) Dipartimento della Risorsa Naturale e Culturale, Università di Ferrara, Caso Erede il Due 32, 44100 Ferrara, Italy. Email: basili@unife.it; fugugnoli@unife.it
(2) Natural History Museum, Basel, Augustinistrasse 2 Postfach 4001 Basel, Switzerland. Email: lukas.hottinger@unibas.ch

INTERLOCULAR SPACES

In bivalved foraminiferal shells, the chamber sutures may be deeply sunk to the vicinity of an interlocular intermarginal foramen. Thus, an interlocular space is formed between the front wall of the peritreme and the proximal wall of the ultimate chamber. In many comparatively simple radulids, the interlocular space is ventral to the suture of the test and is closed on the dorsal side. The ventral opening may be flared, i.e., ornamented by series of grooves perpendicular to the suture produced by the suture chamber suture (1). The interlocular space is outer space into the shell and receives, therefore, secondary lamellae as far as space permits.

10. Pedalopora fulgurata Whipple, Late Eocene, Kalimantan, Indonesia (Borneo), transmitted light. Equatorial and axial thin section. Note the unusually broad, marginal crest.
11. Pedalopora irregulata (Umbgrove), Late Eocene, Kalimantan, Indonesia (Borneo), transmitted light. Centrolaterally-oriented growth lamellae cover the ultimate growth stage covered by interlamellar cavities (brood chambers?).
12. Vucudina ignimbritae (Umbgrove), Late Eocene, Kalimantan, Indonesia (Borneo), transmitted light. Noncentred oblique thin section near equatorial plane. Note inequilateral, equatorial section longitodal to protoconch, seen in transmitted light.