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Preface

Quantum Chemistry has become an important and powerful tool to investigate a
great deal of chemical and physical phenomena. Nowadays, the rapid growth of the
computational power along with the corresponding development of methodologies,
tailored to approach large scale systems, allows to treat problems of increasing size
and complexity.

A large domain of application of rigorous quantum mechanics calculations is
the accurate prediction of excitation energies and other spectroscopic parameters
valuable for the interpretation of the experimental measurements. The description
of electronically excited states represents a severe task for approximated theoreti-
cal approaches, even in the case of small-sized molecules. In such cases, the simple
one-determinant approximation (the well-known Hartree-Fock theory) turn out to be
defective and a multireference wavefunction, accounting for all the relevant electronic
configurations, should be used. An important field of applications of the Multiref-
erence Perturbation Theories (MRPTs) is just the calculation of the electronically
excited states of molecules, where the strong differential correlation effects and the
possible multireference nature of the wavefunctions can be, in principle, successfully

handled by a “variational plus perturbation” scheme.

This Ph.D. thesis deals with the development and the applications of N-Electron
Valence State Perturbation Theory (NEVPT), a novel form of MRPT put forward in
collaboration between the theoretical chemistry groups of the universities of Ferrara
and Toulouse.

After a first general overview on the basic mathematical tools and theoretical
methods (Chap. 1), in Chapter 2 we will introduce the NEVPT philosophy and
present the major development effort accomplished during the Ph.D: the implemen-
tation of the third order correction to the energy in the so called “partially contracted”
scheme. Then, the large part devoted to the applications follows. Part I concerns
the calculation of electronically excited states. Different issues will be addressed: on
the one hand the treatment of small aromatic molecules, Pyrrole, Furan and Thio-

phene (Chap. 3), whose description is complicated by the possible interaction with
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low-lying Rydberg states and by the ionic nature of some valence states, extremely
sensitive to the so-called dynamical o — 7 polarization; on the other hand the case
of a large-sized aromatic molecule, Free-Base Porphin (Chap. 4), for which the cru-
cial problem is the choice of a balanced variational space to accurately describe the
wavefunctions of the ground and of the excited states. Finally, Chap. 5 is devoted
to the description, by means of MRPT, of the Electron Transfer (ET) process in
Mixed-Valence systems. The investigation is carried out on a model spiro 1 — o — 7
compound, for which the ET reaction is simulated using a simplified one-mode two-
state model. The inadequacy of a standard second order MRPT approach will be
shown and the application of an alternative and effective computational strategy will

be discussed.



Chapter 1

Mathematical tools and methods

1.1 Complete set expansions

Let f(z) be a function defined in the interval (a,b) and let ® = {¢1, ¢2,...,dn} be
a set of functions defined in the same interval. One can express the function f(z) as

a linear combination, with properly chosen coefficients, of ¢;

n

f@) = fulx) = cidi (1.1)
i=1

where the coefficients ¢; are determined through minimization of the mean-square
deviation of f,(x) from f(x). The accuracy of such expansion depends on the com-
pleteness of the set of basis functions and at the limit of an infinite set (n — co) we

have f,(x) — f(x).
It is possible to generalize these considerations to functions of several variables.
To this purpose we consider the case of a wavefunction depending on the coordinates
of n electrons W (x1,x2,...,2,). Given a complete set of one-electron spin-orbitals,
{1,v2,...,0y ...}, if the coordinates of n — 1 electrons are considered fixed, the

resulting function can be expanded in the form

“+oo
Uo(1, 22,y Tp) = Zci(xg,xg, vy T )i (1) (1.2)
i=1
where the coefficients ¢;, being actually functions themselves, hold the dependence
on the coordinates of the remaining n — 1 electrons.
Again, considering fixed x3, 24, .. ., T, the coefficients ¢;, which are now functions

of a single variable, z2, can be expanded on the same basis of spin-orbitals as

+oo
ci =) djiy(x2) (1.3)
j=1
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Repeating such procedure for the coordinates of the remaining n — 2 electrons, one
can have the exact expansion of the electronic wavefunction over the given set of

spin-orbitals:

Uo(w1, 02, .., 7n) = Y CijopWi(@)(@2) .. plan), (1.4)
ihj?"'?p
where the indices i, j, ..., p run over all possible choices of the spin-orbitals belonging

to the basis set.

1.2 Antisymmetry: Slater’s formalism

As above stated, equation (1.4) gives the exact expansion of a many-particle wave-
function over a complete set of monoelectronic spin-orbitals; however, a natural law
imposes a severe restriction to a fermionic wavefunction: the antisymmetry prop-
erty. In other terms, for a n-electron wavefunction W (x1,xo,...,x,) the following

relationship must be satisfied:

P\Ilel(.%'l,.%'g, N ,.’En) = Up\:[/el(.%'l,.%'g, N ,.’En) (15)

where P performs any permutation of the spin-coordinates zi,zo,...,z, and op
equals +1 according as the permutation is given by an even or odd number of trans-
positions.

To overcome the difficulties of building an antisymmetric many-electron wave-
function, a possible strategy is to perform an expansion over a set of antisymmetrized

spin-orbital products, the Slater determinants:

Uz, 22,...,2,) = ZCI(I)I (1.6)
7
with
Vi (1) i, (1) - i, (1)
it 2 io 2 in 2
o= % v ;( b :( ) : v :( : = %det’wn(l)wm@)wzn(n)‘

Vi () hiy(n) - i, (n)
(1.7)
Here the basis set has been chosen as orthonormal ((1/;|1);) = 6;;) and, consequently,
the resulting set of Slater determinants turns out to be orthogonal ((Px|®r) = 0 for
K #L).
The use of Slater determinants automatically guarantees the antisymmetry of
the wavefunction, since the sign of the determinant of the matrix (1.7) changes upon

swapping of two columns (permutation of the spin-coordinates of two electrons).
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Furthermore, in the case of a one-determinant approximation to the wavefunction,
the quantum-mechanical form of the Pauli’s principle directly follows, since the de-
terminant in eq. (1.7) vanishes when two columns have the same value (two identical

spin-orbitals).

1.2.1 Configuration Interaction Approach

Within the Born-Oppenheimer approximation (fized nuclei model), in which the elec-
tronic and nuclear motions can be decoupled and two separate equations can be

solved, the electronic time-independent Schrodinger equation has the form

ﬂel\Pel(X; Q) = Eel(Q)\Ilel(X; Q) (18)
where the electronic wavefunction posseses a parametric dependence on the nuclear

coordinates ). Substitution of (1.6) in equation (1.8) gives:
> Ha®rer = Ea Y ®per (1.9)
I I

By application of the “bra” vector (® ;| to both sides of equation (1.6) one has

> (@ Het |®1) e1 = Eeey (1.10)
T

which can be put in matrix form
Hc = Ec (1.11)

where the matrix H has elements H;; = (®| He |®;) and the coefficients ¢y have

been collected in the column vector c.

We note that the problem of solving the electronic Scrhodinger equation has been

reduced to a purely algebraic problem of diagonalizing the Hamiltonian matrix H.
Expression (1.11) is known as the full Configuration Interaction (FCI) expansion

and provides the exact solution to the electronic Scrhédinger equation within a given

one-electron basis set. The number of determinants in a FCI expansion, obtained

distributing n electrons into N orbitals, is given by

N N!
( n ) - n!(N —n)! (1.12)

This factorial dependence of the number of Slater determinants on the number of
spin-orbitals and electrons makes the FCI approach practically applicable only to
very small molecular systems [1,2]. However, in those cases in which FCI calculations
can be carried out, the results serve as useful benchmarks for evaluating the accuracy

of other theoretical methods.
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Slater’s rules

Here, resorting to the well-known Slater’s rules for one- and two-electron operators,
we shall illustrate a fast way to evaluate the Hamiltonian matrix elements H ;.
Given a one-electron operator F' = Yoy f (1), only two cases in which the matrix

elements give a non zero result are possible:

e if the two determinants are identical, ® ; = ®;, one has

Hyp = Z (i, | f i) (1.13)

e if the two determinants have a single spin-orbital difference (®; # ®;, with
Y, # i) the result is
JI = <¢Jk| f|¢zk> (1.14)

Clearly, all the matrix elements between Slater determinants differing for more than

one spin-orbital are zero. In a similar way, for a two-electron operator

G = %f)gu,j) (1.15)

i#]
the following three possibilities occur:
e if ®; = ®; one has
1 n
G = 5 Z (<¢Zk¢ll|§] |¢Zk¢2l> - <¢lk¢ll|g |¢ll¢lk>) (1'16)
k=1

o if ®; # ®; for a single spin-orbital difference (v, # v,)
Gt = (il § Wi i) — (i 03] |03, 03,) (1.17)
=1

o if &; # @ for two spin-orbital differences (v, # 15, and ¥, # 1;,)

g1 = (V5,05 9 Vi Vi) — (V54,1 G [Wi i) (1.18)

We should stress that in the above expressions we have implicitly assumed that the
equal spin-orbitals appear in the same order in the two determinants; if, instead, the
order is different, the possible change in sign due to the permutations must be taken

into account.
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1.3 An alternative approach: second quantization

1.3.1 The Fock space

The formalism we present in this section is known as second quantization; it was first
developed in physics (field theory) and later widely used also in quantum chemistry
(see Ref. [3]).

In the second quantization language there is a one-to-one correspondence be-
tween the electronic wavefunction W (x1,z9,...,2,), in which the spin-orbitals
i, j,. .., 1, are occupied by electrons and a state vector (ket) |k), where only

the occupation numbers (0 or 1) of the whole set of spin-orbitals are given, that is

1 if ¢; is occupied
|k>:|k1’k25"'7k1\/>,ki: . . ) (].].9)
0 if 7); is unoccupied.
The linear vector space spanned by basis vectors including all possible kets (1.19),
obtained distributing n electrons in N spin-orbitals, is known as the Fock Space.
Thereby, each Slater determinant has its corresponding occupation number vector in

the Fock space and wice versa:

Yi(w1) (1) .. dp(z1)

y 1| Yilz2) wi(x2) ... p(z2)
|U---p>zm . . . .

Vi(Tn) wj(xn) o Yp(@n)

Due to the antisymmetry property, the order in which the spin-orbitals appear (the

labels in the ket vectors) is important and one has

\ji...p>:ﬁ E E E = —lij...p)
lz)](xn) Yi(Tn) oo Yp(xn)

therefore, each vector is multiplied by op (= £1) under label permutation.

A particular vector of the Fock space is the “vacuum” vector, representing the situ-

ation in which no particles are present

|lvac) = |01,02,...,0N). (1.20)

1.3.2 Creation and annihilation operators

In order to connect vectors with different number of electrons, we define two opera-

tors, called creation and annihilation operators. The creation operator, a;, is such
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that
. |rig...p) ifré&(ij...p)
allij...p) = _ N (1.21)
0 if r e (ij...p).
Therefore, if the ket does not include the occupation number of the spin-orbital ),
then a particle is added and an (n+1)-electron wavefunction is obtained, ®(x1, xa, ..., Tn, Tni1);
otherwise, if r is already occupied in the associate Slater determinant, upon appli-
cation of a; it vanishes, as a consequence of the antisymmetry requirement (two
identical columns).

Similarly, one may define the annihilation operator, a,, such that

1y ... ifre(iy...
aplrig..py= 4P €l p) (1.22)
0 if r & (ij...p).

where the second case expresses the impossibility of annihilating an electron in a
unoccupied spin-orbital.
Concluding, we note that all state vectors can be generated by application of the

proper “string” of creation operators to the vacuum state
+ + + — 4
a; aj ...a, [vac) = [ij...p)

and that the antisymmetry property of the basis vectors is ensured by the anticom-

mutative properties of these operators:

+ + + + _ |+ 7+ _
a; a; +a; a; —[ai,aj]+ = 0
a/ia/j + a,,ia/j == [ai,aer == 0

+ +, + _
aaf +aja; = [ai,aj ]+ =

1.3.3 Representation of one- and two-electron operators

The form of a one-electron operator in first quantization is
n
FI9 =" f(i) (1.23)
i=1

where the sum runs over the number of electrons n of the system. Recalling Slater’s
rules, illustrated in section (1.2.1), this operator gives null matrix elements when the
Slater determinants differ for more than one spin-orbital. The second quantization
analogue of (1.23) can be expressed as a linear combination of products of creation

and annihilation operators:
P =" frsafag, (1.24)
r,8
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where the indices r and s run over the whole set of spin-orbitals and the the matrix
F is hermitian with f.s = f¥.. As can be easly proved (see for instance Ref. [4]), by

comparison with Slater’s rules for a one-electron operator (section 1.2.1), choosing
fre= [ ita) fa)vslain, (1.25)

the first quantization one-electron operator F' in (1.23) is equivalent to the second
quantization form in (1.24).

We shall now consider the case of a two-electron operator, such as, for instance,
the interelectronic repulsion term of the electronic Hamiltonian; as known, in first

quantization it is expressed as

. 1 <
Gl = 5 > g(wi,z5). (1.26)
i,J
We recall that for a two-electron operator the matrix elements between two Slater
determinants are non zero only if the determinants contain at least two electrons and
if they do not differ by more than two spin-orbitals.

Analogously, in second quantization a two-electron operator has the following form:

A 1
G =5 grs el afa,a, (1.27)
rstu
where the matrix G is hermitian (Qrs,tu = g;wm) and the symmetry property g, =
Jsr,ut 15 imposed.
One can easly demonstrate that the first (1.26) and second quantization (1.27)

forms become identical if the parameter g, ¢, are properly chosen as

Gro = / / W (007 (22)g (1, w9 e (1 Y (091 v (1.28)

Making use of the above presented results for generic two- and one-electron op-
erators, we may now get the second quantization representation of the electronic

Hamiltonian within the Born-Oppenheimer approximation:

ﬁel = Z <¢r| h |¢s> a;ras + % Z <¢r¢s

T8 rstu

1
— | Ypy Yaala,a, (1.29)
r12

Concluding, it is worthwhile summarizing the relevant characteristics of operators in
first and second quantization formalisms. The first important difference between the
two representations concerns the dependence on the number of electrons: whereas the
first quantization operators (1.23) and (1.26) make explicit reference to the number
of electrons, their second quantization analogues (1.24) and (1.27) do not have such

dependence. Furthermore, the two languages have dissimilar ways of incorporating
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the basis set dependence. In particular, in first quantization the determinants depend
on the spin-orbital basis, while the operators are invariant with respect to the choice
of the basis. On the contrary, in the second quantization representation, the state
vectors do not have any reference to the spin-orbitals and this information is, instead,

contained in the operators through the f,s (1.25) and gys+, (1.28) parameters.

1.3.4 The spin-traced replacement operators

A useful simplification in the evaluation of the matrix elements of one- and two elec-
tron operators can be obtained through the definition of so-called spin-free operators.
Given a set of spin-orbitals (1;,4;,...1y), originated from the same set of spatial
orbitals (¢;, ¢; ... ¢p) with o and 3 occupations, for a spinless one-electron operators

one has
F= Z <¢7"’ t ’¢8> (a:_aasoz + a:ﬁasﬁ) (130)
s

were we note that the summation runs just over the spatial orbitals. The spin-traced

replacement operator is defined as
E.s=a'a,, + a;rﬁasﬁ (1.31)
The commutation rule for two spin-traced operators is
[Ers; Etu] = st EBry — Srubis (1.32)

and an important property of such operators is that they commute with the total
spin momentum S? and with its z component, S,.
Following the above schemae one arrives at the definition of a spinless two-electron

operator:

é = % Z <¢r¢s| g |¢t¢u> (ErsEtu - 5tsETU)- (1-33)

rstu
So, finally, using expressions (1.30), (1.31) and (??), the electronic Hamiltonian can

be written as

H=> hpBps+ % > <¢r¢s

rstu

1

12

¢t¢u> (ErsEtu - 5tsE7"u)- (134)

1.4 One-determinant approximation: Hartree-Fock the-

ory

Among the simplest approximations to the electronic wavefunction, one can quote

the Hartree-Fock theory, where only one Slater determinant

(1,22, e ) = [[P1902.. 90| (1.35)
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is considered and where the spin-orbitals 1; are optimized by minimizing the expec-
tation value of the electronic energy <\I/ ‘I:I ‘ \I/> The Hartree-Fock method can be
applied to the description of the ground state as well as to that of the lowest-energy
state of any given spatial or spin symmetry. This simple and apparently rough ap-
proximation is, however, able to provide, particularly in closed shell systems near
their equilibrium geometry, electronic energies that are in error by less than 1%, and
a number of molecular properties (dipole moments, force constants etc...) with a
reasonable accuracy. Due to its low computational cost, the Hartree-Fock method
is routinely used for qualitative studies of large molecular systems. For accurate
quantitative studies, instead, the Hartree-Fock wavefunction represents the starting
point for more sophisticated approaches, like the perturbative Mgller-Plesset (MP)
corrections and the coupled-cluster (CC) method ( [4], [5]).

1.4.1 Self-Consistent Field (SCF) theory

Given the one-determinant expansion of the electronic wavefunction

U(xy, @9, ..., x0) = (n) "V 2det|th11)s . . .y (1.36)

the central point of the Hartee-Fock theory is to find the “best” spin-orbitals (¢, 12, . . .

to use in the Slater determinant. As is well-known, these optimal spin-orbitals are

the eigenfunctions of a one-electron eigenvalue equation

Fyp = e (1.37)

where F, termed the Fock operator, is an operator of a single electron which takes
account of an “effective field” due to the presence of the nuclei and of the remaining
n — 1 electrons. The Hartee-Fock method is a particular form of the independent-
particle model (IPM), where the electronic interactions are evaluated by means of
an “effective potential” through the Fock operator and the wavefunction is expressed
as an antisymmetric product of one-electron functions.

In order to obtain equation (1.37), we start expressing the variational energy

approximation of the one-determinant wavefunction (1.36)

B = (W[A[ W) = Y (elhlv) + 53 sy 1) (1.38)

% %,
where we have used a shorter notation, indicating
(Witdj || i) = (indy gl itds) — (Qitby gl Wbyedi) (1.39)

Let we choose an orthonormalized set of spin orbitals, such that (1; [¢;| =) 6;;. At

the stationary point, for any infinitesimal variation ¢; = ; + d1; the condition

;¥n)
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0F = 0 must be fulfilled. Such an infinitesimal variation of the spin orbital basis can
be obtained applying the unitary operator U = e? to the wavefunction ¥ , where 7'

is an antihermitian operator, that in second quantization can be expressed as

T = _TJF = Z trsa:ras (140)

with ¢, = —tg.

Upon opportune manipulations, one arrives at

n
SE =" ta (U|H|T]) +cec (1.41)
i=1 a>n

where “c.c.” indicates the complex coniugate of the first term and the convention of
indicating with indices ¢, j ... the occupied spin-orbitals and with a, b, ... the virtual
ones has been adopted The relation ¢, = —t;, has been used and we also have
introduced the shorter notation |¥¢) to indicate the Slater determinant in which the

spin-orbital v; has been replaced by /.
Equation 1.41 directly leads to the well-known form of the Brillowin Theorem [6,7]

(US| H|W) =0 (1.42)

which states that the “best” spin-orbitals to use are such that the interaction between
V¥ and any singly excited determinant W is zero.
Resorting to Slater’s rules (section 1.2.1) and introducing two auxiliary operators,

J (Coulomb operator)

n

(W] Tos) = <wrwj| — [sthy)

Jj=1

and K (Ezchange operator)
<¢r| K |¢s = Z ¢r¢j |¢j¢s>
7j=1

one can write the generalized Hartree-Fock equations

Fliy) = Z [v;) €5i (1.43)
=1

~ A A~

where we have defined the Fock operator F = h+ J — K and €ji = (Y] Flp) =
(Wil F )"

We can exploit the hermiticity of €, considering the unitary transormation UTeU
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which diagonalizes € and noting that changing the spin-orbitals according to the

transformation .
Vi = Z ¥;Uj
j=1

the Fock operator remains invariant under such transformation. So from the gener-

alized equations (1.43) one arrives at the canonical Hartree-Fock equations:

Fuj = el (1.44)

We recall that, since F' depends on its eigenfunctions v;, eq. (1.44) cannot be
solved in a single step. An iterative method must instead be used, starting from a
guess of spin-orbitals, building an approximated F, diagonalizing it and proceeding

until convergence is reached (self consistency).

1.4.2 Koopmans’ Theorem

The eigenvalues of the canonical Fock equations (1.44) are termed “orbital energies”
and have a direct physical interpretation, since —e¢; represents a first approximation
to the Ionization Potential (IP), namely the energy needed to remove an electron from
the spin-orbital ;. Analogously, —e, is a first approximation to the Electron Affinity
(EA) of the neutral molecule. This result is known as Koopmans’ Theorem [8] and
an interesting discussion can be found in Ref. [9].

Let us consider the ionized system obtained by removing an electron from the

spin-orbital 1; in the Hartree-Fock determinant W. The energy of the n — 1 deter-

ai\I/> - <\I:

- E+<\IJ‘[a;L,7:[]ai \IJ> (1.46)

minant is

Et

)

<al-\I/ ‘7:[ af?flai

\I:> (1.45)

Equation (1.46) can be easily manipulated exploiting the commutation rules between
creation and annihilation operators (see section 1.3.2) and one promptly arrives at

the formulation of the Koopmans’ Theorem for the ionization energy:

7

<\If ‘[aJr H]a;

‘1’> = —hy — (Ji — Kis) = —€ (1.47)

An analogous expression can be derived for the Electron Affinity £ — E, = —eg,
This approximation is based on a simple model for the open-shell ionized system,
where the ionic wavefunction is not allowed to relax upon the ionization process (re-
laxzation energy) but it is instead built from the “frozen” MOs of the neutral molecule;
as a consequence, too large IPs and too small EAs are attained. In addition to these
orbital relaxation effects, the HF method also neglects the correlation energy; how-
ever, while for the IPs, the KT approximation yields reasonable results, due to a sort

of cancellation of errors, for the EAs it generally fails.
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1.5 The Electron correlation problem

1.5.1 Electron distribution: density functions and density matrices

In order to better discuss the problem of the electron correlation energy, which rep-
resents one of the central issues in the electronic structure theory, here, we shall
introduce the concepts of density functions and density matrices [10-13|. The great
advantage of using this functions basically arises from their relative simplicity, par-
ticularly when compared to the complexity of sophisticated wavefunctions, and from
the prompt insight they give about the physical content of the electron distribution.

Let us consider a n-electron wavefunction W(z1,xs,...,2,), the probability of

finding electron 1 in 1 and at the same time electron 2 in x9 etc. is given by

dP(x1,21 + dz1;. .. T, T + dxy) = V(21, T2, . .., )V (21, 22, . . ., Tp)dx1 dXo.
(1.48)

Then, the probability on any of n electron in dz; is expressed as

dP(z1,21 + dr1) = daq /\If(xl,xg, cos )V (21, 20, . .., 2y) dzo drs ... dxy,
(1.49)
By multiplying eq.(1.49) by the number of electrons, n, we obtain the amount of
charge in volume dx;. We write this probability as p(z1)dzy where we have intro-

duced the density function p(x1) defined as

p(x1) =n / U(zy,x9,. .., 2n) V" (21,22, ..., 2,)dxodrs . .. da, (1.50)

We should stress that z; on the left of eq. (1.50) does not indicate the coordinates
of electron 1 but the “point 1”7 of the whole space in which the density is evaluated.
By integration over the spin coordinates, it is then possible to obtain the probability

of finding an electron at point 1 regardless of its spin:

P(ry) = /p(dazl)dsl. (1.51)

Such definitions given for a single electron can be easily extended to two or more

particles; so, in the case of two electrons, the pair density function becomes
p(x1,z2) =n(n—1) / U(xy,x2,. .., 0n) V" (21,22, ...,2y)dxsdry ... dx, (1.52)
and its spinless counterpart is

P(ry,re) = /p(xl,xg)dsldSQ. (1.53)
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Let F = Yoy f(x;) be a one-electron multiplicative operator and

U(zy,x9,...,T,) a n-electron wavefunction, the expectation value of Fis

(F) = Z/\I/*(xl,xg,...,xn)f(xi)\ll(wl,xg,...,xn) dxy dxo ... dz,
i=1

= n/\IJ*(xl,xg,...,xn)f(xl)\lf(xl,xg,...,xn) dxy dzy ... dx,. (1.54)

Since f(x1) is just a multiplier, expression (1.54) can be rearranged, using the defi-

nition of density function given in eq. (1.50), to obtain

() = [ fanptan) don. (1.55)

We note that in the more general case of non-multiplicative operator f(z1), eq.
(1.54) cannot be simply put in the form (1.55), since U*(z1,x9,...,z,) cannot be
shifted to the right of the operator. However, a simple mathematical trick can be
used: since f(z1) works only on functions of x1, ¥* can be made exempt from the
action of f(z1) just changing the name of the variable from z; to z/; then, upon the
action of f(z1) on ¥ we can change back 2y — x; and proceed to the integration.

Practically, the expectation value becomes

(F) = / f(a1)p(a1, 7)) day. (1.56)

where the the density matriz
p(xy;2)) = n/\lf(xl,xg, s TV (2 20,y dog dos ... dry, (1.57)

has been introduced.

For two-electron operators, the two-particle density matriz can be defined

p(z1, 22527, 75) = n(n — 1)/\11(.%'1,332, ez (2, 2y, ) dos doy ... day

(1.58)
and hence the expectation value of a generic two-electron operator
1 n
i#j=1
can be obtained simply evaluating
1 .
(G) = 3 / G(z1,72) p(w1, 72527, %) dw1 das (1.59)
Ty =z

58,2:-’82
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Integrating over the spin coordinates, the spinless density matrices analogous of the

spinless density functions (1.51) and (1.53) are defined:

priir) = [ ploniat) dy (1.60)
sh=s1
and
p(ry, e, rh) = p(z1, 20, 2%) dsy dso (1.61)
S1 S1
Sh = So

Obviously, following the same formalism, density matrices for three or more particles
can be defined.

Finally, it is worthwhile to point out that the density matrix p(z1;2}) does not
have an actual physical meaning in itself but only its diagonal part p(x1;xz1), which

coincides with the density function p(z1).

Then, given a complete set of orthonormal basis functions {11, 9,...}, we may

expand the one and two-particle density matrices in the forms

plariah) = 3 Rigthu(o) 3 (ah) (1.62)
0,
and
p(x1, 95 27, 25) = Z Rijaanbi(w1) (w2) 0k (2737 () (1.63)
gkl

where the coefficients R;; and R;;.;; are numerical factors.
Finally, the expectation values of one- and two-electron operators can be evaluated

respectively as

P [ faopns) dn = Y Ry (1.64)
x| =11 0J
and
A 1 . / / 1
G=- (1, 22)p(x1, 275 T2, T5) dry drg = = E R;;1iGrisij (1.65)
2 2 £
/ 1,5,k
T 1
Th = T2

where the matrices F and G have elements

Fji = (¢ [f (z1)| i) (1.66)

and

Grizij = (e |g(z1, 22)] ¥ivdj) (1.67)
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1.5.2 The one-determinant approximation case

In the case of a one-determinant n-electron wavefunction

\I’(xl,...,$n) ¢n‘|

1
= ﬁ”%?ﬁz-

the forms of the one- and two-particle density matrices can be obtained comparing
the above expressions (1.64) and (1.65) with the expectation value of the electronic

Hamiltonian in Slater’s formalism (see section 1.2.1)
£ o= (v]afe)

= 3 (wnlhl ) + g S (W ol vit) — (Wit lol ) (168)

A i

For the one-electron part of H we have that the following equality must be satisfied

n
Rij = 6ij — plxr;ah) = Y ilwn)y(2h) (1.69)
i=1
with both 7 and j occupied; for the two-electron component, we obtain the relations
Rijy =1
Rijji = —1
Riisii =0

again with ¢ and j occupied and thus

p(xr, wos @y, wh) = > (i(wn)iby ()i (@ )0 (wh) — s (w1 )by ()5 ()7 (25)).
ij=1
(1.70)
An important result is that eq. (1.70) can be expressed in terms of one-electron

density matrix

plar, w2; 2, 5) = pla; o)) plaz; x5) — plaz; ) plar; o3) (1.71)

and, more generally, for any n-electron density matrix it may be shown that

plzi;2y)  plrisey) - plrra,)
p(z2; ) plxasay) - plwz; )

(1, T @, ) = ! _ ? _ o (1.72)
p(anxﬁ) p(xn;xé) P(xmxln)

Recalling the definition given of the spinless density matrices (1.60, 1.61) and
differentiating the spin-orbitals according to their spin factor, for a closed-shell de-

terminant we can write
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n/2 n/2
plasah) = Y ei(r)oi(r)als)a* () + > ¢ilr1)ef (1) B(s1)5* (1)
ia=1 ig=1
= PPa(sy)alsh) + P B(s1)B(s)) (1.73)

and integrating over the spin we obtain the spinless density matrix

Py(ri;1h) = PR + PP (1.74)

with Pee = pPo.
We now turn to the pair density matrix; as can be shown, for a wavefunction of
definite spin, it consists of six components (acawa, 36603, afaf, Bafa, afBa and

Baaf3), which reduce to four after integration over the spin
Py(r1,7; 19, 7) = Pyecc  pJiib y ppbel | ppefe (1.75)

Recalling that in the one-determinant case the two-particle density matrix can be fac-
torized in terms of the one-particle density matrices (1.71), the following expressions

are obtained for the pair functions (imposing r; = r1 and 75 = r3)

PyY(ri,rma) = Pf(r1)Pf(re) — P (r1;re) Py (ro; ) (1.76)
PY(ri,ma) = PP(r) Pl (ra) = P (ri;ma) P (raim) (1.77)
PP(rimy) = PR(r1)P{(r2) (1.78)
P(ri,ma) = Pl(r1)P{(r2) (1.79)

From these expressions, indicating the probability of finding electrons simultane-
ously at two point in space with a given spin configuration, we can get a prompt
understanding of the electron correlation problem. As is apparent, the motion of
electrons with the same spin, aa (2.5) or G5 (1.77), is described by correlated func-
tions and Ps'*“(ry,r2) vanishes as ro — 1. This type of correlation, known as Fermi
correlation, avoids electrons of parallel spin being at the same point of space and
directly arises from the antisymmetry property of a fermionic wavefunction. On the
contrary, from eqs. (1.78) and (1.79), we see that there is no correlation between the
motion of electrons with opposite spin, since the probability of finding them in rq
and 7y at the same time is given just by the product of the probabilities of the each
of two independent events. This lack of correlation (Coulomb correlation) is clearly
a serious defect in the one-determinant model, since the mutual repulsion between
pairs of electrons is not properly taken into account and the probability of finding

them close together does not decrease as the distance decreases.
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1.5.3 Statical and Dynamical Correlation

From a “quantitative” point of view, the correlation energy is defined (Léwdin, 1955)
as the difference between the “exact” energy (practically the energy of FCI wavefunc-

tion) and the energy of the Hartree-Fock wavefunction
Ecorr = Eegact — Epg—F

within a given basis set approximation. Although in itself it represents a very small
fraction of the electronic energy, its accurate treatment is essential when dealing with
energy differences which are of the same order of magnitude of the correlation energy
(chemical reactivity, excitation energies etc.).

Actually, two different effects of electronic correlation exist:

e the statical correlation, which is associated with the problems of the multicon-

figurational character of the wavefunction;

e the dynamical correlation, which is, instead, related to the effects of the inter-

electronic interactions.

Referring the the Hartree-Fock description of the Hs molecule dissociation, the dis-
tinction between the statical and the dynamical effects becomes clear. At the equi-
librium geometry, the wavefunction is qualitatively well described by the closed-sell
Hartree-Fock determinant and the correlation energy essentially arises from the dy-
namical effects of the interelectronic repulsions. On the other hand, at the dissocia-
tion limit, where there is no coulomb repulsion between the two electrons, the failure

of the one-determinant approximation is due to the need to take into account the

2

2 .
5 and oy, configurations.

near-degeneracy between the o

1.6 Handling the Statical Correlation: MCSCF Theory

As above stated, in many chemical and physical phenomena, such as the rupture or
formation of chemical bonds, or the description of electronically excited states, the
one-determinant approximation dramatically fails due to the intrinsic multireference
nature of the problem. These statical correlation effects can be properly taken into
account resorting to a multideterminant expansion of the wavefunction, in which a
simultaneous variational optimization of spin-orbitals and expansion coefficients is
performed: such strategy is called Multiconfigurational Self-Consistent Field (MC-
SCF) approach.

Starting from a truncated CI expansion

N
U=> Cxor, (1.80)
K=1
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in order to build a MCSCF wavefunction we need to impose that the energy variation
with respect to an infinitesimal variation of both orbitals (¢' = ¢+d¢) and coefficients
(C} = Ck + 6Ck) is zero.

The optimization can be performed resorting to both a single-step Newton-
Rahpson technique and a two-step approach (Super CI), where first the coefficients
Ck and then the orbitals are iteratively optimized until self-consistency is reached.

Following the procedure presented in section (1.4.1) for the Hartree-Fock theory,

the self-consistency condition is here expressed as
> trs ((WIHE®) — (B W] F W) ) =0 (1.81)
TSs

and it is satisfied by the Eztended-Brillouin Theorem [14]
<\I]‘ 7:[ ’(Ers - Esr)\I’> =0 (1.82)

In other terms, when the energy is stationary, the contracted single excitations W} =
(Ers— Es-)V do not interact with the optimized MCSCF wavefunction. The Super CI
method is practically based upon an iterative procedure, which consists in building
an improved wavefunction

V=TU+> ¢, 0] (1.83)

>

diagonalizing the CI matrix and then using the coefficients of the single-excited
functions, c¢,s, for constructing the matrix T, which operates the unitary orbital

transformation (U = eT).

1.6.1 Complete Active Space (CAS)

The key issue in the construction of a reduced CI space in which to expand the
MC wavefunction is essentially how to select a limited number of electronic config-
urations able to properly take into account the statical correlation energy effects.
In the present work we shall adopt a particular and largely used type of MCSCF
wavefunction, known as Complete Active Space Self-Consistent Field (CASSCF)
wavefunction [15]. As we shall widely discuss in the next chapter, this function rep-

resents the zero order wavefunction, (%), in our perturbative approach.

The idea of Active Space provides a useful “precept” to choose the relevant con-
figurations of the CI expansion (1.80). It is based upon the partitioning of the

spin-orbitals into three classes:

1. core (i, j, - . .), which have occupation number equal to 1 in all the determinants
D
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2. active (a, b, ...), with all the possible occupation number from 0 to 1,
3. virtual (r, s, ...), which are never occupied in any determinant ®.

The CASSCF wavefunction is built by performing a Full CI expansion within the
active orbitals subspace and then optimizing coefficients and orbitals until self-
consistency. However, it is important to stress that the CASSCF approach is not
a “black-box” method and there is not a recipe to select the “right” active space.
However, it should be always carefully chosen in order to include all the orbitals that
are thought to be involved in some measure in the chemical and physical process

under consideration.






Chapter 2

N-electron Valence State

Perturbation Theory

Multireference perturbation theories (MRPT) represent a powerful and relatively in-
expensive tool for the treatment of electronic correlation in molecules. As discussed
in the previous chapter (section 1.5.3), in many molecular phenomena such as the
breaking of a chemical bond or the electronic transition to an excited state, a sin-
gle reference wavefunction does not suffice to provide a good approximation to the
solution of the time independent Schrédinger equation; many electronic configura-
tions can be important and a zero order description of the electronic structure of the
molecule may not leave out of consideration such quasidegenerate configurations.
The inclusion of the quasidegenerate configurations accounts for what is called the
statical correlation (section 1.6); the dynamical component could be dealt with per-
turbationally with a suitable MRPT. A key issue in MRPT concerns the definition
of a proper zero order Hamiltonian Hg. In the early theories, which were developed
at the beginning of the 1970’s, such as CIPSI [16], Hy was defined in terms of a
one—electron, Fock-like, operator and the zero order functions (perturbers), used to
build the first order correction to the wavefunction, were simple Slater determinants.
The idea that Hy should be based on a one—electron operator still persists in most
modern MRPT’s. For instance in CASPT2 [17,18], one of the most successful forms
of MRPT, Hj is a projected generalized Fock operator and the perturbers are built
in terms of internally contracted excitations (vide infra). Dyall [19] showed that
the usage of correction functions deriving from a one—electron operator introduces a
bias in the energy calculation since the zero order reference wavefunction properly
takes into consideration the bielectronic interactions occurring among the active elec-
trons whereas the correction functions are not allowed to do so. In order to obviate
such difficulty Dyall proposed the use of a model Hamiltonian, partially bielectronic.

In 2001, based on Dyall’s work, the “n—electron valence state perturbation theory”
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(NEVPT) [20-25] was developed, in collaboration between the theoretical chemistry
groups of the universities of Ferrara and Toulouse. The chapter has the following
structure: a brief résumé of the Rayleigh-Schrédinger Perturbation Theory (RSPT)
and of the Mgller-Plesset Theory will be proposed in section 2.1 and 2.2 respectively.
Then we shall present the second order NEVPT approach in its single-state (section
2.3) and quasidegenerate (section 2.6) formulations; section 2.7 is instead devoted
to the third order NEVPT and Internally Contracted CI method, whose “partially

contracted” version implementation takes a central part in the present research work.

2.1 Rayleigh-Schrodinger Perturbation Theory

The basic idea of the perturbative methods is to express the true Hamiltonian H
as the sum of an “unperturbed” Hamiltonian (model Hamiltonian), Hy, and of a
perturbation opemtor,f/,

H=Hy+\V (2.1)

where A gives the extent of the perturbation. Supposing to be in a non-degenerate
case, the eigenstates and the associated eigenvalues of the unperturbed Hamiltonian

I:IO are known
Hy?® = B0 n=0,1,2,... (2.2)

Due to the effect of the perturbation, which is however supposed to be small, the
cigenfunctions and the eigenvalues of H will change as a function of the parameter
A. In the Rayleigh-Schrodinger (RS) scheme, the energy and the wavefunction are

expanded in Taylor’s series to obtain

E,=E9 + \EL + NXED 4 (2.3)
0, =0O L awl® 4 \20@ 4 (2.4)

To simplify the derivation, we suppose that the eigenstates of Hy are normalized
((\11510) |\If,(10)> = 1); moreover, we also impose the intermediate normalization condition
(UY1W,,) = 1. By substitution of expressions (2.3) and (2.4) into the Schrodinger
equation HY,, = E, ¥, we obtain

+ MHPWY +ve® — Ogl) _ p)g0)
bR + e — B0 B — B w)
+ ...=0 (2.5)

We see that eq. (2.5) is satisfied only if the terms inside parenthesis are zero, then

the equations obtained for the different orders can be manipulated and one arrives
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to the following expression for the generic contribution of k order correction to the

energy:
B = (w0 v ‘\If,g’f*1>>. (2.6)
For the first and the second order one has
EW = <\115?> 1% \1,510>> (2.7)
E® = <x11,<§> 1% q/,gl>> (2.8)
with \I/,(f) given by
v = _R, Ve (2.9)

where R,, (termed the “resolvent operator”), in absence of degeneracy of \Ilslo), has

the form

w3 (%3]
k#n K n
Equation (2.9) can be substituted into eq. (2.8) to obtain:
(] 7 [oi”)
EY ==Y (2.11)
0 0
w0 B - B
For the third order correction, instead, one has
E® = <x115?> v \I:§3>>
which becomes
BY = (0| V| w0 + EO e (2.12)

2.2 Mgller-Plesset Theory

In the Moller-Plesset theory [26] the model Hamiltonian is a n-particle operator, also

called the Fockian, which in second quantization has the form:

F=Y eaa. (2.13)
T
The perturbation operator, V (also termed fluctuation potential) is given by the
difference
V=H-F. (2.14)

The zero order wavefunction is the Hartree-Fock determinant |¥¢) built up with n
spin-orbitals v;, which are solutions of the canonical Hartree-Fock equations f?/)l- =

€ivi; the zero order energy is Ey = > " €.
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However, we note that any other determinant |Wy), built with n arbitrary spin-
orbitals ¢, is an eigenfunction of F with eigenvalue E,io) = > " | €k, thus the first
and second order contribution to the energy are respectively

n

ESY) = (Wo| 7 — F|Wo) = B~ (2.15)
=1
and )
Wol W)
(2) ‘< 0
By ==Y e (2.16)
2 B0 5D

As is evident from equation (2.15), the first order contribution (MP1) does not bring
about any correction to the Hartree-Fock energy (Eéo) + Eél) = Eé{ -F ). Instead,
for the second order correction (MP2), from eq. (2.16) comes that only the doubly-
excited determinants will give a contribution, since the singly-excited determinants
do not interact with the HF wavefunction as stated by Brillouin’s theorem. Indicating
with ‘\Ilg‘]l-’> the determinant in which two occupied spin-orbitals (i,j) have been

substituted by two virtual ones (a,b), eq. (2.16) becomes:

oce virt 2
E(Q) — ’<wawb‘ M%H 217
0 Zzea—l—eb—ei—ej ( )
1<j a<b

2.3 NEVPT2 philosophy

Multireference perturbation theories can be classified, according to the strategy

adopted to obtain the corrected energies and wavefunctions, into two categories:

e “perturb then diagonalize’, where an effective Hamiltonian is perturbatively

built in a model space and then diagonalized;

e “diagonalize then perturb’, where the perturbation is performed upon a zero
order wavefunction obtained by diagonalization of the Hamiltonian in a given

determinant space.

As above mentioned, in the NEVPT approach, which belongs to the diagonalize
then perturb methods, a CASSCF (or CASCI) reference wavefunction is employed

and the zero order Hamiltonian is built by means of Dyall’s Hamiltonian [19]

HP = H; + H, + C, (2.18)

where H; is a one—electron operator defined in terms of orbital energies and cre-

ation/destruction pairs
core virt

Hi =Y &Ei+ Y &Fn, (2.19)
i r
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H, is a two—electron operator confined to the active orbital space

act act

e 1
Hy=>" Wl By + 3 > (abled)(EacEyg — 0bcFad), (2.20)
ab abed

and C' is a suitable constant assuring that HP is equivalent to H within the CAS

space (C' = 25757 hyy + S007°(2(iglig) — (ilji)) — 236" &.) The quantities h%)/

appearing in eq.(2.20) are the usual one-electron matrix elements hg;, where the
contribution deriving from the effective field of the core electrons (hZ{f = hgp +
>3 (2(aj|bj) — (aj|jb))) is added. The energies of the core, ¢;, and virtual, e,
orbitals are usually chosen as those which result from the diagonalization of the
generalized Fock matrix (canonical orbitals).

The zero order wave functions external to the CAS-CI space and differing from

\11,(2) for a well-defined pattern of the inactive orbitals are referred to as “perturber
(k)
Ly
, where “1” is the occupation pattern of the inactive orbitals,k”

functions” (or “perturbers”). The perturbers are indicated as ¥,"’ and the space

they belong to as Sl(k)

is the number of electrons promoted (removed) to (from) the active space and “u”

simply enumerates the various perturbers. There are only eight typologies of Sl(k)

subspaces: Si(j?)rs with two core orbitals substituted by two virtuals, Si(g,) with one
core orbital substituted by one virtual, Si(;frl) with one core substituted by one virtual

)

and one core electron added to the active space, Si(Jrl with one core electron added

to the active space, SV with one core orbital substituted by one virtual and one

i,rs
. . . . -1) . . . .
active electron excited into a virtual, Sﬁ ) with one active electron excited into a

)

virtual, Si(;rm with two core electrons excited to the active space, S,(Q2 with two
active electrons excited to the virtual space (see Fig. 2.1).

If the full dimensionality of such subspaces is exploited, diagonalizing the true
Hamiltonian or the model Dyall’s Hamiltonian within each Sl(k) spaces, one has the
so-called “totally uncontracted’” NEVPT2 [25]. However, such formulation, not yet
implemented, would be feasible for CAS of small and medium size; it is practically
not applicable for CAS spaces greater than few thousands configurations, which is

common practice in nowadays calculations.

2.4 Internally contracted approach

The prohibitive computational cost of the totally uncontracted formalism can be con-
siderably reduced if the perturbers are built as internally contracted (IC) functions.
This leads to the “partially contracted” NEVPT2 and to its further simplification,
the “strongly contracted” NEVPT2.
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VO) ( core ) ( active )  ( virtual)

V(+1) ( core ) (active ) ( virtual )

)

V(-1) (_ core ) (active ) ( virtual )

V(+2) (_ core ) (_active ) ( virtual )

ZNN

V(-2) (_ core ) (active ) ( virtual )

j

V() ( core ) ( active )  ( virtual)

V(+1) ( core ) (active ) ( virtual )

V(-1')( core ) (active ) ( virtual )

Figure 2.1: Graphical representation of the eight typologies of Sl(k) spaces.

Let ® be a function external to the CAS space interacting with the reference
wavefunction W\0), then it has been shown [27,28] that

(v ‘H‘ @) = (v ‘H‘ Po®) (2.21)

where P performs a projection onto the “internally contracted” first order space
generated by all the functions, external to the CAS, obtained by application of proper
strings of spin-traced excitation operators to the reference wavefunction, waEyz\Ilﬁg).
It follows that the first order corrected wavefunction, \I/%), which has to be built
to compute the second order correction to the energy E,(ﬁ) = <\If,(2) \4 \Ifgrll)>, can
be restricted to belong to the IC first order interacting space. Consequently, the

dimensionality of the eight Sl(k)

subspaces will be now substantially reduced since
they will be only spanned by the IC functions waEyZ\Ilﬁg). Nevertheless, we should
stress that the EMEyZ\II,(g) functions are not orthogonal and, generally, not even
linearly independent, so that care has to be taken in removing the possible linear

dependencies.

2.4.1 The Partially Contracted NEVPT2

The partially contracted NEVPT (PC-NEVPT2) approach consists in building the
)

perturbers as multireference wavefunctions belonging to a subspace Sl(k of the vari-
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ous IC Sl(k) spaces. One possibility would be to diagonalize the true Hamiltonian H

within each such space

» (k) _ (k) gy (k)
PS}’“)HPS{’“) Vi =LY,
but this would be computationally too expensive. Actually, we have adopted the
more convenient choice of diagonalizing the model Hamiltonian HP . Indeed, it is

)

worthwhile to notice that within a given Sl(k space

e the active part of HP (H,) has matrix elements which do not depend on the
inactive orbital pattern [ (independent of the specific inactive orbital indices

chosen);

e the inactive part H; only gives rise to an energy shift within .S l(k), which is equal
to the difference between the orbital energies of the virtual and core orbitals

involved in the excitation process.

Thus, for each of the eight typologies of Sl(k)

, only one single diagonalization has to
be performed to get all the eigenfunctions (perturbers) and eigenvalues of HP. The

general form of the eigenvalues is:
EY = B + Aq +e, (2.22)

where Ag¢; equals the difference of the virtual and core orbital energies involved in
the definition of Sl(k) and where Ef,g) + e, is the p-th eigenvalue of the projection

of H, onto the IC Sl(k); ey is independent of the inactive orbitals and represents a
St

i subspaces,

physical process occurring in the active space. In particular, in the

e, approximates an electron affinity due to an electron passing from the core to the

active space, in the Si(]ﬂ) subspaces the eigenvalues e, approximate an energy of

double ionization and so on for the other subspaces.
The zero order Hamiltonian of PC-NEVPT can be written as follows:

HEC = PoasHP, P.wHPP 2.23
0 CAS CA5+%: ) sk (2.23)

where Ps(k) is the projector onto the S l(k) space defined above. It should be remarked

that the ILDC—NEVPTQ has exactly the same degree of contraction of CASPT2 [17,18];

the difference between the two approaches is that PC-NEVPT2 uses multireference
k)
~ 7“
tonian (HP”) taking into due account the bielectronic interactions among the active

correction functions \Ill( which are eigenfunctions of a simplified two—electron Hamil-

electrons.
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For each of the eight Sl(k) spaces, with the exception of the one-dimensional Szggls

space, the partially contracted perturbation functions are expressed as
k
vt = |o)C (2.24)

where the C matrix is obtained by diagonalization of HP in Sl(k). The first or-
der correction to the wave function is then expressed as linear combination of the

perturbation functions

k k k
v (s = 3" e (2.25)
I

k)(

where the coefficients C’l( " R have the form

oW _ <\I/l(]2 ‘H‘ mg)> (2.26)

L 5D ~ 5D

and the functions are assumed to be normalized.

)

spaces is proposed in Appendix A, focusing
attention above all on the form of perturbation functions \I/l(k) and of the perturbative
coefficients CM)

Ly
NEVPTS3.

A schematic analysis of the eight Sl(/LC

, which will be used in the following for the formulation of the PC-

2.4.2 The Strongly contracted NEVPT2

A further simplification of the NEVPT2 approach can be achieved selecting a single

perturber \Ifl(k) from each IC Sl(k) subspace. \I'l(k) is chosen by the following projection:

v = Py A0 (2.27)
1

In this way a set of orthogonal (but not normalized) correction functions \I'l(k) is

obtained; their energies are computed as

k k
(o0 94"
()
where the use of the Dyall’s Hamiltonian guarantees, as usual, a further simplifica-

tion. This formulation is called strongly contracted NEVPT2 (SC-NEVPT2) and is
the first approach that has been practically implemented [21,22].

E® =

(2.28)

The zero order Hamiltonian of SC-NEVPT2 can be expressed as a spectral de-
composition:
H§C = PoasHPoas + Y ‘\I:l(’“)’> E® <q/l(k>’ (2.29)

1k
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where \Ifl(k)l = \I!l(k)/ ||\Ill(k) || are the normalized perturbers. The second order contri-

bution to the energy, as shown in Ref. [22], can be expressed as

k
gy~ IO

- (2.30)
0 k
T B0 g

The detailed treatment of the various contributions can be found in Ref. [22]. De-
spite the low number of correction functions employed, the SC-NEVPT2 usually
yields results very close to those of the more elaborated PC-NEVPT2. An inter-
esting inequality was proved in Ref. [22], showing that, for each Sl(k) subspace, the
contribution to the second order correction to the energy of PC-NEVPT?2 is always
lower (negative and larger in absolute value) than that of SC-NEVPT2. Cases of
consistent discrepancies between SC- and PC-NEVPT?2 are usually indicative of some
defect in the zero order wavefunction U'o [24,29-31].

2.5 Major NEVPT2 properties

2.5.1 Absence of intruder states

A well-known problem in MRPTs based on a monoelectronic zero order Hamiltonian
is the appearance of the so-called intruder states. These are perturbation functions
(eigenfunctions of I:IO) with an energy very close to the energy of the reference wave-
function E,(,(L]), thus producing near divergences in the perturbation summation. This
phenomenon is basically related to the improper description of the two-electron in-
teractions between the perturber functions. The intruder state problem affects, for
instance, the CASPT2 calculations, where an ad hoc unphysical level shift [32] can
be used in the denominators to prevent the occurrence of such divergences. Both
NEVPT2 variants are practically exempt from the intruder state problem: the energy
of the perturbers are always well separated from that of the reference wavefunction.

Considering, for instance, the partially contracted approach with Dyall’s Hamilto-

nian we have that the energy of the correction functions \IJI(IL) are given by
EN = EQ + A + e, (2.31)

where Ael(k) and e, are both positive quantities, avoiding too small denominators

(El(f;) — E,(S)). We should stress that, however, the Sﬁ_l) subspace, where an active
electron is excited to the virtual space and the other excitation takes place within
the active space, could be, in principle and only for highly excited states, liable to
the possibility of intruder states. In fact, in presence of extremely diffuse virtual
orbitals, €, is close to zero and e, which refers to an ionization process in the active
space, could be very small. Neverthless, in the calculations carried out up to now,

we have never observed intruder state problems.
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2.5.2 Invariance under orbital rotations

As each Sl(k) subspace is a complete active space, it is clearly invariant under an
arbitrary rotation of the active orbitals; this invariance is guaranteed in the three
formulations of the method. On the contrary, of course, all the NEVPT methods are
not invariant under rotations between active and inactive orbitals, so that attention
has to be paid to the choice of the active space in order to avoid possible exchanges
of the orbital identities. Moreover, we should stress that the form of Dyall’s Hamil-
tonian of eq. (2.18) is also not invariant under rotations of core and virtual orbitals
and canonical inactive orbitals (those that diagonalize the Fock matrix) have to be
used. Actually, using canonical orbitals is not always possible, like for instance when
a priori localized orbitals are adopted, so a noncanonical PC-NEVPT2 approach has
also been implemented in our laboratory. In this case a modified Dyall’s Hamiltonian
can be used such that this invariance property is fulfilled; the inactive part of HP is

rewritten as

core virt
Hzl = Z fijEij + Z frsErs (232)
ij TS
where f;; and f,, are elements of generalized Fock matrices:
fij = < w0 ‘H‘ >+5UE( ) (2.33)
frs = <a,+\1172> ‘H‘ ar u© > 5, E© (2.34)

The zero order Hamiltonian is then defined as
_ 2 D
Hy = PoasHPoas + Y Py HTP o) (2.35)
l/
l/’k/

The perturbation equations are solved using a system of linear equations

Z (k)<\I,(k) ‘H _ g )‘\I,l(lk),>:_<\111(2“7‘\1/,(2)>

l/k/ !
where the \Ifl(lit) functions are obtained by a preliminary PC-NEVPT2 calculation
making use of only the diagonal elements of the Fock matrices.
2.5.3 Size consistence

The property of size consistence, in the form of strict separability directly derives from

the above discussed invariance under rotation of the active orbitals (see Ref. [20] for
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more details). We recall that the strict separability property assures that, at the
limit of non-interaction, the energy of a system A-B is equal to the sum of the

energies of the two subsystems A and B calculated separately.

2.6 Quasidegenerate NEVPT2

A well-known defect of the MRPTs belonging to the "diagonalize then perturb philos-
ophy" consists in the fact that the first order correction to the wavefunction does not
bring modification to the reference function. Such defect turns out to be rather con-
sistent in cases where the mixing of the configurations in the zero order wavefunction
is not properly described due to strongly different correlation effects; typical exam-
ples are the avoided crossing between ionic and covalent states or excited states with
a mixed valence-Rydberg nature. The reorganization of the determinant coefficients
in the zero order wavefunction can be obtained by applying a quasidegenerate per-
turbative approach [33-35], where an effective Hamiltonian is diagonalized within a
configurational space of limited dimension. The quasidegenerate formalism has been
implemented for both the strongly and partially contracted (QD-SCNEVPT2 and
QD-PCNEVPT2) approaches using the model Dyall’s Hamiltonian and is presented
in Ref. [23].

In the QD-NEVPT?2 approach a model space is built by choosing as basis set a
few solutions of the CAS—CT problem {\Ilgo), \I/go), - ,\Iléo)} with
PCASI:IPCAS\I/,(Q) = E,g)@g). The purpose of the QD formalism is to provide the
true eigenvalues of the Hamiltonian and the projections of the true eigenfunctions

onto the model space with the use of an effective Hamiltonian
Heff{lvlm = Em{f]m, (236)

where \Tlm =PV, P= Zi:l ‘\Ill(ﬁo)> <\Il](€0)‘ and FE,, is the true eigenvalue associated
to the true eigenfunction V¥,,. Introducing the wave operator, Q\T/m = U,,, the
effective Hamiltonian can be written as Heg = PHQ and € is obtained by solving

the generalized Bloch equation
QPHQ — HQ = 0. (2.37)

Adopting a partition of the Hamiltonian, H = Hy+ V, with ]—jollfgl = B2 W0 and

expanding ) and Hgin a perturbation series

Q=P+0W 4+ 0@ 4 ... (2.38)

Ha=HY + 8 + 8G + - (2.39)
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one promptly arrives at the first-order term of 2
[Q(U,HO} —QVP (2.40)

and to the following terms of Heg

HY = PH,P; (2.41)
HY =PVP=0; (2.42)
aY) = Pra®. (2.43)

Since NEVPT2 is a state-specific method with Ho depending on a specific reference
)

function \Ilg,g , in order to solve the ambiguity about the perturbation functions to

use, the multipartitioning technique by Zaitsevski and Malrieu [36] is adopted. Such

approach consists in the use of different partitions of the Hamiltonian according to

)

the various wavefunctions 1152 of the model space

H = Hy(m) + V(m) (2.44)
with
Ho(m) = PoasHPoas + Y ‘xp}’j} (m)> B <xp§’j} (m)| (2.45)
Lk,
k)

where the perturbation functions \I'l(

)

“(m) are IC functions generated by applying

the excitation operators to \1152 . The matrix elements of Hyg up to second order are

given by:

(00 | Het| W) = B 5 + 3 (oo Lo \Pm- (2.46)

0 k
Lk, E,(n) - El(,“) (m)

The approximate projections U, and the corresponding eigenvalues F,, are then
obtained by diagonalization of the Heg matrix. We should note that the I-Lﬁr operator
is not hermitian but, if desired, a hermitian matrix can be written using a similarity
transformation [37]

le =T HegT, (2.47)

where T is §% with S = (@‘E> Finally, we should stress that the QD ap-
proach requires just a small computational overhead in comparison to the single-state
NEVPT2, since, for the evaluation of the matrix elements of H.g also the transition

density matrices have to be computed, but with particle rank not higher than three.
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2.7 Third order NEVPT and Internally Contracted CI

Although, usually, a second order treatment is able to provide a conspicuous fraction
of the dynamical correlation energy, evaluating the third order correction can be very
useful, without prohibitive computational costs, in order to check on the stability
judging on the quality of the reference wave function. In fact, when a strong discrep-
ancy is found between the second and third order results, it can be often attributed

to a defective zero order description.

As stated in section 2.1, in the RSPT the third order correction to the energy is
given by
ED = (v v wl)) - EQ|[ed)|? (2.48)

but, since in NEVPT the first order contribution to the energy is null, eq. (2.48)
reduces to
E® = <\I:§,1L> \4 q/§;>> . (2.49)

In the strongly and partially contracted approaches \If,(%) is expanded on a rather

limited set of correction functions and, as was formerly shown by Werner [38] in his
CASPT3 formulation, the task of building a third order algorithm can be achieved
without excessive computational effort. For both the NEVPT variants, the third
order correction has been implemented in our group [24,25] and a consistent number
of applications of its simpler version (SC-NEVPT3) has also been published [24,29-
31,39-44].

Here, we shall introduce the third order equations pertaining to the more elab-
orated partially contracted approach, since its implementation has taken a consid-
erable part of the present research work. The PC first order wavefunction has the
form given in (2.25) so, the working equation for PC-NEVPT3 is

5 _ () (1) ()(D) /g (k)
ES = 3 Sl el (wit)
llvklvl"/ lvk7u

j2 g flo( qfl(’jj> . (2.50)

We note that the coefficients C’l(];)(l) are computed and stored at the second order

level (eq. 2.26) and that H, gives a non null contribution, equal to El(f;), only in the
diagonal case (I,k,u = U',k’, ). Therefore, the PC-NEVPT3 implementation deals
with the evaluation of the interaction via the Hamiltonian operator between two
Internally Contracted (IC) functions. The main problem of computing the matrix
elements <\Ill(]2,
solved by implementing, in the MuPAD [45] computer algebra system, a symbolic
program named FRODO (after “Formal Reduction Of Density Operators”) [46,47]. In

fact, the program FRODO manipulates these matrix elements through the systematic

H ‘ \I/l(l;)>, for all possible occurrence of the IC functions, has been
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elimination of the inactive indices from the replacement operators, yielding a list of
numerical factors, mono and bielectronic symbolic integrals and strings of excitation
operators only confined to the active indices. Then this result is further elaborated
in order to produce a Fortran subroutine to perform the calculation of the requested
matrix element and, optionally, a IATEX file.

A detailed analysis of all the 31 classes of interaction that have to be consid-
ered is proposed in Appendix B, where, for the sake of simplicity, the nomenclature
“V(K')V (k)" is used to indicate the generic class <\Ifl(,kl) V] \Ifl(k)>

Finally, the knowledge of the matrix elements of H between the correction func-
tions makes it possible to build a completely variational calculation where the trial

wavefunction is expressed as a linear combination in the form

i k k
W= ) + 3 ol 231)
Lkp
In the case of the partially contracted approach such an expansion corresponds to
an Internally Contracted Configuration Interaction (IC-CI) [48] limited to the single
)

and double contracted excitations of x11£2 . IC-CI’s are expected to show the same
disadvantages present in the more common single reference SD—-CI calculations; in
particular they loose the size consistence property enjoyed by the NEVPT approach.
An example of IC-CI is provided in Ref. [24], concerning the Cry potential energy

curve, where the IC-CI result is shown to parallel the third order description.

2.8 A test case: the X'Y" and B''Y} states of C,

Since the Cy molecule is a central compound in various interstellar chemical phenom-
ena and combustion reactions, a considerable attention has been paid, by various the-
oretical chemists [49-53|, to the study of the its spectroscopic properties. The major
peculiarity of this system is the presence of many low-lying electronic states above
the ground state state, X 12;. The lowest-energy excited state (°II,) appears only
716 cm~! above the ground state and 16 other excited states have been experimen-
tally observed [54]. This near degeneracy of different electronic states is significant
even at the equilibrium geometry and becomes more problematic as the interatomic
distance increases, making the use of MR-based methods necessary. Therefore, the
Cs molecule represents a good example to test the performance and the reliability of
a MRPT method, which should be, in principle, able to accurately handle nearde-

generacy problems and bond-breaking phenomena.

In the present conclusive section the Cy molecule is chosen as example to present
the full set of NEVPT2, NEVPT3 and IC-CI results. The accuracy of our approach
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will be judged by comparison with previously published Full CI results [50], which,
we recall, within a given one-electron basis set approximation, provide the exact

solution to the electronic Schrédinger equation (see Sec. 1.2.1).

2.8.1 Method of calculation

In the light of the testing purpose of the present calculations, essentially aimed
to illustrate the behavior of the different degrees of approximation in the NEVPT
scheme rather than to provide a comprehensive description of the system, we re-
stricted the study to the ground state, XS}, and to the first excited state B''S.
Since an avoided crossing occurs between these states around 1.70 A, we carried out
QDNEVPT?2 calculations to properly compute the whole Potential Energy Curves
(PECs). Besides, in order to obtain a more accurate treatment of the region around
the minimum (r < 1.70 A) second and third order SS-NEVPT as well as at IC-CI
calculations were performed on the ground state.

To make the comparison meaningful, we have used the standard 6 — 31G* basis
set [55], used in the previous Full CI study by Abrams and Sherrill [50].

The zero order wavefunctions were obtained using the MOLPRO2008.2 package
[56]: a State-Averaged CASSCF (SA-CASSCF) calculation on the two 'S} states
was performed for the QDNEVPT?2 calculations, whereas a single-root optimization
on the ground X 12; state was adopted around the equilibrium distance before the
NEVPT3 and IC-CI computations. Since MOLPRO can only handle with Abelian
point groups not higher than Dy, , the reduced Doy symmetry was used and the
active space was made up by the 8 valence electrons and 8 valence orbitals (204,

204, 304, 30y, 14, 1Ty, 17, g and 17y g).

2.8.2 Results and discussion

The PC-QDNEVPT2 and FCI [50] potential energy curves for the ground state,
X7, and for the excited state, B''S}, are displayed in Fig. 2.8.2 and the total
energies are reported in Tab.2.1. While obtaining of the SA-CASSCF wavefunction
does not pose particular difficulties at short distances, it becomes quite a difficult
task as the bonds is elongated. At longer distances, indeed, the energy curve of the
A, state (actually, its component belonging to the A, irrep. in the Doy, point group)
first drops below the B’ 12; (in the range between 1.25 and 1.75 A) and then also
below the XlE;r. At SA-CASSCF level, with the MOLPRO package, the selection
of the two E;L roots was possible by forcing the convergence to the states with the
desired value of the quantum number A. As stated, the avoided crossing appears
around 1.7 A, where, both at FCI [50] and NEVPT level, the separation between

the states is roughly 10 kcal/mol. Then, the B”E;L starts to go up in energy but



38 Chapter 2. N-electron Valence State Perturbation Theory

it becomes again very close to the other at longer distances. In fact, both states
dissociate at the same limit 2 C(15225%2p?,3P). As is shown in Fig.2.8.2, where we
have plotted only the PC results, the QDNEVPT2 PECs perfectly mimic the shape
of the FCI ones, with an overall difference in the absolute energies amounting to
~ (.02 Hartree.

—75.4

Energy (a.u.)

—75.5 A

—=75.6

=75.7

_758 T T T T T
1 15 2 25 3
r(C--C) (A)

Figure 2.2: PC-QDNEVPT2 (“4” with full lines) and FCI [50] (“[0” with dashed lines)
PECs for the X'SF and B''S} states of the Cy molecule.

A deeper analysis of the computed wavefunctions explains the reasons which
make the Cy molecule a challenging test case even for highly—correlated single-
reference methods, at the level, for instance, of Singles and Doubles Couple Cluster
with perturbative Triples [CCSD(T)] or high—order Configuration Interaction (CI).
Near the equilibrium distance (around 1.25 A), the ground state wavefunction shows
a surprising multireference character, being mainly described by the configuration
(10710220202 172 , 1n, ) with a weight of about 70%, but with a not negligible
contribution amounting, to 14%, of the doubly excited configuration (103103203
17T22:,u17T§,u30-3)‘ At the same geometry, the excited state B’lzéF is dominated by
the configurations (10310320320517@7&03) and (1031032032031775,&03) appearing

with the same coefficient and by a minor contribution of (10’310’520’317‘(’%7U1W§,u30’§).
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As the interatomic distance increases, the nature of the ground state changes due to
the mixing with the B'S} state: the weight of the doubly excited determinant (207)
— (303) decreases while that of the two configurations (10310320320317@7&03) and
(103105 2032051@,”303) progressively increases. Then, around 1.8-1.9 A the char-

acter of the two states is interchanged as a consequence of the avoided crossing.

Table 2.1: QD-NEVPT2 and FCI [50] absolute energies (Hartree) for Ca. The bond

distance, r, in Angstrom.

xX'sr B''sF

r SC-QDPT2 PC-QDPT2 FCI SC-QDPT2 PC-QDPT2 FCI

0.00 -75.296045  -75.299147  -75.317618  -75.093846  -75.098434  -75.117717
0.95 -75.436746  -75.438997  -75.457665  -75.240802  -75.245426  -75.264774
1.00  -75.537208  -75.539483  -75.558335  -75.352471  -75.356832  -75.376449
1.05  -75.607410  -75.609677  -75.628645  -75.437580  -75.441688  -75.461663
110 -75.654410  -75.656632  -75.675637  -75.501883  -75.505691  -75.526003
115 -75.683662  -75.685806  -75.704813  -75.549173  -75.552701  -75.573273
120  -75.699424  -75.701464  -75.720475  -75.582615  -75.585889  -75.606636
1.25  -75.705037  -75.706960  -75.725995  -75.604984  -75.608032  -75.628883
1.30  -75.703134  -75.704938  -75.724026  -75.618661  -75.621510  -75.642414
1.35  -75.695795  -75.697484  -75.716657  -75.625626  -75.628297  -75.649224
140  -75.684667  -75.686253  -75.705544  -75.627482  -75.629992  -75.650929
1.50  -75.656049  -75.657494  -75.677127  -75.620627  -75.622839  -75.643794
1.60  -75.625210  -75.626783  -75.646930  -75.604767  -75.606582  -75.627561
170 -75.598549  -75.600391  -75.621163  -75.582627  -75.583782  -75.604839
1.80  -75.577403  -75.579135  -75.600442  -75.557715  -75.558759  -75.580101
1.90  -75.559176  -75.560657  -75.582417  -75.535582  -75.536670  -75.558438
2.00 -75.543159  -75.544477  -75.566646  -75.518210  -75.519213  -75.541479
2.20 -75.518133  -75.519152  -75.542142  -75.496885  -75.497636  -75.520806
2.40  -75.502044  -75.502818  -75.526459  -75.487530  -75.488060  -75.511848
2.60 -75.492845  -75.493427  -75.517449  -75.483723  -75.484098  -75.508225
2.80 -75.487899  -75.488369  -75.512568  -75.482140  -75.482413  -75.506703
3.00 -75.485347  -75.485723  -75.509925  -75.481448  -75.481702  -75.506025

In Tab.2.2 the single—state NEVPT and IC-CI total energies for the XIE:{ are listed
for 0.90 < r < 1.70, where the interaction with the B’T; state can still regarded
as minor. Notwithstanding, as shown in Fig.2.8.2, where the percentage error with
respect to the FCI banchmark is plotted for each method, approaching the avoided
crossing point the single-state treatment becomes defective. Indeed, while all the
error curves are flat up to r ~ 1.4 A, the errors rapidly rise at longer distances.
At 7 = 1.7 A the deviation from the FCI values amounts about to 22-23% (16-
18 kcal/mol) at the second order level and to 10-11% (8-9 kcal/mol) at the third
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order and IC-CI level. Apart from the sensible improvement attained going to the
third order correction to the energy, the most accurate description is obtained at
IC-CI level when the partially contracted IC functions are employed. The relative
percentage error in this case is ~ 2% at short distances and remains slightly less
than 10% at r = 1.7 A.

Table 2.2: NEVPT2, NEVPT3 and IC-CI absolute energies (Hartree) for the
X2} state. The bond distance, r, in Angstrom.

r SC-PT2 PC-PT2 SC-PT3 PC-PT3 SC-IC-CI  PC-IC-CI
0.90 -75.297081 -75.299068 -75.311196 -75.313399 -75.312439 -75.315217
0.95 -75.437028 -75.439017 -75.451120 -75.453322 -75.452245 -75.455093
1.00 -75.537684 -75.539638 -75.551769 -75.5563914 -75.552795 -75.555648
1.05 -75.608046 -75.609935 -75.622131 -75.624174 -75.623075 -75.625878
1.10 -75.655131 -75.656936 -75.669217 -75.671126 -75.670091 -75.672807
1.15 -75.684415 -75.686127 -75.698500 -75.700254 -75.699311 -75.701919
1.20 -75.700177 -75.701792  -75.714253  -75.715847 -75.715033 -75.717502
1.25 -75.705769  -75.707290 -75.719835 -75.721268 -75.720538 -75.722916
1.30 -75.703826 -75.705256 -75.717885 -75.719157 -75.718543 -75.720801
1.35 -75.696422 -75.697776 -75.710476 -75.711597 -75.711080 -75.713236
1.40 -75.685189 -75.686475 -75.699246 -75.700227 -75.699799 -75.701860
1.45 -75.671413 -75.672644 -75.685483 -75.686336 -75.685988  -75.687962
1.50 -75.656105 -75.657292 -75.670201 -75.670942 -75.670664 -75.672557
1.55 -75.640055 -75.641214 -75.654199 -75.654842 -75.654616 -75.656440
1.60 -75.623880 -75.625027 -75.638106 -75.638661 -75.638475 -75.640235
1.65 -75.608072 -75.609222 -75.622421 -75.622899 -75.622772 -75.624442
1.70 -75.593056  -75.594225 -75.607585 -75.607996 -75.607849 -75.609495

The SS-NEVPT and IC-CI PECs (strongly contracted on the top and partially
contracted on the bottom) are plotted along with the FCI ones in Fig.2.8.2. The
close-up insets in Fig.2.8.2 make the small differences among the various levels of

approximation appreciable.

Finally, using a simple polynomial interpolation around the equilibrium distance,
it has been possible to compute the spectroscopic constants reported in Tab.2.3,
where the corresponding experimental values [57] and some FCI results [58] are
also listed. As is apparent, improving the level of approximation, going from the
CASSCF to the partially contracted IC-CI, progressively improves the accuracy of
the computed r.. But, the error still remains ~ 0.021 A for the PC-IC-CI methods. A
good agreement with the experimental values is attained for the harmonic vibrational
constant, we, and for the rotational constant, B,; larger discrepancies are, instead,

obtained for the anharmonicity constant wexe.
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Figure 2.3: NEVPT and IC-CT errors (%) in the total energies with respect to the FCI
values [50] for the X' state of Cs.

Table 2.3: Spectoscopic constants for XlX];r state of Co. Energies in Hartree,

r. in Angstrom and the other parameters in cm~!.

Method U. Te We — Wele B.

CASSCF -75.617539 1.2676 1868 13.0  1.747
SC-NEVPT2 -75.706137 1.2650 1860 14.9 1.754
PC-NEVPT2 -75.707627 1.2643 1860 15.3 1.756
SC-NEVPT3 -75.720198 1.2649 1860 14.9 1.755
PC-NEVPT3 -75.721578  1.2637 1860 15.7  1.758
SC-IC-CI -75.720871 1.2642 1858 14.7 1.756
PC-IC-CI -75.723224 1.2636 1859 15.7 1.758
FCI/6-31G** [58] 75726127 1.2596 1859 13.2 1.771
FCI/cc-pVDZ [58] -75.729852 1.2727 1813 13.5 1.734

Experiment [57] 1.2425 1855 13.3 1.820
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Chapter 3
The hetero—cyclopentadienes

Pyrrole, Furan and Thiophene (Fig. 3.1) are 1-hetero—2,4—cyclopentadienes, con-
sisting of a butadiene unit linked via an “hetero—atom bridge” (N, O and S respec-
tively) (Fig. 3.1).

Figure 3.1: Molecular structures of Pyrrole, Furan and Thiophene

The experimental and theoretical investigation of the electronic absorption spec-
tra of the five-membered six m—electrons compounds has received a particular at-
tention since the beginning of the last century. The ongoing interest in their phys-
ical chemistry properties and spectroscopical features is certainly motivated by the
prominent réle they play in the biological and pharmaceutical chemistry, as well as in
the modern material science (preparation of polymeric and co—polymeric monolayers
for data—storage applications [59,60]). However, despite the large number of joint
experimental and theoretical efforts, a detailed interpretation of the absorption spec-
tra of these molecules still remains to be reached and, by now, they are regarded as
prototypic examples for the theoretical studies of excited states. The VUV spectra
of these systems show a complex profile because of the appearance of rich series of
Rydberg transitions, that overlap the valence bands and make the identification of
the states quite a difficult task.
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After a brief introduction addressing the qualitative interpretation of the valence
states (section 3.1), the problem of the Rydberg states and of their mixing with
the valence transitions will be discussed (section 3.2). The computational strategy
adopted will be then presented in section 5.4. Finally, the results obtained for Pyr-

role, Furan and Thiophene will be analyzed in sections 3.4, 3.5 and 3.6 respectively.

3.1 Tonic valence states

Pyrrole, Furan and Thiophene belong to the Cs, point group and, following Mul-
liken’s recommendation, the molecules have been placed in the yz plane with the z
axis being the Cy axis. Thus, the five valence 7 orbitals belong to the By and As
irreps and are in the order of energy 1by, 2bs, lag, 3b; and 2ay (2by, 3bs, lag, 4by
and 2ay for Thiophene). That is, at the single Slater determinant level, the electronic

configuration is
e (o-core)(1by)?(2by)?(1az)? (Pyrrole and Furan)
e (o0-—core)(1by)?(2by)?(3b1)?(1az)? (Thiophene)

where the o—core is composed of 30 electrons in the former case and of 36 electrons
in the latter.

The two highest—energy m MOs, 2b; and las for Pyrrole and Furan and 3b; and las
for Thiophene, are essentially delocalized over the whole molecular skeleton, whereas
the lowest—energy one, 1by, is localized on the hetero—atom. It follows that the four
lowest—energy valence m — 7* states are two states of A; symmetry and two states
of By symmetry.

A qualitative interpretation of the nature of the m — 7™ valence states of the
five-membered hetero—cyclopentadienes can be obtained by referring to the PPP
model [61, 62] for the alternant hydrocarbons. We recall that a hydrocarbon is
classified as alternant if its C atoms can be partitioned into two categories, in such a
way that two adjacent atoms belong always to different categories (the linear polyenes
as well as the even-membered cyclic hydrocarbons are alternant systems).

For these systems the PPP Hamiltonian is invariant under particle-hole permutation
and it can be proved that the energies of the occupied and virtual orbitals (Fig. 3.2)
are symmetric with respect to the LUMO-HOMO energy difference [63,64].

Let us indicate with ...,3,2,1 the occupied MOs, in increasing order of energy,
and with 1’,2",3',... the unoccupied ones (Fig. 3.2), where the orbitals i and i’ are
termed a conjugated pair. It follows that the two excitations i — j’ and j — ¢’ are
degenerate and result in a pair of minus, “—", and plus, “+”, states. The former state

has lower energy and a neutral character, whereas the latter plus state is dominated
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Figure 3.2: Schematic representation of the energies of the occupied and virtual orbitals of

an alternant hydrocarbon.

by ionic configurations. The HOMO—LUMO (1 — 1’) excitation gives rise to an
ionic plus state as well. Then, the ground state and the doubly—excited configurations
(i)2 — (j')? also are classified as minus states. Finally, some simple rules, based on
the pairing properties of such systems, predict that only the excitations to plus states
have oscillator strength different from zero, being, instead, forbidden the transition
from a minus state (the ground state) to another minus state.

Even if the pairing properties are no longer satisfied in the five-membered six—m
electrons compounds due to the presence of the hetero—atom, it is still possible to
recognize for these molecules a spectroscopical behavior similar to that of alternant
hydrocarbons. Therefore, the pair of 1A, states are a covalent minus state (1Af) and
an ionic plus state (*1A]), arising respectively from the symmetric and antisymmetric
combination of the two quasi—-degenerate configurations las — 2as and 2b; — 3by;
the HOMO—LUMO transition is also a ionic plus state (1B). It is worthwhile to
stress, however, that, due to the breakdown of the alternant symmetry in the five—
membered ring compounds, the excitation to the 1A1_ state is not strictly forbidden
(it appears with low intensity around 6 €V) and the doubly—excited configurations
((HOMO)2—(LUMO)?) can interact with both A7 and A states.

The theoretical description of ionic valence # — #* in aromatic molecules has
been shown to be an extremely difficult task, even for the most refined quantum
mechanics methodologies. As discussed by Serrano-Andrés et al. [65], it requires
the use of quite large basis sets, to properly describe the diffuse nature of some
excited states, as well as of highly—correlated methods, in order to take into account
the various and differential effects of the dynamical correlation. In particular, the
inclusion of the so-called “dynamical o polarization” (above all its ¢ — 7 component),
i.e. the response of the o framework to the change of the charge distribution in the
ionic states, is thought to be crucial to get an accurate treatment of these states.
This issue has been deeply investigated in a recent work [44], where the ionic V state

of ethene is taken as a prototype for the study of the ionic # — 7* states of aromatic
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and hetero—aromatic molecules. Through a Valence Bond (VB) decomposition of the
wavefunction the nature of the o polarization is analyzed and an additional (second
order) physical effect is introduced: the spatial contraction of the 7 orbitals as a
consequence of the charge displacement due to the polarization of the o skeleton.
In fact, as pointed out by the author [44], in the ionic forms, the effect of the o
polarization consists in moving the charge away from the atom bearing the two w
electrons. Such charge reduction results in a contraction of the m orbitals, that, if
not properly taken into account, significantly compromises the quality of the results.
Clearly a “CASSCEF plus perturbation” scheme, with the molecular orbitals optimized
at the zero order level, without considering the effect of the dynamical polarization,
is unable to provide good quality results. The strategy adopted in Ref. [44] to
adequately treat the m contraction is based on an optimization of the MOs in a
RASSCF [66] calculation with an appropriate choice of the RAS spaces in order
to include, at the zero order level, all the excitations describing the dynamical o
polarization [44]. The author showed that, if the orbitals are properly optimized,
accurate results can be obtained at the pertubative level, even using a minimal
active space.

As we shall widely discuss later, also in these hetero—aromatic ring compounds the
description of the two ionic valence states (1/1;r and 1B§r ) poses particular problems,
partially alleviated by the inclusion in the active space of m* orbitals, which allows
for a partial contaction of the 7 orbitals through the interaction with higher energy
m — m* states. However, following the strategy suggested by Angeli [44], the effect of
a full RASSCF optimization of the orbitals will be the subject of future investigations.

3.2 Valence—Rydberg interaction

A well-known problem in the spectroscopy of small and medium-sized molecules is
the appearence of low—lying Rydberg excited states, which due to the overlap with
valence transitions, complicate the interpretation of the electronic spectra. We recall
that the Rydberg states arise from the promotion of one electron to a very diffuse
orbital, characterized by an high quantum number n. Conventionally, for molecules
containing atoms belonging to the first and second rows of the periodic system, only
the orbitals with n > 3 are classified as Rydberg orbitals. Note that in the labelling
of the Rydberg states of Thiophene, for analogy with Pyrrole and Furan, we have
adopted the convention of choosing 3 as the lowest value of n, instead of 4, that
would be the appropriate choice for a molecule, containing atoms belonging to the
third row (see Ref. [67]).

The Rydberg states are of crucial importance in the characterization of the spec-

troscopy and photochemistry of small molecules, since they usually appear in the
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same energy region of the principal valence m — 7* transitions. Therefore, an ac-
curate theoretical study on the spectroscopy of small- and medium—sized molecules
requires a simultaneous treatment of the valence and, at least, of the lowest—energy
Rydberg states. This poses particular difficulties when a MRPT approach is em-
ployed. In fact, the Rydberg states, due to their “diffuse” nature, with the excited
electron far from the molecular frame, are less sensitive to the dynamical correletion
effects than the valence excited states. Therefore, at CASSCF level, Rydberg states
lie at low energy, close to the valence states and a mixing among the wavefanctions
may occur. When at CASSCF level such valence-Rydberg mixing takes place, the
application of a single-state perturbative correction, leaving the coefficients of the
zero order wavefunction unchanged, is unreliable and a quasi-degenerate perturba-
tive approach (section 2.6) should be applied. On the other hand, it is also possible
that two or more states, which are not mixed in the zero order description, become
near degenerate after the perturbative correction in such a way that a mixing is liable
to happen.

In the case of the hetero—cyclopentadienes, the excitation from the HOMO (1as)
into diffuse s, p and d orbitals originates the R—series states, whereas the excitation
out of the SHOMO (2b; for Pyrrole and Furan and 3b; for Thiophene) gives rise to
the so—called R/—series of Rydberg states. Since the energy differences between the
first (IP;) and second (IP3) are around 1.0-1.5 €V, a rich structure of Rydberg bands
is expected to appear in the UV spectra. As discussed in the following, the effects of
the valence-Rydberg mixing were found to be significant for Furan and Thiophene
and have been suitably treated at QD-NEVPT2 level.

3.3 Computational approach

For the computation of the vertical transition energies the experimental ground state
geometries were used [68-70]. It is worthwhile to stress that the “theoretical vertical”
transition energy is computed as the difference between the energy of the ground
state at its equilibrium geometry (the minimum of the Potential Energy Surface)
and that of the excited state again at the ground state equilibrium geometry; this
value is usually compared with the peak of the experimental absorption band. How-
ever, as argued by Davidson and Jarzecki [71], this assumption holds, within the
Born—Oppenheimer and Franck—Condon approximations (Fig. 3.3), provided that
the vibronic excited state is high enough. But, as confirmed by the frequently ob-
served asymmetry of the absorption bands, this could not be the case for small and
medium size molecules, with excited states only slightly distorted. As a consequence,
the comparison between the experimental maximum of the band and the computed

vertical excitation energy should always be regarded with care.
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Figure 3.3: Electronic vertical transitions.

All the calculations were carried out with a contracted ANO-L basis set [72]
adopting the contraction scheme S[5s4p2d|, C,N,0[4s3pld| and H|2s1p|. Note that
this is the same valence basis set employed in the first CASPT2 work by Serrano-
Andrés et al. [73]. In order to describe the Rydberg molecular orbitals, the above
mentioned valence basis set was augmented with molecule—centered [74] diffuse func-
tions. These basis functions were obtained by contraction of a set of 8s8p8d gaussian
primitives, whose exponents were optimized as described by Kaufmann et al. [75]
(Tab. 3.1). The contraction coefficients, reported in Tab. 3.1, were computed fol-
lowing the methodology developed by Roos et al. [74] with a contraction scheme
[1s1pld], thus confining ourselves to the calculation of 3s, 3p and 3d Rydberg states.

As already mentioned, Pyrrole, Furan and Thiophene belong to the Cs, point

group, and the molecules have been placed in the yz plane with the z axis as the Cy
symmetry axis. The classification in the Csq, point group of the Rydberg orbitals is
reported in Tab. 3.2.
The molecular orbitals were obtained from average CASSCF calculations using the
MOLCAS5.4 package [76], averaging over all the states of interest for a given sym-
metry. Finally, the five 1s orbitals were kept uncorrelated during the subsequent
second and third order NEVPT treatment.
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exponent contraction coefficients

Pyrrole Furan Thiophene

1s
0.0246239324 0.3491  0.3219 0.4275
0.0112533427 -2.3860 -2.2167 -2.2881
0.0058583805 2.9273  2.5387 2.5127
0.0033459739 -4.4334 -3.8427 -3.8323
0.0020484225 5.2412  4.5278 4.5108
0.0013236424 -4.4946 -3.8760 -3.8598
0.0008930958 2.4185  2.0836 2.0746
0.0006243129 -0.5996 -0.5163 -0.5140

Ip
0.0423352810 0.0639 0.0764 0.1668
0.0192542060 -0.7939 -0.7924 -0.5250
0.0099882106 0.0798  0.0453 -0.2721
0.0056893607 -0.8192 -0.7636 -0.5877
0.0034756797 0.8973  0.8328 0.4575
0.0022420590 -0.8142 -0.7546 -0.4294
0.0015106399 0.4682  0.4337 0.2464
0.0010547527 -0.1255 -0.1162 -0.0660

1d
0.0605402013 0.0079  0.0115 0.1190
0.0274456919 -0.2356 -0.2534 0.3315
0.0142043987 -0.2935 -0.3072 0.2779
0.0080765930 -0.4987 -0.4892 0.3967
0.0049271863 0.0186  0.0370 -0.0464
0.0031748110 -0.1878 -0.1860 0.1598
0.0021371230 0.0991 0.1011 -0.0870
0.0014910155 -0.0292  -0.0297 0.0255

Table 3.1: Exponents |75] and contraction coefficients (8s8p8d) — [1s1pld] for the Rydberg
basis set

3.3.1 Active Spaces
Pyrrole and Furan

The study was addressed to the computation of the three lowest—energy valence
7 — 7" states (B, 'A] and 'A]) as well as the six 7 — 7-Rydberg and 7 — o~

Rydberg states, with n = 3. Therefore, since no excitations from ¢ orbitals were
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Symmetry | Orbitals

a; ns, NPz, nd,2, ndy2_ 2
bl NPz, ndxz

b, npy, ndy.

ag ndxy

Table 3.2: Classification of the Rydberg orbitals into Cg, point group

considered, only the six m—electrons were active and two different types of active
space were used.

Wee shall refer to every active space with a sequence of four indices, where each
index indicates the number of orbitals for a given symmetry species (a1, b1, be, as in
order).

For the calculations of the m — o™ states (B and As) one need not include in the
active space m-type Rydberg orbitals, while for the description of 7 — 7* states (A
and Bj) only m—type molecular orbitals (valence and Rydberg) are necessary. So,
for the m — 7* states the smallest active space consists of the five (0302) valence =
orbitals and three (0201) Rydberg-type orbitals (0503), whereas for the T — o™ states
it is composed of the five valence 7 orbitals and six (4020) Rydberg-type orbitals
(4322) (see Tab. 3.2). However, in order to estimate the effects of the enlargement
of the active space with 7 virtual orbitals, we have also carried out some calculations
with eleven (0704), thirteen (0805) and fifteen (0906) active orbitals. We shall discuss
in detail the effects of the active space size for the Pyrrole molecule, presenting the
results computed with all the above indicated active spaces. Otherwise, since we
found a similar behavior for the excited states of Furan, in section 3.5 we shall
just report the CAS(0906) and CAS(0805) results. A summary of all the active
spaces used and the corresponding number of states included in the average CASSCF

calculations is given in Tab. 3.3.

Table 3.3: Active spaces and number of states used in the CASSCF calculations.

Nature Symmetry Active space Number of states
Ay 6
T—* (0503), (0704), (0805), (0906)
Bs 4
B 6
ot ! (4322)
A, 6
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Thiophene

For the Thiophene molecule, we focused on the computation of the vertical excitation
energy of the four low-lying @ — 7* valence states: the two 'B, states mainly
dominated by the las — 4b; and 3b;y — 2as excitations respectively and the two
14, states arising from the antisymmetric (1:4;(V)) and symmetric (*4;(V")) linear
combination of the two las — 2a9 and 3b; — 4b; conﬁgurationsl. Moreover, since
the experimental ionization potential of the 11a; lone pair amounts to 12.1 €V [77],
two n — 7* valence states (Ay and By symmetries) are expected near 9-10 eV. So, for
the calculations of 7 — 7%, n — n* and @ — o™ excited states, the six m—electrons
and the two lone pair electrons were active in all the calculations (the 1by 7 orbital,
localized on the sulfur atom, was included into the inactive core). Two different
types of active spaces were employed: one to compute the 7 — 7* and n — 7* states
and one for the m — o™ states. For the calculations of m—type excited states, the
minimum active space should include the five 7 valence orbitals, the lone pair orbital
and the three m Rydberg orbitals, resulting in a space (1503). Nevertheless, also for
Thiophene, the use of such active space has been proved to be inadequate to get a
satisfactory description of the m — 7* valence states; therefore, here we shall present
only the results obtained with a larger space, composed of 12 active orbitals (1704)
and 8 active electrons. Then, for the calculations of the m — o* states one need not
include in the active space m—type Rydberg orbitals (b; and as symmetries), and the
smallest active space is a (5322) space, composed of the lone pair orbital, the five 7
valence orbitals and of the six Rydberg o—type orbitals. However, as we shall discuss
later (section 3.6.1), in order to treat the effects of the mixing occurring among a
low—energy m — o* valence state and some 3p and 3d Rydberg states, the use of
an extended active space, including one more orbital of by symmetry (5332), was
necessary. The excitation energy of each state was determined with respect to the
corresponding ground state 'A;, computed for both the 1704 and 5332 spaces, taking
into account that, while a state—averaged CASSCF calculation was performed in the

former case, a single-root optimization was carried out in the latter.

3.4 Pyrrole

3.4.1 The UV absorption spectrum

The electronic absorption spectrum of Pyrrole, in the region between ~ 5 and ~ 8 €V,
has been widely investigated by both theoretical [73,78-87] and experimental [77,78,

'Note that for the the valence states of Thiophene, following the previous studies, we have
adopted a different notation with respect to the usual minus and plus nomenclature used for Furan

and Pyrrole.
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88-96] studies. However, in spite of such a high number of studies an unambiguous
assignment of the main spectrum features still remains to be reached.

The spectrum profile shows two regions of intense absorption, located around 6 and
7.5 eV respectively; another weak central band appears near 7 eV. According to the
traditional experimental interpretation [90,92,95], the intensity of the lowest-energy
band can be ascribed to a valence m — 7* state (1B;) while the second intense
absorption region is attributed to the presence of high-lying valence states, like the
strong A} transition. Another low—energy 7 — 7* state (*!A]) is expected to be
located in the first band system but, because of its weak intensity, an experimental
assignment is not available in the literature.

Overlaid on these valence bands are two sets of Rydberg series, termed R- and
R/-series. For a more comprehensive historical review see Ref. [73,79]. Here we
just remark that most of the discrepancies among the previous ab initio studies
mainly concern the interpretation of the lowest—energy band. The issue is whether
the 1B valence state belongs to the first absorption region or not. CASPT?2 studies
published first by Serrano-Andrés et al. [73] and then by Roos et al. [79], in agreement
with the traditional interpretation, locate this valence vertical transition at 6.00 and
5.87 eV respectively. However, almost all the subsequent ab initio investigations,
starting from the multireference Mgller-Plesset (MRMP) calculations by Hashimoto
et al. [87] and including the sophisticated coupled cluster study by Christiansen et
al. [83], yielded results significantly higher (0.5-0.7 e€V) than those obtained in the
CASPT2 works. As pointed out by Roos et al. [79], some experimental evidence
is consistent with the CASPT2 attribution of the valence state 1B§r to the lowest—
energy absorption region. This band is observed both in the vapor and condensed
phases with a maximum located at 5.96 [97] and 5.90 eV [93] respectively. This peak
can also be found, placed at 6.0 eV [93], in the crystal spectrum. Since Rydberg
states are thought to be less important in condensed phase, it is most unlikely that
this band should arise solely from pure Rydberg transitions.

On the other hand, a better agreement is achieved among the various theoretical
studies for the transition energies of Rydberg states, which are generally less sensitive
to the dynamical correlation effects.

Anyway, it is important to keep in mind that, as shown by Werner in a recent
paper [85], the valence excited states have non-planar equilibrium structures, so
that a considerable geometry relaxation is expected. A study involving only the
planar structures therefore tends to underestimate these relaxation effects. The
difficult handling of the Rydberg—valence mixing, that may occasionally occur in the

calculations, could be another source for such discrepancies.
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3.4.2 The singlet valence states

As is expected on the basis of the considerations reported in section 3.1 about
the spectroscopical behavior of the five-membered ring compounds, both the '4;
states have a multireference nature (symmetric and antisymmetric combination of
the lag — 2ay and 2b; — 3b; configurations) and a small fraction (more consistent
in the minus state) of the doubly excited configuration (1az)? — (3b1)? is expected

to be present.

As is apparent from the values in Tab. 3.12, in the calculations with the small-
est active space (0503) a different behavior in the treatment of the three valence
states can be recognized: the description of the covalent state appears quite coher-
ent, whereas considerable variations are evident in the NEVPT results for the two
ionic states. In particular, for the plus states, the SC-NEVPT2 and PC-NEVPT2
calculations provided excitation energies significantly dissimilar, revealing a deficient
CASSCF description. The difference between the two NEVPT2 results amounts to
0.36 eV for the 1A]L state and 0.23 eV for the 1B§r state and the sizeable increase of
the excitation energies produced by the third order correction is a further indication
of an improper reference wavefunction. Also, for these ionic states, it is interesting
to notice that at the second order level a large reduction of the CASSCF transition
energies is found (1.28 eV for the B state and 0.72 eV for the A7 state).

In order to improve the CASSCF function, calculations using active spaces of
increasing size were performed. Actually, we have also made use of active spaces
including occupied and virtual ¢ orbitals, but no remarkable improvements in the
perturbative trend were observed, therefore these results are not reported here. On
the contrary, the inclusion of 7 virtual orbitals into the active space yielded bet-
ter results, as shown by the values in Tab. 3.12. As can be seen, the extension of
the CAS space produces a pronounced lowering of the CASSCF excitation energies,
amounting to ~ 0.7 eV in the case of the !By state and ~ 0.9 eV for the 'A] state.
An improved consistency among the NEVPT values was consequently achieved using
the (0704), (0805) and (0906) CAS spaces, but it must be stressed that the latter
spaces (0805 and 0906) do not bring substantial improvements with respect to the
(0704) one.

With the (0704) space for instance, the discrepancies between the SC-NEVPT2 and
PC-NEVPT?2 excitation energies were reduced to 0.12 eV for the A} state and 0.15
eV for the 1B state. As a confirmation of the improvement obtained in the CASSCF
description, the third order correction brought about just a small increase in the tran-
sition energies with respect to those calculated at PC-NEVPT?2 level.

But, despite the improvement yielded by the extension of the CAS space, for the
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ionic states the NEVPT results turn out significantly higher than those of the other

theoretical methods.

Our largest calculation (SC-NEVPT3 with 0906), for istance, locates the vertical
transition to the lB; state at 7.05 eV, where a value of 5.87 €V is obtained by Roos
et al. [79], of 6.63 eV (CC3) by Christiansen et al [83] and of 6.51 eV by Hashimoto
et al [87].

Table 3.4: Vertical excitation energies (éV) for the m — 7* valence states of
Pyrrole. Comparison between the NEVPT and previous theoretical results.

Method AT (n—7*)  '‘Bf(n—n*) A (r—7")
Active space (0503)
CASSCF 6.55 7.94 9.68
SC-NEVPT2 6.85 6.66 8.96
PC-NEVPT?2 6.78 6.43 8.62
SC-NEVPT3 6.68 7.07 9.14
Active space (0704)
CASSCF 6.33 7.27 8.71
SC-NEVPT2 6.66 7.22 8.54
PC-NEVPT?2 6.62 7.07 8.42
SC-NEVPT3 6.51 7.24 8.50
Active space (0805)
CASSCF 6.37 7.23 8.76
SC-NEVPT2 6.57 7.11 8.43
PC-NEVPT?2 6.53 6.96 8.30
SC-NEVPT3 6.51 7.12 8.47
Active space (0906)
CASSCF 6.37 7.23 8.82
SC-NEVPT2 6.63 7.07 8.44
PC-NEVPT?2 6.59 6.95 8.29
SC-NEVPT3 6.56 7.05 8.48
previous works
CASPT2773]/ [79] 5.92/5.82 6.00/5.87 7.46
MRMP/MCQD [87] 5.98/6.01 6.51/6.51 7.48/7.51
CcC3 [83]° 6.37 6.63 8.07
CCSD(R) [83]° 6.43 6.63 8.12
CCSD [83]° 6.53 6.61 8.00
MRCI [86] 6.11 6.73 8.19
SAC-CI [81] 6.41 6.48 7.88
ADC(2) [80] 6.66 6.71 7.75
DFT (B97-2) [86] 6.61 6.55

# MS-CASPT? calculations in Ref. [79]
b Experimental equilibrium geometry and basis set as Ref. [73]

¢ aug-cc-pVTZ basis set with 7s7p7d molecule-centered functions
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In the more recent CASPT2 study [79] the authors found a strong interaction
between this valence state and the Rydberg las3p, so that the multi—state approach
even reversed their positions. To investigate the effects of the valence-Rydberg
interaction on the states of By symmetry, we have also applied a quasi-degenerate
second order correction (QD-NEVPT2) [23], but, as shown in Tab. 3.5, we did
not find considerable changes in the excitation energies. Indeed, in the NEVPT
calculations, the sizable energy difference (slightly lower than 1 V) between the 1B§L

and lao—3p, state does not allow any mixing between the wavefunctions.

Table 3.5: QD-NEVPT?2 verical transition energies (€V) for the states of By symmetry
of Pyrrole.

Active space (0704) Active space (0805)
States SC-QDPT2 PC-QDPT2 SC-QDPT2 PC-QDPT2
1'By(1az—3p,) 6.15 6.09 6.09 6.02
2By (1ag—3d,.) 6.86 6.80 6.80 6.72
31B5(2b1—3dyy) 7.89 7.85 7.82 7.76
4B (r—7*) 7.26 7.15 7.14 7.04

Similar remarks can be made about the 1Af state, whose multireference nature,
in addition to its ionic character, makes it a difficult task for all the ab initio meth-
ods. The NEVPT excitation energies are significantly higher (roughly 1 eV) than
the CASPT?2 values [73,79], but a better agreement is otherwise attained with the
coupled cluster results [83]. With the (0704), (0805) and (0906) spaces the differ-
ence between NEVPT values and those calculated by Christiansen et al. [83| never
exceeds 0.5 eV, as was the case for the 1B; state.

Finally some interesting remarks can be made about the covalent valence state
A7, whose CASSCF description appears satisfactory even with (0503) space. As
is evident, very similar results were obtained from the two different second order
calculations: with all the active spaces the difference between SC-NEVPT2 and PC-
NEVPT?2 is always lower than 0.1 eV. The third order correction brought just a small
reduction of the transition energies, amounting roughly to 0.1 eV in the (0503) and
(0704) space, to 0.02 eV in (0805) and, finally, to 0.05 eV in the (0906) space.
Overall, our results for this state agree with the previous ab initio calculations by
Trofimov and Schirmer [80], Wan et al. [81] and Christiansen et al. [83]. The best
NEVPTS3 values (0704, 0805, 0906 spaces) and the CC3 vertical transition energy
differ by ~ 0.2 eV at most. Otherwise, our perturbative results are again significantly
higher (~ 0.7 €V) than those calculated in the CASPT?2 studies by Serrano-Andrés
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et al. [73] and Roos et al. [79].

3.4.3 The m—type Rydberg states

Table 3.6: Vertical excitation energies (V) for the m—type Rydberg states of Pyrrole.
Comparison between the NEVPT and previous theoretical results.

2'4, 314, 5'4, 1'B, 2'B, 3'B,
Method las—3dzy  2b1—3p,  2b1—3d.. la2—3p, las—3d:. 2b1—3day
Active space (0503)
SC-NEVPT2 6.95 7.19 7.69 6.24 6.95 7.96
PC-NEVPT2 6.96 7.19 7.65 6.26 6.97 7.98
SC-NEVPT3 6.62 6.83 7.39 5.90 6.61 7.58
Active space (0704)
SC-NEVPT2 6.82 7.08 7.80 6.17 6.88 7.89
PC-NEVPT2 6.83 7.09 7.81 6.13 6.85 7.84
SC-NEVPT3 6.63 6.81 7.52 5.92 6.64 7.61
Active space (0805)
SC-NEVPT2 6.78 6.97 7.72 6.10 6.82 7.81
PC-NEVPT2 6.77 6.96 7.71 6.05 6.77 7.76
SC-NEVPT3 6.66 6.82 7.56 5.94 6.68 7.64
Active space (0906)
SC-NEVPT2 6.75 6.92 7.71 6.08 6.80 7.78
PC-NEVPT2 6.74 6.90 7.70 6.06 6.78 7.75
SC-NEVPT3 6.67 6.78 7.55 5.98 6.62 7.59
previous works
CASPT273]/ [79] 6.54 6.65 736 5.78/6.09  6.53 7.43
MRMP/MCQD [87] 6.38/6.37 6.62/6.64 7.20/7.20 5.87/5.88 6.61/6.62 7.36/7.39
CC3 [83]b 6.77 6.94 7.60 5.98 6.91 7.66
CCSDR(3) [83]° 6.78 6.95 7.62 5.7 6.89 7.67
CCSD [83]° 6.73 6.89 7.53 5.82 6.86 7.59
MRCT [86] 6.51 6.67 7.35 5.86 6.57 7.37
SAC-CI [81] 6.64 6.86 7.49 5.88 6.76 7.55
ADC(2) [80] 6.54 6.43 7.23 5.86 6.48 7.26
DFT (B97-2) [86] 6.86 6.05 6.90

# MS-CASPT?2 calculations in Ref. [79]
" Experimental equilibrium geometry and basis set as Ref. [73]
¢ aug-cc-pVTZ basis set with 7s7p7d molecule—centered functions
As can be seen in Tab. 3.6, the NEVPT results of the pure Rydberg states show
quite a coherent trend. Since no significant valence-Rydberg mixing occurred, the
zero order description was not problematic and even the smallest active space (0503)
could provide good results. Contrary to what we have previously seen for the va-

lence states, the differences between the values of the two second order variants are
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negligible (the largest deviation amounts to 0.05 €V). The progressive extension of
the CAS space gave rise to a lowering of the second order excitation energies and to
a corresponding attenuation of the third order correction. With the exception of the
2by — 3d,, state in the (0503) calculation, where probably a small Rydberg—valence
mixing takes place, the NEVPT3 results, using different active spaces, for a given
transition are all very similar, with differences not exceeding 0.07 eV. Furthermore,
a remarkable agreement is obtained between NEVPT3 and the best coupled—cluster
results (CC3), with the difference not exceeding 0.23 eV (2!B; state). A weak in-
teraction with the 7 — 7* valence state (1By") might be the reason for this small
discrepancy.

Finally, a good accordance is obtained between the SC-NEVPT3 and the the
CASPT?2 results. Nevertheless, the NEVPT2 excitation energies for the six m Ry-
dberg states are, on average, higher (< 0.4 €V) than the CASPT2 ones of Serrano-
Andrés et al. [73], MRCI by Palmer et al. [86] and SAC-CI by Wan et al. [81]

3.4.4 The o-type Rydberg states

Table 3.7: Vertical excitation energies (eV) for the 'B; Rydberg states of Pyrrole. Com-

parison between the NEVPT and previous theoretical results.

1'B: 2'B, 3B, 4'By 5'B; 6'B1
Method las—3py 2b1—3s las—3dy. 2b1—3p. 2b1—3da, 2b1—3da,
SC-NEVPT2 6.19 6.40 6.79 7.07 7.76 7.86
PC-NEVPT2 6.21 6.42 6.81 7.09 7.79 7.89
SC-NEVPT3 5.84 5.99 6.47 6.67 7.32 7.41
previous works
CASPT2%73]/ [79] 5.85/5.87 5.97 6.40 6.62 7.32 7.39
MRMP/MCQD [87] 5.81/5.80 5.70/5.75 6.45/6.44 6.48/6.50 7.14/7.13  7.23/7.21
CcC3 [83]b 5.85 5.99 6.47 6.72 7.31 7.37
CCSDR(3) [83]b 5.86 6.01 6.47 6.74 7.32 7.39
CCSD [83]° 5.82 5.97 6.43 6.67 7.33 7.45
MRCI [86] 5.84 6.34 6.45 6.89 7,30 7.48
DFT (B97-2) [86] 6.00 6.11 6.61
SAC-CI [81] 5.80 6.05 6.39 6.68 7.34 7.26
ADC(2) [80] 5.69 5.59 6.20 7.00 6.88

# MS-CASPT?2 calculations in Ref. [79]
> Experimental equilibrium geometry and basis set as in Ref. [73]

¢ aug-cc-pVTZ basis set with 7s7p7d molecule—centered functions

The perturbative results, obtained with the (4322) space, show an extremely
consistent trend (Tabs. 3.7 and 3.8): the difference between the SC-NEVPT2 and
PC-NEVPT2 values is indeed never larger than 0.03 eV and, moreover, the third

order correction leads to a regular decrease in the transition energies, amounting



60 Chapter 3. The hetero—cyclopentadienes

roughly to 0.4 eV. Since no low—energy valence states were present in the average
CASSCF calculations and hence the zero order description was not affected by any
Rydberg—valence mixing effect, one can clearly appreciate the systematic improve-
ment brought by the third order correction. It is interesting to remark that, probably
due to the same reason, the vertical excitation energies obtained from the various ab
initio methods are quite similar. However, this is not the case for the MRCI results
by Palmer et al. [86], which are, on average, higher than those reported in the other
high-level studies.

The NEVPTS3 excitation energies are in excellent agreement with the CC3 results,
with a difference never going beyond 0.06 eV (2!45 state). Furthermore, in opposi-
tion to what was found for the valence and m Rydberg states, a remarkable accor-
dance with the CASPT2 [73] results was also attained; indeed, the SC-NEVPT3 and
CASPT?2 transition energies differ by 0.05 eV at most.

Table 3.8: Vertical excitation energies (eV) for the Ay Rydberg states of Pyrrole. Com-

parison between the NEVPT and previous theoretical results.

1'As 24, 34, 4'A, 5'4s 6'As
Method las—3s las—3p. la2—3da, la2—3da, 2b1—3py  2b1—3dy-
SC-NEVPT2 5.43 6.11 6.74 6.84 7.22 7.77
PC-NEVPT2 5.45 6.14 6.77 6.87 7.23 7.79
SC-NEVPT3 5.10 5.80 6.40 6.52 6.81 7.36
previous works
CASPT2%73]/ [79] 5.08/5.22  5.83/5.97 6.42 6.51 6.77 7.31
MRMP/MCQD [87] 4.92/4.91 5.74/5.74 6.38/6.37  6.44/6.43 6.70/6.65 7.25/7.22
CC3 [83]b 5.10 5.86 6.43 6.50 6.84 7.36
CCSDR(3) [83]° 5.12 5.87 6.44 6.52 6.86 7.37
CCSD [83]° 5.12 5.83 6.40 6.48 6.81
MRCI [86] 5.59 6.12 6.80 6.57 6.71 7.30
DFT (B97-2) [86] 5.18 5.97 6.61 6.55
SAC-CI [81] 5.11 5.81 6.38 6.44
ADC(2) [80] 4.99 5.65 6.21 6.33 6.41 6.92

# MS-CASPT?2 calculations in Ref. [79]
b Experimental equilibrium geometry and basis set as in Ref. [73]

¢ aug-cc-pVTZ basis set with 7s7p7d molecule—centered functions

3.5 Furan

3.5.1 The UV absorption spectrum

The investigation of the electronic absorption spectrum of Furan has a long history
and a large number of experimental [77,94-96,98-104] and theoretical works [73,
81,82,84,103,105-109] have been published. Analogously to Pyrrole, the ultraviolet
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(UV) spectrum exhibits two principal regions of absorption, located around 6 and
8 eV and two rich series of overlapped m — Rydberg transitions. While the various
experimental and theoretical studies are in substantial agreement in ascribing the
two absorption regions to the m — 7* valence states 13; and 1Af respectively, some
discussion concerns the exact position of the covalent 1A1_ state. The controversial
question is whether the vertical transition to the 1A state is lower or higher in energy
than the !By one. Palmer and co-workers, in their MRCI study [103], computed the
1A1_ state to lie below the 1B; one and assigned the former to a peak observed at 5.80
eV. Their conclusions were also corroborated by some experimental works [101,104],
such as the UV absorption study on jet—cooled Furan by Roebber et al. [101], who
suggested that the peak at 5.80 eV should show a valence character because of its
insensitivity to the formation of molecular clusters, where the Rydberg states are
thought to play a minor role. Nevertheless, all the more recent ab initio calculations
[81,107-109] do not support this interpretation, computing the 1A valence transition
at the high—energy side of the 1B§r state. Indeed, as shown by Gromov et al. in
their extensive molecular dynamics study [109], the partial valence character and
the unexpected intensity of the forbidden 'A5(3s) excitation, can be explained by a
vibronic interaction with higher energy dipole-allowed transitions, like the 1B§r and
1AI valence states. Finally, other ambiguities concern the assignment of the By (3py)
and By(3p,) states as well as other high—energy Rydberg states [103,107].

3.5.2 Valence—Rydberg mixing

In Tabs. 3.9 and 3.10 the single-state and quasi—degenerate NEVPT excitation
energies for the m — 7* states of Furan (!A; and 'Bj respectively) are reported. As
is apparent, despite the use of rather large active spaces, the perturbative treatment
of the two ionic valence states (!B; and 'A]) remains problematic, as was also
the case for the ionic valence states of Pyrrole [29|(Sec. 3.4). Indeed, both in the
single-state and quasi—-degenerate (QDNEVPT2) calculations, significant differences
(~ 0.2 V) between the SC and PC second order results are evident. Then, further
complications arise from the strong valence-Rydberg effects that take place both at
the zero and second order level. In order to check on the occurrence of valence—
Rydberg interactions in the zero order description, we have evaluated, as is common
practice, the expectation value of the second moment of the charge distribution:
values of (x?) in the range between 25-35 a.u. are indeed typical values for pure

valence states.



62 Chapter 3. The hetero—cyclopentadienes

Table 3.9: Single-state and quasi-degenerate (QD) vertical transition energies
(eV) for the 'A; states of Furan.

Method AT lag—3dyy, 2b1—3p,  2b1—3d,, AT
Active space (0704)
SC-NEVPT2 6.77 7.44 8.22 8.89 8.94
PC-NEVPT2 6.73 7.44 8.20 8.88 8.77
SC-NEVPT3 6.67 7.33 8.02 8.69 8.71
SC-QDNEVPT?2 6.76 7.45 8.22 9.11 8.72
PC-QDNEVPT?2 6.71 7.46 8.20 9.10 8.56
Active space (0805)
SC-NEVPT2 6.68 7.44 8.16 8.83 8.87
PC-NEVPT2 6.64 7.42 8.13 8.80 8.69
SC-NEVPT3 6.64 7.37 8.06 8.73 9.00
SC-QDNEVPT?2 6.68 7.44 8.16 9.03 8.67
PC-QDNEVPT?2 6.62 7.43 8.13 9.01 8.49

Table 3.10: Single-state and quasi—degenerate (QD) vertical transition energies (eV)
for the 'B5 states of Furan.

Method lag—3p; las—3dy. 'By  2b1—3dyy
Active space (0704)
SC-NEVPT2 6.74 7.36 7.22 8.97
PC-NEVPT2 6.67 7.29 7.04 8.88
SC-NEVPT3 6.64 7.27 7.42 8.82
SC-QDNEVPT?2 7.05 7.65 6.63 8.97
PC-QDNEVPT?2 6.91 7.67 6.42 8.88
Active space (0805)
SC-NEVPT2 6.71 7.29 7.23 8.92
PC-NEVPT2 6.63 7.21 7.05 8.82
SC-NEVPT3 6.65 7.26 7.37 8.85
SC-QDNEVPT?2 7.02 7.61 6.61 8.92
PC-QDNEVPT?2 6.87 7.62 6.41 8.82

In Tab. 3.11 the values of (z2) obtained from the average CASSCF calculations

are listed and compared with those recomputed after the QD correction. At the
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average CASSCF level, for the excited states of A; symmetry the valence-Rydberg
mixing can be regarded as negligible, whereas a consistent mixing is evident for the
1B, states. Indeed, with both active spaces, the 1Af and 1A]L states have values
of (x2) of ~ 25 and ~ 32 a.u., in accordance with their valence character; on the
contrary, the !By state shows too large a value of (22) (~ 45 a.u.), revealing a small
Rydberg component. As shown both by the NEVPT results in Tab. 3.9 and the
values of (#2) in Tab. 3.11, the covalent valence state 'A; and the two las — 3dyy,
and 2b; — 3p, Rydberg states are not affected by any mixing.

The application of the QD approach leaves substantially unchanged their excita-
tion energies and the SC-NEVPTS3 result can be regarded as reliable.
On the other hand, after the second order correction the 1Af valence state and the
2by — 3d,. Rydberg state become very close in energy and, since their coupling
(~ 0.09 a.u.) is greater than their energy difference (~ 0.04 a.u.), the QD correc-
tion allows for a consistent interaction between the two wavefunctions. As one can
reasonably expect, the application of the QD approach brings about a decrease in
the excitation energy of the valence state (~ 0.2 eV), which is more sensitive to the
dynamical correlation effects, and a corresponding increase in the excitation energy
of the Rydberg state. Also, as is apparent in Tab. 3.11, after the QD approach the
value of (z2) of the valence (Rydberg) state is increased (decreased) by about 5 a.u.

Table 3.11: (z%) component of the second moment of the charge distri-
bution (a.u.) for the 'A; and By states of Furan. The values have been

obtained using two different active spaces

Active Space (0704) Active Space (0805)
State Nature (w?)2 (x2)b (z2)2 (z2)b
1AI 7" 25.84 24.85 25.26 24.74
14, lag — 3d,, 88.22 88.95 89.93 90.30
14, 2by — 3p,  75.29 74.95 76.66 76.35
14, 20y — 3d,, 86.20 81.86 86.18 81.53

Uy ror 32.72 37.07 31.68 36.64
By lag —3p, 73.38 70.65 73.59 68.68
1By lay — 3d,. 81.68 89.62 79.81 89.02
Bf  n—n* 44.86 38.09 45.15 39.82

B, 2by — 3dyy  87.93 87.95 89.08 89.08

@ Values obtained from the average CASSCF calculations
b Values recomputed after the PC-QDNEVPT?2 correction

Since a remarkable valence-Rydberg mixing occurs both at the zero order and

second order levels, the treatment of the states of By symmetry turns out to be
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rather problematic. As can be noticed in Tab. 3.10 only the 2b; — 3d,, state is
not influenced by the application of the QD correction. The strongest mixing takes
places between the las — 3p, and the valence state in such a way that the application
of the quasi—degenerate approach even interchanges their positions. After the QD
calculations, the identification of the valence and Rydberg states was possible on
the basis of the recomputed values of the second moment of the charge distribution.
As shown in Tab. 3.11, at the “partially contracted” level, where the interaction is
more consistent and hence the QD approach is more efficient, the value of (z2) of
the 1B state amounts to ~ 39 a.u, whereas a value of ~ 45 a.u. was obtained from
the average CASSCF calculations. Finally, a noticeable change in the excitation
energies of the las — 3d,, Rydberg state is also observed; its transition energies are
increased by ~ 0.3 eV with respect to those computed at the single—state level.

In conclusion, it is interesting to remark that no significant improvements were
obtained increasing from eleven (0704) to thirteen (0805) the number of active or-
bitals, since the extent of the valence-Rydberg mixing is not modified and the low-

ering of the second order transition energies amounts to 0.1 eV at most.

3.5.3 Singlet Valence States

In Tab. 3.12 the SC-NEVPT3 and PC-QDNEVPT2 excitation energies, obtained
with the (0805) space are reported and compared with the previous theoretical re-
sults and the available experimental assignments. Since, as previously discussed
(section 3.6.1), the two ionic states (!B and 'A]) are strongly influenced by the
interaction with the Rydberg states, the consistent differences (~ 0.6 eV) between
the SC-NEVPT3 and PC-QDNEVPT2 values are not surprising. Therefore for these
two states, in the following discussion, we shall refer only to the QD excitation en-

ergies.

The PC-QDNEVPT?2 calculation locates the 1B; state at 6.41 eV, in excellent
agreement with the previous coupled cluster computations by Christiansen and Jgr-
gensen [107], SAC-CI by Wan et al. [81] and EOM-CCSD by Gromov et al [108].

A very good agreement with the coupled cluster results is also observed for the
1Af state, whose PC-QDNEVPT2 excitation energy is 8.49 eV, only 0.14 eV higher
than the CC3 result and 0.07 eV lower than the CCSD one. This agreement is even
more meaningful when considering that the CC computations were performed using
the same geometry [69] and ANO basis set [72] used in the present study. Taking
into account the rather significant discrepancies (~ 0.2-0.3 eV) [107, 108] between
the computed vertical transition energy and the observed maximum of the band, our

present results confirm the traditional attribution of the broad bands at 6 and 8 eV



Furan 3.5 65

to the valence 'Bf and A} states respectively.

Table 3.12: Computed vertical transition energies for the m— 7* valence states
of Furan compared with the previous theoretical results and the experimental

data.
Method 1B§L 1Af 1Af
SC-NEVPT3? 7.37 6.64 9.00
PC-QDNEVPT2? 6.41 6.62 8.49
previous works
CASPT2 [73] 6.04 6.16 7.74
MRMP/MCQD [105] 5.95/5.99 6.16/6.19 7.69/7.72
CC3 [107]° 6.35 6.61 8.35
CCSD [107]° 6.49 6.86 8.56
CCSD [107]¢ 6.45 6.82 8.34
MRCT [103] 6.76 6.02 8.32
SAC-CI [81] 6.40 6.79 8.34
ADC(2) [106] 6.37 6.70 8.16
TD-DFT (B97-1) [84] 6.12 6.76
EOM-CCSD [108] 6.49 6.84
Expt.(vert.) 6.044¢ 7.80°

& Active Space (0805)

b Experimental equilibrium geometry [69] and basis set as in Ref. [73]

¢ aug-cc-pVTZ basis set augmented with 7s7p7d ring—centered diffuse func-
tions

d Refs. [77,95,98,99]

¢ Ref. [103]

Finally, the NEVPT calculations, in agreement with most of all the other ab
initio studies and with the traditional experimental interpretation, predict the 1A1_
state to be about 0.2 eV higher in energy than the 1B;r one. Its excitation energy
at SC-NEVPT3 level is computed at 6.64 €V, only 0.03 eV higher than the CC3
result (6.61 eV). A good accordance with the TD-DFT [84] and EOM-CCSD [108]
excitation energies is also attained. On the other hand, for the three valence states,
the CASPT?2 results by Serrano-Andrés et al. [73] and MRMP by Hashimoto et
al. [105] turn out to be significantly lower than the NEVPT ones. Apart from the
case of the 1Af state, where, as pointed out by the authors 73], the presence of
intruder states could compromise the accuracy of the result, the differences between

the NEVPT and CASPT2 values amount roughly to 0.4-0.5 V.
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3.5.4 Singlet Rydberg states

In Tab. 3.13 the SC-NEVPT3 and PC-QDNEVPT?2 excitation energies (0805 space)
of the m—type Rydberg states are reported and compared with those obtained in the
previous theoretical works and with the experimental data. Instead, in Tabs. 3.14
and 3.15 we present the second and third order single—state NEVPT results obtained
for the o—type Rydberg states: the excited states are separated into the las — 3l
(Tab. 3.14) and 2b; — 3l states (Tab. 3.15).

Table 3.13: Computed vertical transition energies for the 7—type Rydberg states of Furan
compared with the previous theoretical results and the experimental data.

1A, A, A, B, By B,
Method las—3dzy  201—3p, 201—3d..  laz—3p: laz—3dz. 2b1—3day
SC-NEVPT3? 7.37 8.06 8.73 6.65 7.26 8.85
PC-QDNEVPT2* 7.43 8.13 9.01 6.87 7.62 8.82
previous works
CASPT? [73] 7.31 6.48 7.13
MRMP/MCQD [105] 7.26/7.29 6.50/6.11  7.18/7.21
CCSD [107]° 7.58 8.26 6.94 7.72
MRCI [103] 7.75 8.15 8.33 6.66 7.71 8.94
SAC-CI [81] 7.36 8.14 8.95 6.82 7.51 8.79
ADC(2) [106] 7.22 7.71 8.51 6.73 7.35 8.32
TD-DFT (B97-1) [84] 7.47 6.83 7.55
Expt. 7.28¢ 7.52¢ 8.46(7)¢ 6.47¢ 8.774

2 (0805)Active Space

b aug-cc-pVTZ basis set augmented with 7s7p7d ring—centered diffuse functions
¢ Refs. [77,95,98,99]

4 Ref. [103]

3s Rydberg States

In the NEVPT calculations the las — 3s Rydberg transition is predicted to be
the lowest—energy excited state of Furan (Tab. 3.14). At the second order level its
excitation energy is computed at 6.11 (SC-NEVPT2) and 6.13 eV (PC-NEVPT?2); a
slight reduction (< 0.1 V) is observed in the SC-NEVPT3 calculation, where this
state is computed at 6.00 eV. As can be seen, the computed excitation energies agree
with those obtained in the previous theoretical studies [73,81,84,103,107,108].
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Table 3.14: Computed vertical excitation energies (eV) for the las — o* Rydberg states of
Furan compared with the previous theoretical results and the experimental data.

1(12 — 3l 1A2 131 1A2 1A2 1B1 1A2
Method 3s 3py 3p- 3dx2_y2 3dy 3d.2
SC-NEVPT2 6.11 6.67 6.77 7.26 7.39 7.44
PC-NEVPT2 6.13 6.68 6.79 7.28 7.39 7.46
SC-NEVPT3 6.00 6.56 6.65 7.14 7.27 7.31
previous works

CASPT? [73] 5.92 6.46 6.59 7.00 7.15 7.22
MRMP/MCQD [105] 5.84/5.84 6.40/6.40 6.53/6.54 6.98/6.98 7.10/7.12 7.18/7.19
CCSD107] 6.11 6.64 6.80 7.12 7.32 7.39
MRCI(DZPR) [103] 5.95 6.63 6.41 7.15 6.99 7.40
TD-DFT (B97-1c) [84] 5.97 6.58 6.69 7.03 7.21 7.27
SAC-CI [81] 5.99 6.45 6.66 7.04 7.14 7.27
ADC(2) [106] 5.86 6.35 6.50 6.89 6.98 7.11
EOM-CCSD [109] 6.04 6.56 6.71

Expt. 5,9495.80> 6.47°6.76°  6.61° 7.28°

# aug-cc-pVTZ basis set with 7s7p7d molecule—centered functions
b Refs. [77,95,98,99,102]

¢ Ref. [103]

4 Refs. [101,104]

On the basis of electron—energy loss (EEL) measurements, the 2b; — 3s (1By)
transition was assigned by Palmer and co-workers [103| to a peak at 7.38 eV. The
most accurate NEVPT result places the vertical transition of this state at 7.41 eV

(SC-NEVPT3 value in Tab. 3.15), in agreement with the experimental assignment
and the previous CCSD [107], SAC-CI [81] and TD-DFT [84] results.

3p Rydberg States

The three 1lay — 3p Rydberg states are one m-type state (1B2(3p,)) and two o—type
states (1B1(3py) and 145(3p.)). Some discussion concerns the energetical order of the
1B1(3py) and 'By(3p,) states. In particular, two p-type Rydberg transitions were
experimentally observed at 6.47 [77,96,99,103] and 6.76 eV [102,103|. In their MRCI
study, Palmer and co—workers [103] assigned the lower transition (6.47 eV) to the
1By (3p.) state and the higher one (6.76 eV) to the 'B;(3p,) state. However, in the
subsequent theoretical studies [81,84,106,107], the assignment proposed by Palmer
et al. [103] was questioned and reversed. For instance, in the best CC calculations
[107] the 'B;(3p,) state was estimated to be about 0.3 eV lower then the By (3p,)
one. Similar results were also attained in the more recent SAC-CI [81] and TD-

DFT [84] studies. Our most accurate calculations locate the vertical transition to the
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1B1(3p,) and 'By(3p,) states at 6.56 (Tab. 3.14) and 6.87 eV (Tab. 3.13) respectively.
Thus, the NEVPT results fully confirm the energy difference amounting to ~ 0.3 eV
computed in the CC [107] and TD-DFT [84] studies and the reassignment suggested
by those authors. Finally, a peak located at 6.61 eV was attributed by Flicker et
al. to the lag — 3p, transition. The SC-NEVPT3 excitation for the 1A5(3p,) state
is 6.65 eV (Tab. 3.14), in excellent accordance with experiments and the previous
SAC-CI (6.66 eV) [81], TD-DFT (6.69 eV) [84] and EOM-CCSD (6.69 eV) [108]
calculations.

Table 3.15: Computed vertical excitation energies (V) for the 2b; — ¢* Rydberg states of
Furan compared with the previous theoretical results and the experimental data.

2b; — 3l B, 4, B B, 1A, 1B,
Method 3s 3py  3p. 3dy2_2 3dy.  3d.e
SC-NEVPT2 7.68 8.18 8.30 8.83 8.85 9.00
PC-NEVPT2 7.69 8.18 8.31 8.84 8.85 9.02
SC-NEVPT3 7.41 7.99 7.99 8.53 8.64  8.69
previous works

CASPT2 [73] 7.21

MRMP/MCQD [105] 7.31/7.25

CCSD¥107] 7.52 8.14 8.11

MRCI(DZPR) [103] 7.14 7.90 8.04 8.36 8.00 8.39
TD-DFT (B97-1c) [84] 7.41 8.07

SAC-CI [81] 7.45 8.07 8.54 8.87

ADC(2) [106] 7.05 7.57 7.61 8.06 8.16 8.23
Expt.P 7.38 8.10  8.46 8.77(?)

& aug-cc-pV'T7Z basis set with 7s7p7d molecule—centered functions
b Ref. [103]

It is certainly rather problematic to get an accurate description of the high—energy
Rydberg states. However, for the three 2b; — 3p transitions, the PC-NEVPT2 ex-
citation energies are 8.13 (*A;(3p,) in Tab. 3.13), 8.18 (142(3p,) in Tab. 3.15)
and 8.31 eV (1B1(3p,) in Tab. 3.15). A slight lowering of the transition energies
is observed at the third order level (SC-NEVPT3), where the three states are com-
puted at 8.06, 7.99 and 7.99 eV respectively. However, a reversed energetical or-
der ('B1(3p.) < '42(3p,) < 'A1(3p,)) is found in the coupled cluster study by
Christiansen and Jgrgensen [107], and different orders are also obtained from the
MRCT [103] and SAC-CT [81] calculations. In addition, a firm experimental assign-
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ment is not available for these states, with the exception of the '4;(3p,)) transition,
located by Palmer et al. [103] at 8.10 €V.

3d Rydberg States

The best NEVPT excitation energies of the five 1ay — 3d states are 7.14 (*A3(3d,2_,2)
in Tab. 3.14), 7.27 eV (!B;(3d,.) in Tab. 3.14), 7.31 ¢V (!42(3d,2) in Tab. 3.14),
7.33 eV (*A1(3dyy) in Tab. 3.13) and, finally, 7.62 eV (1By(3d,,) in Tab. 3.13). As
can be seen, due to its interaction with the 1B§r valence state, the transition energy of
the lag — 3d,, state is noticeably underestimated (about 0.3-0.4 €V) at the single—
state level and this pronounced valence-Rydberg mixing could be the reason for the
too low excitation energy (7.13 eV) computed in the single-state CASPT2 study
by Serrano—Andrés et al [73|. On the contrary, for this state, the PC-QDNEVPT2
result agrees with the CCSD [107], MRCI [103], SAC-CI [81] and TD-DFT [84] tran-
sition energies. A satisfactory accordance with the previous theoretical studies is
also attained for the other four states: with the exception of some MRCI results (see
1B (3dy.) and 'A;(3d,,) states), the largest discrepancies amount indeed to ~ 0.2
ev.

Finally, our most accurate excitation energies for the five 26y — 3d Rydberg
states are 8.53 ('By(3d,2_,2) in Tab. 3.14), 8.64 ('A2(3dy.) in Tab. 3.14), 8.69
(1B1(3d2) in Tab. 3.14), 8.85 (!By(3d,y,) in Tab. 3.13) and 9.01 eV (14;(3d,.) in
Tab. 3.13). As is apparent, very different values have been obtained for these high—
energy Rydberg states in the previous theoretical studies [81,103,106] and, up to
now, no well-established experimental assignments are available in the literature.
Since, as estimated by Christiansen and Jorgensen [107], the difference between the
adiabatic and vertical transition energy, for the las — 3l states, does not exceed
0.16 + 0.03 eV, the NEVPT vertical excitation energies support the attribution of

the peak at 8.46 eV [103] to the the 'By(3d,2_,2) state (computed at 8.53 V).

3.6 Thiophene

As we shall discuss later, no large attention has been paid in the literature to the
theoretical investigation of the electronic spectrum of Thiophene and therefore its
interpretation is still far from being complete, since consistent discrepancies (i.e. up
to 0.7-0.8 eV) among the various ab initio results exist. For this reason, for almost
all the xcited states under consideration, the accuracy of the NEVPT results was
also judged with respect to some reference coupled cluster calculations (CCSD and
CCSDR(3)) [110, 111], specifically performed for this study. These computations
were carried out with the DALTON program [112], using the same geometry |70]
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and ANO+1s1pld basis set employed for the NEVPT ones. The oscillator strengths
for the excited states were calculated with the CASSCF state interaction (CASSI)
method [113], using the NEVPT2 and NEVPT3 energy differences. Moreover, for
those states subjected to quasi-degenerate NEVPT2 treatment, the transition dipole
moments were recomputed using the corrected linear combinations obtained by di-
agonalization of the QD-NEVPT2 matrix.

3.6.1 Valence-Rydberg mixing

As can be seen in Tab. 3.16, where the CASSCF, QD-NEVPT2 and CCSD values of
the (x2) component of the second moment of the charge distribution for the 7 — 7*
are collected, at the zero order level, the more consistent mixing effects take place
among the states of the Bs and A, symmetries. In fact, both the lower—energy
7 — m* valence state (4!By(V)) and the n — 7* (2!43) state show too diffuse a
character for pure valence states, with values of (22) amounting roughly to 39 and
42 a.u. respectively; indeed, the ground state of Thiophene has a value of (z?) of
about 30 a.u. Then, a minor valence-Rydberg mixing can also be detected among
the 214, (V) valence state and the 3b; — 3p, (3'4;) and lag — 3d,, (4'4;) Rydberg

states.

Table 3.16: CASSCF, QDNEVPT2 and CCSD (z?) component of the second moment of
the charge distribution (a.u.) for the 7 — 7* and n — 7* excited states of Thiophene.

(z?)

State Assignment CASSCF SC-QDNEVPT2 PC-QDNEVPT2 CCSD
24, (V) | m—n* 33.57 31.19 30.65 31.26
314, 3b1 — 3p, 90.13 91.79 91.03 88.12
4'A, lag — 3dgy 89.02 90.36 90.45 87.01
514, 3by — 3d,. 89.80 89.52 69.48 85.15
64 (V) | m—n* 32.65 32.56 63.43 40.91
1'By lag — 3ps 93.17 93.12 93.42 89.91
21B, lag — 3d,. 86.76 89.52 89.38 88.06
3B, 3by — 3dyy 83.88 86.69 81.71 85.34
4By(V) | m—m* 38.81 32.85 32.62 31.55
5'Bo(V!) | m—n* 33.85 34.15 40.04 35.99
1'4, n — 3dgy 81.52 90.89 90.67

214, n — 41.81 32.32 32.89

The single-state and quasi-degenerate NEVPT excitation energies of the 'Aj,
1B, states, together with the CCSD and CCSDR(3) ones, are reported in Tabs. 3.17
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and 3.18 respectively. Instead, in Tab. 3.19 are shown the NEVPT results for the

states of Ao symmetry.

Table 3.17: NEVPT, CCSD and CCSDR(3) vertical transition energies (eV) of the 'A;

excited states of Thiophene.

Method 7—x* 3by — 3p; lag — 3dyy 3b1 — 3d,, w7t
CASSCF 5.71 6.36 6.88 7.02 8.06
SC-NEVPT2 5.94 717 7.56 7.89 8.00
PC-NEVPT2 5.89 7.18 7.56 7.90 7.86
SC-NEVPT3 5.78 6.97 741 7.69 7.94
SC-QDNEVPT?2 5.88 7.18 7.55 7.89 8.04
PC-QDNEVPT2 5.80 7.20 7.56 7.89 7.94
CCSD 5.78 7.11 7.53 7.83 7.93
CCSDR(3) 5.70 7.10 7.50 7.81 7.71

Table 3.18: NEVPT, CCSD and CCSDR(3) vertical transition energies (eV) of the By

excited states of Thiophene.

Method lag — 3p, 1lag — 3dy, 3by — 3dyy 7—7" 7T—7*
CASSCF 6.17 6.83 7.01 7.16 8.88
SC-NEVPT2 6.94 7.58 7.85 6.47 8.30
PC-NEVPT2 6.95 7.59 7.86 6.37 8.12
SC-NEVPT3 6.70 8.36
SC-QDNEVPT?2 6.94 7.64 7.92 6.34 8.31
PC-QDNEVPT2 6.95 7.69 7.97 6.14 8.14
CCSD 6.84 7.56 7.81 6.23 7.96
CCSDR(3) 6.81 7.54 7.80 6.10 7.85

As is apparent in Tab. 3.17, the application of the QD approach leads to a
slight lowering (< 0.1 e€V) of the single—state NEVPT2 excitation energy of the
214, (V) state, in agreement with the slight reduction observed in its value of (x2),
passing from ~ 33 (CASSCF) to ~ 30 a.u. (PC-QDNEVPT2). However, as the
CASSCF mixing can be regarded as negligible, the trend of the single-state NEVPT
results appears coherent, with the SC-NEVPT3 calculation locating this state at 5.78
eV. A value of 5.80 eV is obtained from the PC-QDNEVPT2 calculation. A good
agreement is also achieved with the CC results, where this transition is predicted
at 5.78 (CCSD) and 5.70 eV (CCSDR(3)). As can be seen from the results in Tab.
3.17 and from the values of (x2) reported in Tab. 3.16, the description of the other

1A, states is essentially not influenced by the application of the QD formalism, with
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the only exception of the 6141(V’) state at the PC level. Concerning this issue some
remarks are needed. Similarly to what we found for Pyrrole [29](section 3.4) and
Furan [30] (section 3.5), the ionic character of the higher—energy A; valence state, in
addition to its partial nature of double excitation, makes the calculation of this state
rather problematic. The difficulties are clearly shown by the difference (0.15-0.2 V)
between the strongly contracted and the partially contracted results. Note that for
this state, a remarkable difference, amounting roughly to 0.2 eV, is also obtained
from CCSD and CCSDR(3) calculations. So, at the partially contracted level, where
the 6141 (V') state is computed at significantly lower energy, a quasi degeneracy with
the 3b; — 3d,, Rydberg state occurs, with the two states being separated by less
than 0.04 eV. The QD formalism, applied at the PC-NEVPT2 level, gives rise to
a strong mixing between the two wavefunctions, in such a way that the resulting
roots have values of (z2) amounting to ~ 69 and ~ 63 a.u. (values in Tab. 3.16).
A similar mixing, even if less pronounced, was also found in the CCSD calculations,
where the computed (z2) are ~ 85 and ~ 41 a.u. for the Rydberg and valence state
respectively. The SC-NEVPTS3 excitation energy of the 6'4; (V') state is 7.94 €V, in
excellent accordance with the value of 7.93 eV obtained from the CCSD calculation.

As above mentioned and shown by the results in Tab. 3.16 and 3.18, the valence—
Rydberg mixing effects are more prominent among the 'By states. The 4'By(V)
valence state, mixed at CASSCF level with the 2'B, and 3B, Rydberg states, after
the QD calculation, shows a remarkable reduction (~ 6 a.u.) in the value of its
(x2); the recovery of the valence nature is, obviously, followed by the lowering in
its excitation energy, which, at the more accurate PC level, reduces from 6.37 to
6.14 eV. In accordance with the PC-QDNEVPT2 result, the CCSDR/(3) transition
energy of this state is 6.10 eV ((22) ~ 31 a.u.), whereas a value of 6.23 eV is attained
at CCSD level. Obviously, the opposite behaviour is observed for the two Rydberg
states, whose transition energies slightly increase (~ 0.1 eV). However, the second
moments of the charge distribution, reported in Tab. 3.16, indicate that at the PC
level, where the two states are more close in energy, a small mixing occurs between
the 3b; — 3d,y Rydberg state and the 5'By(V') valence state; as can be seen in Tab.
3.18, however, the effects on the excitation energies are negligible. A small mixing
is also found at CCSD level, where the computed values of (z?) are ~ 36 and ~ 85
a.u. for the valence and Rydberg state respectively.

Finally, the QD approach was proved to be important also for the calculation of
the two mtype Ay states, which appear mixed in the CASSCF description. At the
PC level, where the correction is more efficient, the QDNEVPT2 excitation energy
(Tab. 3.19) for the valence (Rydberg) state turns out to be about 0.2 eV lower
(higher) than that obtained from the single—state calculations. Also, the values of

(z?) recomputed in the correct zero order space (Tab. 3.16) are in accordance with
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those typical for pure valence and Rydberg states, being ~ 32 and ~ 90 a.u.

Table 3.19: Single-state and quasi-degenerate NEVPT2
vertical transition energies (eV) of the m-type A, excited

states of Thiophene.

Method n—3dgy n— 7"
CASSCF 9.77 10.07
SC-NEVPT?2 10.49 10.13
PC-NEVPT2 10.45 10.04
SC-QDNEVPT?2 10.61 10.01
PC-QDNEVPT2 10.64 9.86

An important difference in the spectroscopical features of Thiophene with respect

to the analogous hetero—cycles, Pyrrole [29] and Furan [30], is the presence of two

low—energy m — o™ states, one of By symmetry and one of As symmetry, strongly

interacting with 3p and 3d type Rydberg states.

In Tab. 3.20 the values of (z?) for the o—type states, the zero order assignments,
the CASSCF and single-state NEVPT excitation energies of the first seven excited
states of By and Ay symmetry are listed.

Table 3.20: CASSCF and single—state NEVPT excitation energies (eV) for the o—
type excited states of Thiophene. The CASSCF values of the (x?) component of

the second moment of the charge distribution and the nature of the states are also

reported.
CASSCF SC-PT2 PC-PT2 SC-PT3
State | Assignment (x*y AFE AE AE AE
1'B:1 | 3b1 — 3s + laz — 3py 51.12  6.76 6.45 6.51 6.24
2'B; | (laz — 3py, +0*) +3b1 — 35  47.99  6.90 6.50 6.54
3'B1 | 3b1 — 3p. + laz — 3dy. 49.30 7.27 7.06 7.11 6.82
4'B; | lag — 3dy. + o* 45.64 7.44 6.97 7.00
5'B1 | 3by — 3da, 54.23  7.88 7.60 7.64 7.38
6'B1 | 3b1 — 3da, 7212 7.96 7.50 7.48 7.34
7By | laz — o* + 3dy. 34.53 8.53 7.16 7.12
1'42 | laz — 3s 51.26  6.48 6.10 6.15 5.90
2'45 | las — 3p. 50.18  7.03 6.77 6.82 6.55
3'4s | 3b1 — 3py + 3dy. + o* 4348 7.12 6.64 6.65
4'A; | lag — 3da, 63.22  7.49 7.22 7.27 7.01
5'4> | las — 3da, 63.33 7.54 7.17 7.20 6.99
6'As | 3b1 — 3dy. + 3py + o* 46.72  7.69 7.23 7.24
Ay | 3by — o + 3dy. 38.20 8.48 7.53 7.50

As can be seen, for the 'B; states, apart from a slight mixing between the 3b; —

3s and las — 3p, as well as the 3by — 3p. and las — 3d,. Rydberg states, the
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most significant valence-Rydberg interaction takes place between the las — o™ and
the lag — 3d,. states; moreover, also the las — 3p, state exhibits a partial valence
character. The CASSCF second moments for the Rydberg states are ~ 48 (3p) and
~ 45 a.u (3d,.), where a value of ~ 34 a.u. is attained for the 7'B; state.

An analogous situation occurs among the states of Ay symmetry, where the three
states which mix are again the 7'A,, having a ¢* dominant character, and the two
3b; — 3d,, and 3b; — 3p, Rydberg states; the computed (z?) are 38.20, 46.72 and
43.48 a.u. respectively.

The QDNEVPT?2 calculations were carried out on five states of By symmetry (1-
4'B; and 7'B;) and on three states of As symmetry (343, 6'45 and 7'4;). The
third order computations were performed only for those states not involved in the
valence-Rydberg mixing.

After the application of the QD formalism, the interpretation of the states in
terms of Rydberg 3p,, 3d,. and valence o* states turn out to be rather problematic.
However, on the basis of the evaluation of the values of (x2) in the corrected zero order
space, some considerations, concerning the valence or Rydberg nature, are possible.
In addition, further information has been obtained by computing the natural orbitals
for each eigenstate of the QD-PT matrix in order to build the CASCI molecular
orbitals in the corrected zero order space. In Tab. 3.21 the recomputed values of
(x?) and the QDNEVPT2 excitation energies are reported. The CC results for all
the o—type states are, instead, listed in Tab. 3.22.

Table 3.21: Values of the (x?) component of the second moment of the charge distribution (a.u.)
and QDNEVPT?2 excitation energies for some o—type excited states of Thiophene.

SC-QDNEVPT2 PC-QDNEVPT2
State (x%)  Assignment AE | (z%) Assignment AE
1'B, 36.49 lag — o* + 3p, 6.33 | 32.77 lag — o* + 3p, 6.10
218, 44.48 lay — 3p, + o* + 3dy, 6.38 | 51.66 3b; — 3s 6.52
3B, 51.15 3b; — 3s 6.47 | 48.17 lag — 3p, 6.86
4'B, 49.34 3b; — 3p. 7.07 | 49.30 3b; — 3p. 7.14
5B, 45.19 1las — 3dy, + o* 7.45 | 46.61 lag — 3dy, 7.65
114, 33.75 3b; — o* 6.46 | 31.14 3b; — o* 6.22
214, 48.02  3by — 3p, + 3dy. 7.19 | 49.79 3b; — 3p, 7.25
314, 46.27  3by — 3dy. + 3py + o*  T.75 | 47.58  3by — 3dy: 7.94

First of all, some important remarks concern the different behaviour of the two
QDNEVPT?2 variants. Indeed, as can be observed in Tab. 3.21, while the mixing

among the 3p,, 3d,, and o™ states persists at the strongly contracted level, the nature
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of the states appear to be in good measure pure after the PC calculations; only the
1B, (lag — o*) state shows a slight Rydberg character. The different nature of the
states obtained from the SC and PC calculations is, obviously, the reason for the
remarkable deviations observed between the SC-QDNEVPT2 and PC-QDNEVPT2
excitation energies. Note that these deviations can be, instead, regarded as negligible
(0.07 eV at most) for the 3by — 3s and 3b; — 3p, Rydberg states. At the SC
level, the excitation energies of the Rydberg states, which still have a partial valence
character, are significantly lower (even ~ 0.3 eV for the lag — 3p, state) than those
computed at PC level; obviously, too high excitation energies are, instead, obtained

for the two valence states.

Table 3.22: CCSD and CCSDR(3) excitation energies (eV) for the o—type
excited states of Thiophene. The (z2) component of the second moment of the

charge distribution and the nature of the states are also reported.

CCSD CCSDR(3)
State Assignment (z?) AFE AFE
1'By lay — o* mix. 36.41  6.28 6.20
218, 3b; — 3s 48.84  6.40 6.36
3B, lag — 3p, mix. 4494  6.85 6.81
4B, 3b; — 3p. 4779  7.01 6.99
5B, 3by — 3dy, 55.68  7.46 7.43
6B, 3by — 3dy, 61.64  7.52 7.50
7B, lag — 3d,, mix. 45.06  7.60 7.55
1Ay lag — 3s 49.15  6.10 6.05
214, 3b; — o mix. 32.11  6.31 6.26
34, lag — 3p, 4897  6.78 6.74
414, 3by — 3py 53.47  7.14 7.11
514, lag — 3dq, 46.94 7.8 7.14
6145 lag — 3dq, 63.73  7.23 7.19
7'A, 3b1 — 3d,, mix. 46.14  7.81 7.80

Although the 1las — o™ state still shows a small 3p character, the PC-QDNEVPT?2
approach brings about a remarkable decrease (~ 1 eV) with respect to the single—
state excitation energy of the 7'B; state, which, at the CASSCF level, is the state
with the strongest valence nature (see Tab. 3.20); indeed, the transition energy
changes from 7.12 to 6.10 eV. At the strongly contracted level as well as at CCSD
level, this state is computed with a value of (x2) of ~ 36 a.u., that is somewhat
diffuse for a pure valence state. As a consequence of this partial Rydberg character
the SC-QDNEVPT2 and CC excitation energies turn out to be higher than the PC
one, being 6.33 and 6.30 eV (CCSDR(3)) respectively. On the contrary, both the
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3by — 3s and 3b; — 3p, Rydberg states are essentially not affected by the appli-
cation of the QD approach: their values of (22) remain the same as computed at
CASSCEF level and hence the single-state and quasi-degenerate excitation energies
are very similar.

As shown in Tab. 3.20, the third order calculations, for both these states, bring
about a lowering in the excitation energies slightly less than 0.3 eV, locating the
states at 6.24 eV (3s) and 6.82 eV (3p,). For these two states, a good accordance
is also attained with the CC results (Tab. 3.22), that turn out to be only ~ 0.15
eV higher than the SC-NEVPT3 ones. At PC-QDNEVPT?2 level, the las — 3p,
is computed at 6.86 eV, in remarkable accordance with the CC results, that locate
this state at 6.85 (CCSD) and 6.81 eV (CCSDR(3)). Then, at the PC level, the
lag — 3dy. is calculated to lie at 7.65 eV, about 0.7 eV above the value computed in
the single-state approach for the 4'B; state (see Tab. 3.20). Very similar transition
energies were provided by the CC calculations, where the state is located at 7.60 and
7.55 eV (respectively CCSD and CCSDR(3) values in Tab. 3.22).

Similar remarks can be made for the three 'A, states, which, after the PC-
QDNEVPT?2 treatment, result in a pure valence state ((z2) ~ 31 a.u.) and two pure
Rydberg 3p, and 3d,. states. At PC-QDNEVPT2 level, the 3b; — o* transition is
predicted at 6.22 eV in very good agreement with the CC values (see Tab. 3.22),
where the state is located at 6.31 (CCSD) 6.26 eV (CCSDR(3)), with a value of
(x?) of 32.11 a.u. Instead, the two Rydberg states are shifted at higher energy with
respect to single—state excitation energies: the 3b; — 3p, state is computed at 7.25
eV (PC-QDNEVPT2), with an (2?) of ~ 49 a.u. and the 3b; — 3d,, excitation
in predicted at 7.94 eV (PC-QDNEVPT2) with an (2?) of ~ 47 a.u. The CC ex-
citation energies, reported in Tab. 3.22, are only slightly lower (~ 0.15) than the
PC-QDNEVPT?2 ones. Note that at the single—state level, the two states were cal-
culated at 6.65 and 7.50 eV respectively (PC-NEVPT2 values in Tab. 3.20). Finally,
as can be seen in Tab. 3.20, for the other four Rydberg states, not involved in the
CASSCF mixing, the application of the SC-NEVPT3 correction produces a small
(0.15-0.25 eV) and regular lowering in the second order excitation energies. Compa-
rable transition energies, even if always slightly higher than the SC-NEVPT3 ones,

were obtained from the CC calculations (see values in Tab. 3.22).

3.6.2 The VUV absorption spectrum

In contrast to the large number of theoretical works dedicated to the absorption
spectra of Pyrrole and Furan, surprisingly few ab initio studies on the electronic
spectrum of Thiophene have been published. Indeed, the first CI study by Bendazzoli
et al., published in 1978 [114], was followed only by three high—level ab initio studies,
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namely, a single-state CASPT2 study in 1993 [115], a MRCI investigation in 1999 [67]
and, finally, a SAC-CI work in 2001 [116]. In addition, some TD-DFT [117] and
ADC(2) [118] results have also been presented. Although there is, overall, a good
agreement in the assignments of the four lowest—energy m — 7* states, a number of
inconsistencies still exists in the interpretation of some Rydberg states.

The most accurate NEVPT excitation energies and the corresponding oscillator
strengths, which are used to discuss the interpretation of the spectrum, are shown in
Tab. 3.9, together with the CCSDR/(3) results and those of the previous theoretical
studies [67,115-117].

Energy range 5-6.5 eV

In this energy range is located the first absorption region, which is composed of the
two historical A and B bands. The first system (A band), whose valence 7 — 7* na-
ture was experimentally assessed on the basis of the comparison of gas phase results
with condensed—phase measurements [114,123-125], begins at 5.16 eV with the max-
imum at 5.39 eV. Furthermore, in the magnetic circular dichroism spectrum (MCD)
of Thiophene in hexane, two bands with opposite signs in their B-values [126-128]
were detected at 5.27 and 5.64 €V, confirming the presence of two m — 7™ tran-
sitions in the low—energy tail of the first VUV band. On the basis of PPP calcu-
lations [126] and ab initio prediction of the B-values [114], the lower-energy peak
was attributed to the '4;(V) state. Our most accurate results predict the vertical
transitions to the '!A; (V) and 'By(V) states to be 5.78 (SC-NEVPT3) and 6.14 eV
(PC-QDNEVPT2) respectively; the computed oscillator strengths are 0.130 (141(V))
and 0.107 (!By(V)). Taking into account that for these aromatic molecules, the ver-
tical transition and the observed maximum of the band may differ significantly, with
the former being even 0.2 eV [83,107,108] above the latter, our present results con-
firm the traditional valence interpretation of the A band. The CCSDR(3) excitation
energies are in remarkable accordance with the NEVPT ones, locating the 'A; (V)
state at 5.70 eV and the !By (V) transition at 6.10 eV, with very similar intensities
(0.082 and 0.080 respectively). The present results also agree with those computed
in the MRCI study by Palmer et al. [67], whereas larger deviations (~ 0.4 eV) are
observed with the CASPT2 [115] and SAC-CI [116] values.

Then, the weak fine structure near 6 eV [67,95,129,130], known as the B band, is
interpreted as Rydberg in nature, principally arising from the symmetry forbidden
las — 3s state; this system indeed does not appear in the condensed—phase spectrum
[114,123,124], where the Rydberg states are thought to play a negligible role. The
lay — 3s state (143) is computed, at SC-NEVPT3 level, at 5.90 eV, in perfect
accordance with experiments and with the CASPT2 result [115] (5.93 €V); slightly
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Table 3.23: NEVPT and CC vertical transition energies (eV) and oscillator strengths (within parentheses) of the singlet

excited states of Thiophene compared with the previous theoretical results.

NEVPT?

State Nature SC3  PC-QD CCSDR(3)*"SAC-CI [116] MRCI [67] CASPT2 [115] TD-DFT [117] Exp.¢

AL(V) o 5.78 5.80 5.70 5.41 5.69 5.33 5.64 5.39
! T (0.130)  (0.153) (0.082) (0.091) (0.119) (0.089) (0.058)

14, las — 3s 5.90 6.05 5.70 5.78 5.93 5.94 5.93

15 Lo — o* 6.10 6.30 5.87 6.41 6.20° 5.67
! 2 (0.004) (0.015) (0.011) (0.002)° (0.005)

1By (V) o 6.14 6.10 5.72 6.00 5.72 5.65 5.64
2 T (0.107) (0.080) (0.113) (0.154) (0.070) (0.074)

14, 3b1 — o* 6.22 6.28 6.03 6.85 6.26¢ 6.04

15 3 3 6.24 6.52 6.36 6.12 6.33 6.23 6.32
! 1798 (0.000)  (0.001) (0.002) (0.000) (0.000) (0.000) (0.002)

14, las — 3p. 6.55 6.74 6.41 7.03 6.58 6.59 6.60

15 las — 3 6.70 6.95 6.81 6.41 7.02 6.56 6.74 6.60
2 2779 (0.040)  (0.045) (0.032) (0.038) (0.034) (0.030) (0.023)

15 las — 3 6.86 6.81 6.47 6.39 6.30 6.72 6.60
1 4z = 9Py (0.021) (0.022) (0.016) (0.000) (0.030) (0.017)

15 3, 3 6.82 7.14 6.99 7.17 6.73 6.83 6.7-7.0
! 177 9P= 0 (0.025)  (0.024) (0.024) (0.019) (0.029) (0.020)

14 3, 3 6.97 7.20 7.10 6.73 7.31 6.76 6.7-7.0
! 17 9Pr 0 (0.022)  (0.051) (0.041) (0.065) (0.021) (0.015)

14, 3b1 — 3py 7.25 7.11 6.89 6.39 6.35 6.7-7.0

14, laz — 3da,  6.99 7.14 6.73 7.93 6.97 6.91

14, laz — 3da,  7.01 7.19 6.75 7.85 7.08 7.07

1y Las — 3d 7.41 7.55 7.50 7.08 7.93 7.23 7.45 7.33
! a2 ©¥  (0.002)  (0.000) (0.013) (0.018) (0.001) (0.001) (0.037)




Table 3.9: Continued

NEVPT®
State Nature SC3  PC-QD CCSDR(3)™"SAC-CI[116] MRCI [67] CASPT2 [115] TD-DFT [117] Exp.?
15 Las s 3d 6.6 7.55 7.15 7.24 7.32
1 2 = 3dy. (0.000)  (0.000) (0.000) (0.001) (0.000)
15 Las s 3d 7.69 7.54 7.12 8.11 7.28 7.43
2 2 = 3das (0.001)  (0.002) (0.003) (0.000) (0.001) (0.014)
. 7.34 7.43 7.21 8.18 7.37
B 3b1 = 3day(0,001) (0.000) (0.000) (0.000)
. 7.38 7.50 7.14 8.26 7.67
B 3b1 = 3day(0,001) (0.000) (0.000) (0.001)
. 7.69 7.89 7.81 7.47 8.05 7.57
A 3b1 = 3de= (0.000) (0.077)  (0.017) (0.034) (0.000)
14, 3by — 3d- 7.94 7.80 7.59 7.64 7.95
1 7.97 7.80 7.46 7.92 7.53 7.95
By 361 — 3da, (0.120)  (0.007) (0.024) (0.002)
W) m 7.94 7.94 7.71 7.32 7.91 6.69 7.35 7.05
1 (0.238)  (0.069)  (0.204) (0.361) (0.429) (0.185) (0.121)
15 I 8.26 7.86 8.83 7.77
1 (0.034) (0.000) (0.033)
Ba(V) 7 8.36 8.14 7.85 7.40 8.10 7.32 7.34 7.50
2 (0.412)  (0.276)  (0.105) (0.120) (0.131) (0.392) (0.071)
A, n— 9.86 10.34 9.69
‘A, n — 3day 10.64 10.75 10.27
& This work

b The reported oscillator strengths were computed at CCSD level

¢ Values from Ref. [117]

4 Values from Refs. [67,94,119-122]

9'¢ audydory,

6L
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lower excitation energies were instead obtained from the MRCI [67] (5.78 eV) and
SAC-CI [116] (5.70 €V) calculations. In the CCSDR/(3) computations this transition
is instead obtained at 6.10 eV. Our results, in accordance with the SAC-CI [116],
MRCI [67], CASPT2 [115] and TD-DFT [117], also predict the 3b; — 3s Rydberg
state to belong to the B band, with a SC-NEVPT3 vertical excitation energy of 6.24
eV. Moreover, on the basis of the present calculations, two other valence # — o*
states, partially mixed with the 3p, and 3d,. states, should be attributed to this
band: the lay — o* state (1By) is computed at 6.10 eV (PC-QDNEVPT2) with an
(x?) of ~ 32.5 a.u. and a negligible oscillator strength (0.004) and the 3b; — o* state
(1A3) is instead located at 6.22 eV (PC-QDNEVPT2) with an (z?) of ~ 31 a.u. Very
similar excitation energies were obtained from the CC calculations, where the states
are computed at slightly higher energy (6.30 and 6.28 €V respectively) and with
a slightly more diffuse character (36.41 and 32.11 a.u. respectively). This partial
Rydberg (3p) nature of the 'B; state justifies the greater oscillator strength (0.015)
computed at CC level. In the SAC-CI study [116] these two states are calculated at
5.87 (!B1) and 6.03 eV (!43) and the corresponding values of second moments of the
charge distribution are ~ 35 and ~ 32 a.u. Values of 6.41 (1By) and 7.85 eV (!43)
are reported in the MRCI work [67] and, finally, excitation energies of 6.20 (1B1) and
6.26 eV ('A3) have been obtained at CASPT2 level [117].

Energy range 6.5-7.8 eV

This spectral region, known as C Band, is considered as principally originated from
the couple of higher—energy 7 — 7* states [67,77]: 1A1(V') and 'By(V') in increasing
energetical order. However, the shape of the spectrum in this region is complicated
by a number of Rydberg states, which are expected to appear both at the low and
high energy tails of the C band. In the Electron Energy Loss (EEL) spectrum the
maximum appears at 7.05 eV and it was attributed to Rydberg (31 — 3p) and/or
to valence (1Ba(V’)) excitations [67]. The rising side, with a maximum detected at
6.60 eV, was, instead, assigned to a lag — 3p state [67,77].

The best NEVPT results locate the vertical transitions to the two higher—energy
7 — 7 states at 7.94 (1:A;(V')) and 8.14 eV (1B2(V’)), whereas excitation energies of
7.71 and 7.85 were obtained from the CCSDR(3) calculations. In comparison to the
experimental assignments, the NEVPT and CCSDR(3) transition energies turn out
to be slightly higher, confirming the difficulty, already discussed for the analogous
hetero—cycles in Refs. [29,30], of obtaining accurate theoretical results for these ionic
high—energy @ — 7* states. As is apparent in Tab. 3.9, for both these valence
states, dissimilar oscillator strengths were obtained at SC3 and PC-QD level; this is

not surprising considering that, above all for the 'A; (V') state, a remarkable mixing
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with the less intense Rydberg states was found in the quasi—-degenerate NEVPT2
calculations (see subsection 3.6.1). Very similar excitation energies are reported in
the MRCI study [67], where the 'A; (V) state is computed at 7.91 eV and the By (V")
one at 8.10 eV. On the contrary, larger differences (up to 1 eV) are observed between
the NEVPT and the CASPT2 [115] results, which locate the two states at 6.69
(*A1 (V")) and 7.32 eV (!Bo(V")).

The first three members of the las — 3p Rydberg series have been computed to
have vertical excitation energies of 6.55 (p.), 6.70 (p;) and 6.86 €V (p, ), in accordance
with the experimental assignments [67,77] of the structure below 7 eV to a 3p-type
state converging to IP; (8.872 eV). A good agreement (within 0.2 €V) is attained
with the CCSDR(3) excitation energies, whereas significant discrepancies are evident
among those of the previous works. Apart from the MRCI results [67], which seem
to overestimate the excitation energies of both the 3p, and 3p, states, the main
difficulties concern the calculation of the o—type 3p, state. The SAC-CI [116], MRCI
[67] and single-state CASPT2 [115] excitation energies are 6.47, 6.39 and 6.30 eV,
which are remarkably lower than the best NEVPT and CC values. On the contrary, a
value of 6.72 eV was obtained from the TD-DFT computations [117]. The explanation
for such too low excitation energies can be attributed to the partial valence o*
character of the 3p, state. The SAC-CI (z?) of this state is ~ 43 a.u. [116], where a
value of ~ 47 is reported in the CASPT2 work [115]. Note that the single-state PC-
NEVPT2 excitation energy of this state, partially mixed with the 3d,, and o* states,
was 6.54 eV (Tab. 3.20 in subsection 3.6.1), noticeably lower than the corresponding
QD value but much more similar to the SAC-CI and single-state CASPT2 results.

On the basis of our accurate NEVPT calculations, also the 3p components of
the second Rydberg series (R’) are expected to belong to the C Band, with verti-
cal excitation energies of 6.82 (3p.), 6.97 (3p,) and 7.25 eV (3p,); the CCSDR(3)
computations locate the states at 6.99, 7.10 and 7.11 eV respectively. Again, the
valence-Rydberg mixing seems to be the reason for the strong differences in the
computed transition energies of the 3b; — 3p, state.

The five members of the lao — 3d Rydberg series are computed to lie in the
range between ~ 7 and ~ 7.7 eV, on the high—energy tail of the C Band, with a
very low intensity. The best NEVPT results are 6.99 and 7.01 eV, for the two quasi—
degenerate 3d,, states and 7.41 (3dyy), 7.65 (3d,y.) and 7.69 eV (3d,) for the others.
As can be seen (Tab. 3.9), the CCSDR(3) excitation energies fully agree with the
NEVPT results, with differences not exceeding 0.2 eV. On the contrary, remarkably
dissimilar values (up to ~ 1 eV) have been obtained in the previous ab initio studies.

Finally, on the higher energy shoulder of this band, the present results locate
also the first three components of the 3b; — 3d Rydberg series, whose NEVPT
excitation energies are 7.34 and 7.38 eV for the two 3d,, type states and 7.69 eV for



82 Chapter 3. The hetero—cyclopentadienes

the 3by — 3d,. state; however, there are not available experimental assignments for
this region of the spectrum. As already pointed out, the larger oscillator strength
obtained at PC-QD level for the 3b; — 3d,, state, with respect to that computed
at CC level as well as those reported in the other studies, has to be ascribed to the

mixing with the strong valence transition (subsection 3.6.1).

Energy range 7.8-10 eV

As suggested by some previous experimental [67,77,129] and theoretical works [67,
116], the region between 7.8-8.8 €V is dominated by excitations to Rydberg states.
Since the present study is restricted to the computations of the only 3/ Rydberg
states, the experimental assignments of the higher components of the two Rydberg
series will be left out (see Refs. [67,116] for a detailed discussion).

Palmer et al. [67], on the basis of their joint experimental and theoretical work,
assigned the peak at 7.95 eV to a 3b; — 3d state. The NEVPT results fully confirm
this assignment, computing two components of the 3d’ series near 7.95 eV: the dipole—
forbidden 3by — 3d,. transition is predicted to be located at 7.94 eV and the 3b; —
3d,, state at 7.97 eV, with an oscillator strength of 0.129, due to the interaction with
the strong By (V') transition. In good agreement with the NEVPT results, both
states are calculated at 7.80 eV at CCSDR(3) level. On the contrary, significantly
lower values are reported in the CASPT2 study [115], where the states are given at
7.64 (3dy.) and 7.53 €V (3dyy).

Up to now, there is no direct experimental evidence of excitations from the lone
pair orbital on the sulfur atom to 7* orbitals. However, the two lowest—energy n — 7*
states are expected to be located in this energy region, completely hidden by intense
7 — m* transitions. Our results predict the two states at 8.26 (1B;) and 9.86 eV
(*A3); in the MRCT study [67] they are computed at 8.83 (1B1) and 10.34 eV (!4,)
and, finally, at 7.77 (!B;) and 9.69 eV (!45) in the CASPT2 work [115]. A Rydberg
state n — 3d,, has also been detected at 10.64 eV; a similar excitation energy (10.75
eV) is reported by Palmer et al. [67], whereas a value of 10.27 eV was obtained by
Serrano-Andrés et al. [115].
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The vertical electronic spectrum of

Free—Base Porphin

4.1 The UV spectrum of free-base porphin

Due to their crucial réle in a great deal of biological phenomena, such as the photo-
synthesis and the oxygen absorption and transport processes, the photochemical and
photophysical properties of the porphyrins have been extensively studied [131-133].
Particular attention has been obviously paid to the experimental and theoretical
investigation of the electronic spectrum of free base porphin (FBP), the basic build-
ing block of the porphyrins and related systems (Fig. 4.1). Since the FBP has
become tractable for correlated theoretical methods, a large number of studies has
been published, among which we quote the most recent SAC-CI [134-136], STEOM-
CC [137,138|, MRPT [139,140], MRMP [141] and, finally, TD-DFT [132,142-145]
calculations. Certainly, FBP, with its valence 7w system composed of 24 orbitals and
26 electrons, represents a severe challenge for highly accurate ab initio calculations,
at the level, for instance, of coupled cluster or multireference perturbation theory
and despite the large number of published studies some spectral assignments are still
debated.

The most investigated portion of the absorption spectrum extends from ~ 2 to
~ 5.5-6.0 eV and is characterized by three principal regions [146-148]. The lowest—
energy band (1.98-2.42 eV), the so—called Q band, is composed of two peaks, des-
ignated, according to their polarization, as Q. and Q, bands. The most intense
absorption region, known as Soret Band (or B band) is located in the range between
3.13 and 3.33 eV and a shoulder on its high—energy tail is instead called N band (3.65
eV). Finally, two weak and broad peaks (L and M bands) appear at 4.25 and 5.50
ev.

The traditional interpretation of the first two bands (Q and B) is based on the “four—
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Figure 4.1: Molecular structure of Free Base Porphin (FBP)

orbital model” introduced by Gouterman and co-workers [149-151| in the 1960’s.
According to this model, the low-energy region of the spectrum can be accounted for
in terms of single excitations from the two highest occupied MOs (5b1, and 2a, in
the Dy, symmetry group) to the two lowest unoccupied MOs (4byy and 4bs,) (Figure
4.2). So, if the molecule is placed in the zy plane with the = axis passing along the
pyrrolic hydrogens, the z and y components of the Q band should be ascribed to the
1'B3, and 1'By, states respectively; the 2'Bs, and 2'B,, transitions are instead re-
sponsible for the B band. Although Gouterman’s model holds for the interpretation
of the Q band, it has proved to fail for the the B band, where excitations from the

lower by, orbitals play a non negligible role.

4.2 Computational approach

The geometry of the ground state of FBP was optimized at B3LYP/6-31G* level,
imposing Dgj, symmetry, which, on the basis of previous theoretical calculations
[152,153], was shown to be the most stable one. Following the convention adopted in
most previous theoretical works, the molecule has been placed in the xy plane with
the two internal hydrogens along the z axis (Fig. 4.1). All the calculations were
carried out with a 6-31G* basis set [55], consisting of 364 basis functions. The zero
order description was attained using two different active spaces, named CAS(4/4)

and CAS(14/13), where the notation (m/n) indicates, as usual, m active electrons
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Figure 4.2: HOMO (2a,), HOMO-1 (5b1,,), LUMO (4b3,) and LUMO+1 (4bay) MOs of
Free Base Porphin

and n active orbitals. In all the calculations, the 24 1s orbitals were kept frozen at
the CASSCF level.

Table 4.1: Active spaces, basis set and number of states used in the CASSCF
calculations.

Basis set | Active Space Composition? Number of states
Bs, Bo,
6310 CAS(4/4)P 5b14,4b2g,4b34,2a,, 2 2
CAS(14/13)¢  3-5b1y,3-6b2g,3-6b34,1-2a,, 4 4

2 At the SCF level the ground state electronic configuration is
20ag17b3u17b2u14b195b1u3bgg3b3g2au

b Single-state CASSCF calculations

¢ State-averaged CASSCF calculations

The detailed composition of the two active spaces is given in Tab. 4.1, where
the number of the computed states is also reported. In the CAS(4/4) calculations
the zero order wavefunction was obtained from single-root CASSCF calculations,
whereas with the CAS(14/13) space, state-averaged CASSCF optimizations were

performed. The excitation energies were obtained with respect to the corresponding
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ground state 1'4;,, which was calculated both for the CAS(4/4) and CAS(14/13)

spaces.

4.3 NEVPT results

In Tab. 4.2 the CASSCF and NEVPT2 excitation energies are gathered and com-
pared with those computed in the most recent theoretical studies; the experimental

data are also reported.

Table 4.2: Vertical excitation energies of the first four excited states of Bs, and Ba,
symmetries of free base porphin compared with other theoretical results and experimental
data.

Method Excited States

11B3,, 1'Bay, 21B3, 2185, 31B3, 3By, 4'B3, 4B,
CAS(4/4)
CASSCF 3.48 3.71 5.08 5.12
SC-NEVPT2 2.05 2.53 3.25 3.33
PC-NEVPT?2 2.04 2.51 3.22 3.30
CAS(14/13)
CASSCF 3.12 3.80 4.72 5.22 5.74 6.15 7.52 6.27
SC-NEVPT2 2.21 2.76 3.49 3.62 4.10 4.40 4.93 4.47
PC-NEVPT?2 2.05 2.56 3.30 3.35 3.84 4.13 4.50 4.10

Previous works

CASPT2 [139] 1.63 2.11 3.12 3.08 3.53 3.42 4.04 3.96
MRPT2 [140] 1.73 2.25 2.96 3.02

SAC-CI [135] 1.75 2.23 3.56 3.75 4.24 4.52 5.45 5.31
STEOM-CC [138] 1.72 2.61 3.66 3.77 4.28 4.67 5.38 5.26
TD-DFT [144] 2.16 2.29 2.98 3.01 3.47 3.41 3.76 3.77
TD-DFT [132] 2.27 2.44 3.33 3.41 3.61 3.56 3.89 3.89

Expt. values

1.98-2.02% 2.33-2.42% 3.13-3.33P 3.13-3.33P 3.65¢ 4.25¢
Assignment Qo Qy B By N L

2 Refs. [148,154,155]
b Refs. [146,148,155]
¢ Ref. [148]

Before discussing in detail the interpretation of the spectrum, some general re-
marks are possible. First of all, contrary to the trend observed in the results of the
other ab initio methods [135,138-140], which, with the exception of the TD-DFT
calculations [132,144], seem to overestimate the correlation energy of the 1'Bs,, state
with respect to the ground state, the NEVPT2 excitation energies turn out to be
slightly higher than the experimental values; a similar behaviour is also noticed for

the 1By, state. Also, while a perfect accordance, with differences not exceeding 0.03
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eV, can be observed between the SC and PC transition energies in the CAS(4/4) cal-
culation, significant deviations are found using the larger active space. The different
behaviour in the second order correction between the two NEVPT variants, can
be understood considering the increasing accuracy of the PC approach, involving a
much larger number of perturbation functions with respect to the SC case, as the

size of the active space increases.

Table 4.3: Analysis of the CASSCF wavefunction composition. Only the configura-

tions with weight greater than 5% are considered.

CAS(4/4) CAS(14/13)
State Config. Weight Config. Weight
(%) ()
1'Bs, 5b1y, — 4bog 43 5b1y — 4bog 46
2a, — 4b3, 55 2a, — 4b3, 42
2183, 5b1y — 4bog 52 5b1y — 4bog 25
2a,, — 4bs, 39 4b1y — 4bog 22

2a, — 4bs, 35

31B3, 5b1y — 4byg 37
4by, — 4by, 34
2au — 4b3g 9

4B, 3b1y — 4byy 87
1'By, 5b1y, — 4bsy 40 5b1y, — 4bsg 41
QCLU - 4b29 58 2au — 4b2g 51
2By, 5b1y, — 4bsg 55 5b1,, — 4bsg 43
2au - 4b29 36 2au — 4b2g 37
3By, 4by,, — 4bz, 56

by, — 4dbs, 20

4By, 4b1y, — 4bs, 66
5byy, — 4bg, 14

Actually, as is apparent, these deviations are more consistent for the higher ex-
cited states and the maximum value (0.43 €V) is obtained for the 4'Bs, state. These
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increasing discrepancies are a clear clue of the inadequacy of such an active space,
including only 13 valence 7 orbitals (slightly more than half of the complete 7 valence
space), to describe high—energy excited states. Then, it should be considered that
the use of molecular orbitals not fully optimized, but obtained from state—averaged
calculations, possibly contributes to the defective zero order description.

The most accurate NEVPT results predict the vertical transition to the 1'Bs,
and 1'By, states at 2.05 and 2.56 eV (CAS(14/13) calculation), in remarkable accor-
dance with the experimental values of 1.98-2.02 (Q,) and 2.33-2.42 €V (Q,). Also,
we note that, for the Q band, the results obtained from the “four—orbital” based cal-
culations (CAS(4/4) space) can be regarded as satisfactory. Moreover, the splitting
between the 1'Bs, and 1'By, states, computed to be 0.47 eV, at the PC level, fully
agrees with the observed value of 0.44 eV [148].

If on the one hand the Q) band assignment is, altogether, well established, on the
other hand the interpretation of the B band is still debated in the literature. In
fact, according to Gouterman’s model [149-151] two components, with perpendicu-
lar polarizations, should be distinguished: the B, and B, bands, arising from the
2!B3, and 2'By, states respectively. The line splitting between the two components
of the B band, measured at low temperature [146], amounts to 0.03 eV. This tradi-
tional interpretation, supported by some experimental evidence [147], as well as by
the CASPT?2 [139,156], TD-DFT [144] and MRPT [140] calculations, was however
questioned by Nakatsuji et al. [134] and Tokita et al. [135], who, on the basis of their
SAC-CI calculations, assigned the 21Bs, state to the B band, but the 2'By, state
to the N band, appearing as a shoulder to the intense B band. Nevertheless, the
SAC-CI oscillator strengths of the two transitions, not matching with the spectrum
profile, seem to be a weak point of their conclusions (see Ref. [138]).

The PC-NEVPT2(4/4) results locate the 2'Bs, state at 3.22 eV and the 2By, state
at 3.30 eV, predicting a splitting of 0.08 eV, slightly greater then the experimental
value of 0.03 eV. A small reduction of this splitting is observed in the CAS(14/13)
calculations, where the two states are computed, at the PC level, at 3.30 and 3.35
eV respectively, in reasonable agreement with experiments (3.13-3.33 eV). While the
description of the 2'By, state provided by the CAS(4/4) calculations is comparable
to that obtained using the larger active space, this is not the case for the 2!Bs,
state. Indeed, as shown in Tab. 4.3, while, with both active spaces, the reference
wavefunction of the 2'Bs, state is dominated by the 4by, — 4b3, and 2a, — 4bag
configurations, in the larger calculation, the 2'Bs, state is also described by the
4by,, — 4bsg excitation (22%), not considered in Gouterman’s four-orbital model.

The interpretation of the two higher—energy bands is certainly more complex and
also the experimental evidence is less clear. Moreover, as shown by Gwaltney and
Bartlett [138], in this region of the spectrum (4.5-5 eV) the Rydberg transitions are
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expected to start. By now, the firmest assignment, suggested by Serrano-Andrés
et al. [139], is that the N band has to be ascribed to the pair of states 3'Bs,-
31B,, and, analogously, the so-called L band is assigned to the 4'Bs,,-41By,, states.
However, as apparent in Tab. 4.2, quite a conflicting picture emerges from the
results of the various theoretical methods, with differences in the computed excitation
energies greater than 1 eV. At the partially contracted level, the 3'Bs,-3'Bs, states
are computed at 3.84-4.13 eV, whereas the other pair of states 4'B3,-4'By,, is located
at 4.50-4.10 eV. Our results, overall, are consistent with the CASPT?2 interpretation,
since the largest deviation between the PC-NEVPT2 and CASPT2 amounts roughly
to 0.7 eV (3'By, state). Nevertheless, a too sizable splitting, with respect to that
computed by Serrano-Andrés et al. [139], is found between the components of each
pair of states. However, at the present stage of calculation, since the ground state
geometry, basis set and, above all, the active space used for this study are not the
same as in Ref. [139], and hence also the nature of the excited states computed is
not exactly the same, the direct comparison with the CASPT2 results should be

regarded with care.
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Part 11

Mixed—Valence systems






Chapter 5

Electron transfer in a model spiro

system

5.1 Introduction

The present chapter addresses the problem of the description of the Electron Transfer
(ET) processes in Mixed—Valence (MV) compounds in the framework of multirefer-
ence perturbation theory. The investigation is carried out on the model MV spiro sys-
tem reported in Fig. 5.1, (the 5,5 (4H,4H’)- spirobi[cyclopenta|c|pyrrole]2,2’ 6,6 te-
trahydro cation) [157], which, due to its relatively small size, allows the application

of highly—correlated methodologies.

Figure 5.1: Molecular structure of the spiro molecule

The work presented here [42,43] was thought as the extension of a previous
CASSCF and MRCI study [158], which reports an extensive investigation by using
different basis sets and computational approaches (canonical vs. localized orbitals).

After a short introduction to the ET processes in MV systems (section 5.2), the
model spiro system, subject of the present investigation, is presented in section 5.3
and the computational approach is, instead, illustrated in section 5.4. Section 5.5
shows that MRPT treatments (such as, for instance, NEVPT2 and CASPT2 [17])



94 Chapter 5. Electron transfer in a model spiro system

with a standard definition of the MO’s and of their energies are inadequate for the
MYV systems, leading to an unphysical description of the electronic energy curve as
a function of the reaction coordinate. In the same section, it is shown that the
application of the perturbation approach to the third order in the energy is able
to restore the correct shape of the energy profile. The origin of such a behaviour
is illustrated in section 5.6, by resorting to a simple Marcus-like two-state model
comprising only three electrons in four orbitals. By using this model, a strategy
based on the use of the canonical orbitals of a state—averaged calculation and with
state—averaged orbital energies is proposed with the aim to overcome the failure of
the second order perturbation treatment based on state—specific canonical orbitals
and energies. This strategy is adopted in actual calculations on spiro in section 5.7,

confirming its validity.

5.2 Electron Transfer reactions and Mixed—Valency

The pivotal role played by the ET processes in a great deal of chemical-physical and
biological phenomena, accounts for the extensive research efforts addressed to the
understanding of its mechanisms. In the domain of the intramolecular ET, Mixed-
Valence (MV) compounds play a relevant role as simple model systems suitable
for understanding the adiabatic ET phenomena [159-164]. Furthermore, MV com-
pounds are extensively investigated, both experimentally and theoretically, particu-
larly in the field of the inorganic binuclear MV complexes [165], for their appealing
optical and magnetic properties as well as for their possible application in molecular
electronics and photonics [166]. Nevertheless, more recently, an increasing attention
has been paid to the purely organic MV systems (see, for instance, the extensive work
on the triarylamine-based MV systems by Lambert and Noll [167]), since their Inter
Valence Charge Transfer (IV-CT) band is, generally, not affected by the overlap with
other low—lying transitions, contrary to what may occur for inorganic compounds due
to appearance of the d — d metal to ligand (MLCT) or ligand to metal (LMCT)

charge transfer excitations.

The simplest MV compound is composed of two moieties (hereafter indicated with
A and B), linked either directly or via a bridge, where an inter—valence ET (IV-ET)
occurs between the two redox sites being in different oxidation states. The electronic
coupling between the two ideally non—interacting systems, where the electron (hole)
is localized either on the left or on the right moiety, governs the communication
between the two subunits, determining the general properties of the system. Such
interaction is expressed by the Hamiltonian matrix element Hg, = <\Ifa ‘7:[‘ \Ilb>,

where W, and ¥, are the diabatic states, one with the electron/hole localized on the
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(left) subunit A and the other on the (right) subunit B.
According to the usual classification by Robin and Day [168], MV systems can

be divided into three classes:
e class I: redox centers strongly localized (complete valence trapping);

e class II : partial delocalization arising from a weak electronic interaction (va-

lence trapping);

e class III : strong electronic coupling which gives rise to a complete delocalized

system with a single minimum for the ground state (delocalized valency).

(a) class IT (b) class III

Figure 5.2: Potential Energy Surfaces (PESs) of an ET reaction in a symmetric MV com-
pound.

In the case of class IT and class III compounds (Fig. 5.2), the analysis of the
IV-CT band, either based on the semiclassical Hush theory [169,170] or on a more
rigorous quantum mechanical approach [171], provides a direct way to estimate Hgp,
and the reorganization energy, A. The extent of the electronic coupling can also
be obtained experimentally by means of Electron Spin Resonance (ESR), Nuclear
Magnetic Resonance (NMR) Spectroscopy as well as Photoelectron Spectroscopy
measures (see Refs. [172,173] for a more detailed overview). Nevertheless, since the
obtaining of a reliable experimental measure of H,; is often not possible, particularly
for strongly coupled systems, where the ET rates are much faster than the typical
time scale of the above cited experimental techniques and, additionally, the signifi-
cant vibronic coupling makes the Hush theory no longer applicable, the development
of accurate and efficient computational strategies represents a crucial issue in the

study of MV systems. Moreover, the accurate theoretical prediction of the electronic
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coupling would represent a powerful tool for the design of new “spacers”, allowing the
specific modulation of the properties of the ET process (e.g. long or short distance
ET). In the framework of the widely used two—state one-mode model and in the sim-
ple case of symmetry—equivalent donor and acceptor groups, the electronic coupling
Hap is defined as half the energy splitting (AFE) between the two adiabatic potential
surfaces at the crossing seam, and it can be computed using different methodologies
and approaches [157,158,167,174-186].

Nevertheless, the theoretical study of thise kind of systems presents difficulties:
the effect of the dynamical correlation has to be evaluated, improving the qualitative
minimal description given by the simple mixing of the quasi degenerate determi-
nants accounting for the two charge distributions. These difficulties are related to
the intrinsic multireference (MR) nature of the ground and the first excited state
wavefunctions of these systems and to their dimension, which makes impractical the
use of too expensive computational approaches. MR perturbation theory (MRPT),
among the other MR methods, is a good candidate due to the reliability shown in
many MR applications and due to the scaling properties of the computational cost
with respect to the dimensions of the system. With the exception of some recent
semiempirical Austin Model 1 (AM1) computations [167,183], the most frequently
applied methods, to study the ET process, are based on Density Functional [176]
and Time-Dependent Density Functional Theories (TD-DFT) [180,181]. However,
as shown in different applications [181,187|, some doubts have been raised concerning
the applicability of the DFT approach to the study of the electron transfer in MV
compounds, since the computed electronic coupling has been shown to be system-
atically underestimated by 20-30% in comparison to the results of more refined ab

initio calculations.

5.3 The model Spiro system

The 7-o-m spiro molecule (reported in Fig. 5.3) consists of two pyrrolic units (7
systems), lying on two perpendicular planes, connected by a spirocycloalkane rigid o
bridge. The symmetry of the neutral molecule is Doy, with the Cy axis (the z axis)
passing through the two N atoms; if an electron is removed from the system, the
positive charge tends to localize on the left or on the right pyrrolic unit, distorting
the symmetry and giving rise to two equivalent Co, minima. These are separated by
a symmetrical Doy saddle point at the crossing seam, corresponding to the situation
of a complete delocalization of the positive charge over the whole molecule.
Although some arguments about the equilibrium geometry of the spiro cation

in either its left /right-localized or delocalized structures have been provided and C;
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Figure 5.3: Structure of the spiro molecule

and Cy symmetries have been respectively suggested [177], here, as in Refs. [158,186],
we adopt the Cy, point group for the two minima with the localized charge and the

Doy symmetry for the structure at the saddle point.

The “7 system” of the spiro cation, composed of the 7 systems localized on the
two pyrrolic rings, comprises 11 7 electrons and 10 7 orbitals and, at the single
determinant level and in the Cs, point group, the electronic configuration is given
by (o—core)(1b1)?(2b1)?(1b2)?(2b2)%(1az)?(2a2)t. Therefore, the ground and the first
excited states, involved in the ET process, are two states of Ay symmetry, denoted
as 245(1) and 245(2) in the following.

The ET process was studied along an ad hoc approximate reaction path, defined

by the linear mixing of the cartesian coordinates of the two optimized Cs, geometries
[158]:

Q) = <% - 5) Qs+ <% +5> Qs (5.1)

where the mixing parameter £ was varied, in steps of 0.05, from -1.50 to +1.50
and Q4 and Qp are vectors collecting the coordinates of the two optimized Co,
geometries. Therefore, the two equivalent minima are in { = —0.50 (Q4, charge on
the left A moiety) and £ = +0.50 (Qp, charge on the right B moiety). An “averaged”
Doy geometry, which was however found to be very close to the optimized one (see
Ref. [158]), is obtained at the crossing seam point ({=0.0). Nevertheless, since the
MOLCAS package [76], used to obtain the CASSCF wavefunctions, can only deal
with Abelian point groups, the calculations for the non—Abelian Doy group were

performed using the reduced Cs, symmetry.
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5.4 Computational details

Following the previous works, the calculations were carried out with basis sets of
Atomic Natural Orbitals (ANO-L) [72] type. Different contractions levels were
adopted: C,N|[2slp| and H[1s] (SZ); C,N[3s2p| and H|2s| (DZ); C,N[3s2pld] and
H[2s1p] (DZP) and, finally, C,N[4s3pld| and H[3slp| (TZP).

For the calculation of the reaction coordinate (see section 5.3), use has been made
of the geometries optimized in Ref. [158] at the Restricted Open Shell Hartree-Fock
(ROHF) level with a triple zeta plus Polarization (TZP) ANO basis set [72].

State-averaged CASSCF calculations were performed for the two 24, states using
different active spaces: CAS(3/2), just composed of the three electrons and the two
ag (HOMO and HOMO-1) orbitals; CAS(11/10), comprising the whole 7 system of
the molecule, obtained distributing eleven active electrons into ten active orbitals and
an intermediate space, composed of seven electrons and four orbitals, CAS(7/4). The
explicit composition, in the Cs, point group, of the active spaces used, is reported
in Tab. 5.1.

Table 5.1: Active space composition and nomenclature.

Active Space Composition®
CAS(3/2) 3-day

CAS(7/4) 1201, 12b,3-4as
CAS(11/10) 11-13by, 11-13by, 3-6as

3 At the SCF level, in the Ca, point group, the ground
state electronic configuration of the neutral system is
(25a1)%(12b1)2(12b2)%(4az2)?.

In all the perturbative calculations, the 1s orbitals of N and C were kept uncor-
related.

Finally, all the energy differences, reported in the next sections, were computed
with respect to the energy of the ground state of the cation at the Cy, geometry with
¢ = +0.5 (¢ = —0.5), corresponding to that of the optimized geometry Q4 (Qp),

although it might not be the actual minimum of the curve.

5.5 Second and third order standard MRPT

This section is devoted to the discussion of the results provided by a standard pertur-
bation approach (hereafter indicated as NEVPT(can) and CASPT2(can)), which is
based on the use of state—specific canonical molecular orbitals and orbital energies.

Therefore, the zero order wavefunctions were defined performing a state-averaged
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CASSCF calculation on the two 24, states, followed by two distinct single-root
CASCI calculations, in order to build the canonical orbitals and to compute the
orbital energies for each state. Here, we shall just report the results computed with
the minimal basis set (SZ) and active space, CAS(3/2).

The computed CASSCF, NEVPT2(can), CASPT2(can) and NEVPT3(can) en-
ergy differences are collected in Tab. 5.2. As is apparent from the energy profiles
reported in Fig. 5.5, and from the computed values of the energy barriers in Tab. 5.2,

a non—physical description of the two adiabatic PES, in proximity of the symmetrical
saddle point is attained with both the NEVPT2 and CASPT2 approaches.

Table 5.2: Spiro cation: NEVPT2(can), NEVPT3(can) and CASPT2(can) energies (kJ/mol) of
the ground state, 242(1), at £ = 0.0 and of the first excited state, 242(2), at £ = 0.0 and ¢ = —0.5.
All the energies are computed with respect to the energy of the ground state at £ = —0.5. For the
sake of clarity the energy splitting (AE kJ/mol) between the two states at £ = 0.0 is also reported.
For the CASPT?2 results the level shift was varied from 0.0 to 0.2 hartree.

States  CAS NEVPT(can) CASPT?2(can)
SC-PT2 PC-PT2 SC-PT3 | LS.00 LS.01 L.S.02

¢=-05

245(2) 56.600 51442 51441  51.539 | 50.001  50.043  50.151
£€=00

24,(1) 8328  -5.117  -5330  3.765 | -5.790  -5.724  -5.503
24,(1) 17.371 4726 4505  12.983 | 4.017  4.087  4.314
AE (£ =0.0)

245(2)  9.043 9843 9.835 9218 | 9807 9811 9817

In particular, an increasing overestimation of the correlation energy, starting at
¢ = —0.15 and culminating at £ = 0, is observed, with the consequent loss of the
barrier and the appearance of a “well” in the avoided—crossing region. Indeed, both
NEVPT2(can) and CASPT2(can) calculations, irrespective of whether a level shift is
used or not in the latter case (thereby excluding an intruder state problem), yield for
the 245(1) state the Dog nuclear configuration ~5 kJ/mol below the Cg, minimum.
As shown in Fig. 5.5, the SC-NEVPT2(can) and the CASPT2(can) curves are
almost parallel along the reaction coordinate and the computed energy differences
collected in Tab. 5.2 are in very good accordance. The energy splitting at the Doy
geometry amounts roughly to 9.8 kJ/mol, very close to that computed at CASSCF
level (~9 kJ/mol). As is apparent, proceeding up to the third order is essential to
restore the correct behavior of the two PES, with the expected double—well profile

for the ground state and with the smooth parabolic curve for the first excited state.
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Energy (kJ mdll)

Figure 5.5: SC-NEVPT2(can), SC-NEVPT3(can) and CASPT2(can) (no level shift) PES of
the 245(1) and 2A5(2) states of the spiro cation. All the curves are shifted in order to have the
two Cs, minima at zero energy. Full lines and “+” points, NEVPT2(can) energies; dashed
lines and “x” points, CASPT2(can) energies; dotted lines and “x” points, NEVPT3(can)
energies.

The SC-NEVPT3 [24] calculation is rather expensive on this system and one
can reasonably expect the PC-NEVPT3 and CASPTS3 results to agree with the SC-
NEVPT3. The energy barrier computed at SC-NEVPT3(can) level is 3.765 kJ/mol,
whereas a value of 8.328 kJ/mol is obtained from the CASSCF calculation. Finally,
it is interesting to notice that the splitting of the two states seems to be unaffected
by the wrong second order description, being essentially the same at the CASSCF,
second and third order PT levels. In the following section, this general failure of the
MRPT?2 treatment making use of a partially monoelectronic zero order Hamiltonian
and of state—specific canonical orbitals and orbital energies, together with the benefit
brought by the third order correction, will be demonstrated and discussed, for a

simple Marcus—like two—state model.



Failure of a standard MRPT approach 5.6 101

5.6 Failure of a standard MRPT approach

5.6.1 A simple two-state model

Let us consider a model system A, with two electrons and two orbitals, a and a* (a
lower in energy than a*). In a perturbation scheme, using the Mgller-Plesset |26]
partition of the Hamiltonian, the zero—order wavefunction is the determinant |laal|
and only one perturber (||a*a*|) must be considered (if the orbitals are supposed
to be optimized, the single excitations are excluded due to Brillouin’s theorem [7]).

The first order correction to the wavefunction is

aala*a* . x
o0 _ _ﬁna a*| (5.2)

and the second and third order corrections to the energy are:

%) |2
EY) = —% (5.3)
BY = <\p(1) V| q,<1>> — EOg®|g)y
- B (el - B ()] + £ (5.4
where V is the perturbation operator (H = Ho + V),
e = (a|h|a) + (aalaa) (5.5)
eA = (a*|h| a*) + 2(a*ala*a) — (a*alaa®) (5.6)

are the orbital energies of the a and a* orbitals (the superscript A has been added

to stress that the orbital energies refer to the A system treated alone) and
E(K) = (K (H( K) (5.7)

is the energy of determinant K.

Consider now a second system B, equal to A, and the supersystem (A---B)™"
where A and B are weakly interacting (Fig. 5.6.1). The molecular orbitals of the
AB system can be regarded as localized and they are very close to the orbitals of A

and B: they are therefore indicated in the following with a, a*, b and b*.

The ground state zero order wavefunction for the supersystem is described by
the linear combination of the two quasi-degenerate determinants ||abb|| and ||aab||

(corresponding to the AT ... B and A---B™T charge distributions, respectively):

U = ¢||abb|| + co||aab]| . (5.8)
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Figure 5.6: Schematic representation of the A™---B and A---B™ systems

We suppose a small relaxation of the geometry going from A (B) to A* (B*). The

weak coupling between the two systems A and B is given by an effective Hamiltonian

of the form:
ki(g —€)? ks
H= 2 . ) (5.9)
ko k1(5 +¢€)
where £ is a “reaction coordinate™ with & = —0.5 the system is described by A*-.- B

while with &€ = 0.5 the system is A---BT. The values of k1 and ks are such that ¢;
remains close to 1 for £ < —9 and is close to 0 for § < &, with 0 < § < 1.

5.6.2 Second order correction

To compute the second order correction to the energy one has to use in this case a
MRPT scheme, and in order to keep the approach as simple as possible, the Mgller—
Plesset barycentric [188] (MPB) partition of the Hamiltonian is adopted. The orbital
energies of the (A---B)T system are computed using the formula [189]:

e = (ilnl i)+ 3 [(z’k|z’k> _ %(z’k|ki> (5.10)
k

where ny, is the natural occupation of orbital k (ng = 1 + |ea|?, np = 1 + |e1]?, and

Ng» = np = 0). In the MPB partition, the zero order energy of the ground state is:
EO = (14 |eo]P)ea + (14 |e1[P)es (5.11)

In order to simplify the derivation, we use the approximation to neglect the
bielectronic integrals in which one electronic distribution (of electron 1 or 2) is the

product of orbitals one on A and the other on B. With this approximations, the



Failure of a standard MRPT approach 5.6 103

orbital energies are:

e = (a\h!a>+1+7’62’2<aa]aa>+(14—\01\2) (ablab) (5.12)
e = (b|h|b>+1+TW<bb|bb>+(1+|02|2> (ablab) (5.13)
Ear = (a*|h|a*>—|—(1+|62|2) <aa*|aa*>—1+72’62’2<aa*|a*a>+

+ (1 + |01|2) (a*bla*b) (5.14)
ey = (b*\h\b*>+(1+\c1\2) <bb*]bb*>—1+TW<bb*\b*b>+

+ (1 + \CQP) (b*alb*a) (5.15)

We note that the dependence of these orbital energies on & (through the de-
pendence of ¢; and c¢o on &) agrees with the one found in the NEVPT calculations
reported in the previous section, as is apparent from Fig. 5.7 where the orbital en-
ergies used in the NEVPT2 calculation for four representative inactive orbitals are
reported as a function of £. The dependence of the charge of the B moiety (equivalent
to |c2|? in the model) as a function of ¢ is also reported for the sake of clarity.

Let us turn to the calculation of the second order perturbation correction to the
energy: the single excitations are considered to give negligible contributions, since
local single excitations on the two systems can be disposed of if the orbitals are
supposed to be optimized (contracted singles would yield strictly zero according to
the Generalized Brillouin theorem [14]) and, moreover, intersystem excitations are
thought to have a small contribution due to the weak interaction between the two
systems. Therefore only the two doubly excited perturbers, ||ab*b*|| and ||a*a*b)|
(with zero order energy e, + 2ep« and ep, + 24+, respectively) must be considered,

obtaining for the second order correction to the energy:

*pk\ |2
E(Q) _ —‘61’2 ’<bb’b b >’
2ep+ — (1 + \c1\2) gp — \cz\25a
aala*a*)|?
_‘62’2 |< | , >| 5 (516)
284+ — (1 + |ea| )ea — el e
and for the first order correction to the wavefunction
bb|b*b*) - (aala*a™) _
v — <7 b*b*|| — co———||la*a*b|| . 5.17
o a5 = eag L (5.17)

Since the two subsystems AT and B (or A and B™) are supposed to be weakly

interacting and given that the ionized system need not be correlated, the second
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Figure 5.7: Spiro cation: variation of the charge of the B moiety (in %) and of the orbital
energies (in hartree) of two core and two virtual representative orbitals along the reaction
coordinate . Charge of the B moiety, full line and “+” symbols; energy of a core and a
virtual 7 orbital localized on A, “x” and open square symbols, respectively; energy of a core

and a virtual 7 orbital localized on B, “*” and black square symbols, respectively.

order approximation to the energy, E®), is expected to be very close (equal at the
non-interaction limit) to that of the isolated system A (or B), computed in equation
(5.3) for all —0.5 < ¢ <0.5.

Note that for £ = —0.5 and £ = 05 (¢ ~ 1, ¢ ~ 0 and ¢; ~ 0, ¢ ~ 1,
respectively), equation (5.16) correctly reduces to equation (5.3), apart from the
small integrals (ablab) and (a*bla*b).

Let us consider the case £ = 0: making use of the equalities |c1|* = |c2|?, 4 = b+

and ¢, = ¢; and noting that (aala*a*) = (bb|b*b*), one has

* %\ |2
2(eq — €a)
and Y .
v — —% [clHab*l_)*H + CQHCL*C_L*bH] (5.19)
where
o = (alh|a)+ 0.75(aalaa) + 1.5(ablab) (5.20)

gqr = (a*|h]a*) + 1.5(a*ala*a) — 0.75(a*alaa™) 4+ 1.5(a*b|a”b) (5.21)
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Expressions (5.20) and (5.21) for the orbital energies are different from those reported
in egs. (5.5) and (5.6), even disregarding the small integrals (ablab) and (a*b|a*d).
The denominator in (5.18) is smaller than the one in (5.3) (the onsite repulsion
integrals (aalaa) and (a*ala*a) being large and positive) and the correlation energy
is therefore larger in module.

It is worthwhile to point out that the model here discussed involves only active
and virtual orbitals. The inclusion of core orbitals complicates the derivation. How-
ever, one can show that for & = 0 the perturbers obtained by a promotion of two
core electrons into the active space (V' (42) or 2h class) are associated with a denom-
inator larger than the correct one and therefore their contribution to the correlation
energy is too small. The same happens for the promotion of one core electron into
the active space accompanied by an excitation inside the active space (V(+1)" or 1h
class). In the cases where both the core and the virtual orbitals are involved in the
excitation process (V(0) or 2h —2p, V(41) or 1h —2p, V(—1) or 2h — 1p, and V(0)’
or 1h — 1p classes) the analysis is more complex and there is a competition between
the effect of the virtual orbital energies (which tend to give too small denominators)
and the one of the core orbital energies (which, on the contrary, tend to give too
large denominators).

The analogy between the model system and the NEVPT2 description of the
spiro molecule is confirmed by the curves shown in Fig. 5.8 where the NEVPT2
correlation energy for each excitation class is plotted as a function of £. In order
to have a prompt comparison of the behavior of the different NEVPT2 classes, the
origin of the energy scale is different for each class and all plots have the same energy
range (for more details, see caption of Fig. 5.8). As expected the V(—2) class (two
active electrons promoted to the virtual space) shows a sharp profile with too large a
correlation energy close to & = 0. All the other classes, apart from the V(—1) class,
involve both core and virtual orbitals and the effect of the virtual orbital energies is
dominant for the V(1) and V(—1) classes, while for the V(0)" the effect of the core
orbital energies slightly prevails. The two effects almost compensate each other in
the case of the V(0) class. The behavior of the V/(—1)’ class is peculiar: given that
in this case only virtual inactive orbitals are involved in the excitation process, from
the model system one can expect for this class a behavior similar to the one observed
for the V' (—2) class, while the NEVPT2 curve shows an opposite shape. One must
however note that, in the same energy scale of the other classes, the contribution
of this class is almost constant and that the deviation from the correct behavior
is negligible. However, the curve of the total CASSCF+NEVPT2 energy, reported
in Figure 5.5, indicates that the effect of the virtual orbital energies (too large a

correlation energy for £ = 0) is dominant.
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Energy (mh)

Energy (mh)

Figure 5.8: Spiro cation: contribution of the different classes to the NEVPT second order
correction to the energy (in millihartree, mh) as a function of the reaction coordinate &.
The V(2) and V(+1)’ classes give vanishing contribution. In order to make the comparison
between the different classes easier, the energy reported in figure is E® ~+ Fshitt, where Egpigg
(in hartree, h) is different for each class: V(0) — Egnige = 0.6480 h, V(1) — Egniee = 0.0185
h, V(=1) — B = 0.0730 h, V(=2) — Eaire = 0.0115 h, V(—1)" — Egpg = 0.0030 b,
and V(0)" — Egpnite = 0.3000 h. Moreover the same energy scale is adopted for all plots.

5.6.3 Third order correction

For the third order correction to the energy, the full derivation is rather irksome,
even considering only active and virtual orbitals. In this case, one can, however,
easily prove that for ¢ = —0.5 and & = 0.5 the correct behavior is obtained.
For £ = 0 one has
|(aala*a*)|?

E® = e [E(||a*a*b||)—E(qf<°>)] +E® (5.22)

where use has been made of the relations E (||la*@*b||) = E (||ab*b*||) and
(lla*@*b|| [V] ||ab*d*||) = 0. Introducing the new quantities

Ae =2 (i — &) (5.23)
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and
A =Ae—2(gqr —&q) (5.24)

one can expand E® and E®) in McLaurin series with respect to A/Ae (which is
expected to be < 1) obtaining to the first order:

9 A
E® ~ g (1 + A—g) (5.25)
* ok |2
@ . laala*a”)| ——— 0) A 2) A
R Y B (laab]) — B (v©)] 142 )+ B (14 o
* =% _ )
@ @, J[Eleab]) - E ()] A

~ BY 4+ B¢ (1 2 = = (5.26)

where the relation E (|la*a*b||) — E (¥(©)) ~ E(||a*al)) — E (||aa||) has been used
(the equality holds if A and B are non interacting). Therefore, neither F(?) nor E()
show the correct behavior (which is E/(f) and E[(f’), respectively) at the first order in

A/Ag, but the sum of the two corrections

Ae Ae
(5.27)

* =k _ (0)

has the correct expression if E (|la*a*b||) — E (\I'(O)) = Ae. Even though such equal-
ity does not hold rigorously, the two terms can be supposed to be close, the first
representing the energy difference between ||a*@*b|| and ¥(9) computed with the full
Hamiltonian, the second the same energy difference, but using the zero order Hamil-

tonian.

5.6.4 Conclusive remarks

This simple model allows the full rationalization of the results reported in section
5.5: the energy curve corrected to the second order using MRPTs in which the zero
order Hamiltonian depends (at least partially) upon the orbital energies, shows an
unphysical behavior with a °
NEVPT2 and CASPT2 are affected by this error but such behavior is expected to
be common to practically all MRPTs (with a possible exception of the ones based on
Epstein-Nesbet partition of the Hamiltonian [188]). However, while for NEVPT2,

in which Hy contains the orbital energies only for the inactive (core and virtual)

‘well” around the symmetric situation & = 0. Both

orbitals the problem can be, in principle, alleviated by enlarging the active space,
for CASPT?2 this strategy is destined to fail, because of the monoelectronic nature

of Ho in all orbital spaces.
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The irregularity is almost completely removed if the perturbation approach is
applied up to the third order, thus restoring a regular curve. But, in the perspective
of applying MRPT methods to real MV systems with a good quality basis set and
reasonably large active spaces, the strategy to perform a third order calculation
appears as too expensive a solution.

To this aim, this model suggests a practical strategy for limiting the calculation
to the second order: indeed, if equations 5.12-5.15 are made independent of ¢; and
¢, the second order energy remains constant for all £ and the unphysical “well” is
removed. This can be obtained, for instance, by using |c1|? = |ca|? = 0.5, or equiv-
alently by taking, for each orbital energy, the average of the two values computed
at £ and —¢. In the actual calculations this results can be obtained computing, for
each nuclear geometry, the orbital energies as the average between those pertain-
ing to the ground state (GS) and to the first excited state of the same symmetry;
in other terms, this “charge—averaged” MRPT2 strategy (hereafter referred to as
“NEVPT2(av)”), relies on the use of state-averaged canonical molecular orbitals,
obtained by diagonalization of the state—averaged Fock operator.

Finally, we note that in the NEVPT2(av) strategy, one has to give up the correct
absolute value of the second order energy (notice that in this approach for £ = —0.5
and £ = 40.5 E® +£ Ef)), the trade—off being a coherent evaluation of the energy
along the “reaction path”. This allows to get an accurate estimate of all those energy
differences, such as the extent of the barrier, the energy splitting at the crossing
seam as well as the excitation energy for the optically-activated ET, which are the
key parameters in the study of the ET processes. Some further remarks may be
addressed to the question of how general such “charge—averaged” MRPT2 approach
can be. Actually, the strategy of using a zero order wavefunction as the result of an
average procedure along the whole reaction path between the two charge distributions
can be, in principle, extended to non—-symmetrical MV systems, to MV compounds
containing transition metals and also to strongly coupled systems. About the last
point, it should be noted that the incorrect description of the region around the
saddle point is basically related to the weak coupling between the two subunits,
that brings about a sudden change in the monoelectronic energy differences as the
nuclear configuration approaches the symmetrical delocalized conformation. Thus,
even though the NEVPT2(av) method is well applicable to more strongly coupled
compounds, in these kinds of systems the application of a standard MRPT2 approach
is expected to be less problematic due to the more gradual change of the nature of

the wavefunction when passing from one charge distribution to the other.
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5.7 The use of state—averaged orbitals

Tabs. 5.3 and 5.4 display the CASSCF and NEVPT excitation energies obtained
with the four basis sets and the two largest active spaces, CAS(7/4) and CAS(11/10)
respectively. Tab. 5.5 collects the MRCI results published in Ref. [158] and here used
as benchmark values to judge on the quality of those obtained at NEVPT2(av) and
NEVPT3(can) levels; the comparison is made more meaningful by the use of the
same basis sets (ANO-L [72| with SZ and DZ contractions) and of the same active
space, CAS(7/4). The MRCI results reported here have been obtained at CAS+SD
level using both an internally—contracted [48] (C-CAS+SD) and an uncontracted
(CAS-+SD) approach; finally, the subscript “can” indicates that canonical molecular
orbitals were used. We have reported the excitation energies (kJ/mol) from the
ground state, 245(1), at its energy minimum, taken as the value at £ = —0.5, to the
first excited state, 245(2), both at the Ca, (¢ = —0.5) and Dyy (¢ = 0.0) points; the
height of the barrier for the thermal ET and the energy splitting AF at the crossing

seam were also computed.

5.7.1 The energy barrier

As expected on the basis of the considerations reported in section 5.6, since in the
NEVPT? scheme the dependence of Hy on the orbital energies is limited to the inac-
tive (core and virtual) orbitals, the strategy of enlarging the active space alleviates
the problem around the symmetric Doy geometry in the standard PT2 treatment.
Therefore we notice that, with the minimal basis set, the barrier goes from a slightly
negative value, ~ -2.5 kJ/mol, with the CAS(7/4) to a slightly positive value, ~
3 kJ/mol, with the largest active space; we recall that the corresponding value,
computed with the minimal CAS(3/2) space (see section 5.5), amounts about to -5
kJ/mol. As shown by the energy profiles shown in Fig. 5.9, such little benefit is
however made completely fruitless when the dimension of the basis is increased and,
even with the DZ basis set, a negative energy barrier is again obtained with the
CAS(11/10) (see Tab. 5.4). To clarify this behavior, it is worthwhile to point out
that going from the minimal SZ basis to the DZ one produces a reduction in the
energy gap between the occupied orbitals, which are shifted to higher energies, and
the virtual orbitals, whose energies are, instead, brought down. This effect makes
the system more sensitive to the change of the energy differences in proximity of the
symmetric Doy point, undoing, therefore, the slight improvement obtained by the
enlargement of the CAS dimensions. Such phenomenon, although still present, is
certainly less pronounced going from the DZ to DZP and then to the TZP basis sets.

Moreover, as shown by a first comparison between the results in Tabs. 5.3 and

5.4 and those in Tab. 5.5, the third order computation is unable to completely
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Table 5.3: Spiro cation-CAS(7/4): NEVPT2(can), NEVPT3(can), NEVPT2(av) energies
(kJ/mol) of the ground state, 242(1), at £ = 0.0 and of the first excited state, 242(2), at
& = 0.0 and £ = —0.5. All the energies are computed with respect to the energy of the
ground state at £ = —0.5. For the sake of clarity the energy splitting (AE kJ/mol) between
the two states at £ = 0.0 is also reported.

NEVPT(can) NEVPT2(av)
States CASSCF SC-PT2 PC-PT2 SC-PT3 | SC-PT2 PC-PT2
SZ basis set
&=-0.5 2142(2) 56.69 51.50 51.49 51.32 49.63 49.50
=00 245(1) 8.33 -2.15 -2.89 5.03 4.98 4.76
- 242(2) 17.37 7.56 6.79 14.23 14.67 14.42
AFE 9.04 9.71 9.68 9.20 9.70 9.66
DZ basis set
&=-0.5 2142(2) 45.82 38.82 38.71 42.94 40.53 40.36
£=00 245(1) 5.64 -7.82 -8.57 8.33 4.68 4.45
- 245(2) 15.63 2.69 1.91 18.33 15.04 15.03
AFE 9.99 10.52 10.47 10.00 10.36 10.58
DZP basis set,
&E=-0.5 2A2(2) 46.38 36.47 36.34 38.00 37.73
€= 00 2A2(1) 6.53 -11.70 -12.53 4.96 4.85
- 245(2) 16.19 -1.31 -2.19 15.33 15.44
AFE 9.66 10.38 10.33 10.36 10.59
TZP basis set
£=-05 | 45(2) 46.14 36.43 36.33 38.72 38.44
£=00 242(1) 6.75 1154 -12.39 6.50 6.42
- 245(2) 16.38 -1.23 -2.17 17.15 16.99
AFE 9.63 10.31 10.23 10.66 10.57

restore the correct shape of the curve. Indeed, one can appreciate that, while a good
accordance between the NEVPT3(can) and NEVPT2(av) results is obtained when
the NEVPT2(can) barrier is just slightly negative (see CAS(7/4)/SZ and CAS(11/10)
values in Tabs. 5.3 and 5.4), the third order correction tends to overestimate the
depth of the well when the NEVPT2(can) gives considerably wrong results. Indeed,
with CAS(7/4) and DZ basis set, where the NEVPT2(can) predicts the Doy point
to be about 8 kJ/mol below the Cy, minimum, the energy barrier is estimated to be
about 8 kJ/mol at NEVPT3(can) level, whereas a value amounting to ~ 4.5 kJ/mol
is obtained with the NEVPT2(av) approach; such value is corroborated by the MRCI
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Table 5.4: Spiro cation—-CAS(11/10): NEVPT2(can), NEVPT3(can), NEVPT2(av) ener-
gies (kJ/mol) of the ground state, 245(1), at & = 0.0 and of the first excited state, 245(2),
at £ = 0.0 and £ = —0.5. All the energies are computed with respect to the energy of the
ground state at £ = —0.5. For the sake of clarity the energy splitting (AE kJ/mol) between
the two states at £ = 0.0 is also reported.

NEVPT(can) NEVPT2(av)
States CASSCF SC-PT2 PC-PT2 SC-PT3 | SC-PT2 PC-PT2
SZ basis set
€=-05 | 245(2) 55.51 47.34 47.13 48.34 46.93 46.76
00 ?A2(1) 7.99 3.13 3.01 5.33 5.62 5.49
£=0 245(2) 15.40 11.41 11.39 13.52 13.88 13.86
AE 7.41 8.28 8.38 8.19 8.27 8.37
DZ basis set
E=-05 | 242(2) 47.61 34.93 34.49 39.71 36.29 35.73
£=00 245(1) 6.92 -1.40 -3.21 6.33 5.17 4.02
e 2A5(2) 15.45 7.75 5.89 15.40 14.33 13.13
AE 8.53 9.15 9.10 9.07 9.16 9.11
DZP basis set,
E=-05 | %45(2) 47.10 32.99 32.54 34.10 33.60
£=00 ?A2(1) 7.04 -4.96 -6.92 5.18 4.22
e 245(2) 15.55 4.21 2.17 14.45 13.40
AE 8.51 9.18 9.10 9.27 9.18
TZP basis set
E=-05 | *A2(2) 46.66 33.21 32.81 36.90 36.47
o0 2A5(1) 7.17 -4.85 -6.61 7.16 6.34
£=0. 245(2) 15.62 4.24 2.40 16.39 15.48
AE 8.45 9.09 9.01 9.22 9.15

results [158], which estimate the height of the barrier to be about 4.5 kJ/mol (see the
DZ values reported in Tab. 5.5). These considerations, apart from the expensiveness
of the third order calculations, that makes this strategy not efficiently applicable
to large—sized MV systems, confirm the NEVPT2(av) technique as a valuable and
efficient approach to study the ET process in this class of compounds. The reliability
and the firmness of the new proposed perturbative strategy is further assessed by the
good accordance shown by the results obtained with the two different active spaces
employed: the height of the barrier is computed to be in the range 4-5 kJ/mol with
the three smallest basis sets and to be ~ 6 kJ/mol with the TZP basis. These
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Table 5.5: Spiro cation—-CAS(7/4): CAS+SD.qy, and C-CAS+SD.,, energies (kJ/mol) of
the ground state, 2A5(1), at £ = 0.0 and of the first excited state, 243(2), at £ = 0.0 and
& = —0.5. The values have been obtained from the values reported in Ref. [158], taking as
the zero energy the that of the ground state 245(1) at & = —0.5. See Ref. [158] for further
details.

States CAS+SDcor,  C-CAS+SDeqn | CAS+SDeon,  C-CAS+SDean
SZ basis set DZ basis set
€=-05 | *Az(2) 53.80 53.76 43.86 44.00
£=00 ?A2(1) 6.48 6.68 4.41 4.67
- *45(2) 15.72 16.01 14.60 14.96
AE 9.25 9.32 10.19 10.29

values are in reasonable accordance with the results of the more correlated MRCI
calculations (Tab. 5.5): here, with the CAS(7/4), the barrier is computed, both at
the internally—contracted [48] (C-CAS-+SD) and uncontracted CAS+SD level, to be
about 6.5 kJ/mol (SZ) and 4.5 kJ/mol (DZ).

5.7.2 The energy splitting

As appears from the results in Tabs. 5.3 and 5.4, the energy splitting AFE at the
crossing seam, being twice the value of the electronic coupling H, is essentially
not affected by the wrong behavior of the standard PT2 approach. One can indeed
notice a remarkable agreement between the values provided by the NEVPT2(can)
calculations and those attained at NEVPT3(can) and NEVPT2(av) levels. A small
effect of the dynamical correlation is also evident, since a reasonable estimate of this
parameter is already obtained at CASSCF level. Moreover, as also found at MRCI
level [158], this energy difference shows practically no dependence on the basis set
dimension (with the exception of a small underestimation with the minimal basis)
since a value of ~ 9 kJ/mol is computed with the CAS(11/10) and ~ 10 kJ/mol
with the CAS(7/4). These values for AE are in noticeable accordance with those
computed in Ref. [158] and reported in Tab. 5.5, where the splitting, with the larger
basis set, is calculated to be 10.2 and 10.3 kJ/mol at uncontracted CAS+SD and
internally contracted C-CAS-+SD levels respectively. Then, very similar values were
also obtained in the previous calculations by Sanz et al. [176]: the splitting was
computed to be 9.5 (DFT), 11.0 (UHF) and 11.9 kJ/mol (DDCI). Then, a simple
way to get a first estimate of the energy splitting between the two adiabatic surfaces
at the crossing seam is to apply Koopmans’ theorem [8,9]. Since, within a single—

determinant approximation, the two electronic configurations corresponding to the
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Energy (kJ mdll)

Figure 5.9: SC-NEVPT2(can), SC-NEVPT3(can) (full lines with “4” and “*” points
respectively) and SC-NEVPT2(av) (dashed lines with “x”points) energy profiles of
the ground, 245(1), and of the first excited state, 245(2), of the spiro monocation.
All the PES have been shifted in order to have the two Cy, minima at zero energy

(see text for computational details).

ground state of the monocation and to its first excited state can be obtained from
two appropriate ionization processes from the closed—shell configuration, AF can be
approximated by the difference in the RHF energies of the HOMO and HOMO-1
orbitals of the neutral system at the symmetrical geometry. The values computed
using such a rough approach provide results in good agreement with those obtained
at higher levels of calculations: the splitting is indeed calculated to be 9.98 (SZ),
10.76 (DZ), 10.50 (DZP) and 10.24 kJ/mol (TZP).

5.7.3 Excitation energy to the 24,(2) state

The other key parameter in the study of the ET process is the excitation energy
corresponding to the optically-induced ET, namely the vertical excitation energy
from the ground state at its charge-localized minimum to the first excited state. We
recall that in the simple Hush’s approach [169,170], for MV systems characterized by
a weak electronic coupling, this quantity equals the reorganization energy A. As is

apparent from the results in Tabs. 5.3 and 5.4, this energy difference appears to be
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much more sensitive to the correlation energy, as well as to the dimension of the basis
set, than the above discussed AFE. Overall, a small and progressive reduction can
be observed going from the minimal basis to the largest one; while this reduction
is sizable when passing from SZ to DZ (slightly less than 10 kJ/mol), it tends to
become negligible proceeding up to the DZP and TZP basis sets. The same trend
was found at MRCI level [158] and, as shown in Tab. 5.5, the excitation energy of
the 245(2) state, at the Cg, minimum, decreases by ~ 10 kJ/mol when increasing
the basis set dimension. Furthermore, one can notice that also the enlargement
of the active space results in a similar small lowering in the energy, anyway not
exceeding 4 kJ/mol. Finally, referring to the results obtained with the same active
space and basis sets (CAS(7/4)/SZ, DZ), a good accordance, up to within 5 kJ/mol,
was achieved between the MRCI computations [158] and the present NEVPT3(can)
and NEVPT2(av) results.
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PC-NEVPT2 S l<k> spaces

A.0.4 The SY

ij,rs

Space

The V(Q)

ijrs operator has the form

Vzg?gg = YijVrs (<T5|Z'j>EriEsj + <T5|ji>ErjEsi) 1< g, <,

where Y =1 — %5mn.

The perturbation function is written as

\Ilgz))sj = Lﬁj((”\iﬁ EyiEgj + (rslji) Egi Eyj) 0
\/ Nij,rs

with the norm given by

N = aigs((rslig)” + (rslji)? — (rslig) (rs|i)).

Finally, the perturbative coefficient cg])r(: ) is
(0)
com _ Vi

trs €+ € — € — €

A.0.5 The SV Space

i,rs

(A4)

This space, corresponding to an excitation of one electron from the core to the virtual

space and of another electron from the active again to the virtual space, is spanned
by the IC functions ®,;5, = EriEsa\IIT(g) and P = EsiEm\Ilsg) with the inactive

indices r < s.

For each set of three “rsi” indices, two different orthonormal eigenfunctions (per-
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turbers) corresponding to the same eigenvalue Em’u(_l) can be defined:

act

\I/rzs“u \/— Z risa 1 (I)szra)ca i (A.5)

\I/ri;,u) = % Z((I)risa - (I)sira)ca,u (A.6)
The perturbative coefficients are:
cl = o) (A7)
s S (2 1
and ( ¥
(=D’ _ TS, 1t
Cms,u (A8)

er+65—ei+eu

respectively; the quantities indicated with (rs, i) and (rs, ui)" are instead computed

as
act
(rs, pi) Z (rslia) + (srlia))Sa,u (A.9)
\/_
act
(rs, i) \/72 ((rslia) — (srlia))Sa,u (A.10)
with
act 0
an o (A.11)

RS)G being the one-particle spinless density matrix.

In the case of r = s one has to consider only

o _ ) (A.12)
TH 2¢, — €+ €, '
with ,
(rr,pi) = > (rrlia) Sa - (A.13)

a

A.0.6 The SlJr Space

The treatment of this subspace, where two core electrons are excited to the active
and virtual spaces respectively, is analogous to the previous one. The space is defined
by the functions ®yjq; = EyjEqi UL and ®piej = EpiEe U4 with i < j. The two



orthogonal functions are:

act

\I/rjz m \/— Z rjai + (I)rza])ca I

/( 1
T’J%M

ac
\/— Z rjai — rzaj)ca,u-

Analogously, the perturbative coefficients are defined as

o= _ (i, 1)
ribe T —€ —€i+ €
T i J H
o=V’ _ (i, i)’
i T e e —eite,
r ( J H
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(A.14)

(A.15)

(A.16)

(A.17)

(ji,rp) and (j4,rp)" are defined exactly as in eqs.A.18 and A.19 with the replacement

of a virtual index with a core index:

act
(ij,rp) = Z (ra|ji) + (ralij))Sa,u (A.18)
\/_
act
(ig,rp) \/72 ((ralji) — (ralij))Sa,u (A.19)
with
act - (1)
Sap =Y _ o R, (A.20)
a/
where R(l) is the one-hole spinless density matrix.
If i = j, as previously seen, one has only cCVW ith (4i, 7).

75,4

A.0.7 The ng) Space

For the case r < s the Sﬁs_z)

The perturbation functions are

act

5 (I)rsabcab bt

w(-2) —

TS,K

and the perturbative coefficients

o _ s
TSH e+ e+ e,

with ,
(rs,p) =Y (rslba) Sap.,

ab

space is generated by the functions ®,.4,, = ErbEsa\Ilﬁg)

(A.21)

(A.22)

(A.23)
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_ * (2)
and Sab,,u - Za’b/ ca’b’,uRa’b’,ab'

For the case r = s, since

\I/( ) EraErb\Ilsg) - ErbEra\Ilsg) - (brrba (A24)

rrab

we note that the S' > space has dimension 14 (nget +1)/2 instead of n2, as in the

case with r < s, therefore we have

act
\1]7(";3) = Z (I)rr,abcgb#- (A25)
a>b
The perturbative coefficients are:
—2)(1 (rr, 1)
Cﬁr,u)( ) = T 9% e (A.26)
T
with t
(rr,p) = Z = (rr|ba) gb# (A.27)
ab
and ,
1 ac . 9 9
S‘;bvﬂ = 5 Z Ca'b',,u(R((z/g)/,ab + Rc(z’l))/,ba) (A28)
a’b!

where R®) is the two-particle spinless density matrix.

A.0.8 The Si(j2) Space

Obviously, this case is exactly analogous to the previous one, with the replacement
of the two-particle spinless density matrix R with the two-hole spinless density

matrix R(). Here, we shall limit ourselves to list the principal formulas. With i < j,

one has: t
ac
Vi = D Pijarcabys (A.29)
ab
with ®jjap = EpiE — ajbly).
c®m _ __ (wij) A50
If i = j, instead, one has
act
2
U= D il (A.31)
a>b

with @i = EbiEai\Ilg,g). The coefficients are:

cPW  _ (u, 1) (A.32)
' DEL — 2€;
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A.0.9 The Si(g) Space

This subspace is spanned by the functions ®,;,, = EriEab\Ilsg) and ®,.,, = EaiErb\Ilﬁg).
The single excitations from the core to the virtual space Eriklfﬁg) are already consid-
ered, since 3% F,iBgq U = nge B O,

The perturbation functions are:

act
\1]2(7(’],)# = Z((I)Tiabcab7u + (I);"iabcgb,u) (A33)
ab
and the coefficients: . o,
cOW - _ (ri, p) + (ri, p) (A.3)
’ €Ent € —€

A.0.10 The ngl) Space

The Sﬁ_l) space, providing for an excitation within the active space and the pro-

motion of an active electron to the virtual space, is generated by the functions

Drpe = rbEac\If,(g) and the eigenfunctions of the Dyall’s Hamiltonian HP are ex-
pressed as
act
\Ilg’;}) - Z (I)rbaccabc,u (A35)
abc

and the form of the perturbative coefficients is

_ T,
=D _ _6( +_M2 (A.36)
I r

A.0.11 The Si(l) Space

The treatment of this subspace closely follows that previously seen for the 57(1—1) sub-

space. One has to consider the functions ®;.p. = EbiEacklfgg) and by diagonalization

of HP within this subspace one obtains the perturbers ‘I’flj written as
act
1
\:[12“3 = Z (I)iabccabc,u (A37)
abc
and from the interaction of \1151; with szﬁS) one can compute the coefficients CZ.(B(I)
as .
cO _ _ (i, 1) (A4.38)

E,u_ei
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Appendix B

Matrix elements of PC-NEVPT3

B.0.12 V(0)V(0) Class

Obviously, for the monodimensional 5O space the “partially contracted” approach

ij,rs
is coincident with the “strongly contracted” one and therefore the third order contri-

bution from V(0)V (0) class is

core wvirt core virt

ST o (v,

! <jlr'<s" i<y r<s

H - Ho ‘xpm > (B.1)

where the contribution of H for the diagonal case is Ae = ¢; + €¢; — €, — €,. Given

the form of the perturber

v = (AE,E,; + BEE,;)¥ (B.2)

iJ,1s

with A = \7’7% (rslij) and B = \7’7% (rs|ji). The matrix element in eq.B.1 can
ij,ms ij,ms

be rewritten as follows

(0) (0 _ 0 » 0 2
<\Ilz gl st H‘ \Ilzg 7"5> - <\I]1(n) ‘Ej’s’Ei’r’HEriEsj ‘I’,(n)> A (B.3)
Vall
+ (VO | By B HE By W) A% B
Val2

n <\11,€9) By Eyy HE, By \1/,(3)> BxA

Val3

+ (VO | By Bry HE B,y W)} B?

Vald

where the four terms wall, val2, val3 and vald are evaluated by the subroutines

Ejpspiprp risj produced by FRODO.
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B.0.13 V(0)V(1) Class

Since, given the ¢, j, 7 indices, two orthonormal perturbation functions are defined

act
‘I’(?ﬂ =5 Z (EvjEai + EriBaj)¥ e, , (B.4)
act

0
v = \/_Z viBai — EriBaj) U ¢, .. (B.5)
two different matrix elements have to be considered. Moreover, it is necessary to

distinguish the case i = j, for which the perturber is

gt Z BBy U (B.6)

T

and the perturbative coefficient C, (D) s different.

Z]T'

< e ‘H‘ ‘I’z(;)rs> = 12 § <‘1’1(3) ‘Ei'an'wﬂEmEsj ‘If,(fb)> A x cqy (B.7)

Vall

1
a (0) (0
+ 5 Ea:<‘1’m EjiaEypHE, Eyj| 00 >JA*CW

Val2

1 .
+ 75 3 <\11,€9L> EvaBjyyHEgE,; \1/,@9)> B % cay
. ’

Val3

+—Z<‘I’(O) EjraByy HE By j 52>>B*cw

Vald
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and

act
<\I];(’1’)]’,u ‘7:[‘ \Ilz(?,)rs> = % Z <\I]£2) ‘Ei’an’r’ﬂEriEsj

WQ>A*%H (B.8)

Vall
act

e Z < ‘ o By HEy; Eg; \If,(g)> A cqp
Val2
1 act X

+ % Z <\I/£2) ‘Ei’an’r’HEsiErj \1152)> B x Capt
’ Val3
1 act R

— % Z <\If£2) ‘Ej/aEi/T’HESiETj \Ijgg)> B * ca’u
’ o

For the case i’ = j' one has

WQ>A*%H (B.9)

act
(1 _§ g B HEE..
<\Ilr/l/l/,u ‘H‘ ij, rs> - <\I]£n ‘EZIGEZ/T‘/HET‘ZES]

Vall

act

+ > (U0 | By Bi HEG B,
a

Val3

\IJ,(SL)> B * cqy

B.0.14 V(0)V(—1) Class

Obviously, the treatment of this class parallels the previous one with the two or-

thonormal perturbers, for the case r # s, being

act
\Ilg’zs; \/— Z EMEsa + EszEra)\I’( )Ca i (BlO)
act

szEra)\Ilgg)Ca,u- (Bll)

TZSM \/— Z i sa -

Analogously to eq.B.30, when the two virtual indices are coincident (r = s) the

perturber is
act

g Z EiEnqU® (B.12)

rirp

In the former case (r # s), two matrix elements have to be computed:
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p(o >> Axcy  (B.13)

act
(1) (0) L
<\I/r’z’s’u ‘H‘ \I/zj rs> - E Z < ‘EGS/El T/HE”ESJ
a

Vall
+ % azd <\I’£72) ‘EU«T/Ei/s’ﬂEriEsj \1152>> Axcqy
a
Val2
T % § <\p§2) ‘EGS’Ei’r’,]:‘EsiErj \If,(g)> B * cq
a - .
Val3
+ % azd <\I’§g) ‘Ear/Ei/s’ﬂEsiErj \1152>> B % cqy
a
Val4

<\p§;}3/“ ‘H‘ \I/(;))> - % §< ‘EGE B Ey| 00 >> Asxcy  (B.14)

Vall

- —= Z <\I’§2) Ear’Ei’s’ﬂEMEsj \111(3)> A x Cap
’ val2

1 .
+—=> <\I/§g> Eoy Eip HEyE,y; @§2>> B * cqp

Val3

3 <\p§2> Eop Eyy HE iy, \p,<3>> B * oy
‘ Vald

For r = s the interaction reduces to

act
0)
< o ‘H‘ v > = <\p<0 ‘E By HE, By | 00 >> A cqp (B.15)
‘ Vall
act
+ Z < ‘Ear’Ez’r/HEszEr] 148 )> B x Cap
a

Val3
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B.0.15 V(0)V(2) Class
Two cases have to be considered:
CiA o U = 0 By By U cay
2 = W) = Y0 By B Uy,

Therefore, the matrix elements are

\1152>> A cay (B.16)

act
<xp§2] y ‘H‘ © > =3 <qug> ‘Ej/aEi,bHEriEsj
b

¢ Vall

act

+ > (o ‘Ej,aEi,bﬂEsiErj

\IJ,(SL)> B xcqy

Val2

and

sz,@fg)>A*cw (B.17)

act
2) ~
<\Ilz(’z’u ‘H‘ 17, rs> = Z <\I}1(”9L) ‘Ei’aEi’bHEriEsj
a<b

Vall

act
+3 (v ‘Ei/aEi/bHEsiErj
<

Val2

\1152)> B xcqy

B.0.16 V(0)V(—2) Class

This class closely follows the V(0)V(2) class previously examined. The perturbation
functions are:
Lor#s— 052 =% BB e,

2.7 =s5— Uy =0 BB W,

and the corresponding matrix elements can be written as

act
< r's'u 2] rs> - Z < © ‘ECLS/EbT/HET‘ZESJ \Ij( )> A x Cap (B18)
b
¢ Vall
act

+ Z <\I]1(”9L) ‘Eas’Ebr’,’:[EsiErj

Val2

\If,(fb)> B xcqy
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and

act
< '’y ‘H‘ ij, rs> = Z <\Ij£2) ‘EOWEbWHETiESJ \Ilgg)> A Cap
a<b ~~ -
Vall
act
+3 < ‘Ear/Ebr/HEszEm gO >> B * cap
a<b
Val2
B.0.17 V(0)V(0') Class
For the 5'2(3 ) subspace the perturbers have the form:
act
v Z EriBay ¥ cap + Y EaiB b0,
ab ab

(0)

Jjrs CAN be written as follows

so, the interaction with the ¥

<\II§/OW;L ‘H‘ i, rs> = f <‘1’1(3) ‘EbaEz"r'ﬂEmEsj ‘1’,(3)> Cap * A

ab
Vall
act
+ Z <\If£2) Ebr/Ei’aHEriEsj \Ijgg)> C:zu * A
Val2
act
+ Z <\I]1(”9L Eba {3 T’HESZETJ \I]( )> Cap * B
Val3
act
0y <\I,52> By By HEEy; xp<0>> d, * B
Val4
B.0.18 V(0)V(1') Class
The perturbers belonging to the SZ-(I) subspace are
act
- Z By Eoe V) Cabep
abc

and the resulting matrix elements have the form

(B.19)

(B.20)

(B.21)

(B.22)



act
\IIZ(;)TS> = Z < ‘EcaE /bHETZESj

(v

(0 )>A>kcw

b
e Vall
act
+> (v ‘EcaEi/bﬂEsiErj W) B+ oy
b
e Val2

B.0.19 V(0)V(-1') Class
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(B.23)

Finally, the treatment of the V(0)V (—1') class is analogous to that previously seen.

Given the form of the perturbation functions

act
\1]7(»;1) = Z ErbEaclllsg)Cabcu
abc

the interaction is

act
(i) (H( D)= (v ‘EcaEbT/ﬂEriES] w0) Ak ey
abe Vall
act
+> 0wl ‘EcaEbT/HESZEW v 0) B+ cay
abc d
Val2

B.0.20 V(1)V(1) Class

The third order contribution for the V(1)V(1) class is

virt core
=20 3 S I (W [P~ Flo| W13)
(AR VRIS TN

For the diagonal case the contribution of Ho is
E®) =€+ € —€ —¢

For the 52(]12 subspace the perturbers are expressed as

(B.24)

(B.25)

(B.26)

(B.27)
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act
vl = % Z Eai + EiBay) ¥ ¢, (B.28)
act
r]z,u = \/— Z rj Eoi — rzEaj)\Ilgg)Ca,u- (B29)
and, for the case ¢ = j, as
act
vl = Z BBy 0O (B.30)
All the possible matrix elements have to be considered.
1
(8 8= (88 52 )
Vall
1 act
+ 5 Z CCL'M/CGH <\I/£2) ‘Ei’a’Ej/r’HEriEaj \I’gg)>
aa’
Val2
> (B.31)
+ = an M/CGN< m ‘ a’Ei’r’HETani \Ilgg)>
Val3
act
+ = an ,u/Cau< m ‘ a’Ei’r’HEriEaj \I’gg)>
Val4
1)
<\II7“(/Z'] W H‘ ”JH> an “lca“< m ‘El By ”HETJEM \Ilgn)>
Vall
act
- = Z Cq! H/CCW« < Ei’a’Ej/r’HEriEaj \I’gg)>
Val2
> (B.32)
_z an, (Cap < By Eyp HE,;E \I/§2>>
Val3
act
+ = Z Ca'u' Cap < Ej/a’Ei’r’HEriEaj \I’gg)>

Vald
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1 Y (@ » 0
<‘I’r'z"j/u/ ‘H‘\Pm;) 2\/_ an M’Cw< m ‘Ei’a’Ej’r’iHErani \I[’(ﬂ)>
Vall
act
2\f an u’cw< m ‘Ei/a’Ej/wHEriEaj ‘1’52)>
Val2
> (B.33)
2\/_26(1 M/CUW< m ‘ ’Ei’r’HErani n(z])>
Val3
act
s S (8 5 )
Vald
M W N
"(1 1
<‘I’r’z"j’u’ ‘H‘\p”ﬂu> \f an u’cau< m ‘EZ a BjontiHEy; B \I’gn)>
Vall
act
v (U8 vy | )
\/_
Val2
. (B.34)
an ,LL'CaM< (0) Ej’a/Ei/r/HETani \Ifsg)>
\/_ Vo
Val3
act
o D (U8 B ] 42)
Vald

Furthermore, other five cases have to be considered:

ei=j and =7

g© >> Caopcay  (B.35)

i’ p!

act
H‘ ”W> = Z < ‘Ez a’Ez’r’HEmEaz

aa

<x11<}/ )

Vall

ei=j and i #j

act
1 ~] () 1 .
<\I/T(/Z/)j ! H‘ \ij“zw> B % Z Ca' ' Cap <\I/§2) ‘Ei/“/Ej'TIHE”E‘” \Ij’(g)>
aa’ d
Vall
» (B.36)
\/_ Z Ca M/Cau < m ‘ a’Ei’r’HETiEai \1152)>

Val3
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1 act R
<\II7(}Z/] M H‘ ”ZN> = % ZCGIM/CGM <\I/£2) ‘Ei’a’Ej’r’HEriEai \Ijg]b)>
aa’ 4
et Vall (B_37)
\/— Z Ca'p' Cap < m ‘ a/Ei/r’ﬂEriEai \1]52)>
Val3
citj & i=j
< il ‘H‘ ”]H> an ,u/cau< m ‘Ez a B T’HEranz \Ij5n)>
Vall
| et (B.38)
- % Z Ca/ 1! Cap <\I’£2) ‘Ei’a’Ei’r’HEriEaj \111(3)>
o Val2
1 act
<‘I'Sm/u ‘H‘ rw> NG D CalCap <\I'§2) ‘Ei'“’Ei’T’HETJEai \I[’(”g)>
aa’
Vall (B39)
1 act R 0
+ ﬁ Z Ca/ 1! Cap <\I/£72) ‘Ei’a/Ei/r’HEriEaj \Ijgn)>
o Val2
B.0.21 V(1)V(-1) Class
For the 57(12 < 2 subspace the perturbers have the following form
act
vl = NG Z (EriEsq + EsiBrg) U0y, (B.40)
act
"(—1
r(zs,u) - \/— Z T sa - szEra)\Ilsg)CQG’#- (B41)
and, for the case r = s, they are expressed as
‘I’mm ZEHEM\IJ( Jea (B.42)

As in the previous case, all the possibilities must be examined:



<

<

(v

\I/(, })

r'i’s' !

voh

r'i’s' !

g1

rzsu

1\ _
i) =

30 ‘Ea,s,Ei,r/ﬂErani
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\p§2>>

act

1

B E €21, Capt
aa’

act

Vall

ngp>

1 N
+ 5 Z €241, Capt <\I’£72) ‘Ea’s’ Ei’r’HEm'Eaj
a/

act

Val2

(B.43)

\p§2>>

1 N
+ B Z €21, Capt <\I/§2) ‘Ea’r’Ei’s’HErani
a/

act

1 N
+ ) Z €241, Capt <\I’£72) ‘Ea’r/Ei/s’HEm'Eaj
a/

Val3

ngp>

H

/(1

Mju>

E 2./ /Cau<

Vald

30 ‘Ea,s,Ei,r/ﬂErani

\p§2>>

act

—_262//Cau< 0)

Vall

Eo g1 Eiryr ﬂEm Eaj

act

——ZCZHCW< 0)

Val2

Eo By g HE,; Eq;

(B.44)

act

+ = ZCQHCW< 0

Val3

Ea’r/Ei/s’ﬂEriEaj

Vald

\p§2>>

1 < .
H‘ rzy,u> E Z CQG/#/ Cap <\Ij1(»2) ‘Ea’s’Ei’r’HErani
a ’

Vall

Ea/s/Ei’r/ﬂEriEaj

Val2

Eop EyygHE,E

Val3

Ea/r’Ei/s/ﬂEriEaj

Vald
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/ 1 act . ) 0
< e M H‘ MJM> E Z €241, Cap <\II7(7L) ‘Ea’s’Ei’r/HErani \Ilgn)>
Vall
1 act
+ E Z] €241, Cap <‘I’£2) ‘Ea/s/Ei’r/HEriEaj \Ilgg)>
aa
Val2
1 & (B.46)
_ E Z CQGIW Cap <\Ij,(3) ‘EG’T’Ei’s’HErani \I/§2)>J
aa g
Val3
1 act
_ E Z] C2alﬂ/ Cay, <\I]£2) ‘EG/T’/EZ'/S/HETZ‘ECLJ‘ \Ilgg)>
aa
Vald

Then, analogously, we have

e:=75 and r' =54

< mw ‘H“I’Sw> azt:< ‘E 11 Biryt HEyi Egi| U, )>02,, o (BAT)

aa’

Vall

ei=7  and 7' #5

1 act R
(Wi |7 95 = T 2 o (O | B Bir HE i B W) )
aa’
Vall
1 act
— % Z CQG,H, Caﬂ <\I/§2) ‘Ea’r’Ei’s’HETiEai \Ilgg)>
aa’ d
Val3
(B.48)
1 act
< r’z’s’u ‘H‘ ”W> 2 ZCQG/u/Cau <\I/§2) ‘Ea/s/Ei’r’HEriEai ‘1’52)>
aa’ d
Vall
1 act
5 D oo (U | By R 07
aa’
Val3
(B.49)

ei#j and ' =s
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1 act .
(98 ) = S 0 o )
“ Vall
1 act .
“ Val2
(B.50)
1 act .
<\I/SWH (H( TW> 7 ZCQQ,MC@M <\p§g> ‘Ea By HE,; Eo; @§2>>
“ Vall
1 act
\/— 202 , /Cau< m ‘Ea r By r’HEmEaJ \I]( )>
ValQ
(B.51)
B.0.22 V(1)V(2) Class
If ¢ # j, for the Si(f) space the perturbers are given by:
act
2)
v = ZEbZ Oy, (B.52)
whereas, for the case i = j they are
act
2)
\Ilgw ZEbz - (B.53)
a>b
The matrix elements that have to be computed are:
(0 95 = =5 5% e (08 e ] 00
/b/
Vall
et (B.54)
Z 2 ey 1 Cap <\II§2) ‘Ejla/Ei/b/HE”Eaj \Ijg]b)>
lb/
aa Val2
<\II’52]);,L 7:[‘ TZ];U'> Z CQ a't ’Caﬂ <\I/§2) ‘Ej’a/Ei/b/ﬂETani \2[152)>
lbl
Vall
et (B.55)
Z 2 Can (O | gt By FLE i B | 02 )
aa’b/

Val2
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( act act
2) 0 » 0
<\IIZ’Z’M H‘ ”]N> \/— Z Z Cy 't /Cau <\Ifm) ‘Ej’a’Ei’b’HETani \Ij’l(?’b)>
a'>b a
Vall
act act (B56)
Z >y Can <‘1’52) (Ej/a/El-/b/HEmEaj ‘1’52)>
a'>b a
Val2
@) ( act act
2 » D) 0 » 0
<\IIZ/Z’M H \IJT‘Z];L> \/_ Z Z Cy 't /Caﬂ <\Ifm) ‘Ej’a’Ei’b’HETani \Ij’l(?’b)>
a'>b a
Vall
act act (B57)
Z > oy Can <‘1’ )‘ it Biry By Eoj ‘1’52)>

a'>b a

B.0.23 V(1)V(0') Class

We recall that the perturbation functions belonging to the S'i(r

as

2)
\Ilgr,u

act

a,b

therefore, the interaction elements are

(1
\Ilmw>

< i'r' !

Z C2 b 1 Cap <\I/

act

Z EmEabCZ ab,u + Z EazErbCQQb ” \Dsg)
a,b

Val2

0)

72) ‘ Eb/a/ Ei/r/ ﬂErj Eai

space can be written

(B.58)

xIr,<3>>

/bl

act

LS e (W)

Vall

Eb’a’ Ei’r’ﬂEri Eaj

/b/

act

ZCQ//Cau< 0

Val2

Eb/r’ Ei/a/ ﬂErj Eai

/bl

act

\/_ Z €2y /Cau <\II(O)

Val3

Eb’r’Ei’a’ ﬂErz Eaj

/b/

Vald
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< \IIT(Z§M> \/_ Z €214, Capt <\I’£72) ‘Eb’a’Ei’r’ﬂErani \1152)>
/b/
Vall
act
Z 24 ’caﬂ< 0 Eb/a/Ei/r’HEriEaj \Ifsg)>
/b/
Val2
act (B60)
\/_ Z €2, /CCW <\II(O) Eb’r’Ez"a’HErjEm' \111(2)>
/b/
Val3
act
\/— Z c o Catt <\I/(0) EyEyoHE Eqj \I,Sg)>
/b/
Val4

(1)

Finally, one has to consider the case ¢ = j, in which the perturbers of the Sm

have the form

1)
vl = Z EyiBaica WY (B.61)

The interaction becomes:

act
< s ‘H‘ \IISZ,U,> = Z Cga,b,#,cau <\I/£2) ‘Eb’a’Ei’r’HEriEai \Ifg]b)>
a'b'a
Vall
et (B.62)
3 oy o (VD | By B HE i ) )
a'b'a
Val3
B.0.24 V(1)V(-1') Class
The perturbers of the 5'7(»_1) space are
act
\1,7(;1) = Z ErbEacCabc,u\I’g) (B63)
a,b,c
Thus, the matrix elements have the form
ac
1) .
(v, \I/§W> Z 2,10y Can {00 ( B By HEy; Eai| 9 )
a't'ca ~~ 4

act

1 ~
T E Z Cza’b’c’u’ Cap <\I]£2) ‘Ec’a’Eb’r’HEriEaj

\1152>>

a'b'c'a
Val2
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Eq; ‘1’52)>

act
7:“ g (1 > Z (6] Wb ! ,Cau <\If£2) ‘Ec/a’Eb’r/ﬂET]
a'b'c

m@>

act

- % Z C2 vt /Ca/.t <\I]1($L) ‘Ec’a’Eb’r’,’:[EriEaj
a’b/'c’a

Val2

Then, when ¢ = 7, the interaction simply reduces to

<

B.0.25 V(1)V(1’) Class

‘ \IISZH> Z C2 1y /cau <\I’£2) ‘Ec/a’Eb’r/ﬂEriEai

a'b'c’a

0
WV> (B.66)

Vall

The treatment of this class is close to that previously examined. The perturbation
functions for the 52(1) are

act
\IIE;) = Z EbiEacCabc#\I]g]L) (B67)
a,b,c

and the interaction elements become

act

1) 1 »
< \I/£ZJM> E Z C2 1y /cau <\IJ1($L) ‘Ec’a’Ei’b’HErani \Ij1(”2)>
a'bca -
Vall (B68)
1 act N
- 7 Z C2 albl el ! Cau <\I]£2) ‘Ec/a’Ei’b/HEriEaj \1]52)>
a'b'c'a
Val2
1) ~
< \IIT(ZJM> \/— Z C2 bl e! /Ca/.t <\I]1(7QL) ‘Ecla’Ei’b/HETani \1]52)>
/b/ /
Vall
» (B.69)
[ Z Co ’b’c’;/cau <\If£2) ‘Ec/a’Ei’b/HET‘iEaj \Ifgg)>
a'b'c'a

Val2

and, finally, for the case i = j one has

(i 1| o)) = }f 2oy Can (VD | B By HEREui 9) (5 70

a'b'c'a

Vall
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