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PrefaeQuantum Chemistry has beome an important and powerful tool to investigate agreat deal of hemial and physial phenomena. Nowadays, the rapid growth of theomputational power along with the orresponding development of methodologies,tailored to approah large sale systems, allows to treat problems of inreasing sizeand omplexity.A large domain of appliation of rigorous quantum mehanis alulations isthe aurate predition of exitation energies and other spetrosopi parametersvaluable for the interpretation of the experimental measurements. The desriptionof eletronially exited states represents a severe task for approximated theoreti-al approahes, even in the ase of small-sized moleules. In suh ases, the simpleone-determinant approximation (the well-known Hartree-Fok theory) turn out to bedefetive and a multireferene wavefuntion, aounting for all the relevant eletronion�gurations, should be used. An important �eld of appliations of the Multiref-erene Perturbation Theories (MRPTs) is just the alulation of the eletroniallyexited states of moleules, where the strong di�erential orrelation e�ets and thepossible multireferene nature of the wavefuntions an be, in priniple, suessfullyhandled by a �variational plus perturbation� sheme.This Ph.D. thesis deals with the development and the appliations of N -EletronValene State Perturbation Theory (NEVPT), a novel form of MRPT put forward inollaboration between the theoretial hemistry groups of the universities of Ferraraand Toulouse.After a �rst general overview on the basi mathematial tools and theoretialmethods (Chap. 1), in Chapter 2 we will introdue the NEVPT philosophy andpresent the major development e�ort aomplished during the Ph.D: the implemen-tation of the third order orretion to the energy in the so alled �partially ontrated�sheme. Then, the large part devoted to the appliations follows. Part I onernsthe alulation of eletronially exited states. Di�erent issues will be addressed: onthe one hand the treatment of small aromati moleules, Pyrrole, Furan and Thio-phene (Chap. 3), whose desription is ompliated by the possible interation with



2 Prefaelow-lying Rydberg states and by the ioni nature of some valene states, extremelysensitive to the so-alled dynamial σ − π polarization; on the other hand the aseof a large-sized aromati moleule, Free-Base Porphin (Chap. 4), for whih the ru-ial problem is the hoie of a balaned variational spae to aurately desribe thewavefuntions of the ground and of the exited states. Finally, Chap. 5 is devotedto the desription, by means of MRPT, of the Eletron Transfer (ET) proess inMixed-Valene systems. The investigation is arried out on a model spiro π− σ− πompound, for whih the ET reation is simulated using a simpli�ed one-mode two-state model. The inadequay of a standard seond order MRPT approah will beshown and the appliation of an alternative and e�etive omputational strategy willbe disussed.



Chapter 1Mathematial tools and methods
1.1 Complete set expansionsLet f(x) be a funtion de�ned in the interval (a, b) and let Φ = {φ1, φ2, . . . , φn} bea set of funtions de�ned in the same interval. One an express the funtion f(x) asa linear ombination, with properly hosen oe�ients, of φi

f(x) ≃ fn(x) =

n∑

i=1

ciφi (1.1)where the oe�ients ci are determined through minimization of the mean-squaredeviation of fn(x) from f(x). The auray of suh expansion depends on the om-pleteness of the set of basis funtions and at the limit of an in�nite set (n→ ∞) wehave fn(x) → f(x).It is possible to generalize these onsiderations to funtions of several variables.To this purpose we onsider the ase of a wavefuntion depending on the oordinatesof n eletrons Ψel(x1, x2, . . . , xn). Given a omplete set of one-eletron spin-orbitals,
{ψ1, ψ2, . . . , ψn . . .}, if the oordinates of n − 1 eletrons are onsidered �xed, theresulting funtion an be expanded in the form

Ψel(x1, x2, ..., xn) =

+∞∑

i=1

ci(x2, x3, ..., xn)ψi(x1) (1.2)where the oe�ients ci, being atually funtions themselves, hold the dependeneon the oordinates of the remaining n− 1 eletrons.Again, onsidering �xed x3, x4, . . . , xn, the oe�ients ci, whih are now funtionsof a single variable, x2, an be expanded on the same basis of spin-orbitals as
ci =

+∞∑

j=1

djψj(x2) (1.3)



4 Chapter 1. Mathematial tools and methodsRepeating suh proedure for the oordinates of the remaining n − 2 eletrons, onean have the exat expansion of the eletroni wavefuntion over the given set ofspin-orbitals:
Ψel(x1, x2, . . . , xn) =

∑

i,j,...,p

ci,j...,pψi(x1)ψj(x2) . . . ψp(xn), (1.4)where the indies i, j, . . . , p run over all possible hoies of the spin-orbitals belongingto the basis set.1.2 Antisymmetry: Slater's formalismAs above stated, equation (1.4) gives the exat expansion of a many-partile wave-funtion over a omplete set of monoeletroni spin-orbitals; however, a natural lawimposes a severe restrition to a fermioni wavefuntion: the antisymmetry prop-erty. In other terms, for a n-eletron wavefuntion Ψel(x1, x2, . . . , xn) the followingrelationship must be satis�ed:
PΨel(x1, x2, . . . , xn) = σP Ψel(x1, x2, . . . , xn) (1.5)where P performs any permutation of the spin-oordinates x1, x2, . . . , xn and σPequals ±1 aording as the permutation is given by an even or odd number of trans-positions.To overome the di�ulties of building an antisymmetri many-eletron wave-funtion, a possible strategy is to perform an expansion over a set of antisymmetrizedspin-orbital produts, the Slater determinants:

Ψel(x1, x2, . . . , xn) =
∑

I

CIΦI (1.6)with
ΦI =

1√
n!

∣∣∣∣∣∣∣∣∣∣

ψi1(1) ψi2(1) · · · ψin(1)

ψi1(2) ψi2(2) · · · ψin(2)... ... ... ...
ψi1(n) ψi2(n) · · · ψin(n)

∣∣∣∣∣∣∣∣∣∣

=
1√
n!

det |ψi1(1)ψi2(2) . . . ψin(n)|(1.7)Here the basis set has been hosen as orthonormal (〈ψi|ψj〉 = δij) and, onsequently,the resulting set of Slater determinants turns out to be orthogonal (〈ΦK |ΦL〉 = 0 for
K 6= L).The use of Slater determinants automatially guarantees the antisymmetry ofthe wavefuntion, sine the sign of the determinant of the matrix (1.7) hanges uponswapping of two olumns (permutation of the spin-oordinates of two eletrons).



Antisymmetry: Slater's formalism 1.2 5Furthermore, in the ase of a one-determinant approximation to the wavefuntion,the quantum-mehanial form of the Pauli's priniple diretly follows, sine the de-terminant in eq. (1.7) vanishes when two olumns have the same value (two identialspin-orbitals).1.2.1 Con�guration Interation ApproahWithin the Born-Oppenheimer approximation (�xed nulei model), in whih the ele-troni and nulear motions an be deoupled and two separate equations an besolved, the eletroni time-independent Shrödinger equation has the form
ĤelΨel(X;Q) = Eel(Q)Ψel(X;Q) (1.8)where the eletroni wavefuntion posseses a parametri dependene on the nulearoordinates Q. Substitution of (1.6) in equation (1.8) gives:
∑

I

ĤelΦIcI = Eel

∑

I

ΦIcI (1.9)By appliation of the �bra� vetor 〈ΦJ | to both sides of equation (1.6) one has
∑

I

〈ΦJ | Ĥel |ΦI〉 cI = EelcJ (1.10)whih an be put in matrix form H = E (1.11)where the matrix H has elements HJI = 〈ΦJ | Ĥel |ΦI〉 and the oe�ients cJ havebeen olleted in the olumn vetor .We note that the problem of solving the eletroni Srhödinger equation has beenredued to a purely algebrai problem of diagonalizing the Hamiltonian matrix H.Expression (1.11) is known as the full Con�guration Interation (FCI) expansionand provides the exat solution to the eletroni Srhödinger equation within a givenone-eletron basis set. The number of determinants in a FCI expansion, obtaineddistributing n eletrons into N orbitals, is given by
(
N

n

)
=

N !

n!(N − n)!
(1.12)This fatorial dependene of the number of Slater determinants on the number ofspin-orbitals and eletrons makes the FCI approah pratially appliable only tovery small moleular systems [1,2℄. However, in those ases in whih FCI alulationsan be arried out, the results serve as useful benhmarks for evaluating the aurayof other theoretial methods.



6 Chapter 1. Mathematial tools and methodsSlater's rulesHere, resorting to the well-known Slater's rules for one- and two-eletron operators,we shall illustrate a fast way to evaluate the Hamiltonian matrix elements HJI .Given a one-eletron operator F̂ =
∑n

i=1 f̂(i), only two ases in whih the matrixelements give a non zero result are possible:
• if the two determinants are idential, ΦJ = ΦI , one has

HII =

n∑

j=1

〈
ψij

∣∣ f̂
∣∣ψij

〉 (1.13)
• if the two determinants have a single spin-orbital di�erene (ΦJ 6= ΦI , with
ψjk

6= ψik) the result is
HJI = 〈ψjk

| f̂ |ψik〉 (1.14)Clearly, all the matrix elements between Slater determinants di�ering for more thanone spin-orbital are zero. In a similar way, for a two-eletron operator
Ĝ =

1

2

n∑

i6=j

ĝ(i, j) (1.15)the following three possibilities our:
• if ΦJ = ΦI one has

GII =
1

2

n∑

k,l=1

(〈ψikψil | ĝ |ψikψil〉 − 〈ψikψil | ĝ |ψilψik〉) (1.16)
• if ΦJ 6= ΦI for a single spin-orbital di�erene (ψjk

6= ψik)
GJI =

n∑

l=1

(〈ψjk
ψil | ĝ |ψikψil〉 − 〈ψikψil | ĝ |ψilψik〉) (1.17)

• if ΦJ 6= ΦI for two spin-orbital di�erenes (ψjk
6= ψik and ψjl

6= ψil)
GJI = 〈ψjk

ψjl
| ĝ |ψikψil〉 − 〈ψjk

ψjl
| ĝ |ψilψik〉 (1.18)We should stress that in the above expressions we have impliitly assumed that theequal spin-orbitals appear in the same order in the two determinants; if, instead, theorder is di�erent, the possible hange in sign due to the permutations must be takeninto aount.



An alternative approah: seond quantization 1.3 71.3 An alternative approah: seond quantization1.3.1 The Fok spaeThe formalism we present in this setion is known as seond quantization; it was �rstdeveloped in physis (�eld theory) and later widely used also in quantum hemistry(see Ref. [3℄).In the seond quantization language there is a one-to-one orrespondene be-tween the eletroni wavefuntion Ψel(x1, x2, . . . , xn), in whih the spin-orbitals
ψi, ψj , . . . , ψp are oupied by eletrons and a state vetor (ket) |k〉, where onlythe oupation numbers (0 or 1) of the whole set of spin-orbitals are given, that is

|k〉 = |k1, k2, . . . , kN 〉 , ki =





1 if ψi is oupied
0 if ψi is unoupied. (1.19)The linear vetor spae spanned by basis vetors inluding all possible kets (1.19),obtained distributing n eletrons in N spin-orbitals, is known as the Fok Spae.Thereby, eah Slater determinant has its orresponding oupation number vetor inthe Fok spae and vie versa:

|ij . . . p〉 =
1√
n!

∣∣∣∣∣∣∣∣∣∣

ψi(x1) ψj(x1) . . . ψp(x1)

ψi(x2) ψj(x2) . . . ψp(x2)... ... ... ...
ψi(xn) ψj(xn) . . . ψp(xn)

∣∣∣∣∣∣∣∣∣∣Due to the antisymmetry property, the order in whih the spin-orbitals appear (thelabels in the ket vetors) is important and one has
|ji . . . p〉 =

1√
n!

∣∣∣∣∣∣∣∣∣∣

ψj(x1) ψi(x1) . . . ψp(x1)

ψj(x2) ψi(x2) . . . ψp(x2)... ... ... ...
ψj(xn) ψi(xn) . . . ψp(xn)

∣∣∣∣∣∣∣∣∣∣

= − |ij . . . p〉therefore, eah vetor is multiplied by σP (= ±1) under label permutation.A partiular vetor of the Fok spae is the �vauum� vetor, representing the situ-ation in whih no partiles are present
|vac〉 = |01, 02, . . . , 0N 〉 . (1.20)1.3.2 Creation and annihilation operatorsIn order to onnet vetors with di�erent number of eletrons, we de�ne two opera-tors, alled reation and annihilation operators. The reation operator, a+

r , is suh



8 Chapter 1. Mathematial tools and methodsthat
a+

r |ij . . . p〉 =




|rij . . . p〉 if r 6∈ (ij . . . p)

0 if r ∈ (ij . . . p).
(1.21)Therefore, if the ket does not inlude the oupation number of the spin-orbital ψrthen a partile is added and an (n+1)-eletron wavefuntion is obtained, Φ(x1, x2, . . . , xn, xn+1);otherwise, if r is already oupied in the assoiate Slater determinant, upon appli-ation of a+

r it vanishes, as a onsequene of the antisymmetry requirement (twoidential olumns).Similarly, one may de�ne the annihilation operator, ar, suh that
ar |rij . . . p〉 =




|ij . . . p〉 if r ∈ (ij . . . p)

0 if r 6∈ (ij . . . p).
(1.22)where the seond ase expresses the impossibility of annihilating an eletron in aunoupied spin-orbital.Conluding, we note that all state vetors an be generated by appliation of theproper �string� of reation operators to the vauum state

a+
i a

+
j . . . a

+
p |vac〉 = |ij . . . p〉and that the antisymmetry property of the basis vetors is ensured by the antiom-mutative properties of these operators:

a+
i a

+
j + a+

i a
+
j =

[
a+

i , a
+
j

]
+

= 0

aiaj + aiaj =
[
ai, aj

]
+

= 0

aia
+
j + a+

j ai =
[
ai, a

+
j

]
+

= δij1.3.3 Representation of one- and two-eletron operatorsThe form of a one-eletron operator in �rst quantization is
F̂ fq =

n∑

i=1

f(i) (1.23)where the sum runs over the number of eletrons n of the system. Realling Slater'srules, illustrated in setion (1.2.1), this operator gives null matrix elements when theSlater determinants di�er for more than one spin-orbital. The seond quantizationanalogue of (1.23) an be expressed as a linear ombination of produts of reationand annihilation operators:
F̂ sq =

∑

r,s

frsa
+
r as, (1.24)



An alternative approah: seond quantization 1.3 9where the indies r and s run over the whole set of spin-orbitals and the the matrix
F is hermitian with frs = f∗sr. As an be easly proved (see for instane Ref. [4℄), byomparison with Slater's rules for a one-eletron operator (setion 1.2.1), hoosing

frs =

∫
ψ∗

r (xi)f̂(xi)ψs(xi)dxi (1.25)the �rst quantization one-eletron operator F̂ in (1.23) is equivalent to the seondquantization form in (1.24).We shall now onsider the ase of a two-eletron operator, suh as, for instane,the intereletroni repulsion term of the eletroni Hamiltonian; as known, in �rstquantization it is expressed as
Ĝfq =

1

2

n∑

i,j

′g(xi, xj). (1.26)We reall that for a two-eletron operator the matrix elements between two Slaterdeterminants are non zero only if the determinants ontain at least two eletrons andif they do not di�er by more than two spin-orbitals.Analogously, in seond quantization a two-eletron operator has the following form:
Ĝsq =

1

2

∑

rstu

grs,tua
+
r a

+
s auat (1.27)where the matrix G is hermitian (grs,tu = g∗tu,rs) and the symmetry property grs,tu =

gsr,ut is imposed.One an easly demonstrate that the �rst (1.26) and seond quantization (1.27)forms beome idential if the parameter grs,tu are properly hosen as
grs,tu =

∫ ∫
ψ∗

r (x1)ψ
∗
s(x2)g(x1, x2)ψt(x1)ψu(x2)dx1dx2 (1.28)Making use of the above presented results for generi two- and one-eletron op-erators, we may now get the seond quantization representation of the eletroniHamiltonian within the Born-Oppenheimer approximation:

Ĥel =
∑

r,s

〈ψr|h |ψs〉 a+
r as +

1

2

∑

rstu

〈
ψrψs

∣∣∣∣
1

r12

∣∣∣∣ψtψu

〉
a+

r a
+
s auat (1.29)Conluding, it is worthwhile summarizing the relevant harateristis of operators in�rst and seond quantization formalisms. The �rst important di�erene between thetwo representations onerns the dependene on the number of eletrons: whereas the�rst quantization operators (1.23) and (1.26) make expliit referene to the numberof eletrons, their seond quantization analogues (1.24) and (1.27) do not have suhdependene. Furthermore, the two languages have dissimilar ways of inorporating



10 Chapter 1. Mathematial tools and methodsthe basis set dependene. In partiular, in �rst quantization the determinants dependon the spin-orbital basis, while the operators are invariant with respet to the hoieof the basis. On the ontrary, in the seond quantization representation, the statevetors do not have any referene to the spin-orbitals and this information is, instead,ontained in the operators through the frs (1.25) and grs,tu (1.28) parameters.1.3.4 The spin-traed replaement operatorsA useful simpli�ation in the evaluation of the matrix elements of one- and two ele-tron operators an be obtained through the de�nition of so-alled spin-free operators.Given a set of spin-orbitals (ψi, ψj , . . . ψp), originated from the same set of spatialorbitals (φi, φj . . . φp) with α and β oupations, for a spinless one-eletron operatorsone has
F̂ =

∑

rs

〈φr| t |φs〉 (a+
rαasα + a+

rβasβ) (1.30)were we note that the summation runs just over the spatial orbitals. The spin-traedreplaement operator is de�ned as
Ers = a+

rαasα + a+
rβasβ (1.31)The ommutation rule for two spin-traed operators is

[Ers, Etu] = δstEru − δruEts (1.32)and an important property of suh operators is that they ommute with the totalspin momentum S2 and with its z omponent, Sz.Following the above shemae one arrives at the de�nition of a spinless two-eletronoperator:
Ĝ =

1

2

∑

rstu

〈φrφs| g |φtφu〉 (ErsEtu − δtsEru). (1.33)So, �nally, using expressions (1.30), (1.31) and (??), the eletroni Hamiltonian anbe written as
Ĥ =

∑

rs

hrsErs +
1

2

∑

rstu

〈
φrφs

∣∣∣∣
1

r12

∣∣∣∣φtφu

〉
(ErsEtu − δtsEru). (1.34)1.4 One-determinant approximation: Hartree-Fok the-oryAmong the simplest approximations to the eletroni wavefuntion, one an quotethe Hartree-Fok theory, where only one Slater determinant

Ψ(x1, x2, ..., xn) = ‖ψ1ψ2...ψn‖ (1.35)



One-determinant approximation: Hartree-Fok theory 1.4 11is onsidered and where the spin-orbitals ψi are optimized by minimizing the expe-tation value of the eletroni energy 〈Ψ
∣∣∣Ĥ
∣∣∣Ψ
〉. The Hartree-Fok method an beapplied to the desription of the ground state as well as to that of the lowest-energystate of any given spatial or spin symmetry. This simple and apparently rough ap-proximation is, however, able to provide, partiularly in losed shell systems neartheir equilibrium geometry, eletroni energies that are in error by less than 1%, anda number of moleular properties (dipole moments, fore onstants et...) with areasonable auray. Due to its low omputational ost, the Hartree-Fok methodis routinely used for qualitative studies of large moleular systems. For auratequantitative studies, instead, the Hartree-Fok wavefuntion represents the startingpoint for more sophistiated approahes, like the perturbative Møller-Plesset (MP)orretions and the oupled-luster (CC) method ( [4℄, [5℄).1.4.1 Self-Consistent Field (SCF) theoryGiven the one-determinant expansion of the eletroni wavefuntion

Ψ(x1, x2, . . . , xn) = (n)−1/2det|ψ1ψ2 . . . ψn| (1.36)the entral point of the Hartee-Fok theory is to �nd the �best� spin-orbitals (ψ1, ψ2, . . . , ψn)to use in the Slater determinant. As is well-known, these optimal spin-orbitals arethe eigenfuntions of a one-eletron eigenvalue equation
F̂ψ = ǫψ (1.37)where F̂ , termed the Fok operator, is an operator of a single eletron whih takesaount of an �e�etive �eld� due to the presene of the nulei and of the remaining

n − 1 eletrons. The Hartee-Fok method is a partiular form of the independent-partile model (IPM), where the eletroni interations are evaluated by means ofan �e�etive potential� through the Fok operator and the wavefuntion is expressedas an antisymmetri produt of one-eletron funtions.In order to obtain equation (1.37), we start expressing the variational energyapproximation of the one-determinant wavefuntion (1.36)
E =

〈
Ψ
∣∣∣Ĥ
∣∣∣Ψ
〉

=

n∑

i

〈ψi |h|ψi〉 +
1

2

n∑

i,j

〈ψiψj ||ψiψj〉 (1.38)where we have used a shorter notation, indiating
〈ψiψj ||ψiψj〉 = 〈ψiψj |g|ψiψj〉 − 〈ψiψj |g|ψjψi〉 (1.39)Let we hoose an orthonormalized set of spin orbitals, suh that 〈ψi |ψj | =〉 δij . Atthe stationary point, for any in�nitesimal variation ψi = ψi + δψi the ondition



12 Chapter 1. Mathematial tools and methods
δE = 0 must be ful�lled. Suh an in�nitesimal variation of the spin orbital basis anbe obtained applying the unitary operator Û = eT̂ to the wavefuntion Ψ , where T̂is an antihermitian operator, that in seond quantization an be expressed as

T̂ = −T̂+ =
∑

r,s

trsa
+
r as (1.40)with trs = −tsr.Upon opportune manipulations, one arrives at

δE =
n∑

i=1

∑

a>n

tai 〈Ψ| Ĥ |Ψa
i 〉 + c.c. (1.41)where �..� indiates the omplex oniugate of the �rst term and the onvention ofindiating with indies i, j . . . the oupied spin-orbitals and with a, b, . . . the virtualones has been adopted The relation tai = −t∗ia has been used and we also haveintrodued the shorter notation |Ψa

i 〉 to indiate the Slater determinant in whih thespin-orbital ψi has been replaed by ψa.Equation 1.41 diretly leads to the well-known form of the Brillouin Theorem [6,7℄
〈Ψa

i | Ĥ |Ψ〉 = 0 (1.42)whih states that the �best� spin-orbitals to use are suh that the interation between
Ψ and any singly exited determinant Ψa

i is zero.Resorting to Slater's rules (setion 1.2.1) and introduing two auxiliary operators,
Ĵ (Coulomb operator)

〈ψr| Ĵ |ψs〉 =

n∑

j=1

〈ψrψj|
1

r12
|ψsψj〉and K̂ (Exhange operator)

〈ψr| K̂ |ψs〉 =
n∑

j=1

〈ψrψj |
1

r12
|ψjψs〉one an write the generalized Hartree-Fok equations

F̂ |ψi〉 =
n∑

j=1

|ψj〉 ǫji (1.43)where we have de�ned the Fok operator F̂ = ĥ + Ĵ − K̂ and ǫji = 〈ψj| F̂ |ψi〉 =

〈ψi| F̂ |ψj〉∗.We an exploit the hermitiity of ǫ, onsidering the unitary transormation U+ǫU



One-determinant approximation: Hartree-Fok theory 1.4 13whih diagonalizes ǫ and noting that hanging the spin-orbitals aording to thetransformation
ψ′

i =

n∑

j=1

ψjUjithe Fok operator remains invariant under suh transformation. So from the gener-alized equations (1.43) one arrives at the anonial Hartree-Fok equations:
F̂ψ′

i = ǫiψ
′
i (1.44)We reall that, sine F̂ depends on its eigenfuntions ψi, eq. (1.44) annot besolved in a single step. An iterative method must instead be used, starting from aguess of spin-orbitals, building an approximated F̂ , diagonalizing it and proeedinguntil onvergene is reahed (self onsisteny).1.4.2 Koopmans' TheoremThe eigenvalues of the anonial Fok equations (1.44) are termed �orbital energies�and have a diret physial interpretation, sine −ǫi represents a �rst approximationto the Ionization Potential (IP), namely the energy needed to remove an eletron fromthe spin-orbital ψi. Analogously, −ǫr is a �rst approximation to the Eletron A�nity(EA) of the neutral moleule. This result is known as Koopmans' Theorem [8℄ andan interesting disussion an be found in Ref. [9℄.Let us onsider the ionized system obtained by removing an eletron from thespin-orbital ψi in the Hartree-Fok determinant Ψ. The energy of the n − 1 deter-minant is

E+
i =

〈
aiΨ

∣∣∣Ĥ
∣∣∣ aiΨ

〉
=
〈
Ψ
∣∣∣a+

i Ĥai

∣∣∣Ψ
〉 (1.45)

= E +
〈
Ψ
∣∣∣[a+

i , Ĥ]ai

∣∣∣Ψ
〉
. (1.46)Equation (1.46) an be easily manipulated exploiting the ommutation rules betweenreation and annihilation operators (see setion 1.3.2) and one promptly arrives atthe formulation of the Koopmans' Theorem for the ionization energy:

〈
Ψ
∣∣∣[a+

i , Ĥ]ai

∣∣∣Ψ
〉

= −hii − (Jii −Kii) = −ǫi (1.47)An analogous expression an be derived for the Eletron A�nity E − E−
k = −ǫkThis approximation is based on a simple model for the open-shell ionized system,where the ioni wavefuntion is not allowed to relax upon the ionization proess (re-laxation energy) but it is instead built from the �frozen� MOs of the neutral moleule;as a onsequene, too large IPs and too small EAs are attained. In addition to theseorbital relaxation e�ets, the HF method also neglets the orrelation energy; how-ever, while for the IPs, the KT approximation yields reasonable results, due to a sortof anellation of errors, for the EAs it generally fails.



14 Chapter 1. Mathematial tools and methods1.5 The Eletron orrelation problem1.5.1 Eletron distribution: density funtions and density matriesIn order to better disuss the problem of the eletron orrelation energy, whih rep-resents one of the entral issues in the eletroni struture theory, here, we shallintrodue the onepts of density funtions and density matries [10�13℄. The greatadvantage of using this funtions basially arises from their relative simpliity, par-tiularly when ompared to the omplexity of sophistiated wavefuntions, and fromthe prompt insight they give about the physial ontent of the eletron distribution.Let us onsider a n-eletron wavefuntion Ψ(x1, x2, . . . , xn), the probability of�nding eletron 1 in x1 and at the same time eletron 2 in x2 et. is given by
dP (x1, x1 + dx1; . . . ;xn, xn + dxn) = Ψ(x1, x2, . . . , xn)Ψ∗(x1, x2, . . . , xn)dx1 dx2.(1.48)Then, the probability on any of n eletron in dx1 is expressed as
dP (x1, x1 + dx1) = dx1

∫
Ψ(x1, x2, . . . , xn)Ψ∗(x1, x2, . . . , xn) dx2 dx3 . . . dxn(1.49)By multiplying eq.(1.49) by the number of eletrons, n, we obtain the amount ofharge in volume dx1. We write this probability as ρ(x1)dx1 where we have intro-dued the density funtion ρ(x1) de�ned as

ρ(x1) = n

∫
Ψ(x1, x2, . . . , xn)Ψ∗(x1, x2, . . . , xn)dx2dx3 . . . dxn (1.50)We should stress that x1 on the left of eq. (1.50) does not indiate the oordinatesof eletron 1 but the �point 1� of the whole spae in whih the density is evaluated.By integration over the spin oordinates, it is then possible to obtain the probabilityof �nding an eletron at point 1 regardless of its spin:

P (r1) =

∫
ρ(dx1)ds1. (1.51)Suh de�nitions given for a single eletron an be easily extended to two or morepartiles; so, in the ase of two eletrons, the pair density funtion beomes

ρ(x1, x2) = n(n− 1)

∫
Ψ(x1, x2, . . . , xn)Ψ∗(x1, x2, . . . , xn)dx3dx4 . . . dxn (1.52)and its spinless ounterpart is
P (r1, r2) =

∫
ρ(x1, x2)ds1ds2. (1.53)



The Eletron orrelation problem 1.5 15Let F̂ =
∑n

i=1 f(xi) be a one-eletron multipliative operator and
Ψ(x1, x2, . . . , xn) a n-eletron wavefuntion, the expetation value of F̂ is

〈F 〉 =
n∑

i=1

∫
Ψ∗(x1, x2, . . . , xn)f(xi)Ψ(x1, x2, . . . , xn) dx1 dx2 . . . dxn

= n

∫
Ψ∗(x1, x2, . . . , xn)f(x1)Ψ(x1, x2, . . . , xn) dx1 dx2 . . . dxn. (1.54)Sine f(x1) is just a multiplier, expression (1.54) an be rearranged, using the de�-nition of density funtion given in eq. (1.50), to obtain

〈F 〉 =

∫
f(x1)ρ(x1) dx1. (1.55)We note that in the more general ase of non-multipliative operator f(x1), eq.(1.54) annot be simply put in the form (1.55), sine Ψ∗(x1, x2, . . . , xn) annot beshifted to the right of the operator. However, a simple mathematial trik an beused: sine f(x1) works only on funtions of x1, Ψ∗ an be made exempt from theation of f(x1) just hanging the name of the variable from x1 to x′1; then, upon theation of f(x1) on Ψ we an hange bak x′1 → x1 and proeed to the integration.Pratially, the expetation value beomes

〈F 〉 =

∫

x′

1=x1

f(x1)ρ(x1, x
′
1) dx1. (1.56)where the the density matrix

ρ(x1;x
′
1) = n

∫
Ψ(x1, x2, . . . , xn)Ψ∗(x′1, x2, . . . , xn) dx2 dx3 . . . dxn (1.57)has been introdued.For two-eletron operators, the two-partile density matrix an be de�ned

ρ(x1, x2;x
′
1, x

′
2) = n(n− 1)

∫
Ψ(x1, x2, . . . , xn)Ψ∗(x′1, x

′
2, . . . , xn) dx3 dx4 . . . dxn(1.58)and hene the expetation value of a generi two-eletron operator

Ĝ =
1

2

n∑

i6=j=1

ĝ(xi, xj)an be obtained simply evaluating
〈G〉 =

1

2

∫

x′

1 = x1

x′

2 = x2

ĝ(x1, x2) ρ(x1, x2;x
′
1, x

′
2) dx1 dx2 (1.59)



16 Chapter 1. Mathematial tools and methodsIntegrating over the spin oordinates, the spinless density matries analogous of thespinless density funtions (1.51) and (1.53) are de�ned:
ρ(r1; r

′
1) =

∫

s′1=s1

ρ(x1;x
′
1) ds1 (1.60)and

ρ(r1, r
′
1; r2, r

′
2) =

∫

s′1 = s1

s′2 = s2

ρ(x1, x
′
1;x2, x

′
2) ds1 ds2 (1.61)Obviously, following the same formalism, density matries for three or more partilesan be de�ned.Finally, it is worthwhile to point out that the density matrix ρ(x1;x

′
1) does nothave an atual physial meaning in itself but only its diagonal part ρ(x1;x1), whihoinides with the density funtion ρ(x1).Then, given a omplete set of orthonormal basis funtions {ψ1, ψ2, . . .}, we mayexpand the one and two-partile density matries in the forms

ρ(x1;x
′
1) =

∑

i,j

Rijψi(x1)ψ
∗
j (x

′
1) (1.62)and

ρ(x1, x2;x
′
1, x

′
2) =

∑

i,j,k,l

Rij;klψi(x1)ψj(x2)ψ
∗
k(x

′
1)ψ

∗
l (x

′
2) (1.63)where the oe�ients Rij and Rij;kl are numerial fators.Finally, the expetation values of one- and two-eletron operators an be evaluatedrespetively as

F̂ =

∫

x′

1=x1

f̂(x1)ρ(x1;x
′
1) dx1 =

∑

i,j

RijFji (1.64)and
Ĝ =

1

2

∫

x′

1 = x1

x′

2 = x2

ĝ(x1, x2)ρ(x1, x
′
1;x2, x

′
2) dx1 dx2 =

1

2

∑

i,j,k,l

Rij;klGkl;ij (1.65)where the matries F and G have elements
Fji = 〈ψj |f(x1)|ψi〉 (1.66)and

Gkl;ij = 〈ψkψl |g(x1, x2)|ψiψj〉 (1.67)



The Eletron orrelation problem 1.5 171.5.2 The one-determinant approximation aseIn the ase of a one-determinant n-eletron wavefuntion
Ψ(x1, . . . , xn) =

1√
n!
‖ψ1ψ2 . . . ψn‖the forms of the one- and two-partile density matries an be obtained omparingthe above expressions (1.64) and (1.65) with the expetation value of the eletroniHamiltonian in Slater's formalism (see setion 1.2.1)

E =
〈
Ψ
∣∣∣Ĥ
∣∣∣Ψ
〉

=
∑

i

〈ψi |h|ψi〉 +
1

2

∑

ij

(〈ψiψj |g|ψiψj〉 − 〈ψiψj |g|ψjψi〉) (1.68)For the one-eletron part of Ĥ we have that the following equality must be satis�ed
Rij = δij → ρ(x1;x

′
1) =

n∑

i=1

ψi(x1)ψ
∗
i (x

′
1) (1.69)with both i and j oupied; for the two-eletron omponent, we obtain the relations





Rij;ij = 1

Rij;ji = −1

Rii;ii = 0again with i and j oupied and thus
ρ(x1, x2;x

′
1, x

′
2) =

n∑

i,j=1

(ψi(x1)ψj(x2)ψ
∗
i (x

′
1)ψ

∗
j (x

′
2) − ψi(x1)ψj(x2)ψ

∗
j (x

′
1)ψ

∗
i (x

′
2)).(1.70)An important result is that eq. (1.70) an be expressed in terms of one-eletrondensity matrix

ρ(x1, x2;x
′
1, x

′
2) = ρ(x1;x

′
1)ρ(x2;x

′
2) − ρ(x2;x

′
1)ρ(x1;x

′
2) (1.71)and, more generally, for any n-eletron density matrix it may be shown that

ρn(x1, . . . , xn;x′1, . . . , x
′
n) =

∣∣∣∣∣∣∣∣∣∣

ρ(x1;x
′
1) ρ(x1;x

′
2) · · · ρ(x1;x

′
n)

ρ(x2;x
′
1) ρ(x2;x

′
2) · · · ρ(x2;x

′
n)... ... ... ...

ρ(xn;x′1) ρ(xn;x′2) · · · ρ(xn;x′n)

∣∣∣∣∣∣∣∣∣∣

(1.72)Realling the de�nition given of the spinless density matries (1.60, 1.61) anddi�erentiating the spin-orbitals aording to their spin fator, for a losed-shell de-terminant we an write
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ρ(x1;x

′
1) =

n/2∑

iα=1

φi(r1)φ
∗
i (r

′
1)α(s1)α

∗(s′1) +

n/2∑

iβ=1

φi(r1)φ
∗
i (r

′
1)β(s1)β

∗(s′1)

= Pαα
1 α(s1)α(s′1) + P ββ

1 β(s1)β(s′1) (1.73)and integrating over the spin we obtain the spinless density matrix
P1(r1; r

′
1) = Pαα

1 + P ββ
1 (1.74)with Pαα

1 = P ββ
1 .We now turn to the pair density matrix; as an be shown, for a wavefuntion ofde�nite spin, it onsists of six omponents (αααα, ββββ, αβαβ, βαβα, αββα and

βααβ), whih redue to four after integration over the spin
P2(r1, r

′
1; r2, r

′
2) = Pαααα

2 + P ββββ
2 + Pαβαβ

2 + P βαβα
2 (1.75)Realling that in the one-determinant ase the two-partile density matrix an be fa-torized in terms of the one-partile density matries (1.71), the following expressionsare obtained for the pair funtions (imposing r′1 = r1 and r′2 = r2)

Pαα
2 (r1, r2) = Pα

1 (r1)P
α
1 (r2) − Pα

1 (r1; r2)P
α
1 (r2; r1) (1.76)

P ββ
2 (r1, r2) = P β

1 (r1)P
β
1 (r2) − P β

1 (r1; r2)P
β
1 (r2; r1) (1.77)

Pαβ
2 (r1, r2) = Pα

1 (r1)P
β
1 (r2) (1.78)

P βα
2 (r1, r2) = P β

1 (r1)P
α
1 (r2) (1.79)From these expressions, indiating the probability of �nding eletrons simultane-ously at two point in spae with a given spin on�guration, we an get a promptunderstanding of the eletron orrelation problem. As is apparent, the motion ofeletrons with the same spin, αα (2.5) or ββ (1.77), is desribed by orrelated fun-tions and Pαα

2 (r1, r2) vanishes as r2 → r1. This type of orrelation, known as Fermiorrelation, avoids eletrons of parallel spin being at the same point of spae anddiretly arises from the antisymmetry property of a fermioni wavefuntion. On theontrary, from eqs. (1.78) and (1.79), we see that there is no orrelation between themotion of eletrons with opposite spin, sine the probability of �nding them in r1and r2 at the same time is given just by the produt of the probabilities of the eahof two independent events. This lak of orrelation (Coulomb orrelation) is learlya serious defet in the one-determinant model, sine the mutual repulsion betweenpairs of eletrons is not properly taken into aount and the probability of �ndingthem lose together does not derease as the distane dereases.



Handling the Statial Correlation: MCSCF Theory 1.6 191.5.3 Statial and Dynamial CorrelationFrom a �quantitative� point of view, the orrelation energy is de�ned (Löwdin, 1955)as the di�erene between the �exat� energy (pratially the energy of FCI wavefun-tion) and the energy of the Hartree-Fok wavefuntion
Ecorr = Eexact − EH−Fwithin a given basis set approximation. Although in itself it represents a very smallfration of the eletroni energy, its aurate treatment is essential when dealing withenergy di�erenes whih are of the same order of magnitude of the orrelation energy(hemial reativity, exitation energies et.).Atually, two di�erent e�ets of eletroni orrelation exist:

• the statial orrelation, whih is assoiated with the problems of the multion-�gurational harater of the wavefuntion;
• the dynamial orrelation, whih is, instead, related to the e�ets of the inter-eletroni interations.Referring the the Hartree-Fok desription of the H2 moleule dissoiation, the dis-tintion between the statial and the dynamial e�ets beomes lear. At the equi-librium geometry, the wavefuntion is qualitatively well desribed by the losed-sellHartree-Fok determinant and the orrelation energy essentially arises from the dy-namial e�ets of the intereletroni repulsions. On the other hand, at the dissoia-tion limit, where there is no oulomb repulsion between the two eletrons, the failureof the one-determinant approximation is due to the need to take into aount thenear-degeneray between the σ2

g and σ2
u on�gurations.1.6 Handling the Statial Correlation: MCSCF TheoryAs above stated, in many hemial and physial phenomena, suh as the rupture orformation of hemial bonds, or the desription of eletronially exited states, theone-determinant approximation dramatially fails due to the intrinsi multireferenenature of the problem. These statial orrelation e�ets an be properly taken intoaount resorting to a multideterminant expansion of the wavefuntion, in whih asimultaneous variational optimization of spin-orbitals and expansion oe�ients isperformed: suh strategy is alled Multion�gurational Self-Consistent Field (MC-SCF) approah.Starting from a trunated CI expansion

Ψ =

N∑

K=1

CKΦK , (1.80)



20 Chapter 1. Mathematial tools and methodsin order to build a MCSCF wavefuntion we need to impose that the energy variationwith respet to an in�nitesimal variation of both orbitals (φ′ = φ+δφ) and oe�ients(C ′
K = CK + δCK) is zero.The optimization an be performed resorting to both a single-step Newton-Rahpson tehnique and a two-step approah (Super CI), where �rst the oe�ients

CK and then the orbitals are iteratively optimized until self-onsisteny is reahed.Following the proedure presented in setion (1.4.1) for the Hartree-Fok theory,the self-onsisteny ondition is here expressed as
∑

rs

trs

(
〈Ψ| Ĥ |ErsΨ〉 − 〈EsrΨ| Ĥ |Ψ〉

)
= 0 (1.81)and it is satis�ed by the Extended-Brillouin Theorem [14℄

〈Ψ| Ĥ |(Ers − Esr)Ψ〉 = 0 (1.82)In other terms, when the energy is stationary, the ontrated single exitations Ψr
s =

(Ers−Esr)Ψ do not interat with the optimized MCSCF wavefuntion. The Super CImethod is pratially based upon an iterative proedure, whih onsists in buildingan improved wavefuntion
Ψ′ = Ψ +

∑

r>s

crsΨ
r
s (1.83)diagonalizing the CI matrix and then using the oe�ients of the single-exitedfuntions, crs, for onstruting the matrix T, whih operates the unitary orbitaltransformation (U = eT).1.6.1 Complete Ative Spae (CAS)The key issue in the onstrution of a redued CI spae in whih to expand theMC wavefuntion is essentially how to selet a limited number of eletroni on�g-urations able to properly take into aount the statial orrelation energy e�ets.In the present work we shall adopt a partiular and largely used type of MCSCFwavefuntion, known as Complete Ative Spae Self-Consistent Field (CASSCF)wavefuntion [15℄. As we shall widely disuss in the next hapter, this funtion rep-resents the zero order wavefuntion, Ψ(0), in our perturbative approah.The idea of Ative Spae provides a useful �preept� to hoose the relevant on-�gurations of the CI expansion (1.80). It is based upon the partitioning of thespin-orbitals into three lasses:1. ore (i, j, . . . ), whih have oupation number equal to 1 in all the determinants

ΦK ;



Handling the Statial Correlation: MCSCF Theory 1.6 212. ative (a, b, . . . ), with all the possible oupation number from 0 to 1;3. virtual (r, s, . . . ), whih are never oupied in any determinant ΦK .The CASSCF wavefuntion is built by performing a Full CI expansion within theative orbitals subspae and then optimizing oe�ients and orbitals until self-onsisteny. However, it is important to stress that the CASSCF approah is nota �blak-box� method and there is not a reipe to selet the �right� ative spae.However, it should be always arefully hosen in order to inlude all the orbitals thatare thought to be involved in some measure in the hemial and physial proessunder onsideration.





Chapter 2
N -eletron Valene StatePerturbation TheoryMultireferene perturbation theories (MRPT) represent a powerful and relatively in-expensive tool for the treatment of eletroni orrelation in moleules. As disussedin the previous hapter (setion 1.5.3), in many moleular phenomena suh as thebreaking of a hemial bond or the eletroni transition to an exited state, a sin-gle referene wavefuntion does not su�e to provide a good approximation to thesolution of the time independent Shrödinger equation; many eletroni on�gura-tions an be important and a zero order desription of the eletroni struture of themoleule may not leave out of onsideration suh quasidegenerate on�gurations.The inlusion of the quasidegenerate on�gurations aounts for what is alled thestatial orrelation (setion 1.6); the dynamial omponent ould be dealt with per-turbationally with a suitable MRPT. A key issue in MRPT onerns the de�nitionof a proper zero order Hamiltonian H0. In the early theories, whih were developedat the beginning of the 1970's, suh as CIPSI [16℄, H0 was de�ned in terms of aone�eletron, Fok�like, operator and the zero order funtions (perturbers), used tobuild the �rst order orretion to the wavefuntion, were simple Slater determinants.The idea that H0 should be based on a one�eletron operator still persists in mostmodern MRPT's. For instane in CASPT2 [17,18℄, one of the most suessful formsof MRPT, H0 is a projeted generalized Fok operator and the perturbers are builtin terms of internally ontrated exitations (vide infra). Dyall [19℄ showed thatthe usage of orretion funtions deriving from a one�eletron operator introdues abias in the energy alulation sine the zero order referene wavefuntion properlytakes into onsideration the bieletroni interations ourring among the ative ele-trons whereas the orretion funtions are not allowed to do so. In order to obviatesuh di�ulty Dyall proposed the use of a model Hamiltonian, partially bieletroni.In 2001, based on Dyall's work, the �n�eletron valene state perturbation theory�



24 Chapter 2. N-eletron Valene State Perturbation Theory(NEVPT) [20�25℄ was developed, in ollaboration between the theoretial hemistrygroups of the universities of Ferrara and Toulouse. The hapter has the followingstruture: a brief résumé of the Rayleigh-Shrödinger Perturbation Theory (RSPT)and of the Møller-Plesset Theory will be proposed in setion 2.1 and 2.2 respetively.Then we shall present the seond order NEVPT approah in its single-state (setion2.3) and quasidegenerate (setion 2.6) formulations; setion 2.7 is instead devotedto the third order NEVPT and Internally Contrated CI method, whose �partiallyontrated� version implementation takes a entral part in the present researh work.2.1 Rayleigh-Shrödinger Perturbation TheoryThe basi idea of the perturbative methods is to express the true Hamiltonian Ĥas the sum of an �unperturbed� Hamiltonian (model Hamiltonian), Ĥ0, and of aperturbation operator,V̂ ,
Ĥ = Ĥ0 + λV̂ (2.1)where λ gives the extent of the perturbation. Supposing to be in a non-degeneratease, the eigenstates and the assoiated eigenvalues of the unperturbed Hamiltonian

Ĥ0 are known
Ĥ0Ψ

0
n = E0

nΨ0
n n = 0, 1, 2, . . . (2.2)Due to the e�et of the perturbation, whih is however supposed to be small, theeigenfuntions and the eigenvalues of Ĥ will hange as a funtion of the parameter

λ. In the Rayleigh-Shrödinger (RS) sheme, the energy and the wavefuntion areexpanded in Taylor's series to obtain
En = E(0)

n + λE(1)
n + λ2E(2)

n + . . . (2.3)
Ψn = Ψ(0)

n + λΨ(1)
n + λ2Ψ(2)

n + . . . (2.4)To simplify the derivation, we suppose that the eigenstates of Ĥ0 are normalized(〈Ψ(0)
n |Ψ(0)

n 〉 = 1); moreover, we also impose the intermediate normalization ondition
〈Ψ0

n|Ψn〉 = 1. By substitution of expressions (2.3) and (2.4) into the Shrödingerequation ĤΨn = EnΨn, we obtain
λ0(Ĥ0Ψ

(0)
n − E(0)

n Ψ(0)
n )

+ λ1(Ĥ0Ψ
(1)
n + V̂Ψ(0)

n −E(0)
n Ψ(1)

n − E(1)
n Ψ(0)

n )

+ λ2(Ĥ0Ψ
(2)
n + V̂Ψ(1)

n −E(0)
n Ψ(2)

n − E(1)
n Ψ(1)

n − E(2)
n Ψ(0)

n )

+ . . . = 0 (2.5)We see that eq. (2.5) is satis�ed only if the terms inside parenthesis are zero, thenthe equations obtained for the di�erent orders an be manipulated and one arrives



Møller-Plesset Theory 2.2 25to the following expression for the generi ontribution of k order orretion to theenergy:
E(k)

n =
〈
Ψ(0)

n

∣∣∣ V̂
∣∣∣Ψ(k−1)

n

〉
. (2.6)For the �rst and the seond order one has

E(1)
n =

〈
Ψ(0)

n

∣∣∣ V̂
∣∣∣Ψ(0)

n

〉 (2.7)
E(2)

n =
〈
Ψ(0)

n

∣∣∣ V̂
∣∣∣Ψ(1)

n

〉 (2.8)with Ψ
(1)
n given by

Ψ(1)
n = −RnV̂Ψ(0)

n (2.9)where Rn (termed the �resolvent operator�), in absene of degeneray of Ψ
(0)
n , hasthe form

Rn =
∑

k 6=n

∣∣Ψ0
k

〉 〈
Ψ0

k

∣∣
E0

k − E0
n

(2.10)Equation (2.9) an be substituted into eq. (2.8) to obtain:
E

(2)
0 = −

∑

k 6=0

∣∣∣
〈
Ψ

(0)
n

∣∣∣ V̂
∣∣∣Ψ(0)

k

〉∣∣∣
2

E
(0)
k − E

(0)
n

(2.11)For the third order orretion, instead, one has
E(3)

n =
〈
Ψ(0)

n

∣∣∣ V̂
∣∣∣Ψ(2)

n

〉whih beomes
E(3)

n =
〈
Ψ(1)

n

∣∣∣ V̂
∣∣∣Ψ(1)

n

〉
+ E(1)

n ‖Ψ(1)
n ‖2 (2.12)2.2 Møller-Plesset TheoryIn the Møller-Plesset theory [26℄ the model Hamiltonian is a n-partile operator, alsoalled the Fokian, whih in seond quantization has the form:

F̂ =
∑

r

ǫra
+
r ar. (2.13)The perturbation operator, V̂ (also termed �utuation potential) is given by thedi�erene

V̂ = Ĥ − F̂ . (2.14)The zero order wavefuntion is the Hartree-Fok determinant |Ψ0〉 built up with nspin-orbitals ψi, whih are solutions of the anonial Hartree-Fok equations f̂ψi =

ǫiψi; the zero order energy is E0 =
∑n

i=1 ǫi.



26 Chapter 2. N-eletron Valene State Perturbation TheoryHowever, we note that any other determinant |Ψk〉, built with n arbitrary spin-orbitals ψi, is an eigenfuntion of F̂ with eigenvalue E(0)
k =

∑n
i=1 ǫki

, thus the �rstand seond order ontribution to the energy are respetively
E

(1)
0 = 〈Ψ0| Ĥ − F̂ |Ψ0〉 = EH−F

0 −
n∑

i=1

ǫi (2.15)and
E

(2)
0 = −

∑

k 6=0

∣∣∣〈Ψ0| Ĥ |Ψk〉
∣∣∣
2

E
(0)
k − E

(0)
0

(2.16)As is evident from equation (2.15), the �rst order ontribution (MP1) does not bringabout any orretion to the Hartree-Fok energy (E(0)
0 + E

(1)
0 = EH−F

0 ). Instead,for the seond order orretion (MP2), from eq. (2.16) omes that only the doubly-exited determinants will give a ontribution, sine the singly-exited determinantsdo not interat with the HF wavefuntion as stated by Brillouin's theorem. Indiatingwith ∣∣∣Ψab
ij

〉 the determinant in whih two oupied spin-orbitals (i, j) have beensubstituted by two virtual ones (a, b), eq. (2.16) beomes:
E

(2)
0 = −

occ∑

i<j

virt∑

a<b

|〈ψaψb| |ψiψj〉|2
ǫa + ǫb − ǫi − ǫj

(2.17)2.3 NEVPT2 philosophyMultireferene perturbation theories an be lassi�ed, aording to the strategyadopted to obtain the orreted energies and wavefuntions, into two ategories:
• �perturb then diagonalize�, where an e�etive Hamiltonian is perturbativelybuilt in a model spae and then diagonalized;
• �diagonalize then perturb�, where the perturbation is performed upon a zeroorder wavefuntion obtained by diagonalization of the Hamiltonian in a givendeterminant spae.As above mentioned, in the NEVPT approah, whih belongs to the diagonalizethen perturb methods, a CASSCF (or CASCI) referene wavefuntion is employedand the zero order Hamiltonian is built by means of Dyall's Hamiltonian [19℄

ĤD = Ĥi + Ĥv + C, (2.18)where Ĥi is a one�eletron operator de�ned in terms of orbital energies and re-ation/destrution pairs
Ĥi =

core∑

i

ǫiEii +
virt∑

r

ǫrErr, (2.19)
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Hv is a two�eletron operator on�ned to the ative orbital spae

Hv =
act∑

ab

heff
ab Eab +

1

2

act∑

abcd

〈ab|cd〉(EacEbd − δbcEad), (2.20)and C is a suitable onstant assuring that ĤD is equivalent to Ĥ within the CASspae (C = 2
∑core

i hii +
∑core

ij (2〈ij|ij〉 − 〈ij|ji〉) − 2
∑core

i ǫi.) The quantities heff
abappearing in eq.(2.20) are the usual one�eletron matrix elements hab, where theontribution deriving from the e�etive �eld of the ore eletrons (heff

ab = hab +∑core
j (2〈aj|bj〉 − 〈aj|jb〉)) is added. The energies of the ore, ǫi, and virtual, ǫr,orbitals are usually hosen as those whih result from the diagonalization of thegeneralized Fok matrix (anonial orbitals).The zero order wave funtions external to the CAS-CI spae and di�ering from

Ψ
(0)
m for a well-de�ned pattern of the inative orbitals are referred to as �perturberfuntions� (or �perturbers�). The perturbers are indiated as Ψ

(k)
l,µ and the spaethey belong to as S(k)

l , where �l� is the oupation pattern of the inative orbitals,�k�is the number of eletrons promoted (removed) to (from) the ative spae and �µ�simply enumerates the various perturbers. There are only eight typologies of S(k)
lsubspaes: S(0)

ij,rs with two ore orbitals substituted by two virtuals, S(0)
i,r with oneore orbital substituted by one virtual, S(+1)

ij,r with one ore substituted by one virtualand one ore eletron added to the ative spae, S(+1)
i with one ore eletron addedto the ative spae, S(−1)

i,rs with one ore orbital substituted by one virtual and oneative eletron exited into a virtual, S(−1)
r with one ative eletron exited into avirtual, S(+2)

ij with two ore eletrons exited to the ative spae, S(−2)
rs with twoative eletrons exited to the virtual spae (see Fig. 2.1).If the full dimensionality of suh subspaes is exploited, diagonalizing the trueHamiltonian or the model Dyall's Hamiltonian within eah S(k)

l spaes, one has theso-alled �totally unontrated� NEVPT2 [25℄. However, suh formulation, not yetimplemented, would be feasible for CAS of small and medium size; it is pratiallynot appliable for CAS spaes greater than few thousands on�gurations, whih isommon pratie in nowadays alulations.2.4 Internally ontrated approahThe prohibitive omputational ost of the totally unontrated formalism an be on-siderably redued if the perturbers are built as internally ontrated (IC) funtions.This leads to the �partially ontrated� NEVPT2 and to its further simpli�ation,the �strongly ontrated� NEVPT2.
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V(−1’)Figure 2.1: Graphial representation of the eight typologies of S(k)
l spaes.Let Φ be a funtion external to the CAS spae interating with the referenewavefuntion Ψ

(0)
m , then it has been shown [27, 28℄ that

〈
Ψ(0)

m

∣∣∣Ĥ
∣∣∣Φ
〉

=
〈
Ψ(0)

m

∣∣∣Ĥ
∣∣∣ P̂ICΦ

〉 (2.21)where P̂IC performs a projetion onto the �internally ontrated� �rst order spaegenerated by all the funtions, external to the CAS, obtained by appliation of properstrings of spin-traed exitation operators to the referene wavefuntion, EwxEyzΨ
(0)
m .It follows that the �rst order orreted wavefuntion, Ψ

(1)
m , whih has to be builtto ompute the seond order orretion to the energy E(2)
m =

〈
Ψ

(0)
m |V |Ψ(1)

m

〉, anbe restrited to belong to the IC �rst order interating spae. Consequently, thedimensionality of the eight S(k)
l subspaes will be now substantially redued sinethey will be only spanned by the IC funtions EwxEyzΨ

(0)
m . Nevertheless, we shouldstress that the EwxEyzΨ

(0)
m funtions are not orthogonal and, generally, not evenlinearly independent, so that are has to be taken in removing the possible lineardependenies.2.4.1 The Partially Contrated NEVPT2The partially ontrated NEVPT (PC-NEVPT2) approah onsists in building theperturbers as multireferene wavefuntions belonging to a subspae S̄(k)

l of the vari-
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(k)
l spaes. One possibility would be to diagonalize the true Hamiltonian Hwithin eah suh spae

P
S

(k)
l

ĤP
S

(k)
l

Ψ
(k)
l,µ = E

(k)
l,µ Ψ

(k)
l,µbut this would be omputationally too expensive. Atually, we have adopted themore onvenient hoie of diagonalizing the model Hamiltonian ĤD. Indeed, it isworthwhile to notie that within a given S(k)

l spae
• the ative part of ĤD (Ĥv) has matrix elements whih do not depend on theinative orbital pattern l (independent of the spei� inative orbital indieshosen);
• the inative part Ĥi only gives rise to an energy shift within S(k)

l , whih is equalto the di�erene between the orbital energies of the virtual and ore orbitalsinvolved in the exitation proess.Thus, for eah of the eight typologies of S(k)
l , only one single diagonalization has tobe performed to get all the eigenfuntions (perturbers) and eigenvalues of ĤD. Thegeneral form of the eigenvalues is:

E
(k)
l,µ = E(0)

m + ∆ǫl + eµ (2.22)where ∆ǫl equals the di�erene of the virtual and ore orbital energies involved inthe de�nition of S(k)
l and where E(0)

m + eµ is the µ-th eigenvalue of the projetionof Ĥv onto the IC S
(k)
l ; eµ is independent of the inative orbitals and represents aphysial proess ourring in the ative spae. In partiular, in the S(+1)

ij,r subspaes,
eµ approximates an eletron a�nity due to an eletron passing from the ore to theative spae, in the S(+2)

ij subspaes the eigenvalues eµ approximate an energy ofdouble ionization and so on for the other subspaes.The zero order Hamiltonian of PC-NEVPT an be written as follows:
ĤPC

0 = PCASĤPCAS +
∑

l,k

P
S

(k)
l

ĤDP
S

(k)
l

(2.23)where P
S

(k)
l

is the projetor onto the S(k)
l spae de�ned above. It should be remarkedthat the PC-NEVPT2 has exatly the same degree of ontration of CASPT2 [17,18℄;the di�erene between the two approahes is that PC-NEVPT2 uses multirefereneorretion funtions Ψ

(k)
l,µ whih are eigenfuntions of a simpli�ed two�eletron Hamil-tonian (ĤD) taking into due aount the bieletroni interations among the ativeeletrons.
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l spaes, with the exeption of the one-dimensional S(0)

ij,rsspae, the partially ontrated perturbation funtions are expressed as
Ψ

(k)
l,µ = |Φ〉C (2.24)where the C matrix is obtained by diagonalization of ĤD in S

(k)
l . The �rst or-der orretion to the wave funtion is then expressed as linear ombination of theperturbation funtions

Ψ(1)(S
(k)
l ) =

∑

µ

Ψ
(k)
l,µC

(k)(1)
l,µ (2.25)where the oe�ients C(k)(1)

l,µ have the form
C

(k)(1)
l,µ = −

〈
Ψ

(k)
l,µ

∣∣∣Ĥ
∣∣∣Ψ(0)

m

〉

E
(k)
l,µ − E

(0)
m

(2.26)and the funtions are assumed to be normalized.A shemati analysis of the eight S(k)
l spaes is proposed in Appendix A, fousingattention above all on the form of perturbation funtions Ψ

(k)
l and of the perturbativeoe�ients C(k)(1)

l,µ , whih will be used in the following for the formulation of the PC-NEVPT3.2.4.2 The Strongly ontrated NEVPT2A further simpli�ation of the NEVPT2 approah an be ahieved seleting a singleperturber Ψ
(k)
l from eah IC S(k)

l subspae. Ψ
(k)
l is hosen by the following projetion:

Ψ
(k)
l = P

S
(k)
l

ĤΨ(0)
m . (2.27)In this way a set of orthogonal (but not normalized) orretion funtions Ψ

(k)
l isobtained; their energies are omputed as

E
(k)
l =

〈
Ψ

(k)
l |H|Ψ(k)

l

〉

〈Ψ(k)
l |Ψ(k)

l 〉
(2.28)where the use of the Dyall's Hamiltonian guarantees, as usual, a further simpli�a-tion. This formulation is alled strongly ontrated NEVPT2 (SC-NEVPT2) and isthe �rst approah that has been pratially implemented [21, 22℄.The zero order Hamiltonian of SC-NEVPT2 an be expressed as a spetral de-omposition:

HSC
0 = PCASĤPCAS +

∑

l,k

∣∣∣Ψ(k)′
l

〉
E

(k)
l

〈
Ψ

(k)′
l

∣∣∣ (2.29)
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(k)′
l = Ψ

(k)
l /‖Ψ(k)

l ‖ are the normalized perturbers. The seond order ontri-bution to the energy, as shown in Ref. [22℄, an be expressed as
E(2)

m =
∑

l,k

‖Ψ(k)
l ‖2

E
(0)
m − E

(k)
l

. (2.30)The detailed treatment of the various ontributions an be found in Ref. [22℄. De-spite the low number of orretion funtions employed, the SC-NEVPT2 usuallyyields results very lose to those of the more elaborated PC-NEVPT2. An inter-esting inequality was proved in Ref. [22℄, showing that, for eah S(k)
l subspae, theontribution to the seond order orretion to the energy of PC-NEVPT2 is alwayslower (negative and larger in absolute value) than that of SC-NEVPT2. Cases ofonsistent disrepanies between SC- and PC-NEVPT2 are usually indiative of somedefet in the zero order wavefuntion Ψ

(0)
m [24, 29�31℄.2.5 Major NEVPT2 properties2.5.1 Absene of intruder statesA well-known problem in MRPTs based on a monoeletroni zero order Hamiltonianis the appearane of the so-alled intruder states. These are perturbation funtions(eigenfuntions of Ĥ0) with an energy very lose to the energy of the referene wave-funtion E(0)

m , thus produing near divergenes in the perturbation summation. Thisphenomenon is basially related to the improper desription of the two-eletron in-terations between the perturber funtions. The intruder state problem a�ets, forinstane, the CASPT2 alulations, where an ad ho unphysial level shift [32℄ anbe used in the denominators to prevent the ourrene of suh divergenes. BothNEVPT2 variants are pratially exempt from the intruder state problem: the energyof the perturbers are always well separated from that of the referene wavefuntion.Considering, for instane, the partially ontrated approah with Dyall's Hamilto-nian we have that the energy of the orretion funtions Ψ
(k)
l,µ are given by

E
(k)
l,µ = E(0)

m + ∆ǫ
(k)
l + eµ (2.31)where ∆ǫ

(k)
l and eµ are both positive quantities, avoiding too small denominators(E(k)

l,µ − E
(0)
m ). We should stress that, however, the S(−1)

r subspae, where an ativeeletron is exited to the virtual spae and the other exitation takes plae withinthe ative spae, ould be, in priniple and only for highly exited states, liable tothe possibility of intruder states. In fat, in presene of extremely di�use virtualorbitals, ǫr is lose to zero and eµ, whih refers to an ionization proess in the ativespae, ould be very small. Neverthless, in the alulations arried out up to now,we have never observed intruder state problems.



32 Chapter 2. N-eletron Valene State Perturbation Theory2.5.2 Invariane under orbital rotationsAs eah S
(k)
l subspae is a omplete ative spae, it is learly invariant under anarbitrary rotation of the ative orbitals; this invariane is guaranteed in the threeformulations of the method. On the ontrary, of ourse, all the NEVPT methods arenot invariant under rotations between ative and inative orbitals, so that attentionhas to be paid to the hoie of the ative spae in order to avoid possible exhangesof the orbital identities. Moreover, we should stress that the form of Dyall's Hamil-tonian of eq. (2.18) is also not invariant under rotations of ore and virtual orbitalsand anonial inative orbitals (those that diagonalize the Fok matrix) have to beused. Atually, using anonial orbitals is not always possible, like for instane whena priori loalized orbitals are adopted, so a nonanonial PC-NEVPT2 approah hasalso been implemented in our laboratory. In this ase a modi�ed Dyall's Hamiltonianan be used suh that this invariane property is ful�lled; the inative part of ĤD isrewritten as

Ĥ ′
i =

core∑

ij

fijEij +

virt∑

rs

frsErs (2.32)where fij and frs are elements of generalized Fok matries:
fij = −

〈
aiΨ

(0)
m

∣∣∣Ĥ
∣∣∣ ajΨ

(0)
m

〉
+ δijE

(0)
m (2.33)

frs =
〈
a+

r Ψ(0)
m

∣∣∣Ĥ
∣∣∣ a+

s Ψ(0)
m

〉
− δrsE

(0)
m (2.34)The zero order Hamiltonian is then de�ned as

H0 = PCASĤPCAS +
∑

l,k

l′k′

P
S

(k)
l

ĤDP
S

(k′)

l′

(2.35)The perturbation equations are solved using a system of linear equations
Ψ(1)

m =
∑

l,k,µ

c
(k)
lµ Ψ

(k)
l,µ

∑

l′k′µ′

c
(k′)
l′µ′

〈
Ψ

(k)
l,µ

∣∣∣Ĥ0 − E(0)
m

∣∣∣Ψ(k′)
l′,µ′

〉
= −

〈
Ψ

(k)
l,µ

∣∣∣V̂
∣∣∣Ψ(0)

m

〉where the Ψ
(k)
l,µ funtions are obtained by a preliminary PC�NEVPT2 alulationmaking use of only the diagonal elements of the Fok matries.2.5.3 Size onsisteneThe property of size onsistene, in the form of strit separability diretly derives fromthe above disussed invariane under rotation of the ative orbitals (see Ref. [20℄ for



Quasidegenerate NEVPT2 2.6 33more details). We reall that the strit separability property assures that, at thelimit of non-interation, the energy of a system A�B is equal to the sum of theenergies of the two subsystems A and B alulated separately.2.6 Quasidegenerate NEVPT2A well-known defet of the MRPTs belonging to the "diagonalize then perturb philos-ophy" onsists in the fat that the �rst order orretion to the wavefuntion does notbring modi�ation to the referene funtion. Suh defet turns out to be rather on-sistent in ases where the mixing of the on�gurations in the zero order wavefuntionis not properly desribed due to strongly di�erent orrelation e�ets; typial exam-ples are the avoided rossing between ioni and ovalent states or exited states witha mixed valene-Rydberg nature. The reorganization of the determinant oe�ientsin the zero order wavefuntion an be obtained by applying a quasidegenerate per-turbative approah [33�35℄, where an e�etive Hamiltonian is diagonalized within aon�gurational spae of limited dimension. The quasidegenerate formalism has beenimplemented for both the strongly and partially ontrated (QD-SCNEVPT2 andQD-PCNEVPT2) approahes using the model Dyall's Hamiltonian and is presentedin Ref. [23℄.In the QD-NEVPT2 approah a model spae is built by hoosing as basis set afew solutions of the CAS�CI problem {Ψ(0)
1 ,Ψ

(0)
2 , . . . ,Ψ

(0)
g } with

PCASĤPCASΨ(0)
m = E

(0)
m Ψ

(0)
m . The purpose of the QD formalism is to provide thetrue eigenvalues of the Hamiltonian and the projetions of the true eigenfuntionsonto the model spae with the use of an e�etive Hamiltonian

He�Ψ̃m = EmΨ̃m, (2.36)where Ψ̃m = PΨm, P =
∑g

k=1

∣∣∣Ψ(0)
k

〉〈
Ψ

(0)
k

∣∣∣ and Em is the true eigenvalue assoiatedto the true eigenfuntion Ψm. Introduing the wave operator, ΩΨ̃m = Ψm, thee�etive Hamiltonian an be written as Ĥe� = PĤΩ and Ω is obtained by solvingthe generalized Bloh equation
ΩPĤΩ − ĤΩ = 0. (2.37)Adopting a partition of the Hamiltonian, Ĥ = Ĥ0 + V̂ , with Ĥ0Ψ

0
m = E0

mΨ0
m andexpanding Ω and Ĥe� in a perturbation series

Ω = P + Ω(1) + Ω(2) + · · · (2.38)
Ĥe� = Ĥ

(0)e� + Ĥ
(1)e� + Ĥ

(2)e� + · · · (2.39)



34 Chapter 2. N-eletron Valene State Perturbation Theoryone promptly arrives at the �rst-order term of Ω

[
Ω(1),H0

]
= QV P (2.40)and to the following terms of Ĥe�

Ĥ
(0)e� = PĤ0P ; (2.41)

Ĥ
(1)e� = PV̂ P = 0; (2.42)

Ĥ
(2)e� = PV̂ Ω(1). (2.43)Sine NEVPT2 is a state-spei� method with Ĥ0 depending on a spei� referenefuntion Ψ

(0)
m , in order to solve the ambiguity about the perturbation funtions touse, the multipartitioning tehnique by Zaitsevski and Malrieu [36℄ is adopted. Suhapproah onsists in the use of di�erent partitions of the Hamiltonian aording tothe various wavefuntions Ψ

(0)
m of the model spae

Ĥ = Ĥ0(m) + V̂ (m) (2.44)with
Ĥ0(m) = PCASĤPCAS +

∑

l,k,µ

∣∣∣Ψ(k)
l,µ (m)

〉
E

(k)
l,µ

〈
Ψ

(k)
l,µ (m)

∣∣∣ , (2.45)where the perturbation funtions Ψ
(k)
l,µ (m) are IC funtions generated by applyingthe exitation operators to Ψ

(0)
m . The matrix elements of Ĥe� up to seond order aregiven by:

〈
Ψ(0)

n

∣∣∣Ĥe�∣∣∣Ψ(0)
m

〉
= E(0)

m δmn +
∑

l,k,µ

〈
Ψ

(0)
n

∣∣∣Ĥ
∣∣∣Ψ(k)

l,µ (m)
〉〈

Ψ
(k)
l,µ (m)

∣∣∣Ĥ
∣∣∣Ψ(0)

m

〉

E
(0)
m −E

(k)
l,µ (m)

. (2.46)The approximate projetions Ψ̃m and the orresponding eigenvalues Em are thenobtained by diagonalization of theHe� matrix. We should note that the Ĥe� operatoris not hermitian but, if desired, a hermitian matrix an be written using a similaritytransformation [37℄
H ′e� = T−1He�T, (2.47)where T is S 1

2 with Skl = 〈Ψ̃k|Ψ̃l〉. Finally, we should stress that the QD ap-proah requires just a small omputational overhead in omparison to the single-stateNEVPT2, sine, for the evaluation of the matrix elements of Ĥe� also the transitiondensity matries have to be omputed, but with partile rank not higher than three.



Third order NEVPT and Internally Contrated CI 2.7 352.7 Third order NEVPT and Internally Contrated CIAlthough, usually, a seond order treatment is able to provide a onspiuous frationof the dynamial orrelation energy, evaluating the third order orretion an be veryuseful, without prohibitive omputational osts, in order to hek on the stabilityjudging on the quality of the referene wave funtion. In fat, when a strong disrep-any is found between the seond and third order results, it an be often attributedto a defetive zero order desription.As stated in setion 2.1, in the RSPT the third order orretion to the energy isgiven by
E(3)

m =
〈
Ψ(1)

m |V |Ψ(1)
m

〉
− E(1)

m ||Ψ(1)
m ||2 (2.48)but, sine in NEVPT the �rst order ontribution to the energy is null, eq. (2.48)redues to

E(3)
m =

〈
Ψ(1)

m |V |Ψ(1)
m

〉
. (2.49)In the strongly and partially ontrated approahes Ψ

(1)
m is expanded on a ratherlimited set of orretion funtions and, as was formerly shown by Werner [38℄ in hisCASPT3 formulation, the task of building a third order algorithm an be ahievedwithout exessive omputational e�ort. For both the NEVPT variants, the thirdorder orretion has been implemented in our group [24,25℄ and a onsistent numberof appliations of its simpler version (SC-NEVPT3) has also been published [24,29�31, 39�44℄.Here, we shall introdue the third order equations pertaining to the more elab-orated partially ontrated approah, sine its implementation has taken a onsid-erable part of the present researh work. The PC �rst order wavefuntion has theform given in (2.25) so, the working equation for PC-NEVPT3 is

E(3)
m =

∑

l′,k′,µ′

∑

l,k,µ

C
(k′)(1)∗
l′,µ′ C

(k)(1)
l,µ

〈
Ψ

(k′)
l′,µ′

∣∣∣Ĥ − Ĥ0

∣∣∣Ψ(k)
l,µ

〉
. (2.50)We note that the oe�ients C(k)(1)

l,µ are omputed and stored at the seond orderlevel (eq. 2.26) and that Ĥ0 gives a non null ontribution, equal to E(k)
l,µ , only in thediagonal ase (l, k, µ = l′, k′, µ′). Therefore, the PC-NEVPT3 implementation dealswith the evaluation of the interation via the Hamiltonian operator between twoInternally Contrated (IC) funtions. The main problem of omputing the matrixelements 〈Ψ

(k)′
l,µ

∣∣∣Ĥ
∣∣∣Ψ(k)

l,µ

〉, for all possible ourrene of the IC funtions, has beensolved by implementing, in the MuPAD [45℄ omputer algebra system, a symboliprogram named FRODO (after �Formal Redution Of Density Operators�) [46,47℄. Infat, the program FRODO manipulates these matrix elements through the systemati



36 Chapter 2. N-eletron Valene State Perturbation Theoryelimination of the inative indies from the replaement operators, yielding a list ofnumerial fators, mono and bieletroni symboli integrals and strings of exitationoperators only on�ned to the ative indies. Then this result is further elaboratedin order to produe a Fortran subroutine to perform the alulation of the requestedmatrix element and, optionally, a LATEX �le.A detailed analysis of all the 31 lasses of interation that have to be onsid-ered is proposed in Appendix B, where, for the sake of simpliity, the nomenlature�V (k′)V (k)� is used to indiate the generi lass 〈Ψ
(k′)
l′ |V |Ψ(k)

l

〉.Finally, the knowledge of the matrix elements of H between the orretion fun-tions makes it possible to build a ompletely variational alulation where the trialwavefuntion is expressed as a linear ombination in the form
Ψtrial

m = c0Ψ
(0)
m +

∑

l,k,µ

c
(k)
lµ Ψ

(k)
l,µ . (2.51)In the ase of the partially ontrated approah suh an expansion orresponds toan Internally Contrated Con�guration Interation (IC�CI) [48℄ limited to the singleand double ontrated exitations of Ψ

(0)
m . IC�CI's are expeted to show the samedisadvantages present in the more ommon single referene SD�CI alulations; inpartiular they loose the size onsistene property enjoyed by the NEVPT approah.An example of IC�CI is provided in Ref. [24℄, onerning the Cr2 potential energyurve, where the IC�CI result is shown to parallel the third order desription.2.8 A test ase: the X

1Σ+
g and B

′1Σ+
g states of C2Sine the C2 moleule is a entral ompound in various interstellar hemial phenom-ena and ombustion reations, a onsiderable attention has been paid, by various the-oretial hemists [49�53℄, to the study of the its spetrosopi properties. The majorpeuliarity of this system is the presene of many low-lying eletroni states abovethe ground state state, X1Σ+

g . The lowest-energy exited state (3Πu) appears only716 m−1 above the ground state and 16 other exited states have been experimen-tally observed [54℄. This near degeneray of di�erent eletroni states is signi�anteven at the equilibrium geometry and beomes more problemati as the interatomidistane inreases, making the use of MR-based methods neessary. Therefore, theC2 moleule represents a good example to test the performane and the reliability ofa MRPT method, whih should be, in priniple, able to aurately handle nearde-generay problems and bond�breaking phenomena.In the present onlusive setion the C2 moleule is hosen as example to presentthe full set of NEVPT2, NEVPT3 and IC-CI results. The auray of our approah



A test ase: the X1Σ+
g and B′1Σ+

g states of C2 2.8 37will be judged by omparison with previously published Full CI results [50℄, whih,we reall, within a given one-eletron basis set approximation, provide the exatsolution to the eletroni Shrödinger equation (see Se. 1.2.1).2.8.1 Method of alulationIn the light of the testing purpose of the present alulations, essentially aimedto illustrate the behavior of the di�erent degrees of approximation in the NEVPTsheme rather than to provide a omprehensive desription of the system, we re-strited the study to the ground state, X1Σ+
g , and to the �rst exited state B′1Σ+

g .Sine an avoided rossing ours between these states around 1.70 Å, we arried outQDNEVPT2 alulations to properly ompute the whole Potential Energy Curves(PECs). Besides, in order to obtain a more aurate treatment of the region aroundthe minimum (r ≤ 1.70 Å) seond and third order SS-NEVPT as well as at IC-CIalulations were performed on the ground state.To make the omparison meaningful, we have used the standard 6 − 31G∗ basisset [55℄, used in the previous Full CI study by Abrams and Sherrill [50℄.The zero order wavefuntions were obtained using the MOLPRO2008.2 pakage[56℄: a State�Averaged CASSCF (SA�CASSCF) alulation on the two 1Σ+
g stateswas performed for the QDNEVPT2 alulations, whereas a single-root optimizationon the ground X1Σ+

g state was adopted around the equilibrium distane before theNEVPT3 and IC-CI omputations. Sine MOLPRO an only handle with Abelianpoint groups not higher than D2h , the redued D2h symmetry was used and theative spae was made up by the 8 valene eletrons and 8 valene orbitals (2σg,
2σu, 3σg, 3σu, 1πx,u, 1πy,u, 1πx,g and 1πx,g).2.8.2 Results and disussionThe PC-QDNEVPT2 and FCI [50℄ potential energy urves for the ground state,
X1Σ+

g , and for the exited state, B′1Σ+
g , are displayed in Fig. 2.8.2 and the totalenergies are reported in Tab.2.1. While obtaining of the SA-CASSCF wavefuntiondoes not pose partiular di�ulties at short distanes, it beomes quite a di�ulttask as the bonds is elongated. At longer distanes, indeed, the energy urve of the

1∆g state (atually, its omponent belonging to the Ag irrep. in the D2h point group)�rst drops below the B′1Σ+
g (in the range between 1.25 and 1.75 Å) and then alsobelow the X1Σ+

g . At SA-CASSCF level, with the MOLPRO pakage, the seletionof the two Σ+
g roots was possible by foring the onvergene to the states with thedesired value of the quantum number Λ. As stated, the avoided rossing appearsaround 1.7 Å, where, both at FCI [50℄ and NEVPT level, the separation betweenthe states is roughly 10 kal/mol. Then, the B′1Σ+

g starts to go up in energy but



38 Chapter 2. N-eletron Valene State Perturbation Theoryit beomes again very lose to the other at longer distanes. In fat, both statesdissoiate at the same limit 2 C(1s22s22p2, 3P ). As is shown in Fig.2.8.2, where wehave plotted only the PC results, the QDNEVPT2 PECs perfetly mimi the shapeof the FCI ones, with an overall di�erene in the absolute energies amounting to
≃ 0.02 Hartree.
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A test ase: the X1Σ+
g and B′1Σ+

g states of C2 2.8 39As the interatomi distane inreases, the nature of the ground state hanges due tothe mixing with the B′1Σ+
g state: the weight of the doubly exited determinant (2σ2

g)
→ (3σ2

g) dereases while that of the two on�gurations (1σ2
g1σ

2
u2σ2

g2σ
2
u1π2

x,u3σ2
g) and(1σ2

g1σ
2
u 2σ2

g2σ
2
u1π2

y,u3σ2
g) progressively inreases. Then, around 1.8-1.9 Å the har-ater of the two states is interhanged as a onsequene of the avoided rossing.Table 2.1: QD-NEVPT2 and FCI [50℄ absolute energies (Hartree) for C2. The bonddistane, r, in Angstrom.
X1Σ+

g B′1Σ+
gr SC-QDPT2 PC-QDPT2 FCI SC-QDPT2 PC-QDPT2 FCI0.90 -75.296945 -75.299147 -75.317618 -75.093846 -75.098434 -75.1177170.95 -75.436746 -75.438997 -75.457665 -75.240892 -75.245426 -75.2647741.00 -75.537208 -75.539483 -75.558335 -75.352471 -75.356832 -75.3764491.05 -75.607410 -75.609677 -75.628645 -75.437589 -75.441688 -75.4616631.10 -75.654410 -75.656632 -75.675637 -75.501883 -75.505691 -75.5260031.15 -75.683662 -75.685806 -75.704813 -75.549173 -75.552701 -75.5732731.20 -75.699424 -75.701464 -75.720475 -75.582615 -75.585889 -75.6066361.25 -75.705037 -75.706960 -75.725995 -75.604984 -75.608032 -75.6288831.30 -75.703134 -75.704938 -75.724026 -75.618661 -75.621510 -75.6424141.35 -75.695795 -75.697484 -75.716657 -75.625626 -75.628297 -75.6492241.40 -75.684667 -75.686253 -75.705544 -75.627482 -75.629992 -75.6509291.50 -75.656049 -75.657494 -75.677127 -75.620627 -75.622839 -75.6437941.60 -75.625210 -75.626783 -75.646930 -75.604767 -75.606582 -75.6275611.70 -75.598549 -75.600391 -75.621163 -75.582627 -75.583782 -75.6048391.80 -75.577403 -75.579135 -75.600442 -75.557715 -75.558759 -75.5801011.90 -75.559176 -75.560657 -75.582417 -75.535582 -75.536670 -75.5584382.00 -75.543159 -75.544477 -75.566646 -75.518210 -75.519213 -75.5414792.20 -75.518133 -75.519152 -75.542142 -75.496885 -75.497636 -75.5208062.40 -75.502044 -75.502818 -75.526459 -75.487530 -75.488060 -75.5118482.60 -75.492845 -75.493427 -75.517449 -75.483723 -75.484098 -75.5082252.80 -75.487899 -75.488369 -75.512568 -75.482140 -75.482413 -75.5067033.00 -75.485347 -75.485723 -75.509925 -75.481448 -75.481702 -75.506025In Tab.2.2 the single�state NEVPT and IC-CI total energies for the X1Σ+

g are listedfor 0.90 ≤ r ≤ 1.70, where the interation with the B′1Σ+
g state an still regardedas minor. Notwithstanding, as shown in Fig.2.8.2, where the perentage error withrespet to the FCI banhmark is plotted for eah method, approahing the avoidedrossing point the single�state treatment beomes defetive. Indeed, while all theerror urves are �at up to r ≃ 1.4 Å, the errors rapidly rise at longer distanes.At r = 1.7 Å the deviation from the FCI values amounts about to 22-23% (16-18 kal/mol) at the seond order level and to 10-11% (8-9 kal/mol) at the third



40 Chapter 2. N-eletron Valene State Perturbation Theoryorder and IC-CI level. Apart from the sensible improvement attained going to thethird order orretion to the energy, the most aurate desription is obtained atIC-CI level when the partially ontrated IC funtions are employed. The relativeperentage error in this ase is ≃ 2% at short distanes and remains slightly lessthan 10% at r = 1.7 Å.Table 2.2: NEVPT2, NEVPT3 and IC-CI absolute energies (Hartree) for the
X1Σ+

g state. The bond distane, r, in Angstrom.r SC-PT2 PC-PT2 SC-PT3 PC-PT3 SC-IC-CI PC-IC-CI0.90 -75.297081 -75.299068 -75.311196 -75.313399 -75.312439 -75.3152170.95 -75.437028 -75.439017 -75.451120 -75.453322 -75.452245 -75.4550931.00 -75.537684 -75.539638 -75.551769 -75.553914 -75.552795 -75.5556481.05 -75.608046 -75.609935 -75.622131 -75.624174 -75.623075 -75.6258781.10 -75.655131 -75.656936 -75.669217 -75.671126 -75.670091 -75.6728071.15 -75.684415 -75.686127 -75.698500 -75.700254 -75.699311 -75.7019191.20 -75.700177 -75.701792 -75.714253 -75.715847 -75.715033 -75.7175021.25 -75.705769 -75.707290 -75.719835 -75.721268 -75.720538 -75.7229161.30 -75.703826 -75.705256 -75.717885 -75.719157 -75.718543 -75.7208011.35 -75.696422 -75.697776 -75.710476 -75.711597 -75.711080 -75.7132361.40 -75.685189 -75.686475 -75.699246 -75.700227 -75.699799 -75.7018601.45 -75.671413 -75.672644 -75.685483 -75.686336 -75.685988 -75.6879621.50 -75.656105 -75.657292 -75.670201 -75.670942 -75.670664 -75.6725571.55 -75.640055 -75.641214 -75.654199 -75.654842 -75.654616 -75.6564401.60 -75.623880 -75.625027 -75.638106 -75.638661 -75.638475 -75.6402351.65 -75.608072 -75.609222 -75.622421 -75.622899 -75.622772 -75.6244421.70 -75.593056 -75.594225 -75.607585 -75.607996 -75.607849 -75.609495The SS-NEVPT and IC-CI PECs (strongly ontrated on the top and partiallyontrated on the bottom) are plotted along with the FCI ones in Fig.2.8.2. Thelose-up insets in Fig.2.8.2 make the small di�erenes among the various levels ofapproximation appreiable.Finally, using a simple polynomial interpolation around the equilibrium distane,it has been possible to ompute the spetrosopi onstants reported in Tab.2.3,where the orresponding experimental values [57℄ and some FCI results [58℄ arealso listed. As is apparent, improving the level of approximation, going from theCASSCF to the partially ontrated IC-CI, progressively improves the auray ofthe omputed re. But, the error still remains ≃ 0.021 Å for the PC-IC-CI methods. Agood agreement with the experimental values is attained for the harmoni vibrationalonstant, ωe, and for the rotational onstant, Be; larger disrepanies are, instead,obtained for the anharmoniity onstant ωexe.
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Figure 2.3: NEVPT and IC-CI errors (%) in the total energies with respet to the FCIvalues [50℄ for the X1Σ+
g state of C2.Table 2.3: Spetosopi onstants for X1Σ+

g state of C2. Energies in Hartree,re in Angstrom and the other parameters in m−1.Method Ue re ωe ωexe BeCASSCF -75.617539 1.2676 1868 13.0 1.747SC-NEVPT2 -75.706137 1.2650 1860 14.9 1.754PC-NEVPT2 -75.707627 1.2643 1860 15.3 1.756SC-NEVPT3 -75.720198 1.2649 1860 14.9 1.755PC-NEVPT3 -75.721578 1.2637 1860 15.7 1.758SC-IC-CI -75.720871 1.2642 1858 14.7 1.756PC-IC-CI -75.723224 1.2636 1859 15.7 1.758FCI/6-31G∗∗ [58℄ -75.726127 1.2596 1859 13.2 1.771FCI/-pVDZ [58℄ -75.729852 1.2727 1813 13.5 1.734Experiment [57℄ 1.2425 1855 13.3 1.820
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g state. All the alulationshave been arried out with a standard 6 − 31G∗ basis set.
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Chapter 3The hetero�ylopentadienesPyrrole, Furan and Thiophene (Fig. 3.1) are 1�hetero�2,4�ylopentadienes, on-sisting of a butadiene unit linked via an �hetero�atom bridge� (N, O and S respe-tively) (Fig. 3.1).

Figure 3.1: Moleular strutures of Pyrrole, Furan and ThiopheneThe experimental and theoretial investigation of the eletroni absorption spe-tra of the �ve�membered six π�eletrons ompounds has reeived a partiular at-tention sine the beginning of the last entury. The ongoing interest in their phys-ial hemistry properties and spetrosopial features is ertainly motivated by theprominent r�le they play in the biologial and pharmaeutial hemistry, as well as inthe modern material siene (preparation of polymeri and o�polymeri monolayersfor data�storage appliations [59, 60℄). However, despite the large number of jointexperimental and theoretial e�orts, a detailed interpretation of the absorption spe-tra of these moleules still remains to be reahed and, by now, they are regarded asprototypi examples for the theoretial studies of exited states. The VUV spetraof these systems show a omplex pro�le beause of the appearane of rih series ofRydberg transitions, that overlap the valene bands and make the identi�ation ofthe states quite a di�ult task.



46 Chapter 3. The hetero�ylopentadienesAfter a brief introdution addressing the qualitative interpretation of the valenestates (setion 3.1), the problem of the Rydberg states and of their mixing withthe valene transitions will be disussed (setion 3.2). The omputational strategyadopted will be then presented in setion 5.4. Finally, the results obtained for Pyr-role, Furan and Thiophene will be analyzed in setions 3.4, 3.5 and 3.6 respetively.3.1 Ioni valene statesPyrrole, Furan and Thiophene belong to the C2v point group and, following Mul-liken's reommendation, the moleules have been plaed in the yz plane with the zaxis being the C2 axis. Thus, the �ve valene π orbitals belong to the B1 and A2irreps and are in the order of energy 1b1, 2b2, 1a2, 3b1 and 2a2 (2b1, 3b2, 1a2, 4b1and 2a2 for Thiophene). That is, at the single Slater determinant level, the eletronion�guration is
• (σ�ore)(1b1)2(2b1)2(1a2)2 (Pyrrole and Furan)
• (σ�ore)(1b1)2(2b1)2(3b1)2(1a2)2 (Thiophene)where the σ�ore is omposed of 30 eletrons in the former ase and of 36 eletronsin the latter.The two highest�energy π MOs, 2b1 and 1a2 for Pyrrole and Furan and 3b1 and 1a2for Thiophene, are essentially deloalized over the whole moleular skeleton, whereasthe lowest�energy one, 1b1, is loalized on the hetero�atom. It follows that the fourlowest�energy valene π → π∗ states are two states of A1 symmetry and two statesof B2 symmetry.A qualitative interpretation of the nature of the π → π∗ valene states of the�ve�membered hetero�ylopentadienes an be obtained by referring to the PPPmodel [61, 62℄ for the alternant hydroarbons. We reall that a hydroarbon islassi�ed as alternant if its C atoms an be partitioned into two ategories, in suh away that two adjaent atoms belong always to di�erent ategories (the linear polyenesas well as the even�membered yli hydroarbons are alternant systems).For these systems the PPP Hamiltonian is invariant under partile�hole permutationand it an be proved that the energies of the oupied and virtual orbitals (Fig. 3.2)are symmetri with respet to the LUMO-HOMO energy di�erene [63, 64℄.Let us indiate with . . . , 3, 2, 1 the oupied MOs, in inreasing order of energy,and with 1′, 2′, 3′, . . . the unoupied ones (Fig. 3.2), where the orbitals i and i′ aretermed a onjugated pair. It follows that the two exitations i → j′ and j → i′ aredegenerate and result in a pair of minus, �−�, and plus, �+�, states. The former statehas lower energy and a neutral harater, whereas the latter plus state is dominated
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Figure 3.2: Shemati representation of the energies of the oupied and virtual orbitals ofan alternant hydroarbon.by ioni on�gurations. The HOMO→LUMO (1 → 1′) exitation gives rise to anioni plus state as well. Then, the ground state and the doubly�exited on�gurations
(i)2 → (j′)2 also are lassi�ed as minus states. Finally, some simple rules, based onthe pairing properties of suh systems, predit that only the exitations to plus stateshave osillator strength di�erent from zero, being, instead, forbidden the transitionfrom a minus state (the ground state) to another minus state.Even if the pairing properties are no longer satis�ed in the �ve�membered six�πeletrons ompounds due to the presene of the hetero�atom, it is still possible toreognize for these moleules a spetrosopial behavior similar to that of alternanthydroarbons. Therefore, the pair of 1A1 states are a ovalent minus state (1A−

1 ) andan ioni plus state (1A+
1 ), arising respetively from the symmetri and antisymmetriombination of the two quasi�degenerate on�gurations 1a2 → 2a2 and 2b1 → 3b1;the HOMO→LUMO transition is also a ioni plus state (1B+

2 ). It is worthwhile tostress, however, that, due to the breakdown of the alternant symmetry in the �ve�membered ring ompounds, the exitation to the 1A−
1 state is not stritly forbidden(it appears with low intensity around 6 eV) and the doubly�exited on�gurations((HOMO)2→(LUMO)2) an interat with both 1A−

1 and 1A+
1 states.The theoretial desription of ioni valene π → π∗ in aromati moleules hasbeen shown to be an extremely di�ult task, even for the most re�ned quantummehanis methodologies. As disussed by Serrano-Andrés et al. [65℄, it requiresthe use of quite large basis sets, to properly desribe the di�use nature of someexited states, as well as of highly�orrelated methods, in order to take into aountthe various and di�erential e�ets of the dynamial orrelation. In partiular, theinlusion of the so-alled �dynamial σ polarization� (above all its σ−π omponent),i.e. the response of the σ framework to the hange of the harge distribution in theioni states, is thought to be ruial to get an aurate treatment of these states.This issue has been deeply investigated in a reent work [44℄, where the ioni V stateof ethene is taken as a prototype for the study of the ioni π → π∗ states of aromati



48 Chapter 3. The hetero�ylopentadienesand hetero�aromati moleules. Through a Valene Bond (VB) deomposition of thewavefuntion the nature of the σ polarization is analyzed and an additional (seondorder) physial e�et is introdued: the spatial ontration of the π orbitals as aonsequene of the harge displaement due to the polarization of the σ skeleton.In fat, as pointed out by the author [44℄, in the ioni forms, the e�et of the σpolarization onsists in moving the harge away from the atom bearing the two πeletrons. Suh harge redution results in a ontration of the π orbitals, that, ifnot properly taken into aount, signi�antly ompromises the quality of the results.Clearly a �CASSCF plus perturbation� sheme, with the moleular orbitals optimizedat the zero order level, without onsidering the e�et of the dynamial polarization,is unable to provide good quality results. The strategy adopted in Ref. [44℄ toadequately treat the π ontration is based on an optimization of the MOs in aRASSCF [66℄ alulation with an appropriate hoie of the RAS spaes in orderto inlude, at the zero order level, all the exitations desribing the dynamial σpolarization [44℄. The author showed that, if the orbitals are properly optimized,aurate results an be obtained at the pertubative level, even using a minimalative spae.As we shall widely disuss later, also in these hetero�aromati ring ompounds thedesription of the two ioni valene states (1A+
1 and 1B+

2 ) poses partiular problems,partially alleviated by the inlusion in the ative spae of π∗ orbitals, whih allowsfor a partial ontation of the π orbitals through the interation with higher energy
π → π∗ states. However, following the strategy suggested by Angeli [44℄, the e�et ofa full RASSCF optimization of the orbitals will be the subjet of future investigations.3.2 Valene�Rydberg interationA well�known problem in the spetrosopy of small and medium�sized moleules isthe appearene of low�lying Rydberg exited states, whih due to the overlap withvalene transitions, ompliate the interpretation of the eletroni spetra. We reallthat the Rydberg states arise from the promotion of one eletron to a very di�useorbital, haraterized by an high quantum number n. Conventionally, for moleulesontaining atoms belonging to the �rst and seond rows of the periodi system, onlythe orbitals with n ≥ 3 are lassi�ed as Rydberg orbitals. Note that in the labellingof the Rydberg states of Thiophene, for analogy with Pyrrole and Furan, we haveadopted the onvention of hoosing 3 as the lowest value of n, instead of 4, thatwould be the appropriate hoie for a moleule, ontaining atoms belonging to thethird row (see Ref. [67℄).The Rydberg states are of ruial importane in the haraterization of the spe-trosopy and photohemistry of small moleules, sine they usually appear in the



Computational approah 3.3 49same energy region of the prinipal valene π → π∗ transitions. Therefore, an a-urate theoretial study on the spetrosopy of small� and medium�sized moleulesrequires a simultaneous treatment of the valene and, at least, of the lowest�energyRydberg states. This poses partiular di�ulties when a MRPT approah is em-ployed. In fat, the Rydberg states, due to their �di�use� nature, with the exitedeletron far from the moleular frame, are less sensitive to the dynamial orreletione�ets than the valene exited states. Therefore, at CASSCF level, Rydberg stateslie at low energy, lose to the valene states and a mixing among the wavefantionsmay our. When at CASSCF level suh valene�Rydberg mixing takes plae, theappliation of a single�state perturbative orretion, leaving the oe�ients of thezero order wavefuntion unhanged, is unreliable and a quasi�degenerate perturba-tive approah (setion 2.6) should be applied. On the other hand, it is also possiblethat two or more states, whih are not mixed in the zero order desription, beomenear degenerate after the perturbative orretion in suh a way that a mixing is liableto happen.In the ase of the hetero�ylopentadienes, the exitation from the HOMO (1a2)into di�use s, p and d orbitals originates the R�series states, whereas the exitationout of the SHOMO (2b1 for Pyrrole and Furan and 3b1 for Thiophene) gives rise tothe so�alled R′�series of Rydberg states. Sine the energy di�erenes between the�rst (IP1) and seond (IP2) are around 1.0-1.5 eV, a rih struture of Rydberg bandsis expeted to appear in the UV spetra. As disussed in the following, the e�ets ofthe valene�Rydberg mixing were found to be signi�ant for Furan and Thiopheneand have been suitably treated at QD�NEVPT2 level.3.3 Computational approahFor the omputation of the vertial transition energies the experimental ground stategeometries were used [68�70℄. It is worthwhile to stress that the �theoretial vertial�transition energy is omputed as the di�erene between the energy of the groundstate at its equilibrium geometry (the minimum of the Potential Energy Surfae)and that of the exited state again at the ground state equilibrium geometry; thisvalue is usually ompared with the peak of the experimental absorption band. How-ever, as argued by Davidson and Jarzeki [71℄, this assumption holds, within theBorn�Oppenheimer and Frank�Condon approximations (Fig. 3.3), provided thatthe vibroni exited state is high enough. But, as on�rmed by the frequently ob-served asymmetry of the absorption bands, this ould not be the ase for small andmedium size moleules, with exited states only slightly distorted. As a onsequene,the omparison between the experimental maximum of the band and the omputedvertial exitation energy should always be regarded with are.
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Figure 3.3: Eletroni vertial transitions.All the alulations were arried out with a ontrated ANO-L basis set [72℄adopting the ontration sheme S[5s4p2d℄, C,N,O[4s3p1d℄ and H[2s1p℄. Note thatthis is the same valene basis set employed in the �rst CASPT2 work by Serrano-Andrés et al. [73℄. In order to desribe the Rydberg moleular orbitals, the abovementioned valene basis set was augmented with moleule�entered [74℄ di�use fun-tions. These basis funtions were obtained by ontration of a set of 8s8p8d gaussianprimitives, whose exponents were optimized as desribed by Kaufmann et al. [75℄(Tab. 3.1). The ontration oe�ients, reported in Tab. 3.1, were omputed fol-lowing the methodology developed by Roos et al. [74℄ with a ontration sheme[1s1p1d℄, thus on�ning ourselves to the alulation of 3s, 3p and 3d Rydberg states.As already mentioned, Pyrrole, Furan and Thiophene belong to the C2v pointgroup, and the moleules have been plaed in the yz plane with the z axis as the C2symmetry axis. The lassi�ation in the C2v point group of the Rydberg orbitals isreported in Tab. 3.2.The moleular orbitals were obtained from average CASSCF alulations using theMOLCAS5.4 pakage [76℄, averaging over all the states of interest for a given sym-metry. Finally, the �ve 1s orbitals were kept unorrelated during the subsequentseond and third order NEVPT treatment.



Computational approah 3.3 51exponent ontration oe�ientsPyrrole Furan Thiophene1s 0.0246239324 0.3491 0.3219 0.42750.0112533427 -2.3860 -2.2167 -2.28810.0058583805 2.9273 2.5387 2.51270.0033459739 -4.4334 -3.8427 -3.83230.0020484225 5.2412 4.5278 4.51080.0013236424 -4.4946 -3.8760 -3.85980.0008930958 2.4185 2.0836 2.07460.0006243129 -0.5996 -0.5163 -0.51401p 0.0423352810 0.0639 0.0764 0.16680.0192542060 -0.7939 -0.7924 -0.52500.0099882106 0.0798 0.0453 -0.27210.0056893607 -0.8192 -0.7636 -0.58770.0034756797 0.8973 0.8328 0.45750.0022420590 -0.8142 -0.7546 -0.42940.0015106399 0.4682 0.4337 0.24640.0010547527 -0.1255 -0.1162 -0.06601d 0.0605402013 0.0079 0.0115 0.11900.0274456919 -0.2356 -0.2534 0.33150.0142043987 -0.2935 -0.3072 0.27790.0080765930 -0.4987 -0.4892 0.39670.0049271863 0.0186 0.0370 -0.04640.0031748110 -0.1878 -0.1860 0.15980.0021371230 0.0991 0.1011 -0.08700.0014910155 -0.0292 -0.0297 0.0255Table 3.1: Exponents [75℄ and ontration oe�ients (8s8p8d) → [1s1p1d] for the Rydbergbasis set3.3.1 Ative SpaesPyrrole and FuranThe study was addressed to the omputation of the three lowest�energy valene
π → π∗ states (1B+

2 , 1A−
1 and 1A+

1 ) as well as the six π → π�Rydberg and π → σ�Rydberg states, with n = 3. Therefore, sine no exitations from σ orbitals were



52 Chapter 3. The hetero�ylopentadienesSymmetry Orbitalsa1 ns, npz, ndz2 , ndx2−y2b1 npx, ndxzb2 npy, ndyza2 ndxyTable 3.2: Classi�ation of the Rydberg orbitals into C2v point grouponsidered, only the six π�eletrons were ative and two di�erent types of ativespae were used.Wee shall refer to every ative spae with a sequene of four indies, where eahindex indiates the number of orbitals for a given symmetry speies (a1, b1, b2, a2 inorder).For the alulations of the π→ σ∗ states (B1 and A2) one need not inlude in theative spae π�type Rydberg orbitals, while for the desription of π→π∗ states (A1and B2) only π�type moleular orbitals (valene and Rydberg) are neessary. So,for the π→π∗ states the smallest ative spae onsists of the �ve (0302) valene πorbitals and three (0201) Rydberg�type orbitals (0503), whereas for the π→σ∗ statesit is omposed of the �ve valene π orbitals and six (4020) Rydberg�type orbitals(4322) (see Tab. 3.2). However, in order to estimate the e�ets of the enlargementof the ative spae with π virtual orbitals, we have also arried out some alulationswith eleven (0704), thirteen (0805) and �fteen (0906) ative orbitals. We shall disussin detail the e�ets of the ative spae size for the Pyrrole moleule, presenting theresults omputed with all the above indiated ative spaes. Otherwise, sine wefound a similar behavior for the exited states of Furan, in setion 3.5 we shalljust report the CAS(0906) and CAS(0805) results. A summary of all the ativespaes used and the orresponding number of states inluded in the average CASSCFalulations is given in Tab. 3.3.Table 3.3: Ative spaes and number of states used in the CASSCF alulations.Nature Symmetry Ative spae Number of states
π→π∗

A1 (0503), (0704), (0805), (0906) 6

B2 4

π→σ∗
B1 (4322) 6

A2 6



Pyrrole 3.4 53ThiopheneFor the Thiophene moleule, we foused on the omputation of the vertial exitationenergy of the four low�lying π → π∗ valene states: the two 1B2 states mainlydominated by the 1a2 → 4b1 and 3b1 → 2a2 exitations respetively and the two
1A1 states arising from the antisymmetri (1A1(V )) and symmetri (1A1(V

′)) linearombination of the two 1a2 → 2a2 and 3b1 → 4b1 on�gurations1. Moreover, sinethe experimental ionization potential of the 11a1 lone pair amounts to 12.1 eV [77℄,two n→ π∗ valene states (A2 and B1 symmetries) are expeted near 9-10 eV. So, forthe alulations of π → π∗, n → π∗ and π → σ∗ exited states, the six π�eletronsand the two lone pair eletrons were ative in all the alulations (the 1b1 π orbital,loalized on the sulfur atom, was inluded into the inative ore). Two di�erenttypes of ative spaes were employed: one to ompute the π → π∗ and n→ π∗ statesand one for the π → σ∗ states. For the alulations of π�type exited states, theminimum ative spae should inlude the �ve π valene orbitals, the lone pair orbitaland the three π Rydberg orbitals, resulting in a spae (1503). Nevertheless, also forThiophene, the use of suh ative spae has been proved to be inadequate to get asatisfatory desription of the π → π∗ valene states; therefore, here we shall presentonly the results obtained with a larger spae, omposed of 12 ative orbitals (1704)and 8 ative eletrons. Then, for the alulations of the π→σ∗ states one need notinlude in the ative spae π�type Rydberg orbitals (b1 and a2 symmetries), and thesmallest ative spae is a (5322) spae, omposed of the lone pair orbital, the �ve πvalene orbitals and of the six Rydberg σ�type orbitals. However, as we shall disusslater (setion 3.6.1), in order to treat the e�ets of the mixing ourring among alow�energy π → σ∗ valene state and some 3p and 3d Rydberg states, the use ofan extended ative spae, inluding one more orbital of b2 symmetry (5332), wasneessary. The exitation energy of eah state was determined with respet to theorresponding ground state 1A1, omputed for both the 1704 and 5332 spaes, takinginto aount that, while a state�averaged CASSCF alulation was performed in theformer ase, a single�root optimization was arried out in the latter.3.4 Pyrrole3.4.1 The UV absorption spetrumThe eletroni absorption spetrum of Pyrrole, in the region between ≃ 5 and ≃ 8 eV,has been widely investigated by both theoretial [73,78�87℄ and experimental [77,78,1Note that for the the valene states of Thiophene, following the previous studies, we haveadopted a di�erent notation with respet to the usual minus and plus nomenlature used for Furanand Pyrrole.



54 Chapter 3. The hetero�ylopentadienes88�96℄ studies. However, in spite of suh a high number of studies an unambiguousassignment of the main spetrum features still remains to be reahed.The spetrum pro�le shows two regions of intense absorption, loated around 6 and7.5 eV respetively; another weak entral band appears near 7 eV. Aording to thetraditional experimental interpretation [90,92,95℄, the intensity of the lowest-energyband an be asribed to a valene π → π∗ state (1B+
2 ) while the seond intenseabsorption region is attributed to the presene of high�lying valene states, like thestrong 1A+

1 transition. Another low�energy π → π∗ state (1A−
1 ) is expeted to beloated in the �rst band system but, beause of its weak intensity, an experimentalassignment is not available in the literature.Overlaid on these valene bands are two sets of Rydberg series, termed R� andR′�series. For a more omprehensive historial review see Ref. [73, 79℄. Here wejust remark that most of the disrepanies among the previous ab initio studiesmainly onern the interpretation of the lowest�energy band. The issue is whetherthe 1B+

2 valene state belongs to the �rst absorption region or not. CASPT2 studiespublished �rst by Serrano-Andrés et al. [73℄ and then by Roos et al. [79℄, in agreementwith the traditional interpretation, loate this valene vertial transition at 6.00 and5.87 eV respetively. However, almost all the subsequent ab initio investigations,starting from the multireferene Møller-Plesset (MRMP) alulations by Hashimotoet al. [87℄ and inluding the sophistiated oupled luster study by Christiansen etal. [83℄, yielded results signi�antly higher (0.5-0.7 eV) than those obtained in theCASPT2 works. As pointed out by Roos et al. [79℄, some experimental evideneis onsistent with the CASPT2 attribution of the valene state 1B+
2 to the lowest�energy absorption region. This band is observed both in the vapor and ondensedphases with a maximum loated at 5.96 [97℄ and 5.90 eV [93℄ respetively. This peakan also be found, plaed at 6.0 eV [93℄, in the rystal spetrum. Sine Rydbergstates are thought to be less important in ondensed phase, it is most unlikely thatthis band should arise solely from pure Rydberg transitions.On the other hand, a better agreement is ahieved among the various theoretialstudies for the transition energies of Rydberg states, whih are generally less sensitiveto the dynamial orrelation e�ets.Anyway, it is important to keep in mind that, as shown by Werner in a reentpaper [85℄, the valene exited states have non�planar equilibrium strutures, sothat a onsiderable geometry relaxation is expeted. A study involving only theplanar strutures therefore tends to underestimate these relaxation e�ets. Thedi�ult handling of the Rydberg�valene mixing, that may oasionally our in thealulations, ould be another soure for suh disrepanies.



Pyrrole 3.4 553.4.2 The singlet valene statesAs is expeted on the basis of the onsiderations reported in setion 3.1 aboutthe spetrosopial behavior of the �ve�membered ring ompounds, both the 1A1states have a multireferene nature (symmetri and antisymmetri ombination ofthe 1a2 → 2a2 and 2b1 → 3b1 on�gurations) and a small fration (more onsistentin the minus state) of the doubly exited on�guration (1a2)
2 → (3b1)

2 is expetedto be present.As is apparent from the values in Tab. 3.12, in the alulations with the small-est ative spae (0503) a di�erent behavior in the treatment of the three valenestates an be reognized: the desription of the ovalent state appears quite oher-ent, whereas onsiderable variations are evident in the NEVPT results for the twoioni states. In partiular, for the plus states, the SC-NEVPT2 and PC-NEVPT2alulations provided exitation energies signi�antly dissimilar, revealing a de�ientCASSCF desription. The di�erene between the two NEVPT2 results amounts to0.36 eV for the 1A+
1 state and 0.23 eV for the 1B+

2 state and the sizeable inrease ofthe exitation energies produed by the third order orretion is a further indiationof an improper referene wavefuntion. Also, for these ioni states, it is interestingto notie that at the seond order level a large redution of the CASSCF transitionenergies is found (1.28 eV for the 1B+
2 state and 0.72 eV for the 1A+

1 state).In order to improve the CASSCF funtion, alulations using ative spaes ofinreasing size were performed. Atually, we have also made use of ative spaesinluding oupied and virtual σ orbitals, but no remarkable improvements in theperturbative trend were observed, therefore these results are not reported here. Onthe ontrary, the inlusion of π virtual orbitals into the ative spae yielded bet-ter results, as shown by the values in Tab. 3.12. As an be seen, the extension ofthe CAS spae produes a pronouned lowering of the CASSCF exitation energies,amounting to ≃ 0.7 eV in the ase of the 1B+
2 state and ≃ 0.9 eV for the 1A+

1 state.An improved onsisteny among the NEVPT values was onsequently ahieved usingthe (0704), (0805) and (0906) CAS spaes, but it must be stressed that the latterspaes (0805 and 0906) do not bring substantial improvements with respet to the(0704) one.With the (0704) spae for instane, the disrepanies between the SC-NEVPT2 andPC-NEVPT2 exitation energies were redued to 0.12 eV for the 1A+
1 state and 0.15eV for the 1B+

2 state. As a on�rmation of the improvement obtained in the CASSCFdesription, the third order orretion brought about just a small inrease in the tran-sition energies with respet to those alulated at PC-NEVPT2 level.But, despite the improvement yielded by the extension of the CAS spae, for the



56 Chapter 3. The hetero�ylopentadienesioni states the NEVPT results turn out signi�antly higher than those of the othertheoretial methods.Our largest alulation (SC-NEVPT3 with 0906), for istane, loates the vertialtransition to the 1B+
2 state at 7.05 eV, where a value of 5.87 eV is obtained by Rooset al. [79℄, of 6.63 eV (CC3) by Christiansen et al [83℄ and of 6.51 eV by Hashimotoet al [87℄.Table 3.4: Vertial exitation energies (eV) for the π→ π∗ valene states ofPyrrole. Comparison between the NEVPT and previous theoretial results.Method 1A−

1 (π→π∗) 1B+
2 (π→π∗) 1A+

1 (π→π∗)Ative spae (0503)CASSCF 6.55 7.94 9.68SC-NEVPT2 6.85 6.66 8.96PC-NEVPT2 6.78 6.43 8.62SC-NEVPT3 6.68 7.07 9.14Ative spae (0704)CASSCF 6.33 7.27 8.71SC-NEVPT2 6.66 7.22 8.54PC-NEVPT2 6.62 7.07 8.42SC-NEVPT3 6.51 7.24 8.50Ative spae (0805)CASSCF 6.37 7.23 8.76SC-NEVPT2 6.57 7.11 8.43PC-NEVPT2 6.53 6.96 8.30SC-NEVPT3 6.51 7.12 8.47Ative spae (0906)CASSCF 6.37 7.23 8.82SC-NEVPT2 6.63 7.07 8.44PC-NEVPT2 6.59 6.95 8.29SC-NEVPT3 6.56 7.05 8.48previous worksCASPT2a[73℄/ [79℄ 5.92/5.82 6.00/5.87 7.46MRMP/MCQD [87℄ 5.98/6.01 6.51/6.51 7.48/7.51CC3 [83℄b 6.37 6.63 8.07CCSD(R) [83℄b 6.43 6.63 8.12CCSD [83℄ 6.53 6.61 8.00MRCI [86℄ 6.11 6.73 8.19SAC-CI [81℄ 6.41 6.48 7.88ADC(2) [80℄ 6.66 6.71 7.75DFT (B97-2) [86℄ 6.61 6.55a MS-CASPT2 alulations in Ref. [79℄b Experimental equilibrium geometry and basis set as Ref. [73℄ aug--pVTZ basis set with 7s7p7d moleule-entered funtions



Pyrrole 3.4 57In the more reent CASPT2 study [79℄ the authors found a strong interationbetween this valene state and the Rydberg 1a23px so that the multi�state approaheven reversed their positions. To investigate the e�ets of the valene�Rydberginteration on the states of B2 symmetry, we have also applied a quasi�degenerateseond order orretion (QD-NEVPT2) [23℄, but, as shown in Tab. 3.5, we didnot �nd onsiderable hanges in the exitation energies. Indeed, in the NEVPTalulations, the sizable energy di�erene (slightly lower than 1 eV) between the 1B+
2and 1a2→3px state does not allow any mixing between the wavefuntions.Table 3.5: QD-NEVPT2 verial transition energies (eV) for the states of B2 symmetryof Pyrrole. Ative spae (0704) Ative spae (0805)States SC-QDPT2 PC-QDPT2 SC-QDPT2 PC-QDPT2

11B2(1a2→3px) 6.15 6.09 6.09 6.02
21B2(1a2→3dxz) 6.86 6.80 6.80 6.72
31B2(2b1→3dxy) 7.89 7.85 7.82 7.76
41B+

2 (π→π∗) 7.26 7.15 7.14 7.04Similar remarks an be made about the 1A+
1 state, whose multireferene nature,in addition to its ioni harater, makes it a di�ult task for all the ab initio meth-ods. The NEVPT exitation energies are signi�antly higher (roughly 1 eV) thanthe CASPT2 values [73, 79℄, but a better agreement is otherwise attained with theoupled luster results [83℄. With the (0704), (0805) and (0906) spaes the di�er-ene between NEVPT values and those alulated by Christiansen et al. [83℄ neverexeeds 0.5 eV, as was the ase for the 1B+

2 state.Finally some interesting remarks an be made about the ovalent valene state
1A−

1 , whose CASSCF desription appears satisfatory even with (0503) spae. Asis evident, very similar results were obtained from the two di�erent seond orderalulations: with all the ative spaes the di�erene between SC-NEVPT2 and PC-NEVPT2 is always lower than 0.1 eV. The third order orretion brought just a smallredution of the transition energies, amounting roughly to 0.1 eV in the (0503) and(0704) spae, to 0.02 eV in (0805) and, �nally, to 0.05 eV in the (0906) spae.Overall, our results for this state agree with the previous ab initio alulations byTro�mov and Shirmer [80℄, Wan et al. [81℄ and Christiansen et al. [83℄. The bestNEVPT3 values (0704, 0805, 0906 spaes) and the CC3 vertial transition energydi�er by ∼ 0.2 eV at most. Otherwise, our perturbative results are again signi�antlyhigher (∼ 0.7 eV) than those alulated in the CASPT2 studies by Serrano-Andrés



58 Chapter 3. The hetero�ylopentadieneset al. [73℄ and Roos et al. [79℄.3.4.3 The π�type Rydberg statesTable 3.6: Vertial exitation energies (eV) for the π�type Rydberg states of Pyrrole.Comparison between the NEVPT and previous theoretial results.
21A1 31A1 51A1 11B2 21B2 31B2Method 1a2→3dxy 2b1→3px 2b1→3dxz 1a2→3px 1a2→3dxz 2b1→3dxyAtive spae (0503)SC-NEVPT2 6.95 7.19 7.69 6.24 6.95 7.96PC-NEVPT2 6.96 7.19 7.65 6.26 6.97 7.98SC-NEVPT3 6.62 6.83 7.39 5.90 6.61 7.58Ative spae (0704)SC-NEVPT2 6.82 7.08 7.80 6.17 6.88 7.89PC-NEVPT2 6.83 7.09 7.81 6.13 6.85 7.84SC-NEVPT3 6.63 6.81 7.52 5.92 6.64 7.61Ative spae (0805)SC-NEVPT2 6.78 6.97 7.72 6.10 6.82 7.81PC-NEVPT2 6.77 6.96 7.71 6.05 6.77 7.76SC-NEVPT3 6.66 6.82 7.56 5.94 6.68 7.64Ative spae (0906)SC-NEVPT2 6.75 6.92 7.71 6.08 6.80 7.78PC-NEVPT2 6.74 6.90 7.70 6.06 6.78 7.75SC-NEVPT3 6.67 6.78 7.55 5.98 6.62 7.59previous worksCASPT2a[73℄/ [79℄ 6.54 6.65 7.36 5.78/6.09 6.53 7.43MRMP/MCQD [87℄ 6.38/6.37 6.62/6.64 7.20/7.20 5.87/5.88 6.61/6.62 7.36/7.39CC3 [83℄b 6.77 6.94 7.60 5.98 6.91 7.66CCSDR(3) [83℄b 6.78 6.95 7.62 5.97 6.89 7.67CCSD [83℄ 6.73 6.89 7.53 5.82 6.86 7.59MRCI [86℄ 6.51 6.67 7.35 5.86 6.57 7.37SAC-CI [81℄ 6.64 6.86 7.49 5.88 6.76 7.55ADC(2) [80℄ 6.54 6.43 7.23 5.86 6.48 7.26DFT (B97-2) [86℄ 6.86 6.05 6.90a MS-CASPT2 alulations in Ref. [79℄b Experimental equilibrium geometry and basis set as Ref. [73℄ aug--pVTZ basis set with 7s7p7d moleule�entered funtionsAs an be seen in Tab. 3.6, the NEVPT results of the pure Rydberg states showquite a oherent trend. Sine no signi�ant valene�Rydberg mixing ourred, thezero order desription was not problemati and even the smallest ative spae (0503)ould provide good results. Contrary to what we have previously seen for the va-lene states, the di�erenes between the values of the two seond order variants are



Pyrrole 3.4 59negligible (the largest deviation amounts to 0.05 eV). The progressive extension ofthe CAS spae gave rise to a lowering of the seond order exitation energies and toa orresponding attenuation of the third order orretion. With the exeption of the
2b1 → 3dxz state in the (0503) alulation, where probably a small Rydberg�valenemixing takes plae, the NEVPT3 results, using di�erent ative spaes, for a giventransition are all very similar, with di�erenes not exeeding 0.07 eV. Furthermore,a remarkable agreement is obtained between NEVPT3 and the best oupled�lusterresults (CC3), with the di�erene not exeeding 0.23 eV (21B2 state). A weak in-teration with the π → π∗ valene state (1B+

2 ) might be the reason for this smalldisrepany.Finally, a good aordane is obtained between the SC-NEVPT3 and the theCASPT2 results. Nevertheless, the NEVPT2 exitation energies for the six π Ry-dberg states are, on average, higher (≤ 0.4 eV) than the CASPT2 ones of Serrano-Andrés et al. [73℄, MRCI by Palmer et al. [86℄ and SAC-CI by Wan et al. [81℄3.4.4 The σ�type Rydberg statesTable 3.7: Vertial exitation energies (eV) for the 1B1 Rydberg states of Pyrrole. Com-parison between the NEVPT and previous theoretial results.
11B1 21B1 31B1 41B1 51B1 61B1Method 1a2→3py 2b1→3s 1a2→3dyz 2b1→3pz 2b1→3da1

2b1→3da1SC-NEVPT2 6.19 6.40 6.79 7.07 7.76 7.86PC-NEVPT2 6.21 6.42 6.81 7.09 7.79 7.89SC-NEVPT3 5.84 5.99 6.47 6.67 7.32 7.41previous worksCASPT2a[73℄/ [79℄ 5.85/5.87 5.97 6.40 6.62 7.32 7.39MRMP/MCQD [87℄ 5.81/5.80 5.70/5.75 6.45/6.44 6.48/6.50 7.14/7.13 7.23/7.21CC3 [83℄b 5.85 5.99 6.47 6.72 7.31 7.37CCSDR(3) [83℄b 5.86 6.01 6.47 6.74 7.32 7.39CCSD [83℄ 5.82 5.97 6.43 6.67 7.33 7.45MRCI [86℄ 5.84 6.34 6.45 6.89 7,30 7.48DFT (B97-2) [86℄ 6.00 6.11 6.61SAC-CI [81℄ 5.80 6.05 6.39 6.68 7.34 7.26ADC(2) [80℄ 5.69 5.59 6.20 7.00 6.88a MS-CASPT2 alulations in Ref. [79℄b Experimental equilibrium geometry and basis set as in Ref. [73℄ aug--pVTZ basis set with 7s7p7d moleule�entered funtionsThe perturbative results, obtained with the (4322) spae, show an extremelyonsistent trend (Tabs. 3.7 and 3.8): the di�erene between the SC-NEVPT2 andPC-NEVPT2 values is indeed never larger than 0.03 eV and, moreover, the thirdorder orretion leads to a regular derease in the transition energies, amounting



60 Chapter 3. The hetero�ylopentadienesroughly to 0.4 eV. Sine no low�energy valene states were present in the averageCASSCF alulations and hene the zero order desription was not a�eted by anyRydberg�valene mixing e�et, one an learly appreiate the systemati improve-ment brought by the third order orretion. It is interesting to remark that, probablydue to the same reason, the vertial exitation energies obtained from the various abinitio methods are quite similar. However, this is not the ase for the MRCI resultsby Palmer et al. [86℄, whih are, on average, higher than those reported in the otherhigh�level studies.The NEVPT3 exitation energies are in exellent agreement with the CC3 results,with a di�erene never going beyond 0.06 eV (21A2 state). Furthermore, in opposi-tion to what was found for the valene and π Rydberg states, a remarkable aor-dane with the CASPT2 [73℄ results was also attained; indeed, the SC-NEVPT3 andCASPT2 transition energies di�er by 0.05 eV at most.Table 3.8: Vertial exitation energies (eV) for the 1A2 Rydberg states of Pyrrole. Com-parison between the NEVPT and previous theoretial results.
11A2 21A2 31A2 41A2 51A2 61A2Method 1a2→3s 1a2→3pz 1a2→3da1

1a2→3da1
2b1→3py 2b1→3dyzSC-NEVPT2 5.43 6.11 6.74 6.84 7.22 7.77PC-NEVPT2 5.45 6.14 6.77 6.87 7.23 7.79SC-NEVPT3 5.10 5.80 6.40 6.52 6.81 7.36previous worksCASPT2a[73℄/ [79℄ 5.08/5.22 5.83/5.97 6.42 6.51 6.77 7.31MRMP/MCQD [87℄ 4.92/4.91 5.74/5.74 6.38/6.37 6.44/6.43 6.70/6.65 7.25/7.22CC3 [83℄b 5.10 5.86 6.43 6.50 6.84 7.36CCSDR(3) [83℄b 5.12 5.87 6.44 6.52 6.86 7.37CCSD [83℄ 5.12 5.83 6.40 6.48 6.81MRCI [86℄ 5.59 6.12 6.80 6.57 6.71 7.30DFT (B97-2) [86℄ 5.18 5.97 6.61 6.55SAC-CI [81℄ 5.11 5.81 6.38 6.44ADC(2) [80℄ 4.99 5.65 6.21 6.33 6.41 6.92a MS-CASPT2 alulations in Ref. [79℄b Experimental equilibrium geometry and basis set as in Ref. [73℄ aug--pVTZ basis set with 7s7p7d moleule�entered funtions3.5 Furan3.5.1 The UV absorption spetrumThe investigation of the eletroni absorption spetrum of Furan has a long historyand a large number of experimental [77, 94�96, 98�104℄ and theoretial works [73,81,82,84,103,105�109℄ have been published. Analogously to Pyrrole, the ultraviolet



Furan 3.5 61(UV) spetrum exhibits two prinipal regions of absorption, loated around 6 and8 eV and two rih series of overlapped π → Rydberg transitions. While the variousexperimental and theoretial studies are in substantial agreement in asribing thetwo absorption regions to the π→π∗ valene states 1B+
2 and 1A+

1 respetively, somedisussion onerns the exat position of the ovalent 1A−
1 state. The ontroversialquestion is whether the vertial transition to the 1A−

1 state is lower or higher in energythan the 1B+
2 one. Palmer and o�workers, in their MRCI study [103℄, omputed the

1A−
1 state to lie below the 1B+

2 one and assigned the former to a peak observed at 5.80eV. Their onlusions were also orroborated by some experimental works [101,104℄,suh as the UV absorption study on jet�ooled Furan by Roebber et al. [101℄, whosuggested that the peak at 5.80 eV should show a valene harater beause of itsinsensitivity to the formation of moleular lusters, where the Rydberg states arethought to play a minor role. Nevertheless, all the more reent ab initio alulations[81,107�109℄ do not support this interpretation, omputing the 1A−
1 valene transitionat the high�energy side of the 1B+

2 state. Indeed, as shown by Gromov et al. intheir extensive moleular dynamis study [109℄, the partial valene harater andthe unexpeted intensity of the forbidden 1A2(3s) exitation, an be explained by avibroni interation with higher energy dipole�allowed transitions, like the 1B+
2 and

1A−
1 valene states. Finally, other ambiguities onern the assignment of the B1(3py)and B2(3px) states as well as other high�energy Rydberg states [103, 107℄.3.5.2 Valene�Rydberg mixingIn Tabs. 3.9 and 3.10 the single�state and quasi�degenerate NEVPT exitationenergies for the π→π∗ states of Furan (1A1 and 1B2 respetively) are reported. Asis apparent, despite the use of rather large ative spaes, the perturbative treatmentof the two ioni valene states (1B+

2 and 1A+
1 ) remains problemati, as was alsothe ase for the ioni valene states of Pyrrole [29℄(Se. 3.4). Indeed, both in thesingle�state and quasi�degenerate (QDNEVPT2) alulations, signi�ant di�erenes(≃ 0.2 eV) between the SC and PC seond order results are evident. Then, furtherompliations arise from the strong valene�Rydberg e�ets that take plae both atthe zero and seond order level. In order to hek on the ourrene of valene�Rydberg interations in the zero order desription, we have evaluated, as is ommonpratie, the expetation value of the seond moment of the harge distribution:values of 〈x2〉 in the range between 25-35 a.u. are indeed typial values for purevalene states.



62 Chapter 3. The hetero�ylopentadienesTable 3.9: Single�state and quasi�degenerate (QD) vertial transition energies(eV) for the 1A1 states of Furan.Method 1A−
1 1a2→3dxy 2b1→3px 2b1→3dxz

1A+
1Ative spae (0704)SC-NEVPT2 6.77 7.44 8.22 8.89 8.94PC-NEVPT2 6.73 7.44 8.20 8.88 8.77SC-NEVPT3 6.67 7.33 8.02 8.69 8.71SC-QDNEVPT2 6.76 7.45 8.22 9.11 8.72PC-QDNEVPT2 6.71 7.46 8.20 9.10 8.56Ative spae (0805)SC-NEVPT2 6.68 7.44 8.16 8.83 8.87PC-NEVPT2 6.64 7.42 8.13 8.80 8.69SC-NEVPT3 6.64 7.37 8.06 8.73 9.00SC-QDNEVPT2 6.68 7.44 8.16 9.03 8.67PC-QDNEVPT2 6.62 7.43 8.13 9.01 8.49Table 3.10: Single-state and quasi�degenerate (QD) vertial transition energies (eV)for the 1B2 states of Furan.Method 1a2→3px 1a2→3dxz

1B+
2 2b1→3dxyAtive spae (0704)SC-NEVPT2 6.74 7.36 7.22 8.97PC-NEVPT2 6.67 7.29 7.04 8.88SC-NEVPT3 6.64 7.27 7.42 8.82SC-QDNEVPT2 7.05 7.65 6.63 8.97PC-QDNEVPT2 6.91 7.67 6.42 8.88Ative spae (0805)SC-NEVPT2 6.71 7.29 7.23 8.92PC-NEVPT2 6.63 7.21 7.05 8.82SC-NEVPT3 6.65 7.26 7.37 8.85SC-QDNEVPT2 7.02 7.61 6.61 8.92PC-QDNEVPT2 6.87 7.62 6.41 8.82In Tab. 3.11 the values of 〈x2〉 obtained from the average CASSCF alulationsare listed and ompared with those reomputed after the QD orretion. At the



Furan 3.5 63average CASSCF level, for the exited states of A1 symmetry the valene�Rydbergmixing an be regarded as negligible, whereas a onsistent mixing is evident for the
1B2 states. Indeed, with both ative spaes, the 1A−

1 and 1A+
1 states have valuesof 〈x2〉 of ≃ 25 and ≃ 32 a.u., in aordane with their valene harater; on theontrary, the 1B+

2 state shows too large a value of 〈x2〉 (≃ 45 a.u.), revealing a smallRydberg omponent. As shown both by the NEVPT results in Tab. 3.9 and thevalues of 〈x2〉 in Tab. 3.11, the ovalent valene state 1A−
1 and the two 1a2 → 3dxyand 2b1 → 3px Rydberg states are not a�eted by any mixing.The appliation of the QD approah leaves substantially unhanged their exita-tion energies and the SC-NEVPT3 result an be regarded as reliable.On the other hand, after the seond order orretion the 1A+

1 valene state and the
2b1 → 3dxz Rydberg state beome very lose in energy and, sine their oupling(≃ 0.09 a.u.) is greater than their energy di�erene (≃ 0.04 a.u.), the QD orre-tion allows for a onsistent interation between the two wavefuntions. As one anreasonably expet, the appliation of the QD approah brings about a derease inthe exitation energy of the valene state (≃ 0.2 eV), whih is more sensitive to thedynamial orrelation e�ets, and a orresponding inrease in the exitation energyof the Rydberg state. Also, as is apparent in Tab. 3.11, after the QD approah thevalue of 〈x2〉 of the valene (Rydberg) state is inreased (dereased) by about 5 a.u.Table 3.11: 〈x2〉 omponent of the seond moment of the harge distri-bution (a.u.) for the 1A1 and 1B2 states of Furan. The values have beenobtained using two di�erent ative spaesAtive Spae (0704) Ative Spae (0805)State Nature 〈x2〉a 〈x2〉b 〈x2〉a 〈x2〉b

1A−
1 π→π∗ 25.84 24.85 25.26 24.74

1A1 1a2 → 3dxy 88.22 88.95 89.93 90.30
1A1 2b1 → 3px 75.29 74.95 76.66 76.35
1A1 2b1 → 3dxz 86.20 81.86 86.18 81.53
1A+

1 π→π∗ 32.72 37.07 31.68 36.64
1B2 1a2 → 3px 73.38 70.65 73.59 68.68
1B2 1a2 → 3dxz 81.68 89.62 79.81 89.02
1B+

2 π→π∗ 44.86 38.09 45.15 39.82
1B2 2b1 → 3dxy 87.93 87.95 89.08 89.08a Values obtained from the average CASSCF alulationsb Values reomputed after the PC-QDNEVPT2 orretionSine a remarkable valene�Rydberg mixing ours both at the zero order andseond order levels, the treatment of the states of B2 symmetry turns out to be



64 Chapter 3. The hetero�ylopentadienesrather problemati. As an be notied in Tab. 3.10 only the 2b1 → 3dxy state isnot in�uened by the appliation of the QD orretion. The strongest mixing takesplaes between the 1a2 → 3px and the valene state in suh a way that the appliationof the quasi�degenerate approah even interhanges their positions. After the QDalulations, the identi�ation of the valene and Rydberg states was possible onthe basis of the reomputed values of the seond moment of the harge distribution.As shown in Tab. 3.11, at the �partially ontrated� level, where the interation ismore onsistent and hene the QD approah is more e�ient, the value of 〈x2〉 ofthe 1B+
2 state amounts to ≃ 39 a.u, whereas a value of ≃ 45 a.u. was obtained fromthe average CASSCF alulations. Finally, a notieable hange in the exitationenergies of the 1a2 → 3dxz Rydberg state is also observed; its transition energies areinreased by ≃ 0.3 eV with respet to those omputed at the single�state level.In onlusion, it is interesting to remark that no signi�ant improvements wereobtained inreasing from eleven (0704) to thirteen (0805) the number of ative or-bitals, sine the extent of the valene�Rydberg mixing is not modi�ed and the low-ering of the seond order transition energies amounts to 0.1 eV at most.3.5.3 Singlet Valene StatesIn Tab. 3.12 the SC-NEVPT3 and PC-QDNEVPT2 exitation energies, obtainedwith the (0805) spae are reported and ompared with the previous theoretial re-sults and the available experimental assignments. Sine, as previously disussed(setion 3.6.1), the two ioni states (1B+

2 and 1A+
1 ) are strongly in�uened by theinteration with the Rydberg states, the onsistent di�erenes (≃ 0.6 eV) betweenthe SC-NEVPT3 and PC-QDNEVPT2 values are not surprising. Therefore for thesetwo states, in the following disussion, we shall refer only to the QD exitation en-ergies.The PC-QDNEVPT2 alulation loates the 1B+

2 state at 6.41 eV, in exellentagreement with the previous oupled luster omputations by Christiansen and Jør-gensen [107℄, SAC-CI by Wan et al. [81℄ and EOM-CCSD by Gromov et al [108℄.A very good agreement with the oupled luster results is also observed for the
1A+

1 state, whose PC-QDNEVPT2 exitation energy is 8.49 eV, only 0.14 eV higherthan the CC3 result and 0.07 eV lower than the CCSD one. This agreement is evenmore meaningful when onsidering that the CC omputations were performed usingthe same geometry [69℄ and ANO basis set [72℄ used in the present study. Takinginto aount the rather signi�ant disrepanies (≃ 0.2-0.3 eV) [107, 108℄ betweenthe omputed vertial transition energy and the observed maximum of the band, ourpresent results on�rm the traditional attribution of the broad bands at 6 and 8 eV



Furan 3.5 65to the valene 1B+
2 and 1A+

1 states respetively.Table 3.12: Computed vertial transition energies for the π→π∗ valene statesof Furan ompared with the previous theoretial results and the experimentaldata.Method 1B+
2

1A−
1

1A+
1SC-NEVPT3a 7.37 6.64 9.00PC-QDNEVPT2a 6.41 6.62 8.49previous worksCASPT2 [73℄ 6.04 6.16 7.74MRMP/MCQD [105℄ 5.95/5.99 6.16/6.19 7.69/7.72CC3 [107℄b 6.35 6.61 8.35CCSD [107℄b 6.49 6.86 8.56CCSD [107℄ 6.45 6.82 8.34MRCI [103℄ 6.76 6.02 8.32SAC-CI [81℄ 6.40 6.79 8.34ADC(2) [106℄ 6.37 6.70 8.16TD-DFT (B97-1) [84℄ 6.12 6.76EOM-CCSD [108℄ 6.49 6.84Expt.(vert.) 6.04d,e 7.80ea Ative Spae (0805)b Experimental equilibrium geometry [69℄ and basis set as in Ref. [73℄ aug--pVTZ basis set augmented with 7s7p7d ring�entered di�use fun-tionsd Refs. [77, 95, 98, 99℄e Ref. [103℄Finally, the NEVPT alulations, in agreement with most of all the other abinitio studies and with the traditional experimental interpretation, predit the 1A−

1state to be about 0.2 eV higher in energy than the 1B+
2 one. Its exitation energyat SC-NEVPT3 level is omputed at 6.64 eV, only 0.03 eV higher than the CC3result (6.61 eV). A good aordane with the TD-DFT [84℄ and EOM-CCSD [108℄exitation energies is also attained. On the other hand, for the three valene states,the CASPT2 results by Serrano-Andrés et al. [73℄ and MRMP by Hashimoto etal. [105℄ turn out to be signi�antly lower than the NEVPT ones. Apart from thease of the 1A+

1 state, where, as pointed out by the authors [73℄, the presene ofintruder states ould ompromise the auray of the result, the di�erenes betweenthe NEVPT and CASPT2 values amount roughly to 0.4-0.5 eV.



66 Chapter 3. The hetero�ylopentadienes3.5.4 Singlet Rydberg statesIn Tab. 3.13 the SC-NEVPT3 and PC-QDNEVPT2 exitation energies (0805 spae)of the π�type Rydberg states are reported and ompared with those obtained in theprevious theoretial works and with the experimental data. Instead, in Tabs. 3.14and 3.15 we present the seond and third order single�state NEVPT results obtainedfor the σ�type Rydberg states: the exited states are separated into the 1a2 → 3l(Tab. 3.14) and 2b1 → 3l states (Tab. 3.15).Table 3.13: Computed vertial transition energies for the π�type Rydberg states of Furanompared with the previous theoretial results and the experimental data.
1A1

1A1
1A1

1B2
1B2

1B2Method 1a2→3dxy 2b1→3px 2b1→3dxz 1a2→3px 1a2→3dxz 2b1→3dxySC-NEVPT3a 7.37 8.06 8.73 6.65 7.26 8.85PC-QDNEVPT2a 7.43 8.13 9.01 6.87 7.62 8.82previous worksCASPT2 [73℄ 7.31 6.48 7.13MRMP/MCQD [105℄ 7.26/7.29 6.50/6.11 7.18/7.21CCSD [107℄b 7.58 8.26 6.94 7.72MRCI [103℄ 7.75 8.15 8.33 6.66 7.71 8.94SAC-CI [81℄ 7.36 8.14 8.95 6.82 7.51 8.79ADC(2) [106℄ 7.22 7.71 8.51 6.73 7.35 8.32TD-DFT (B97-1) [84℄ 7.47 6.83 7.55Expt. 7.28, 7.52d 8.46(?)d 6.47d 8.77da (0805)Ative Spaeb aug--pVTZ basis set augmented with 7s7p7d ring�entered di�use funtions Refs. [77, 95, 98, 99℄d Ref. [103℄3s Rydberg StatesIn the NEVPT alulations the 1a2 → 3s Rydberg transition is predited to bethe lowest�energy exited state of Furan (Tab. 3.14). At the seond order level itsexitation energy is omputed at 6.11 (SC-NEVPT2) and 6.13 eV (PC-NEVPT2); aslight redution (≤ 0.1 eV) is observed in the SC-NEVPT3 alulation, where thisstate is omputed at 6.00 eV. As an be seen, the omputed exitation energies agreewith those obtained in the previous theoretial studies [73, 81, 84, 103, 107, 108℄.
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Table 3.14: Computed vertial exitation energies (eV) for the 1a2 → σ∗ Rydberg states ofFuran ompared with the previous theoretial results and the experimental data.
1a2 → 3l 1A2

1B1
1A2

1A2
1B1

1A2Method 3s 3py 3pz 3dx2
−y2 3dyz 3dz2SC-NEVPT2 6.11 6.67 6.77 7.26 7.39 7.44PC-NEVPT2 6.13 6.68 6.79 7.28 7.39 7.46SC-NEVPT3 6.00 6.56 6.65 7.14 7.27 7.31previous worksCASPT2 [73℄ 5.92 6.46 6.59 7.00 7.15 7.22MRMP/MCQD [105℄ 5.84/5.84 6.40/6.40 6.53/6.54 6.98/6.98 7.10/7.12 7.18/7.19CCSDa[107℄ 6.11 6.64 6.80 7.12 7.32 7.39MRCI(DZPR) [103℄ 5.95 6.63 6.41 7.15 6.99 7.40TD-DFT (B97-1) [84℄ 5.97 6.58 6.69 7.03 7.21 7.27SAC-CI [81℄ 5.99 6.45 6.66 7.04 7.14 7.27ADC(2) [106℄ 5.86 6.35 6.50 6.89 6.98 7.11EOM-CCSD [109℄ 6.04 6.56 6.71Expt. 5,94d,5.80b 6.47b, 6.76 6.61b 7.28a aug--pVTZ basis set with 7s7p7d moleule�entered funtionsb Refs. [77, 95, 98, 99, 102℄ Ref. [103℄d Refs. [101, 104℄On the basis of eletron�energy loss (EEL) measurements, the 2b1 → 3s (1B1)transition was assigned by Palmer and o�workers [103℄ to a peak at 7.38 eV. Themost aurate NEVPT result plaes the vertial transition of this state at 7.41 eV(SC-NEVPT3 value in Tab. 3.15), in agreement with the experimental assignmentand the previous CCSD [107℄, SAC-CI [81℄ and TD-DFT [84℄ results.3p Rydberg StatesThe three 1a2 → 3p Rydberg states are one π-type state (1B2(3px)) and two σ�typestates (1B1(3py) and 1A2(3pz)). Some disussion onerns the energetial order of the

1B1(3py) and 1B2(3px) states. In partiular, two p�type Rydberg transitions wereexperimentally observed at 6.47 [77,96,99,103℄ and 6.76 eV [102,103℄. In their MRCIstudy, Palmer and o�workers [103℄ assigned the lower transition (6.47 eV) to the
1B2(3px) state and the higher one (6.76 eV) to the 1B1(3py) state. However, in thesubsequent theoretial studies [81, 84, 106, 107℄, the assignment proposed by Palmeret al. [103℄ was questioned and reversed. For instane, in the best CC alulations[107℄ the 1B1(3py) state was estimated to be about 0.3 eV lower then the 1B2(3px)one. Similar results were also attained in the more reent SAC-CI [81℄ and TD-DFT [84℄ studies. Our most aurate alulations loate the vertial transition to the
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1B1(3py) and 1B2(3px) states at 6.56 (Tab. 3.14) and 6.87 eV (Tab. 3.13) respetively.Thus, the NEVPT results fully on�rm the energy di�erene amounting to ≃ 0.3 eVomputed in the CC [107℄ and TD-DFT [84℄ studies and the reassignment suggestedby those authors. Finally, a peak loated at 6.61 eV was attributed by Fliker etal. to the 1a2 → 3pz transition. The SC-NEVPT3 exitation for the 1A2(3pz) stateis 6.65 eV (Tab. 3.14), in exellent aordane with experiments and the previousSAC-CI (6.66 eV) [81℄, TD-DFT (6.69 eV) [84℄ and EOM-CCSD (6.69 eV) [108℄alulations.Table 3.15: Computed vertial exitation energies (eV) for the 2b1 → σ∗ Rydberg states ofFuran ompared with the previous theoretial results and the experimental data.
2b1 → 3l 1B1

1A2
1B1

1B1
1A2

1B1Method 3s 3py 3pz 3dx2−y2 3dyz 3dz2SC-NEVPT2 7.68 8.18 8.30 8.83 8.85 9.00PC-NEVPT2 7.69 8.18 8.31 8.84 8.85 9.02SC-NEVPT3 7.41 7.99 7.99 8.53 8.64 8.69previous worksCASPT2 [73℄ 7.21MRMP/MCQD [105℄ 7.31/7.25CCSDa[107℄ 7.52 8.14 8.11MRCI(DZPR) [103℄ 7.14 7.90 8.04 8.36 8.00 8.39TD-DFT (B97-1) [84℄ 7.41 8.07SAC-CI [81℄ 7.45 8.07 8.54 8.87ADC(2) [106℄ 7.05 7.57 7.61 8.06 8.16 8.23Expt.b 7.38 8.10 8.46 8.77(?)a aug--pVTZ basis set with 7s7p7d moleule�entered funtionsb Ref. [103℄It is ertainly rather problemati to get an aurate desription of the high�energyRydberg states. However, for the three 2b1 → 3p transitions, the PC-NEVPT2 ex-itation energies are 8.13 (1A1(3px) in Tab. 3.13), 8.18 (1A2(3py) in Tab. 3.15)and 8.31 eV (1B1(3pz) in Tab. 3.15). A slight lowering of the transition energiesis observed at the third order level (SC-NEVPT3), where the three states are om-puted at 8.06, 7.99 and 7.99 eV respetively. However, a reversed energetial or-der (1B1(3pz) ≤ 1A2(3py) ≤ 1A1(3px)) is found in the oupled luster study byChristiansen and Jørgensen [107℄, and di�erent orders are also obtained from theMRCI [103℄ and SAC-CI [81℄ alulations. In addition, a �rm experimental assign-



Thiophene 3.6 69ment is not available for these states, with the exeption of the 1A1(3px)) transition,loated by Palmer et al. [103℄ at 8.10 eV.3d Rydberg StatesThe best NEVPT exitation energies of the �ve 1a2 → 3d states are 7.14 (1A2(3dx2−y2)in Tab. 3.14), 7.27 eV (1B1(3dyz) in Tab. 3.14), 7.31 eV (1A2(3dz2) in Tab. 3.14),7.33 eV (1A1(3dxy) in Tab. 3.13) and, �nally, 7.62 eV (1B2(3dxz) in Tab. 3.13). Asan be seen, due to its interation with the 1B+
2 valene state, the transition energy ofthe 1a2 → 3dxz state is notieably underestimated (about 0.3-0.4 eV) at the single�state level and this pronouned valene�Rydberg mixing ould be the reason for thetoo low exitation energy (7.13 eV) omputed in the single�state CASPT2 studyby Serrano�Andrés et al [73℄. On the ontrary, for this state, the PC-QDNEVPT2result agrees with the CCSD [107℄, MRCI [103℄, SAC-CI [81℄ and TD-DFT [84℄ tran-sition energies. A satisfatory aordane with the previous theoretial studies isalso attained for the other four states: with the exeption of some MRCI results (see

1B1(3dyz) and 1A1(3dxy) states), the largest disrepanies amount indeed to ≃ 0.2eV. Finally, our most aurate exitation energies for the �ve 2b1 → 3d Rydbergstates are 8.53 (1B1(3dx2−y2) in Tab. 3.14), 8.64 (1A2(3dyz) in Tab. 3.14), 8.69(1B1(3dz2) in Tab. 3.14), 8.85 (1B2(3dxy) in Tab. 3.13) and 9.01 eV (1A1(3dxz) inTab. 3.13). As is apparent, very di�erent values have been obtained for these high�energy Rydberg states in the previous theoretial studies [81, 103, 106℄ and, up tonow, no well�established experimental assignments are available in the literature.Sine, as estimated by Christiansen and Jørgensen [107℄, the di�erene between theadiabati and vertial transition energy, for the 1a2 → 3l states, does not exeed0.16 ± 0.03 eV, the NEVPT vertial exitation energies support the attribution ofthe peak at 8.46 eV [103℄ to the the 1B1(3dx2−y2) state (omputed at 8.53 eV).3.6 ThiopheneAs we shall disuss later, no large attention has been paid in the literature to thetheoretial investigation of the eletroni spetrum of Thiophene and therefore itsinterpretation is still far from being omplete, sine onsistent disrepanies (i.e. upto 0.7-0.8 eV) among the various ab initio results exist. For this reason, for almostall the xited states under onsideration, the auray of the NEVPT results wasalso judged with respet to some referene oupled luster alulations (CCSD andCCSDR(3)) [110, 111℄, spei�ally performed for this study. These omputationswere arried out with the DALTON program [112℄, using the same geometry [70℄



70 Chapter 3. The hetero�ylopentadienesand ANO+1s1p1d basis set employed for the NEVPT ones. The osillator strengthsfor the exited states were alulated with the CASSCF state interation (CASSI)method [113℄, using the NEVPT2 and NEVPT3 energy di�erenes. Moreover, forthose states subjeted to quasi�degenerate NEVPT2 treatment, the transition dipolemoments were reomputed using the orreted linear ombinations obtained by di-agonalization of the QD-NEVPT2 matrix.3.6.1 Valene�Rydberg mixingAs an be seen in Tab. 3.16, where the CASSCF, QD-NEVPT2 and CCSD values ofthe 〈x2〉 omponent of the seond moment of the harge distribution for the π → π∗are olleted, at the zero order level, the more onsistent mixing e�ets take plaeamong the states of the B2 and A2 symmetries. In fat, both the lower�energy
π → π∗ valene state (41B2(V )) and the n → π∗ (21A2) state show too di�use aharater for pure valene states, with values of 〈x2〉 amounting roughly to 39 and42 a.u. respetively; indeed, the ground state of Thiophene has a value of 〈x2〉 ofabout 30 a.u. Then, a minor valene�Rydberg mixing an also be deteted amongthe 21A1(V ) valene state and the 3b1 → 3px (31A1) and 1a2 → 3dxy (41A1) Rydbergstates.Table 3.16: CASSCF, QDNEVPT2 and CCSD 〈x2〉 omponent of the seond moment ofthe harge distribution (a.u.) for the π → π∗ and n→ π∗ exited states of Thiophene.

〈x2〉State Assignment CASSCF SC-QDNEVPT2 PC-QDNEVPT2 CCSD
21A1(V ) π→π∗ 33.57 31.19 30.65 31.26
31A1 3b1 → 3px 90.13 91.79 91.03 88.12
41A1 1a2 → 3dxy 89.02 90.36 90.45 87.01
51A1 3b1 → 3dxz 89.80 89.52 69.48 85.15
61A1(V

′) π→π∗ 32.65 32.56 63.43 40.91
11B2 1a2 → 3px 93.17 93.12 93.42 89.91
21B2 1a2 → 3dxz 86.76 89.52 89.38 88.06
31B2 3b1 → 3dxy 83.88 86.69 81.71 85.34
41B2(V ) π→π∗ 38.81 32.85 32.62 31.55
51B2(V

′) π→π∗ 33.85 34.15 40.04 35.99
11A2 n→ 3dxy 81.52 90.89 90.67
21A2 n→ π∗ 41.81 32.32 32.89The single�state and quasi�degenerate NEVPT exitation energies of the 1A1,

1B2 states, together with the CCSD and CCSDR(3) ones, are reported in Tabs. 3.17



Thiophene 3.6 71and 3.18 respetively. Instead, in Tab. 3.19 are shown the NEVPT results for thestates of A2 symmetry.Table 3.17: NEVPT, CCSD and CCSDR(3) vertial transition energies (eV) of the 1A1exited states of Thiophene.Method π→π∗ 3b1 → 3px 1a2 → 3dxy 3b1 → 3dxz π→π∗CASSCF 5.71 6.36 6.88 7.02 8.06SC-NEVPT2 5.94 7.17 7.56 7.89 8.00PC-NEVPT2 5.89 7.18 7.56 7.90 7.86SC-NEVPT3 5.78 6.97 7.41 7.69 7.94SC-QDNEVPT2 5.88 7.18 7.55 7.89 8.04PC-QDNEVPT2 5.80 7.20 7.56 7.89 7.94CCSD 5.78 7.11 7.53 7.83 7.93CCSDR(3) 5.70 7.10 7.50 7.81 7.71Table 3.18: NEVPT, CCSD and CCSDR(3) vertial transition energies (eV) of the 1B2exited states of Thiophene.Method 1a2 → 3px 1a2 → 3dxz 3b1 → 3dxy π→π∗ π→π∗CASSCF 6.17 6.83 7.01 7.16 8.88SC-NEVPT2 6.94 7.58 7.85 6.47 8.30PC-NEVPT2 6.95 7.59 7.86 6.37 8.12SC-NEVPT3 6.70 8.36SC-QDNEVPT2 6.94 7.64 7.92 6.34 8.31PC-QDNEVPT2 6.95 7.69 7.97 6.14 8.14CCSD 6.84 7.56 7.81 6.23 7.96CCSDR(3) 6.81 7.54 7.80 6.10 7.85As is apparent in Tab. 3.17, the appliation of the QD approah leads to aslight lowering (≤ 0.1 eV) of the single�state NEVPT2 exitation energy of the
21A1(V ) state, in agreement with the slight redution observed in its value of 〈x2〉,passing from ≃ 33 (CASSCF) to ≃ 30 a.u. (PC-QDNEVPT2). However, as theCASSCF mixing an be regarded as negligible, the trend of the single�state NEVPTresults appears oherent, with the SC-NEVPT3 alulation loating this state at 5.78eV. A value of 5.80 eV is obtained from the PC-QDNEVPT2 alulation. A goodagreement is also ahieved with the CC results, where this transition is preditedat 5.78 (CCSD) and 5.70 eV (CCSDR(3)). As an be seen from the results in Tab.3.17 and from the values of 〈x2〉 reported in Tab. 3.16, the desription of the other
1A1 states is essentially not in�uened by the appliation of the QD formalism, with



72 Chapter 3. The hetero�ylopentadienesthe only exeption of the 61A1(V
′) state at the PC level. Conerning this issue someremarks are needed. Similarly to what we found for Pyrrole [29℄(setion 3.4) andFuran [30℄ (setion 3.5), the ioni harater of the higher�energy 1A1 valene state, inaddition to its partial nature of double exitation, makes the alulation of this staterather problemati. The di�ulties are learly shown by the di�erene (0.15-0.2 eV)between the strongly ontrated and the partially ontrated results. Note that forthis state, a remarkable di�erene, amounting roughly to 0.2 eV, is also obtainedfrom CCSD and CCSDR(3) alulations. So, at the partially ontrated level, wherethe 61A1(V

′) state is omputed at signi�antly lower energy, a quasi degeneray withthe 3b1 → 3dxz Rydberg state ours, with the two states being separated by lessthan 0.04 eV. The QD formalism, applied at the PC-NEVPT2 level, gives rise toa strong mixing between the two wavefuntions, in suh a way that the resultingroots have values of 〈x2〉 amounting to ≃ 69 and ≃ 63 a.u. (values in Tab. 3.16).A similar mixing, even if less pronouned, was also found in the CCSD alulations,where the omputed 〈x2〉 are ≃ 85 and ≃ 41 a.u. for the Rydberg and valene staterespetively. The SC-NEVPT3 exitation energy of the 61A1(V
′) state is 7.94 eV, inexellent aordane with the value of 7.93 eV obtained from the CCSD alulation.As above mentioned and shown by the results in Tab. 3.16 and 3.18, the valene�Rydberg mixing e�ets are more prominent among the 1B2 states. The 41B2(V )valene state, mixed at CASSCF level with the 21B2 and 31B2 Rydberg states, afterthe QD alulation, shows a remarkable redution (≃ 6 a.u.) in the value of its

〈x2〉; the reovery of the valene nature is, obviously, followed by the lowering inits exitation energy, whih, at the more aurate PC level, redues from 6.37 to6.14 eV. In aordane with the PC-QDNEVPT2 result, the CCSDR(3) transitionenergy of this state is 6.10 eV (〈x2〉 ≃ 31 a.u.), whereas a value of 6.23 eV is attainedat CCSD level. Obviously, the opposite behaviour is observed for the two Rydbergstates, whose transition energies slightly inrease (≃ 0.1 eV). However, the seondmoments of the harge distribution, reported in Tab. 3.16, indiate that at the PClevel, where the two states are more lose in energy, a small mixing ours betweenthe 3b1 → 3dxy Rydberg state and the 51B2(V
′) valene state; as an be seen in Tab.3.18, however, the e�ets on the exitation energies are negligible. A small mixingis also found at CCSD level, where the omputed values of 〈x2〉 are ≃ 36 and ≃ 85a.u. for the valene and Rydberg state respetively.Finally, the QD approah was proved to be important also for the alulation ofthe two π�type 1A2 states, whih appear mixed in the CASSCF desription. At thePC level, where the orretion is more e�ient, the QDNEVPT2 exitation energy(Tab. 3.19) for the valene (Rydberg) state turns out to be about 0.2 eV lower(higher) than that obtained from the single�state alulations. Also, the values of

〈x2〉 reomputed in the orret zero order spae (Tab. 3.16) are in aordane with



Thiophene 3.6 73those typial for pure valene and Rydberg states, being ≃ 32 and ≃ 90 a.u.Table 3.19: Single�state and quasi�degenerate NEVPT2vertial transition energies (eV) of the π�type 1A2 exitedstates of Thiophene.Method n→ 3dxy n→ π∗CASSCF 9.77 10.07SC-NEVPT2 10.49 10.13PC-NEVPT2 10.45 10.04SC-QDNEVPT2 10.61 10.01PC-QDNEVPT2 10.64 9.86An important di�erene in the spetrosopial features of Thiophene with respetto the analogous hetero�yles, Pyrrole [29℄ and Furan [30℄, is the presene of twolow�energy π → σ∗ states, one of B1 symmetry and one of A2 symmetry, stronglyinterating with 3p and 3d type Rydberg states.In Tab. 3.20 the values of 〈x2〉 for the σ�type states, the zero order assignments,the CASSCF and single�state NEVPT exitation energies of the �rst seven exitedstates of B1 and A2 symmetry are listed.Table 3.20: CASSCF and single�state NEVPT exitation energies (eV) for the σ�type exited states of Thiophene. The CASSCF values of the 〈x2〉 omponent ofthe seond moment of the harge distribution and the nature of the states are alsoreported. CASSCF SC-PT2 PC-PT2 SC-PT3State Assignment 〈x2〉 ∆E ∆E ∆E ∆E

11B1 3b1 → 3s + 1a2 → 3py 51.12 6.76 6.45 6.51 6.24
21B1 (1a2 → 3py + σ∗) + 3b1 → 3s 47.99 6.90 6.50 6.54
31B1 3b1 → 3pz + 1a2 → 3dyz 49.30 7.27 7.06 7.11 6.82
41B1 1a2 → 3dyz + σ∗ 45.64 7.44 6.97 7.00
51B1 3b1 → 3da1

54.23 7.88 7.60 7.64 7.38
61B1 3b1 → 3da1

72.12 7.96 7.50 7.48 7.34
71B1 1a2 → σ∗ + 3dyz 34.53 8.53 7.16 7.12
11A2 1a2 → 3s 51.26 6.48 6.10 6.15 5.90
21A2 1a2 → 3pz 50.18 7.03 6.77 6.82 6.55
31A2 3b1 → 3py + 3dyz + σ∗ 43.48 7.12 6.64 6.65
41A2 1a2 → 3da1

63.22 7.49 7.22 7.27 7.01
51A2 1a2 → 3da1

63.33 7.54 7.17 7.20 6.99
61A2 3b1 → 3dyz + 3py + σ∗ 46.72 7.69 7.23 7.24
71A2 3b1 → σ∗ + 3dyz 38.20 8.48 7.53 7.50As an be seen, for the 1B1 states, apart from a slight mixing between the 3b1 →

3s and 1a2 → 3py as well as the 3b1 → 3pz and 1a2 → 3dyz Rydberg states, the



74 Chapter 3. The hetero�ylopentadienesmost signi�ant valene�Rydberg interation takes plae between the 1a2 → σ∗ andthe 1a2 → 3dyz states; moreover, also the 1a2 → 3py state exhibits a partial valeneharater. The CASSCF seond moments for the Rydberg states are ≃ 48 (3p) and
≃ 45 a.u (3dyz), where a value of ≃ 34 a.u. is attained for the 71B1 state.An analogous situation ours among the states of A2 symmetry, where the threestates whih mix are again the 71A2, having a σ∗ dominant harater, and the two
3b1 → 3dyz and 3b1 → 3py Rydberg states; the omputed 〈x2〉 are 38.20, 46.72 and43.48 a.u. respetively.The QDNEVPT2 alulations were arried out on �ve states of B1 symmetry (1-41B1 and 71B1) and on three states of A2 symmetry (31A2, 61A2 and 71A2). Thethird order omputations were performed only for those states not involved in thevalene�Rydberg mixing.After the appliation of the QD formalism, the interpretation of the states interms of Rydberg 3py, 3dyz and valene σ∗ states turn out to be rather problemati.However, on the basis of the evaluation of the values of 〈x2〉 in the orreted zero orderspae, some onsiderations, onerning the valene or Rydberg nature, are possible.In addition, further information has been obtained by omputing the natural orbitalsfor eah eigenstate of the QD-PT matrix in order to build the CASCI moleularorbitals in the orreted zero order spae. In Tab. 3.21 the reomputed values of
〈x2〉 and the QDNEVPT2 exitation energies are reported. The CC results for allthe σ�type states are, instead, listed in Tab. 3.22.Table 3.21: Values of the 〈x2〉 omponent of the seond moment of the harge distribution (a.u.)and QDNEVPT2 exitation energies for some σ�type exited states of Thiophene.SC-QDNEVPT2 PC-QDNEVPT2State 〈x2〉 Assignment ∆E 〈x2〉 Assignment ∆E

11B1 36.49 1a2 → σ∗ + 3py 6.33 32.77 1a2 → σ∗ + 3py 6.10
21B1 44.48 1a2 → 3py + σ∗ + 3dyz 6.38 51.66 3b1 → 3s 6.52
31B1 51.15 3b1 → 3s 6.47 48.17 1a2 → 3py 6.86
41B1 49.34 3b1 → 3pz 7.07 49.30 3b1 → 3pz 7.14
51B1 45.19 1a2 → 3dyz + σ∗ 7.45 46.61 1a2 → 3dyz 7.65
11A2 33.75 3b1 → σ∗ 6.46 31.14 3b1 → σ∗ 6.22
21A2 48.02 3b1 → 3py + 3dyz 7.19 49.79 3b1 → 3py 7.25
31A2 46.27 3b1 → 3dyz + 3py + σ∗ 7.75 47.58 3b1 → 3dyz 7.94First of all, some important remarks onern the di�erent behaviour of the twoQDNEVPT2 variants. Indeed, as an be observed in Tab. 3.21, while the mixingamong the 3py, 3dyz and σ∗ states persists at the strongly ontrated level, the nature



Thiophene 3.6 75of the states appear to be in good measure pure after the PC alulations; only the
1B1 (1a2 → σ∗) state shows a slight Rydberg harater. The di�erent nature of thestates obtained from the SC and PC alulations is, obviously, the reason for theremarkable deviations observed between the SC-QDNEVPT2 and PC-QDNEVPT2exitation energies. Note that these deviations an be, instead, regarded as negligible(0.07 eV at most) for the 3b1 → 3s and 3b1 → 3pz Rydberg states. At the SClevel, the exitation energies of the Rydberg states, whih still have a partial valeneharater, are signi�antly lower (even ≃ 0.3 eV for the 1a2 → 3py state) than thoseomputed at PC level; obviously, too high exitation energies are, instead, obtainedfor the two valene states.Table 3.22: CCSD and CCSDR(3) exitation energies (eV) for the σ�typeexited states of Thiophene. The 〈x2〉 omponent of the seond moment of theharge distribution and the nature of the states are also reported.CCSD CCSDR(3)State Assignment 〈x2〉 ∆E ∆E

11B1 1a2 → σ∗ mix. 36.41 6.28 6.20
21B1 3b1 → 3s 48.84 6.40 6.36
31B1 1a2 → 3py mix. 44.94 6.85 6.81
41B1 3b1 → 3pz 47.79 7.01 6.99
51B1 3b1 → 3da1 55.68 7.46 7.43
61B1 3b1 → 3da1 61.64 7.52 7.50
71B1 1a2 → 3dyz mix. 45.06 7.60 7.55
11A2 1a2 → 3s 49.15 6.10 6.05
21A2 3b1 → σ∗ mix. 32.11 6.31 6.26
31A2 1a2 → 3pz 48.97 6.78 6.74
41A2 3b1 → 3py 53.47 7.14 7.11
51A2 1a2 → 3da1 46.94 7.18 7.14
61A2 1a2 → 3da1 63.73 7.23 7.19
71A2 3b1 → 3dyz mix. 46.14 7.81 7.80Although the 1a2 → σ∗ state still shows a small 3p harater, the PC-QDNEVPT2approah brings about a remarkable derease (≃ 1 eV) with respet to the single�state exitation energy of the 71B1 state, whih, at the CASSCF level, is the statewith the strongest valene nature (see Tab. 3.20); indeed, the transition energyhanges from 7.12 to 6.10 eV. At the strongly ontrated level as well as at CCSDlevel, this state is omputed with a value of 〈x2〉 of ≃ 36 a.u., that is somewhatdi�use for a pure valene state. As a onsequene of this partial Rydberg haraterthe SC-QDNEVPT2 and CC exitation energies turn out to be higher than the PCone, being 6.33 and 6.30 eV (CCSDR(3)) respetively. On the ontrary, both the
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3b1 → 3s and 3b1 → 3pz Rydberg states are essentially not a�eted by the appli-ation of the QD approah: their values of 〈x2〉 remain the same as omputed atCASSCF level and hene the single�state and quasi�degenerate exitation energiesare very similar.As shown in Tab. 3.20, the third order alulations, for both these states, bringabout a lowering in the exitation energies slightly less than 0.3 eV, loating thestates at 6.24 eV (3s) and 6.82 eV (3pz). For these two states, a good aordaneis also attained with the CC results (Tab. 3.22), that turn out to be only ≃ 0.15eV higher than the SC-NEVPT3 ones. At PC-QDNEVPT2 level, the 1a2 → 3pyis omputed at 6.86 eV, in remarkable aordane with the CC results, that loatethis state at 6.85 (CCSD) and 6.81 eV (CCSDR(3)). Then, at the PC level, the
1a2 → 3dyz is alulated to lie at 7.65 eV, about 0.7 eV above the value omputed inthe single�state approah for the 41B1 state (see Tab. 3.20). Very similar transitionenergies were provided by the CC alulations, where the state is loated at 7.60 and7.55 eV (respetively CCSD and CCSDR(3) values in Tab. 3.22).Similar remarks an be made for the three 1A2 states, whih, after the PC-QDNEVPT2 treatment, result in a pure valene state (〈x2〉 ≃ 31 a.u.) and two pureRydberg 3py and 3dyz states. At PC-QDNEVPT2 level, the 3b1 → σ∗ transition ispredited at 6.22 eV in very good agreement with the CC values (see Tab. 3.22),where the state is loated at 6.31 (CCSD) 6.26 eV (CCSDR(3)), with a value of
〈x2〉 of 32.11 a.u. Instead, the two Rydberg states are shifted at higher energy withrespet to single�state exitation energies: the 3b1 → 3py state is omputed at 7.25eV (PC-QDNEVPT2), with an 〈x2〉 of ≃ 49 a.u. and the 3b1 → 3dyz exitationin predited at 7.94 eV (PC-QDNEVPT2) with an 〈x2〉 of ≃ 47 a.u. The CC ex-itation energies, reported in Tab. 3.22, are only slightly lower (≃ 0.15) than thePC-QDNEVPT2 ones. Note that at the single�state level, the two states were al-ulated at 6.65 and 7.50 eV respetively (PC-NEVPT2 values in Tab. 3.20). Finally,as an be seen in Tab. 3.20, for the other four Rydberg states, not involved in theCASSCF mixing, the appliation of the SC-NEVPT3 orretion produes a small(0.15-0.25 eV) and regular lowering in the seond order exitation energies. Compa-rable transition energies, even if always slightly higher than the SC-NEVPT3 ones,were obtained from the CC alulations (see values in Tab. 3.22).3.6.2 The VUV absorption spetrumIn ontrast to the large number of theoretial works dediated to the absorptionspetra of Pyrrole and Furan, surprisingly few ab initio studies on the eletronispetrum of Thiophene have been published. Indeed, the �rst CI study by Bendazzoliet al., published in 1978 [114℄, was followed only by three high�level ab initio studies,



Thiophene 3.6 77namely, a single�state CASPT2 study in 1993 [115℄, a MRCI investigation in 1999 [67℄and, �nally, a SAC-CI work in 2001 [116℄. In addition, some TD-DFT [117℄ andADC(2) [118℄ results have also been presented. Although there is, overall, a goodagreement in the assignments of the four lowest�energy π → π∗ states, a number ofinonsistenies still exists in the interpretation of some Rydberg states.The most aurate NEVPT exitation energies and the orresponding osillatorstrengths, whih are used to disuss the interpretation of the spetrum, are shown inTab. 3.9, together with the CCSDR(3) results and those of the previous theoretialstudies [67, 115�117℄.Energy range 5-6.5 eVIn this energy range is loated the �rst absorption region, whih is omposed of thetwo historial A and B bands. The �rst system (A band), whose valene π → π∗ na-ture was experimentally assessed on the basis of the omparison of gas phase resultswith ondensed�phase measurements [114,123�125℄, begins at 5.16 eV with the max-imum at 5.39 eV. Furthermore, in the magneti irular dihroism spetrum (MCD)of Thiophene in hexane, two bands with opposite signs in their B-values [126�128℄were deteted at 5.27 and 5.64 eV, on�rming the presene of two π → π∗ tran-sitions in the low�energy tail of the �rst VUV band. On the basis of PPP alu-lations [126℄ and ab initio predition of the B-values [114℄, the lower�energy peakwas attributed to the 1A1(V ) state. Our most aurate results predit the vertialtransitions to the 1A1(V ) and 1B2(V ) states to be 5.78 (SC-NEVPT3) and 6.14 eV(PC-QDNEVPT2) respetively; the omputed osillator strengths are 0.130 (1A1(V ))and 0.107 (1B2(V )). Taking into aount that for these aromati moleules, the ver-tial transition and the observed maximum of the band may di�er signi�antly, withthe former being even 0.2 eV [83, 107, 108℄ above the latter, our present results on-�rm the traditional valene interpretation of the A band. The CCSDR(3) exitationenergies are in remarkable aordane with the NEVPT ones, loating the 1A1(V )state at 5.70 eV and the 1B2(V ) transition at 6.10 eV, with very similar intensities(0.082 and 0.080 respetively). The present results also agree with those omputedin the MRCI study by Palmer et al. [67℄, whereas larger deviations (≃ 0.4 eV) areobserved with the CASPT2 [115℄ and SAC-CI [116℄ values.Then, the weak �ne struture near 6 eV [67,95,129,130℄, known as the B band, isinterpreted as Rydberg in nature, prinipally arising from the symmetry forbidden
1a2 → 3s state; this system indeed does not appear in the ondensed�phase spetrum[114, 123, 124℄, where the Rydberg states are thought to play a negligible r�le. The
1a2 → 3s state (1A2) is omputed, at SC-NEVPT3 level, at 5.90 eV, in perfetaordane with experiments and with the CASPT2 result [115℄ (5.93 eV); slightly
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Chapter3.

Thehetero
�ylopenta

dienes Table 3.23: NEVPT and CC vertial transition energies (eV) and osillator strengths (within parentheses) of the singletexited states of Thiophene ompared with the previous theoretial results.NEVPTaState Nature SC3 PC-QD CCSDR(3)a,b SAC-CI [116℄ MRCI [67℄ CASPT2 [115℄ TD-DFT [117℄ Exp.d

1A1(V ) π→π∗ 5.78 5.80 5.70 5.41 5.69 5.33 5.64 5.39(0.130) (0.153) (0.082) (0.091) (0.119) (0.089) (0.058)

1A2 1a2 → 3s 5.90 6.05 5.70 5.78 5.93 5.94 5.93

1B1 1a2 → σ∗ 6.10 6.30 5.87 6.41 6.20 5.67(0.004) (0.015) (0.011) (0.002) (0.005)

1B2(V ) π→π∗ 6.14 6.10 5.72 6.00 5.72 5.65 5.64(0.107) (0.080) (0.113) (0.154) (0.070) (0.074)

1A2 3b1 → σ∗ 6.22 6.28 6.03 6.85 6.26 6.04

1B1 3b1 → 3s

6.24 6.52 6.36 6.12 6.33 6.23 6.32(0.000) (0.001) (0.002) (0.000) (0.000) (0.000) (0.002)

1A2 1a2 → 3pz 6.55 6.74 6.41 7.03 6.58 6.59 6.60

1B2 1a2 → 3px

6.70 6.95 6.81 6.41 7.02 6.56 6.74 6.60(0.040) (0.045) (0.032) (0.038) (0.034) (0.030) (0.023)

1B1 1a2 → 3py

6.86 6.81 6.47 6.39 6.30 6.72 6.60(0.021) (0.022) (0.016) (0.000) (0.030) (0.017)

1B1 3b1 → 3pz

6.82 7.14 6.99 7.17 6.73 6.83 6.7-7.0(0.025) (0.024) (0.024) (0.019) (0.029) (0.020)
1A1 3b1 → 3px

6.97 7.20 7.10 6.73 7.31 6.76 6.7-7.0(0.022) (0.051) (0.041) (0.065) (0.021) (0.015)
1A2 3b1 → 3py 7.25 7.11 6.89 6.39 6.35 6.7-7.0

1A2 1a2 → 3da1

6.99 7.14 6.73 7.93 6.97 6.91
1A2 1a2 → 3da1

7.01 7.19 6.75 7.85 7.08 7.07
1A1 1a2 → 3dxy

7.41 7.55 7.50 7.08 7.93 7.23 7.45 7.33(0.002) (0.000) (0.013) (0.018) (0.001) (0.001) (0.037)
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Table 3.9: ContinuedNEVPTaState Nature SC3 PC-QD CCSDR(3)a,b SAC-CI [116℄ MRCI [67℄ CASPT2 [115℄ TD-DFT [117℄ Exp.d
1B1 1a2 → 3dyz

6.65 7.55 7.15 7.24 7.32(0.000) (0.000) (0.000) (0.001) (0.000)
1B2 1a2 → 3dxz

7.69 7.54 7.12 8.11 7.28 7.43(0.001) (0.002) (0.003) (0.000) (0.001) (0.014)
1B1 3b1 → 3da1

7.34 7.43 7.21 8.18 7.37(0.001) (0.000) (0.000) (0.000)
1B1 3b1 → 3da1

7.38 7.50 7.14 8.26 7.67(0.001) (0.000) (0.000) (0.001)
1A1 3b1 → 3dxz

7.69 7.89 7.81 7.47 8.05 7.57(0.000) (0.077) (0.017) (0.034) (0.000)
1A2 3b1 → 3dyz 7.94 7.80 7.59 7.64 7.95

1B2 3b1 → 3dxy

7.97 7.80 7.46 7.92 7.53 7.95(0.129) (0.007) (0.024) (0.002)
1A1(V

′) π→π∗ 7.94 7.94 7.71 7.32 7.91 6.69 7.35 7.05(0.238) (0.069) (0.294) (0.361) (0.429) (0.185) (0.121)

1B1 n → π∗ 8.26 7.86 8.83 7.77(0.034) (0.000) (0.033)
1B2(V

′) π→π∗ 8.36 8.14 7.85 7.40 8.10 7.32 7.34 7.50(0.412) (0.276) (0.105) (0.120) (0.131) (0.392) (0.071)

1A2 n → π∗ 9.86 10.34 9.69
1A2 n → 3dxy 10.64 10.75 10.27a This workb The reported osillator strengths were omputed at CCSD level Values from Ref. [117℄d Values from Refs. [67, 94, 119�122℄



80 Chapter 3. The hetero�ylopentadieneslower exitation energies were instead obtained from the MRCI [67℄ (5.78 eV) andSAC-CI [116℄ (5.70 eV) alulations. In the CCSDR(3) omputations this transitionis instead obtained at 6.10 eV. Our results, in aordane with the SAC-CI [116℄,MRCI [67℄, CASPT2 [115℄ and TD-DFT [117℄, also predit the 3b1 → 3s Rydbergstate to belong to the B band, with a SC-NEVPT3 vertial exitation energy of 6.24eV. Moreover, on the basis of the present alulations, two other valene π → σ∗states, partially mixed with the 3py and 3dyz states, should be attributed to thisband: the 1a2 → σ∗ state (1B1) is omputed at 6.10 eV (PC-QDNEVPT2) with an
〈x2〉 of ≃ 32.5 a.u. and a negligible osillator strength (0.004) and the 3b1 → σ∗ state(1A2) is instead loated at 6.22 eV (PC-QDNEVPT2) with an 〈x2〉 of ≃ 31 a.u. Verysimilar exitation energies were obtained from the CC alulations, where the statesare omputed at slightly higher energy (6.30 and 6.28 eV respetively) and witha slightly more di�use harater (36.41 and 32.11 a.u. respetively). This partialRydberg (3p) nature of the 1B1 state justi�es the greater osillator strength (0.015)omputed at CC level. In the SAC-CI study [116℄ these two states are alulated at5.87 (1B1) and 6.03 eV (1A2) and the orresponding values of seond moments of theharge distribution are ≃ 35 and ≃ 32 a.u. Values of 6.41 (1B1) and 7.85 eV (1A2)are reported in the MRCI work [67℄ and, �nally, exitation energies of 6.20 (1B1) and6.26 eV (1A2) have been obtained at CASPT2 level [117℄.Energy range 6.5-7.8 eVThis spetral region, known as C Band, is onsidered as prinipally originated fromthe ouple of higher�energy π→π∗ states [67,77℄: 1A1(V

′) and 1B2(V
′) in inreasingenergetial order. However, the shape of the spetrum in this region is ompliatedby a number of Rydberg states, whih are expeted to appear both at the low andhigh energy tails of the C band. In the Eletron Energy Loss (EEL) spetrum themaximum appears at 7.05 eV and it was attributed to Rydberg (3b1 → 3p) and/orto valene (1B2(V

′)) exitations [67℄. The rising side, with a maximum deteted at6.60 eV, was, instead, assigned to a 1a2 → 3p state [67, 77℄.The best NEVPT results loate the vertial transitions to the two higher�energy
π → π∗ states at 7.94 (1A1(V

′)) and 8.14 eV (1B2(V
′)), whereas exitation energies of7.71 and 7.85 were obtained from the CCSDR(3) alulations. In omparison to theexperimental assignments, the NEVPT and CCSDR(3) transition energies turn outto be slightly higher, on�rming the di�ulty, already disussed for the analogoushetero�yles in Refs. [29,30℄, of obtaining aurate theoretial results for these ionihigh�energy π → π∗ states. As is apparent in Tab. 3.9, for both these valenestates, dissimilar osillator strengths were obtained at SC3 and PC-QD level; this isnot surprising onsidering that, above all for the 1A1(V

′) state, a remarkable mixing



Thiophene 3.6 81with the less intense Rydberg states was found in the quasi�degenerate NEVPT2alulations (see subsetion 3.6.1). Very similar exitation energies are reported inthe MRCI study [67℄, where the 1A1(V
′) state is omputed at 7.91 eV and the 1B2(V

′)one at 8.10 eV. On the ontrary, larger di�erenes (up to 1 eV) are observed betweenthe NEVPT and the CASPT2 [115℄ results, whih loate the two states at 6.69(1A1(V
′)) and 7.32 eV (1B2(V

′)).The �rst three members of the 1a2 → 3p Rydberg series have been omputed tohave vertial exitation energies of 6.55 (pz), 6.70 (px) and 6.86 eV (py), in aordanewith the experimental assignments [67, 77℄ of the struture below 7 eV to a 3p-typestate onverging to IP1 (8.872 eV). A good agreement (within 0.2 eV) is attainedwith the CCSDR(3) exitation energies, whereas signi�ant disrepanies are evidentamong those of the previous works. Apart from the MRCI results [67℄, whih seemto overestimate the exitation energies of both the 3pz and 3px states, the maindi�ulties onern the alulation of the σ�type 3py state. The SAC-CI [116℄, MRCI[67℄ and single�state CASPT2 [115℄ exitation energies are 6.47, 6.39 and 6.30 eV,whih are remarkably lower than the best NEVPT and CC values. On the ontrary, avalue of 6.72 eV was obtained from the TD-DFT omputations [117℄. The explanationfor suh too low exitation energies an be attributed to the partial valene σ∗harater of the 3py state. The SAC-CI 〈x2〉 of this state is ≃ 43 a.u. [116℄, where avalue of ≃ 47 is reported in the CASPT2 work [115℄. Note that the single�state PC-NEVPT2 exitation energy of this state, partially mixed with the 3dyz and σ∗ states,was 6.54 eV (Tab. 3.20 in subsetion 3.6.1), notieably lower than the orrespondingQD value but muh more similar to the SAC-CI and single�state CASPT2 results.On the basis of our aurate NEVPT alulations, also the 3p omponents ofthe seond Rydberg series (R′) are expeted to belong to the C Band, with verti-al exitation energies of 6.82 (3pz), 6.97 (3px) and 7.25 eV (3py); the CCSDR(3)omputations loate the states at 6.99, 7.10 and 7.11 eV respetively. Again, thevalene�Rydberg mixing seems to be the reason for the strong di�erenes in theomputed transition energies of the 3b1 → 3py state.The �ve members of the 1a2 → 3d Rydberg series are omputed to lie in therange between ≃ 7 and ≃ 7.7 eV, on the high�energy tail of the C Band, with avery low intensity. The best NEVPT results are 6.99 and 7.01 eV, for the two quasi�degenerate 3da1 states and 7.41 (3dxy), 7.65 (3dyz) and 7.69 eV (3dxz) for the others.As an be seen (Tab. 3.9), the CCSDR(3) exitation energies fully agree with theNEVPT results, with di�erenes not exeeding 0.2 eV. On the ontrary, remarkablydissimilar values (up to ≃ 1 eV) have been obtained in the previous ab initio studies.Finally, on the higher energy shoulder of this band, the present results loatealso the �rst three omponents of the 3b1 → 3d Rydberg series, whose NEVPTexitation energies are 7.34 and 7.38 eV for the two 3da1 type states and 7.69 eV for



82 Chapter 3. The hetero�ylopentadienesthe 3b1 → 3dxz state; however, there are not available experimental assignments forthis region of the spetrum. As already pointed out, the larger osillator strengthobtained at PC-QD level for the 3b1 → 3dxz state, with respet to that omputedat CC level as well as those reported in the other studies, has to be asribed to themixing with the strong valene transition (subsetion 3.6.1).Energy range 7.8-10 eVAs suggested by some previous experimental [67, 77, 129℄ and theoretial works [67,116℄, the region between 7.8-8.8 eV is dominated by exitations to Rydberg states.Sine the present study is restrited to the omputations of the only 3l Rydbergstates, the experimental assignments of the higher omponents of the two Rydbergseries will be left out (see Refs. [67, 116℄ for a detailed disussion).Palmer et al. [67℄, on the basis of their joint experimental and theoretial work,assigned the peak at 7.95 eV to a 3b1 → 3d state. The NEVPT results fully on�rmthis assignment, omputing two omponents of the 3d′ series near 7.95 eV: the dipole�forbidden 3b1 → 3dyz transition is predited to be loated at 7.94 eV and the 3b1 →
3dxy state at 7.97 eV, with an osillator strength of 0.129, due to the interation withthe strong 1B2(V

′) transition. In good agreement with the NEVPT results, bothstates are alulated at 7.80 eV at CCSDR(3) level. On the ontrary, signi�antlylower values are reported in the CASPT2 study [115℄, where the states are given at7.64 (3dyz) and 7.53 eV (3dxy).Up to now, there is no diret experimental evidene of exitations from the lonepair orbital on the sulfur atom to π∗ orbitals. However, the two lowest�energy n→ π∗states are expeted to be loated in this energy region, ompletely hidden by intense
π → π∗ transitions. Our results predit the two states at 8.26 (1B1) and 9.86 eV(1A2); in the MRCI study [67℄ they are omputed at 8.83 (1B1) and 10.34 eV (1A2)and, �nally, at 7.77 (1B1) and 9.69 eV (1A2) in the CASPT2 work [115℄. A Rydbergstate n→ 3dxy has also been deteted at 10.64 eV; a similar exitation energy (10.75eV) is reported by Palmer et al. [67℄, whereas a value of 10.27 eV was obtained bySerrano-Andrés et al. [115℄.



Chapter 4The vertial eletroni spetrum ofFree�Base Porphin
4.1 The UV spetrum of free-base porphinDue to their ruial r�le in a great deal of biologial phenomena, suh as the photo-synthesis and the oxygen absorption and transport proesses, the photohemial andphotophysial properties of the porphyrins have been extensively studied [131�133℄.Partiular attention has been obviously paid to the experimental and theoretialinvestigation of the eletroni spetrum of free base porphin (FBP), the basi build-ing blok of the porphyrins and related systems (Fig. 4.1). Sine the FBP hasbeome tratable for orrelated theoretial methods, a large number of studies hasbeen published, among whih we quote the most reent SAC-CI [134�136℄, STEOM-CC [137, 138℄, MRPT [139, 140℄, MRMP [141℄ and, �nally, TD-DFT [132, 142�145℄alulations. Certainly, FBP, with its valene π system omposed of 24 orbitals and26 eletrons, represents a severe hallenge for highly aurate ab initio alulations,at the level, for instane, of oupled luster or multireferene perturbation theoryand despite the large number of published studies some spetral assignments are stilldebated.The most investigated portion of the absorption spetrum extends from ≃ 2 to
≃ 5.5-6.0 eV and is haraterized by three prinipal regions [146�148℄. The lowest�energy band (1.98-2.42 eV), the so�alled Q band, is omposed of two peaks, des-ignated, aording to their polarization, as Qx and Qy bands. The most intenseabsorption region, known as Soret Band (or B band) is loated in the range between3.13 and 3.33 eV and a shoulder on its high�energy tail is instead alled N band (3.65eV). Finally, two weak and broad peaks (L and M bands) appear at 4.25 and 5.50eV.The traditional interpretation of the �rst two bands (Q and B) is based on the �four�
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Figure 4.1: Moleular struture of Free Base Porphin (FBP)orbital model� introdued by Gouterman and o�workers [149�151℄ in the 1960's.Aording to this model, the low-energy region of the spetrum an be aounted forin terms of single exitations from the two highest oupied MOs (5b1u and 2au inthe D2h symmetry group) to the two lowest unoupied MOs (4b2g and 4b3g) (Figure4.2). So, if the moleule is plaed in the xy plane with the x axis passing along thepyrroli hydrogens, the x and y omponents of the Q band should be asribed to the
11B3u and 11B2u states respetively; the 21B3u and 21B2u transitions are instead re-sponsible for the B band. Although Gouterman's model holds for the interpretationof the Q band, it has proved to fail for the the B band, where exitations from thelower b1u orbitals play a non negligible r�le.4.2 Computational approahThe geometry of the ground state of FBP was optimized at B3LYP/6-31G∗ level,imposing D2h symmetry, whih, on the basis of previous theoretial alulations[152,153℄, was shown to be the most stable one. Following the onvention adopted inmost previous theoretial works, the moleule has been plaed in the xy plane withthe two internal hydrogens along the x axis (Fig. 4.1). All the alulations werearried out with a 6-31G∗ basis set [55℄, onsisting of 364 basis funtions. The zeroorder desription was attained using two di�erent ative spaes, named CAS(4/4)and CAS(14/13), where the notation (m/n) indiates, as usual, m ative eletrons
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Figure 4.2: HOMO (2au), HOMO-1 (5b1u), LUMO (4b3g) and LUMO+1 (4b2g) MOs ofFree Base Porphinand n ative orbitals. In all the alulations, the 24 1s orbitals were kept frozen atthe CASSCF level.Table 4.1: Ative spaes, basis set and number of states used in the CASSCFalulations.Basis set Ative Spae Compositiona Number of states
B3u B2u6-31G∗

CAS(4/4)b 5b1u,4b2g,4b3g,2au 2 2CAS(14/13) 3-5b1u,3-6b2g ,3-6b3g,1-2au 4 4a At the SCF level the ground state eletroni on�guration is
20ag17b3u17b2u14b1g5b1u3b2g3b3g2aub Single�state CASSCF alulations State�averaged CASSCF alulationsThe detailed omposition of the two ative spaes is given in Tab. 4.1, wherethe number of the omputed states is also reported. In the CAS(4/4) alulationsthe zero order wavefuntion was obtained from single�root CASSCF alulations,whereas with the CAS(14/13) spae, state�averaged CASSCF optimizations wereperformed. The exitation energies were obtained with respet to the orresponding



86 Chapter 4. The vertial eletroni spetrum of Free�Base Porphinground state 11A1g, whih was alulated both for the CAS(4/4) and CAS(14/13)spaes.4.3 NEVPT resultsIn Tab. 4.2 the CASSCF and NEVPT2 exitation energies are gathered and om-pared with those omputed in the most reent theoretial studies; the experimentaldata are also reported.Table 4.2: Vertial exitation energies of the �rst four exited states of B3u and B2usymmetries of free base porphin ompared with other theoretial results and experimentaldata.Method Exited States
11B3u 11B2u 21B3u 21B2u 31B3u 31B2u 41B3u 41B2uCAS(4/4)CASSCF 3.48 3.71 5.08 5.12SC-NEVPT2 2.05 2.53 3.25 3.33PC-NEVPT2 2.04 2.51 3.22 3.30CAS(14/13)CASSCF 3.12 3.80 4.72 5.22 5.74 6.15 7.52 6.27SC-NEVPT2 2.21 2.76 3.49 3.62 4.10 4.40 4.93 4.47PC-NEVPT2 2.05 2.56 3.30 3.35 3.84 4.13 4.50 4.10Previous worksCASPT2 [139℄ 1.63 2.11 3.12 3.08 3.53 3.42 4.04 3.96MRPT2 [140℄ 1.73 2.25 2.96 3.02SAC-CI [135℄ 1.75 2.23 3.56 3.75 4.24 4.52 5.45 5.31STEOM-CC [138℄ 1.72 2.61 3.66 3.77 4.28 4.67 5.38 5.26TD-DFT [144℄ 2.16 2.29 2.98 3.01 3.47 3.41 3.76 3.77TD-DFT [132℄ 2.27 2.44 3.33 3.41 3.61 3.56 3.89 3.89Expt. values 1.98-2.02a 2.33-2.42a 3.13-3.33b 3.13-3.33b 3.65 4.25Assignment Qx Qy Bx By N La Refs. [148,154,155℄b Refs. [146,148,155℄ Ref. [148℄Before disussing in detail the interpretation of the spetrum, some general re-marks are possible. First of all, ontrary to the trend observed in the results of theother ab initio methods [135, 138�140℄, whih, with the exeption of the TD-DFTalulations [132,144℄, seem to overestimate the orrelation energy of the 11B3u statewith respet to the ground state, the NEVPT2 exitation energies turn out to beslightly higher than the experimental values; a similar behaviour is also notied forthe 11B2u state. Also, while a perfet aordane, with di�erenes not exeeding 0.03



NEVPT results 4.3 87eV, an be observed between the SC and PC transition energies in the CAS(4/4) al-ulation, signi�ant deviations are found using the larger ative spae. The di�erentbehaviour in the seond order orretion between the two NEVPT variants, anbe understood onsidering the inreasing auray of the PC approah, involving amuh larger number of perturbation funtions with respet to the SC ase, as thesize of the ative spae inreases.Table 4.3: Analysis of the CASSCF wavefuntion omposition. Only the on�gura-tions with weight greater than 5% are onsidered.CAS(4/4) CAS(14/13)State Con�g. Weight Con�g. Weight(%) (%)
11B3u 5b1u → 4b2g 43 5b1u → 4b2g 46

2au → 4b3g 55 2au → 4b3g 42
21B3u 5b1u → 4b2g 52 5b1u → 4b2g 25

2au → 4b3g 39 4b1u → 4b2g 22
2au → 4b3g 35

31B3u 5b1u → 4b2g 37
4b1u → 4b2g 34
2au → 4b3g 9

41B3u 3b1u → 4b2g 87
11B2u 5b1u → 4b3g 40 5b1u → 4b3g 41

2au → 4b2g 58 2au → 4b2g 51
21B2u 5b1u → 4b3g 55 5b1u → 4b3g 43

2au → 4b2g 36 2au → 4b2g 37
31B2u 4b1u → 4b3g 56

3b1u → 4b3g 20
41B2u 4b1u → 4b3g 66

5b1u → 4b3g 14Atually, as is apparent, these deviations are more onsistent for the higher ex-ited states and the maximum value (0.43 eV) is obtained for the 41B3u state. These



88 Chapter 4. The vertial eletroni spetrum of Free�Base Porphininreasing disrepanies are a lear lue of the inadequay of suh an ative spae,inluding only 13 valene π orbitals (slightly more than half of the omplete π valenespae), to desribe high�energy exited states. Then, it should be onsidered thatthe use of moleular orbitals not fully optimized, but obtained from state�averagedalulations, possibly ontributes to the defetive zero order desription.The most aurate NEVPT results predit the vertial transition to the 11B3uand 11B2u states at 2.05 and 2.56 eV (CAS(14/13) alulation), in remarkable aor-dane with the experimental values of 1.98-2.02 (Qx) and 2.33-2.42 eV (Qy). Also,we note that, for the Q band, the results obtained from the �four�orbital� based al-ulations (CAS(4/4) spae) an be regarded as satisfatory. Moreover, the splittingbetween the 11B3u and 11B2u states, omputed to be 0.47 eV, at the PC level, fullyagrees with the observed value of 0.44 eV [148℄.If on the one hand the Q band assignment is, altogether, well established, on theother hand the interpretation of the B band is still debated in the literature. Infat, aording to Gouterman's model [149�151℄ two omponents, with perpendiu-lar polarizations, should be distinguished: the Bx and By bands, arising from the
21B3u and 21B2u states respetively. The line splitting between the two omponentsof the B band, measured at low temperature [146℄, amounts to 0.03 eV. This tradi-tional interpretation, supported by some experimental evidene [147℄, as well as bythe CASPT2 [139, 156℄, TD-DFT [144℄ and MRPT [140℄ alulations, was howeverquestioned by Nakatsuji et al. [134℄ and Tokita et al. [135℄, who, on the basis of theirSAC-CI alulations, assigned the 21B3u state to the B band, but the 21B2u stateto the N band, appearing as a shoulder to the intense B band. Nevertheless, theSAC-CI osillator strengths of the two transitions, not mathing with the spetrumpro�le, seem to be a weak point of their onlusions (see Ref. [138℄).The PC-NEVPT2(4/4) results loate the 21B3u state at 3.22 eV and the 21B2u stateat 3.30 eV, prediting a splitting of 0.08 eV, slightly greater then the experimentalvalue of 0.03 eV. A small redution of this splitting is observed in the CAS(14/13)alulations, where the two states are omputed, at the PC level, at 3.30 and 3.35eV respetively, in reasonable agreement with experiments (3.13-3.33 eV). While thedesription of the 21B2u state provided by the CAS(4/4) alulations is omparableto that obtained using the larger ative spae, this is not the ase for the 21B3ustate. Indeed, as shown in Tab. 4.3, while, with both ative spaes, the referenewavefuntion of the 21B2u state is dominated by the 4b1u → 4b3g and 2au → 4b2gon�gurations, in the larger alulation, the 21B3u state is also desribed by the
4b1u → 4b3g exitation (22%), not onsidered in Gouterman's four�orbital model.The interpretation of the two higher�energy bands is ertainly more omplex andalso the experimental evidene is less lear. Moreover, as shown by Gwaltney andBartlett [138℄, in this region of the spetrum (4.5-5 eV) the Rydberg transitions are



NEVPT results 4.3 89expeted to start. By now, the �rmest assignment, suggested by Serrano-Andrèset al. [139℄, is that the N band has to be asribed to the pair of states 31B3u-
31B2u and, analogously, the so-alled L band is assigned to the 41B3u-41B2u states.However, as apparent in Tab. 4.2, quite a on�iting piture emerges from theresults of the various theoretial methods, with di�erenes in the omputed exitationenergies greater than 1 eV. At the partially ontrated level, the 31B3u-31B2u statesare omputed at 3.84-4.13 eV, whereas the other pair of states 41B3u-41B2u is loatedat 4.50-4.10 eV. Our results, overall, are onsistent with the CASPT2 interpretation,sine the largest deviation between the PC-NEVPT2 and CASPT2 amounts roughlyto 0.7 eV (31B2u state). Nevertheless, a too sizable splitting, with respet to thatomputed by Serrano-Andrés et al. [139℄, is found between the omponents of eahpair of states. However, at the present stage of alulation, sine the ground stategeometry, basis set and, above all, the ative spae used for this study are not thesame as in Ref. [139℄, and hene also the nature of the exited states omputed isnot exatly the same, the diret omparison with the CASPT2 results should beregarded with are.
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Chapter 5Eletron transfer in a model spirosystem
5.1 IntrodutionThe present hapter addresses the problem of the desription of the Eletron Transfer(ET) proesses in Mixed�Valene (MV) ompounds in the framework of multirefer-ene perturbation theory. The investigation is arried out on the model MV spiro sys-tem reported in Fig. 5.1, (the 5,5′(4H,4H′)- spirobi[ylopenta[℄pyrrole℄2,2′ ,6,6′te-trahydro ation) [157℄, whih, due to its relatively small size, allows the appliationof highly�orrelated methodologies.

Figure 5.1: Moleular struture of the spiro moleuleThe work presented here [42, 43℄ was thought as the extension of a previousCASSCF and MRCI study [158℄, whih reports an extensive investigation by usingdi�erent basis sets and omputational approahes (anonial vs. loalized orbitals).After a short introdution to the ET proesses in MV systems (setion 5.2), themodel spiro system, subjet of the present investigation, is presented in setion 5.3and the omputational approah is, instead, illustrated in setion 5.4. Setion 5.5shows that MRPT treatments (suh as, for instane, NEVPT2 and CASPT2 [17℄)



94 Chapter 5. Eletron transfer in a model spiro systemwith a standard de�nition of the MO's and of their energies are inadequate for theMV systems, leading to an unphysial desription of the eletroni energy urve asa funtion of the reation oordinate. In the same setion, it is shown that theappliation of the perturbation approah to the third order in the energy is ableto restore the orret shape of the energy pro�le. The origin of suh a behaviouris illustrated in setion 5.6, by resorting to a simple Marus�like two�state modelomprising only three eletrons in four orbitals. By using this model, a strategybased on the use of the anonial orbitals of a state�averaged alulation and withstate�averaged orbital energies is proposed with the aim to overome the failure ofthe seond order perturbation treatment based on state�spei� anonial orbitalsand energies. This strategy is adopted in atual alulations on spiro in setion 5.7,on�rming its validity.5.2 Eletron Transfer reations and Mixed�ValenyThe pivotal r�le played by the ET proesses in a great deal of hemial�physial andbiologial phenomena, aounts for the extensive researh e�orts addressed to theunderstanding of its mehanisms. In the domain of the intramoleular ET, Mixed�Valene (MV) ompounds play a relevant r�le as simple model systems suitablefor understanding the adiabati ET phenomena [159�164℄. Furthermore, MV om-pounds are extensively investigated, both experimentally and theoretially, partiu-larly in the �eld of the inorgani binulear MV omplexes [165℄, for their appealingoptial and magneti properties as well as for their possible appliation in moleulareletronis and photonis [166℄. Nevertheless, more reently, an inreasing attentionhas been paid to the purely organi MV systems (see, for instane, the extensive workon the triarylamine�based MV systems by Lambert and Nöll [167℄), sine their InterValene Charge Transfer (IV-CT) band is, generally, not a�eted by the overlap withother low�lying transitions, ontrary to what may our for inorgani ompounds dueto appearane of the d → d metal to ligand (MLCT) or ligand to metal (LMCT)harge transfer exitations.The simplest MV ompound is omposed of two moieties (hereafter indiated withA and B), linked either diretly or via a bridge, where an inter�valene ET (IV-ET)ours between the two redox sites being in di�erent oxidation states. The eletronioupling between the two ideally non�interating systems, where the eletron (hole)is loalized either on the left or on the right moiety, governs the ommuniationbetween the two subunits, determining the general properties of the system. Suhinteration is expressed by the Hamiltonian matrix element Hab =
〈
Ψa

∣∣∣Ĥ
∣∣∣Ψb

〉,where Ψa and Ψb are the diabati states, one with the eletron/hole loalized on the



Eletron Transfer reations and Mixed�Valeny 5.2 95(left) subunit A and the other on the (right) subunit B.Aording to the usual lassi�ation by Robin and Day [168℄, MV systems anbe divided into three lasses:
• lass I: redox enters strongly loalized (omplete valene trapping);
• lass II : partial deloalization arising from a weak eletroni interation (va-lene trapping);
• lass III : strong eletroni oupling whih gives rise to a omplete deloalizedsystem with a single minimum for the ground state (deloalized valeny).

E op = λ

 ∆E = 2H AB

(a) lass II  ∆E = 2H AB(b) lass IIIFigure 5.2: Potential Energy Surfaes (PESs) of an ET reation in a symmetri MV om-pound.In the ase of lass II and lass III ompounds (Fig. 5.2), the analysis of theIV-CT band, either based on the semilassial Hush theory [169, 170℄ or on a morerigorous quantum mehanial approah [171℄, provides a diret way to estimate Hab,and the reorganization energy, λ. The extent of the eletroni oupling an alsobe obtained experimentally by means of Eletron Spin Resonane (ESR), NulearMagneti Resonane (NMR) Spetrosopy as well as Photoeletron Spetrosopymeasures (see Refs. [172, 173℄ for a more detailed overview). Nevertheless, sine theobtaining of a reliable experimental measure of Hab is often not possible, partiularlyfor strongly oupled systems, where the ET rates are muh faster than the typialtime sale of the above ited experimental tehniques and, additionally, the signi�-ant vibroni oupling makes the Hush theory no longer appliable, the developmentof aurate and e�ient omputational strategies represents a ruial issue in thestudy of MV systems. Moreover, the aurate theoretial predition of the eletroni



96 Chapter 5. Eletron transfer in a model spiro systemoupling would represent a powerful tool for the design of new �spaers�, allowing thespei� modulation of the properties of the ET proess (e.g. long or short distaneET). In the framework of the widely used two�state one�mode model and in the sim-ple ase of symmetry�equivalent donor and aeptor groups, the eletroni oupling
Hab is de�ned as half the energy splitting (∆E) between the two adiabati potentialsurfaes at the rossing seam, and it an be omputed using di�erent methodologiesand approahes [157, 158, 167, 174�186℄.Nevertheless, the theoretial study of thise kind of systems presents di�ulties:the e�et of the dynamial orrelation has to be evaluated, improving the qualitativeminimal desription given by the simple mixing of the quasi degenerate determi-nants aounting for the two harge distributions. These di�ulties are related tothe intrinsi multireferene (MR) nature of the ground and the �rst exited statewavefuntions of these systems and to their dimension, whih makes impratial theuse of too expensive omputational approahes. MR perturbation theory (MRPT),among the other MR methods, is a good andidate due to the reliability shown inmany MR appliations and due to the saling properties of the omputational ostwith respet to the dimensions of the system. With the exeption of some reentsemiempirial Austin Model 1 (AM1) omputations [167, 183℄, the most frequentlyapplied methods, to study the ET proess, are based on Density Funtional [176℄and Time�Dependent Density Funtional Theories (TD-DFT) [180, 181℄. However,as shown in di�erent appliations [181,187℄, some doubts have been raised onerningthe appliability of the DFT approah to the study of the eletron transfer in MVompounds, sine the omputed eletroni oupling has been shown to be system-atially underestimated by 20-30% in omparison to the results of more re�ned abinitio alulations.5.3 The model Spiro systemThe π-σ-π spiro moleule (reported in Fig. 5.3) onsists of two pyrroli units (πsystems), lying on two perpendiular planes, onneted by a spiroyloalkane rigid σbridge. The symmetry of the neutral moleule is D2d, with the C2 axis (the z axis)passing through the two N atoms; if an eletron is removed from the system, thepositive harge tends to loalize on the left or on the right pyrroli unit, distortingthe symmetry and giving rise to two equivalent C2v minima. These are separated bya symmetrial D2d saddle point at the rossing seam, orresponding to the situationof a omplete deloalization of the positive harge over the whole moleule.Although some arguments about the equilibrium geometry of the spiro ationin either its left/right�loalized or deloalized strutures have been provided and C1
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Figure 5.3: Struture of the spiro moleuleand C2 symmetries have been respetively suggested [177℄, here, as in Refs. [158,186℄,we adopt the C2v point group for the two minima with the loalized harge and theD2d symmetry for the struture at the saddle point.The �π system� of the spiro ation, omposed of the π systems loalized on thetwo pyrroli rings, omprises 11 π eletrons and 10 π orbitals and, at the singledeterminant level and in the C2v point group, the eletroni on�guration is givenby (σ�ore)(1b1)2(2b1)2(1b2)2(2b2)2(1a2)
2(2a2)

1. Therefore, the ground and the �rstexited states, involved in the ET proess, are two states of A2 symmetry, denotedas 2A2(1) and 2A2(2) in the following.The ET proess was studied along an ad ho approximate reation path, de�nedby the linear mixing of the artesian oordinates of the two optimized C2v geometries[158℄:
Q(ξ) =

(
1

2
− ξ

)
QA +

(
1

2
+ ξ

)
QB (5.1)where the mixing parameter ξ was varied, in steps of 0.05, from -1.50 to +1.50and QA and QB are vetors olleting the oordinates of the two optimized C2vgeometries. Therefore, the two equivalent minima are in ξ = −0.50 (QA, harge onthe left A moiety) and ξ = +0.50 (QB, harge on the right B moiety). An �averaged�D2d geometry, whih was however found to be very lose to the optimized one (seeRef. [158℄), is obtained at the rossing seam point (ξ=0.0). Nevertheless, sine theMOLCAS pakage [76℄, used to obtain the CASSCF wavefuntions, an only dealwith Abelian point groups, the alulations for the non�Abelian D2d group wereperformed using the redued C2v symmetry.



98 Chapter 5. Eletron transfer in a model spiro system5.4 Computational detailsFollowing the previous works, the alulations were arried out with basis sets ofAtomi Natural Orbitals (ANO-L) [72℄ type. Di�erent ontrations levels wereadopted: C,N[2s1p℄ and H[1s℄ (SZ); C,N[3s2p℄ and H[2s℄ (DZ); C,N[3s2p1d℄ andH[2s1p℄ (DZP) and, �nally, C,N[4s3p1d℄ and H[3s1p℄ (TZP).For the alulation of the reation oordinate (see setion 5.3), use has been madeof the geometries optimized in Ref. [158℄ at the Restrited Open Shell Hartree�Fok(ROHF) level with a triple zeta plus Polarization (TZP) ANO basis set [72℄.State�averaged CASSCF alulations were performed for the two 2A2 states usingdi�erent ative spaes: CAS(3/2), just omposed of the three eletrons and the twoa2 (HOMO and HOMO-1) orbitals; CAS(11/10), omprising the whole π system ofthe moleule, obtained distributing eleven ative eletrons into ten ative orbitals andan intermediate spae, omposed of seven eletrons and four orbitals, CAS(7/4). Theexpliit omposition, in the C2v point group, of the ative spaes used, is reportedin Tab. 5.1. Table 5.1: Ative spae omposition and nomenlature.Ative Spae CompositionaCAS(3/2) 3-4a2CAS(7/4) 12b1, 12b2,3-4a2CAS(11/10) 11-13b1, 11-13b2, 3-6a2a At the SCF level, in the C2v point group, the groundstate eletroni on�guration of the neutral system is
(25a1)

2(12b1)
2(12b2)

2(4a2)
2.In all the perturbative alulations, the 1s orbitals of N and C were kept unor-related.Finally, all the energy di�erenes, reported in the next setions, were omputedwith respet to the energy of the ground state of the ation at the C2v geometry with

ξ = +0.5 (ξ = −0.5), orresponding to that of the optimized geometry QA (QB),although it might not be the atual minimum of the urve.5.5 Seond and third order standard MRPTThis setion is devoted to the disussion of the results provided by a standard pertur-bation approah (hereafter indiated as NEVPT(an) and CASPT2(an)), whih isbased on the use of state�spei� anonial moleular orbitals and orbital energies.Therefore, the zero order wavefuntions were de�ned performing a state�averaged



Seond and third order standard MRPT 5.5 99CASSCF alulation on the two 2A2 states, followed by two distint single�rootCASCI alulations, in order to build the anonial orbitals and to ompute theorbital energies for eah state. Here, we shall just report the results omputed withthe minimal basis set (SZ) and ative spae, CAS(3/2).The omputed CASSCF, NEVPT2(an), CASPT2(an) and NEVPT3(an) en-ergy di�erenes are olleted in Tab. 5.2. As is apparent from the energy pro�lesreported in Fig. 5.5, and from the omputed values of the energy barriers in Tab. 5.2,a non�physial desription of the two adiabati PES, in proximity of the symmetrialsaddle point is attained with both the NEVPT2 and CASPT2 approahes.Table 5.2: Spiro ation: NEVPT2(an), NEVPT3(an) and CASPT2(an) energies (kJ/mol) ofthe ground state, 2A2(1), at ξ = 0.0 and of the �rst exited state, 2A2(2), at ξ = 0.0 and ξ = −0.5.All the energies are omputed with respet to the energy of the ground state at ξ = −0.5. For thesake of larity the energy splitting (∆E kJ/mol) between the two states at ξ = 0.0 is also reported.For the CASPT2 results the level shift was varied from 0.0 to 0.2 hartree.States CAS NEVPT(an) CASPT2(an)SC-PT2 PC-PT2 SC-PT3 L.S. 0.0 L.S. 0.1 L.S. 0.2
ξ = −0.5
2A2(2) 56.690 51.442 51.441 51.539 50.001 50.043 50.151
ξ = 0.0
2A2(1) 8.328 -5.117 -5.330 3.765 -5.790 -5.724 -5.503
2A2(1) 17.371 4.726 4.505 12.983 4.017 4.087 4.314
∆E (ξ = 0.0)
2A2(2) 9.043 9.843 9.835 9.218 9.807 9.811 9.817In partiular, an inreasing overestimation of the orrelation energy, starting at

ξ = −0.15 and ulminating at ξ = 0, is observed, with the onsequent loss of thebarrier and the appearane of a �well� in the avoided�rossing region. Indeed, bothNEVPT2(an) and CASPT2(an) alulations, irrespetive of whether a level shift isused or not in the latter ase (thereby exluding an intruder state problem), yield forthe 2A2(1) state the D2d nulear on�guration ≃5 kJ/mol below the C2v minimum.As shown in Fig. 5.5, the SC�NEVPT2(an) and the CASPT2(an) urves arealmost parallel along the reation oordinate and the omputed energy di�erenesolleted in Tab. 5.2 are in very good aordane. The energy splitting at the D2dgeometry amounts roughly to 9.8 kJ/mol, very lose to that omputed at CASSCFlevel (≃9 kJ/mol). As is apparent, proeeding up to the third order is essential torestore the orret behavior of the two PES, with the expeted double�well pro�lefor the ground state and with the smooth paraboli urve for the �rst exited state.
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Failure of a standard MRPT approah 5.6 1015.6 Failure of a standard MRPT approah5.6.1 A simple two-state modelLet us onsider a model system A, with two eletrons and two orbitals, a and a∗ (alower in energy than a∗). In a perturbation sheme, using the Møller-Plesset [26℄partition of the Hamiltonian, the zero�order wavefuntion is the determinant ‖aā‖and only one perturber (‖a∗ā∗‖) must be onsidered (if the orbitals are supposedto be optimized, the single exitations are exluded due to Brillouin's theorem [7℄).The �rst order orretion to the wavefuntion is
Ψ(1) = − 〈aa|a∗a∗〉

2(εAa∗ − εAa )
‖a∗ā∗‖ (5.2)and the seond and third order orretions to the energy are:

E
(2)
A = −|〈aa|a∗a∗〉|2

2(εAa∗ − εAa )
(5.3)

E
(3)
A =

〈
Ψ(1) |V|Ψ(1)

〉
− E(1)〈Ψ(1)|Ψ(1)〉

=
|〈aa|a∗a∗〉|2
4(εAa∗ − εAa )2

[E (‖a∗ā∗‖) − E (‖aā‖)] + E
(2)
A (5.4)where V is the perturbation operator (Ĥ = Ĥ0 + V),

εAa = 〈a |h| a〉 + 〈aa|aa〉 (5.5)
εAa∗ = 〈a∗ |h| a∗〉 + 2〈a∗a|a∗a〉 − 〈a∗a|aa∗〉 (5.6)are the orbital energies of the a and a∗ orbitals (the supersript A has been addedto stress that the orbital energies refer to the A system treated alone) and

E (K) =
〈
K
∣∣∣Ĥ
∣∣∣K
〉 (5.7)is the energy of determinant K.Consider now a seond system B, equal to A, and the supersystem (A· · ·B)+where A and B are weakly interating (Fig. 5.6.1). The moleular orbitals of theAB system an be regarded as loalized and they are very lose to the orbitals of Aand B: they are therefore indiated in the following with a, a∗, b and b∗.The ground state zero order wavefuntion for the supersystem is desribed bythe linear ombination of the two quasi�degenerate determinants ‖abb̄‖ and ‖aāb‖(orresponding to the A+ · · ·B and A· · ·B+ harge distributions, respetively):

Ψ(0) = c1‖abb̄‖ + c2‖aāb‖ . (5.8)
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Figure 5.6: Shemati representation of the A+· · ·B and A· · ·B+ systemsWe suppose a small relaxation of the geometry going from A (B) to A+ (B+). Theweak oupling between the two systems A and B is given by an e�etive Hamiltonianof the form:
H =

∣∣∣∣∣
k1(

1
2 − ξ)2 k2

k2 k1(
1
2 + ξ)2

∣∣∣∣∣ (5.9)where ξ is a �reation oordinate�: with ξ = −0.5 the system is desribed by A+· · ·Bwhile with ξ = 0.5 the system is A· · ·B+. The values of k1 and k2 are suh that c1remains lose to 1 for ξ < −δ and is lose to 0 for δ < ξ, with 0 < δ ≪ 1.5.6.2 Seond order orretionTo ompute the seond order orretion to the energy one has to use in this ase aMRPT sheme, and in order to keep the approah as simple as possible, the Møller�Plesset baryentri [188℄ (MPB) partition of the Hamiltonian is adopted. The orbitalenergies of the (A· · ·B)+ system are omputed using the formula [189℄:
εi = 〈i |h| i〉 +

∑

k

nk

[
〈ik|ik〉 − 1

2
〈ik|ki〉

] (5.10)where nk is the natural oupation of orbital k (na = 1 + |c2|2, nb = 1 + |c1|2, and
na∗ = nb∗ = 0). In the MPB partition, the zero order energy of the ground state is:

E(0) = (1 + |c2|2)εa + (1 + |c1|2)εb (5.11)In order to simplify the derivation, we use the approximation to neglet thebieletroni integrals in whih one eletroni distribution (of eletron 1 or 2) is theprodut of orbitals one on A and the other on B. With this approximations, the



Failure of a standard MRPT approah 5.6 103orbital energies are:
εa = 〈a |h| a〉 +

1 + |c2|2
2

〈aa|aa〉 +
(
1 + |c1|2

)
〈ab|ab〉 (5.12)

εb = 〈b |h| b〉 +
1 + |c1|2

2
〈bb|bb〉 +

(
1 + |c2|2

)
〈ab|ab〉 (5.13)

εa∗ = 〈a∗ |h| a∗〉 +
(
1 + |c2|2

)
〈aa∗|aa∗〉 − 1 + |c2|2

2
〈aa∗|a∗a〉 +

+
(
1 + |c1|2

)
〈a∗b|a∗b〉 (5.14)

εb∗ = 〈b∗ |h| b∗〉 +
(
1 + |c1|2

)
〈bb∗|bb∗〉 − 1 + |c1|2

2
〈bb∗|b∗b〉 +

+
(
1 + |c2|2

)
〈b∗a|b∗a〉 (5.15)We note that the dependene of these orbital energies on ξ (through the de-pendene of c1 and c2 on ξ) agrees with the one found in the NEVPT alulationsreported in the previous setion, as is apparent from Fig. 5.7 where the orbital en-ergies used in the NEVPT2 alulation for four representative inative orbitals arereported as a funtion of ξ. The dependene of the harge of the B moiety (equivalentto |c2|2 in the model) as a funtion of ξ is also reported for the sake of larity.Let us turn to the alulation of the seond order perturbation orretion to theenergy: the single exitations are onsidered to give negligible ontributions, sineloal single exitations on the two systems an be disposed of if the orbitals aresupposed to be optimized (ontrated singles would yield stritly zero aording tothe Generalized Brillouin theorem [14℄) and, moreover, intersystem exitations arethought to have a small ontribution due to the weak interation between the twosystems. Therefore only the two doubly exited perturbers, ‖ab∗b̄∗‖ and ‖a∗ā∗b‖(with zero order energy εa + 2εb∗ and εb + 2εa∗ , respetively) must be onsidered,obtaining for the seond order orretion to the energy:

E(2) = −|c1|2
|〈bb|b∗b∗〉|2

2εb∗ −
(
1 + |c1|2

)
εb − |c2|2 εa

−|c2|2
|〈aa|a∗a∗〉|2

2εa∗ −
(
1 + |c2|2

)
εa − |c1|2 εb

(5.16)and for the �rst order orretion to the wavefuntion
Ψ(1) = −c1

〈bb|b∗b∗〉
2(εb∗ − εb)

‖ab∗b̄∗‖ − c2
〈aa|a∗a∗〉

2(εa∗ − εa)
‖a∗ā∗b‖ . (5.17)Sine the two subsystems A+ and B (or A and B+) are supposed to be weaklyinterating and given that the ionized system need not be orrelated, the seond
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E(2) = −|〈aa|a∗a∗〉|2

2(εa∗ − εa)
(5.18)and

Ψ(1) = − 〈aa|a∗a∗〉
2(εa∗ − εa)

[
c1‖ab∗b̄∗‖ + c2‖a∗ā∗b‖

] (5.19)where
εa = 〈a |h| a〉 + 0.75〈aa|aa〉 + 1.5〈ab|ab〉 (5.20)
εa∗ = 〈a∗ |h| a∗〉 + 1.5〈a∗a|a∗a〉 − 0.75〈a∗a|aa∗〉 + 1.5〈a∗b|a∗b〉 (5.21)



Failure of a standard MRPT approah 5.6 105Expressions (5.20) and (5.21) for the orbital energies are di�erent from those reportedin eqs. (5.5) and (5.6), even disregarding the small integrals 〈ab|ab〉 and 〈a∗b|a∗b〉.The denominator in (5.18) is smaller than the one in (5.3) (the onsite repulsionintegrals 〈aa|aa〉 and 〈a∗a|a∗a〉 being large and positive) and the orrelation energyis therefore larger in module.It is worthwhile to point out that the model here disussed involves only ativeand virtual orbitals. The inlusion of ore orbitals ompliates the derivation. How-ever, one an show that for ξ = 0 the perturbers obtained by a promotion of twoore eletrons into the ative spae (V (+2) or 2h lass) are assoiated with a denom-inator larger than the orret one and therefore their ontribution to the orrelationenergy is too small. The same happens for the promotion of one ore eletron intothe ative spae aompanied by an exitation inside the ative spae (V (+1)′ or 1hlass). In the ases where both the ore and the virtual orbitals are involved in theexitation proess (V (0) or 2h− 2p, V (+1) or 1h− 2p, V (−1) or 2h− 1p, and V (0)′or 1h− 1p lasses) the analysis is more omplex and there is a ompetition betweenthe e�et of the virtual orbital energies (whih tend to give too small denominators)and the one of the ore orbital energies (whih, on the ontrary, tend to give toolarge denominators).The analogy between the model system and the NEVPT2 desription of thespiro moleule is on�rmed by the urves shown in Fig. 5.8 where the NEVPT2orrelation energy for eah exitation lass is plotted as a funtion of ξ. In orderto have a prompt omparison of the behavior of the di�erent NEVPT2 lasses, theorigin of the energy sale is di�erent for eah lass and all plots have the same energyrange (for more details, see aption of Fig. 5.8). As expeted the V (−2) lass (twoative eletrons promoted to the virtual spae) shows a sharp pro�le with too large aorrelation energy lose to ξ = 0. All the other lasses, apart from the V (−1)′ lass,involve both ore and virtual orbitals and the e�et of the virtual orbital energies isdominant for the V (1) and V (−1) lasses, while for the V (0)′ the e�et of the oreorbital energies slightly prevails. The two e�ets almost ompensate eah other inthe ase of the V (0) lass. The behavior of the V (−1)′ lass is peuliar: given thatin this ase only virtual inative orbitals are involved in the exitation proess, fromthe model system one an expet for this lass a behavior similar to the one observedfor the V (−2) lass, while the NEVPT2 urve shows an opposite shape. One musthowever note that, in the same energy sale of the other lasses, the ontributionof this lass is almost onstant and that the deviation from the orret behavioris negligible. However, the urve of the total CASSCF+NEVPT2 energy, reportedin Figure 5.5, indiates that the e�et of the virtual orbital energies (too large aorrelation energy for ξ = 0) is dominant.
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Figure 5.8: Spiro ation: ontribution of the di�erent lasses to the NEVPT seond orderorretion to the energy (in millihartree, mh) as a funtion of the reation oordinate ξ.The V (2) and V (+1)′ lasses give vanishing ontribution. In order to make the omparisonbetween the di�erent lasses easier, the energy reported in �gure is E(2)+Eshift, where Eshift(in hartree, h) is di�erent for eah lass: V (0) → Eshift = 0.6480 h, V (1) → Eshift = 0.0185h, V (−1) → Eshift = 0.0730 h, V (−2) → Eshift = 0.0115 h, V (−1)′ → Eshift = 0.0030 h,and V (0)′ → Eshift = 0.3000 h. Moreover the same energy sale is adopted for all plots.5.6.3 Third order orretionFor the third order orretion to the energy, the full derivation is rather irksome,even onsidering only ative and virtual orbitals. In this ase, one an, however,easily prove that for ξ = −0.5 and ξ = 0.5 the orret behavior is obtained.For ξ = 0 one has
E(3) =

|〈aa|a∗a∗〉|2
4(εa∗ − εa)2

[
E (‖a∗ā∗b‖) − E

(
Ψ(0)

)]
+ E(2) (5.22)where use has been made of the relations E (‖a∗ā∗b‖) = E

(
‖ab∗b̄∗‖

) and〈
‖a∗ā∗b‖ |V| ‖ab∗b̄∗‖

〉
= 0. Introduing the new quantities

∆ε = 2
(
εAa∗ − εAa

) (5.23)
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∆ = ∆ε− 2 (εa∗ − εa) (5.24)one an expand E(2) and E(3) in MLaurin series with respet to ∆/∆ε (whih isexpeted to be ≪ 1) obtaining to the �rst order:
E(2) ≃ E

(2)
A

(
1 +

∆

∆ε

) (5.25)
E(3) ≃ |〈aa|a∗a∗〉|2

(∆ε)2

[
E (‖a∗ā∗b‖) − E

(
Ψ(0)

)](
1 + 2

∆

∆ε

)
+ E

(2)
A

(
1 +

∆

∆ε

)

≃ E
(3)
A +E

(2)
A

(
1 − 2

[
E (‖a∗ā∗b‖) − E

(
Ψ(0)

)]

∆ε

)
∆

∆ε
(5.26)where the relation E (‖a∗ā∗b‖) − E

(
Ψ(0)

)
≃ E (‖a∗ā‖) − E (‖aā‖) has been used(the equality holds if A and B are non interating). Therefore, neither E(2) nor E(3)show the orret behavior (whih is E(2)

A and E(3)
A , respetively) at the �rst order in

∆/∆ε, but the sum of the two orretions
E(2) + E(3) ≃ E

(2)
A + E

(3)
A + 2E

(2)
A

(
1 −

[
E (‖a∗ā∗b‖) − E

(
Ψ(0)

)]

∆ε

)
∆

∆ε(5.27)has the orret expression if E (‖a∗ā∗b‖)−E
(
Ψ(0)

)
= ∆ε. Even though suh equal-ity does not hold rigorously, the two terms an be supposed to be lose, the �rstrepresenting the energy di�erene between ‖a∗ā∗b‖ and Ψ(0) omputed with the fullHamiltonian, the seond the same energy di�erene, but using the zero order Hamil-tonian.5.6.4 Conlusive remarksThis simple model allows the full rationalization of the results reported in setion5.5: the energy urve orreted to the seond order using MRPTs in whih the zeroorder Hamiltonian depends (at least partially) upon the orbital energies, shows anunphysial behavior with a �well� around the symmetri situation ξ = 0. BothNEVPT2 and CASPT2 are a�eted by this error but suh behavior is expeted tobe ommon to pratially all MRPTs (with a possible exeption of the ones based onEpstein�Nesbet partition of the Hamiltonian [188℄). However, while for NEVPT2,in whih Ĥ0 ontains the orbital energies only for the inative (ore and virtual)orbitals the problem an be, in priniple, alleviated by enlarging the ative spae,for CASPT2 this strategy is destined to fail, beause of the monoeletroni natureof Ĥ0 in all orbital spaes.



108 Chapter 5. Eletron transfer in a model spiro systemThe irregularity is almost ompletely removed if the perturbation approah isapplied up to the third order, thus restoring a regular urve. But, in the perspetiveof applying MRPT methods to real MV systems with a good quality basis set andreasonably large ative spaes, the strategy to perform a third order alulationappears as too expensive a solution.To this aim, this model suggests a pratial strategy for limiting the alulationto the seond order: indeed, if equations 5.12-5.15 are made independent of c1 and
c2, the seond order energy remains onstant for all ξ and the unphysial �well� isremoved. This an be obtained, for instane, by using |c1|2 = |c2|2 = 0.5, or equiv-alently by taking, for eah orbital energy, the average of the two values omputedat ξ and −ξ. In the atual alulations this results an be obtained omputing, foreah nulear geometry, the orbital energies as the average between those pertain-ing to the ground state (GS) and to the �rst exited state of the same symmetry;in other terms, this �harge�averaged� MRPT2 strategy (hereafter referred to as�NEVPT2(av)�), relies on the use of state�averaged anonial moleular orbitals,obtained by diagonalization of the state�averaged Fok operator.Finally, we note that in the NEVPT2(av) strategy, one has to give up the orretabsolute value of the seond order energy (notie that in this approah for ξ = −0.5and ξ = +0.5 E(2) 6= E

(2)
A ), the trade�o� being a oherent evaluation of the energyalong the �reation path�. This allows to get an aurate estimate of all those energydi�erenes, suh as the extent of the barrier, the energy splitting at the rossingseam as well as the exitation energy for the optially�ativated ET, whih are thekey parameters in the study of the ET proesses. Some further remarks may beaddressed to the question of how general suh �harge�averaged� MRPT2 approahan be. Atually, the strategy of using a zero order wavefuntion as the result of anaverage proedure along the whole reation path between the two harge distributionsan be, in priniple, extended to non�symmetrial MV systems, to MV ompoundsontaining transition metals and also to strongly oupled systems. About the lastpoint, it should be noted that the inorret desription of the region around thesaddle point is basially related to the weak oupling between the two subunits,that brings about a sudden hange in the monoeletroni energy di�erenes as thenulear on�guration approahes the symmetrial deloalized onformation. Thus,even though the NEVPT2(av) method is well appliable to more strongly oupledompounds, in these kinds of systems the appliation of a standard MRPT2 approahis expeted to be less problemati due to the more gradual hange of the nature ofthe wavefuntion when passing from one harge distribution to the other.



The use of state�averaged orbitals 5.7 1095.7 The use of state�averaged orbitalsTabs. 5.3 and 5.4 display the CASSCF and NEVPT exitation energies obtainedwith the four basis sets and the two largest ative spaes, CAS(7/4) and CAS(11/10)respetively. Tab. 5.5 ollets the MRCI results published in Ref. [158℄ and here usedas benhmark values to judge on the quality of those obtained at NEVPT2(av) andNEVPT3(an) levels; the omparison is made more meaningful by the use of thesame basis sets (ANO-L [72℄ with SZ and DZ ontrations) and of the same ativespae, CAS(7/4). The MRCI results reported here have been obtained at CAS+SDlevel using both an internally�ontrated [48℄ (C-CAS+SD) and an unontrated(CAS+SD) approah; �nally, the subsript �an� indiates that anonial moleularorbitals were used. We have reported the exitation energies (kJ/mol) from theground state, 2A2(1), at its energy minimum, taken as the value at ξ = −0.5, to the�rst exited state, 2A2(2), both at the C2v (ξ = −0.5) and D2d (ξ = 0.0) points; theheight of the barrier for the thermal ET and the energy splitting ∆E at the rossingseam were also omputed.5.7.1 The energy barrierAs expeted on the basis of the onsiderations reported in setion 5.6, sine in theNEVPT2 sheme the dependene of Ĥ0 on the orbital energies is limited to the ina-tive (ore and virtual) orbitals, the strategy of enlarging the ative spae alleviatesthe problem around the symmetri D2d geometry in the standard PT2 treatment.Therefore we notie that, with the minimal basis set, the barrier goes from a slightlynegative value, ≃ -2.5 kJ/mol, with the CAS(7/4) to a slightly positive value, ≃3 kJ/mol, with the largest ative spae; we reall that the orresponding value,omputed with the minimal CAS(3/2) spae (see setion 5.5), amounts about to -5kJ/mol. As shown by the energy pro�les shown in Fig. 5.9, suh little bene�t ishowever made ompletely fruitless when the dimension of the basis is inreased and,even with the DZ basis set, a negative energy barrier is again obtained with theCAS(11/10) (see Tab. 5.4). To larify this behavior, it is worthwhile to point outthat going from the minimal SZ basis to the DZ one produes a redution in theenergy gap between the oupied orbitals, whih are shifted to higher energies, andthe virtual orbitals, whose energies are, instead, brought down. This e�et makesthe system more sensitive to the hange of the energy di�erenes in proximity of thesymmetri D2d point, undoing, therefore, the slight improvement obtained by theenlargement of the CAS dimensions. Suh phenomenon, although still present, isertainly less pronouned going from the DZ to DZP and then to the TZP basis sets.Moreover, as shown by a �rst omparison between the results in Tabs. 5.3 and5.4 and those in Tab. 5.5, the third order omputation is unable to ompletely



110 Chapter 5. Eletron transfer in a model spiro systemTable 5.3: Spiro ation�CAS(7/4): NEVPT2(an), NEVPT3(an), NEVPT2(av) energies(kJ/mol) of the ground state, 2A2(1), at ξ = 0.0 and of the �rst exited state, 2A2(2), at
ξ = 0.0 and ξ = −0.5. All the energies are omputed with respet to the energy of theground state at ξ = −0.5. For the sake of larity the energy splitting (∆E kJ/mol) betweenthe two states at ξ = 0.0 is also reported. NEVPT(an) NEVPT2(av)States CASSCF SC-PT2 PC-PT2 SC-PT3 SC-PT2 PC-PT2SZ basis set

ξ = −0.5 2A2(2) 56.69 51.50 51.49 51.32 49.63 49.50
ξ = 0.0

2A2(1) 8.33 -2.15 -2.89 5.03 4.98 4.76
2A2(2) 17.37 7.56 6.79 14.23 14.67 14.42

∆E 9.04 9.71 9.68 9.20 9.70 9.66DZ basis set
ξ = −0.5 2A2(2) 45.82 38.82 38.71 42.94 40.53 40.36
ξ = 0.0

2A2(1) 5.64 -7.82 -8.57 8.33 4.68 4.45
2A2(2) 15.63 2.69 1.91 18.33 15.04 15.03

∆E 9.99 10.52 10.47 10.00 10.36 10.58DZP basis set
ξ = −0.5 2A2(2) 46.38 36.47 36.34 38.00 37.73
ξ = 0.0

2A2(1) 6.53 -11.70 -12.53 4.96 4.85
2A2(2) 16.19 -1.31 -2.19 15.33 15.44

∆E 9.66 10.38 10.33 10.36 10.59TZP basis set
ξ = −0.5 2A2(2) 46.14 36.43 36.33 38.72 38.44
ξ = 0.0

2A2(1) 6.75 -11.54 -12.39 6.50 6.42
2A2(2) 16.38 -1.23 -2.17 17.15 16.99

∆E 9.63 10.31 10.23 10.66 10.57restore the orret shape of the urve. Indeed, one an appreiate that, while a goodaordane between the NEVPT3(an) and NEVPT2(av) results is obtained whenthe NEVPT2(an) barrier is just slightly negative (see CAS(7/4)/SZ and CAS(11/10)values in Tabs. 5.3 and 5.4), the third order orretion tends to overestimate thedepth of the well when the NEVPT2(an) gives onsiderably wrong results. Indeed,with CAS(7/4) and DZ basis set, where the NEVPT2(an) predits the D2d pointto be about 8 kJ/mol below the C2v minimum, the energy barrier is estimated to beabout 8 kJ/mol at NEVPT3(an) level, whereas a value amounting to ≃ 4.5 kJ/molis obtained with the NEVPT2(av) approah; suh value is orroborated by the MRCI



The use of state�averaged orbitals 5.7 111Table 5.4: Spiro ation�CAS(11/10): NEVPT2(an), NEVPT3(an), NEVPT2(av) ener-gies (kJ/mol) of the ground state, 2A2(1), at ξ = 0.0 and of the �rst exited state, 2A2(2),at ξ = 0.0 and ξ = −0.5. All the energies are omputed with respet to the energy of theground state at ξ = −0.5. For the sake of larity the energy splitting (∆E kJ/mol) betweenthe two states at ξ = 0.0 is also reported. NEVPT(an) NEVPT2(av)States CASSCF SC-PT2 PC-PT2 SC-PT3 SC-PT2 PC-PT2SZ basis set
ξ = −0.5 2A2(2) 55.51 47.34 47.13 48.34 46.93 46.76
ξ = 0.0

2A2(1) 7.99 3.13 3.01 5.33 5.62 5.49
2A2(2) 15.40 11.41 11.39 13.52 13.88 13.86

∆E 7.41 8.28 8.38 8.19 8.27 8.37DZ basis set
ξ = −0.5 2A2(2) 47.61 34.93 34.49 39.71 36.29 35.73
ξ = 0.0

2A2(1) 6.92 -1.40 -3.21 6.33 5.17 4.02
2A2(2) 15.45 7.75 5.89 15.40 14.33 13.13

∆E 8.53 9.15 9.10 9.07 9.16 9.11DZP basis set
ξ = −0.5 2A2(2) 47.10 32.99 32.54 34.10 33.60
ξ = 0.0

2A2(1) 7.04 -4.96 -6.92 5.18 4.22
2A2(2) 15.55 4.21 2.17 14.45 13.40

∆E 8.51 9.18 9.10 9.27 9.18TZP basis set
ξ = −0.5 2A2(2) 46.66 33.21 32.81 36.90 36.47
ξ = 0.0

2A2(1) 7.17 -4.85 -6.61 7.16 6.34
2A2(2) 15.62 4.24 2.40 16.39 15.48

∆E 8.45 9.09 9.01 9.22 9.15results [158℄, whih estimate the height of the barrier to be about 4.5 kJ/mol (see theDZ values reported in Tab. 5.5). These onsiderations, apart from the expensivenessof the third order alulations, that makes this strategy not e�iently appliableto large�sized MV systems, on�rm the NEVPT2(av) tehnique as a valuable ande�ient approah to study the ET proess in this lass of ompounds. The reliabilityand the �rmness of the new proposed perturbative strategy is further assessed by thegood aordane shown by the results obtained with the two di�erent ative spaesemployed: the height of the barrier is omputed to be in the range 4-5 kJ/mol withthe three smallest basis sets and to be ≃ 6 kJ/mol with the TZP basis. These



112 Chapter 5. Eletron transfer in a model spiro systemTable 5.5: Spiro ation�CAS(7/4): CAS+SDcan and C-CAS+SDcan energies (kJ/mol) ofthe ground state, 2A2(1), at ξ = 0.0 and of the �rst exited state, 2A2(2), at ξ = 0.0 and
ξ = −0.5. The values have been obtained from the values reported in Ref. [158℄, taking asthe zero energy the that of the ground state 2A2(1) at ξ = −0.5. See Ref. [158℄ for furtherdetails. States CAS+SDcan C-CAS+SDcan CAS+SDcan C-CAS+SDcanSZ basis set DZ basis set

ξ = −0.5 2A2(2) 53.80 53.76 43.86 44.00
ξ = 0.0

2A2(1) 6.48 6.68 4.41 4.67
2A2(2) 15.72 16.01 14.60 14.96

∆E 9.25 9.32 10.19 10.29values are in reasonable aordane with the results of the more orrelated MRCIalulations (Tab. 5.5): here, with the CAS(7/4), the barrier is omputed, both atthe internally�ontrated [48℄ (C-CAS+SD) and unontrated CAS+SD level, to beabout 6.5 kJ/mol (SZ) and 4.5 kJ/mol (DZ).5.7.2 The energy splittingAs appears from the results in Tabs. 5.3 and 5.4, the energy splitting ∆E at therossing seam, being twie the value of the eletroni oupling Hab, is essentiallynot a�eted by the wrong behavior of the standard PT2 approah. One an indeednotie a remarkable agreement between the values provided by the NEVPT2(an)alulations and those attained at NEVPT3(an) and NEVPT2(av) levels. A smalle�et of the dynamial orrelation is also evident, sine a reasonable estimate of thisparameter is already obtained at CASSCF level. Moreover, as also found at MRCIlevel [158℄, this energy di�erene shows pratially no dependene on the basis setdimension (with the exeption of a small underestimation with the minimal basis)sine a value of ≃ 9 kJ/mol is omputed with the CAS(11/10) and ≃ 10 kJ/molwith the CAS(7/4). These values for ∆E are in notieable aordane with thoseomputed in Ref. [158℄ and reported in Tab. 5.5, where the splitting, with the largerbasis set, is alulated to be 10.2 and 10.3 kJ/mol at unontrated CAS+SD andinternally ontrated C-CAS+SD levels respetively. Then, very similar values werealso obtained in the previous alulations by Sanz et al. [176℄: the splitting wasomputed to be 9.5 (DFT), 11.0 (UHF) and 11.9 kJ/mol (DDCI). Then, a simpleway to get a �rst estimate of the energy splitting between the two adiabati surfaesat the rossing seam is to apply Koopmans' theorem [8, 9℄. Sine, within a single�determinant approximation, the two eletroni on�gurations orresponding to the
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114 Chapter 5. Eletron transfer in a model spiro systemmuh more sensitive to the orrelation energy, as well as to the dimension of the basisset, than the above disussed ∆E. Overall, a small and progressive redution anbe observed going from the minimal basis to the largest one; while this redutionis sizable when passing from SZ to DZ (slightly less than 10 kJ/mol), it tends tobeome negligible proeeding up to the DZP and TZP basis sets. The same trendwas found at MRCI level [158℄ and, as shown in Tab. 5.5, the exitation energy ofthe 2A2(2) state, at the C2v minimum, dereases by ≃ 10 kJ/mol when inreasingthe basis set dimension. Furthermore, one an notie that also the enlargementof the ative spae results in a similar small lowering in the energy, anyway notexeeding 4 kJ/mol. Finally, referring to the results obtained with the same ativespae and basis sets (CAS(7/4)/SZ, DZ), a good aordane, up to within 5 kJ/mol,was ahieved between the MRCI omputations [158℄ and the present NEVPT3(an)and NEVPT2(av) results.
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A.0.4 The S

(0)
ij,rs SpaeThe V̂ (0)

ij,rs operator has the form
V̂

(0)
ij,rs = γijγrs (〈rs|ij〉EriEsj + 〈rs|ji〉ErjEsi) i ≤ j, r ≤ s, (A.1)where γmn = 1 − 1

2δmn.The perturbation funtion is written as
Ψ

(0)
ri,sj =

γijγrs√
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(0)
ij,rs

(〈rs|ij〉EriEsj + 〈rs|ji〉EsiErj)Ψ
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m (A.2)with the norm given by

N
(0)
ij,rs = 4γijγrs(〈rs|ij〉2 + 〈rs|ji〉2 − 〈rs|ij〉 〈rs|ji〉). (A.3)Finally, the perturbative oe�ient c(0)(1)ij,rs is
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(0)(1)
ij,rs = −

√
N

(0)
ij,rs

ǫr + ǫs − ǫi − ǫj
. (A.4)A.0.5 The S

(−1)
i,rs SpaeThis spae, orresponding to an exitation of one eletron from the ore to the virtualspae and of another eletron from the ative again to the virtual spae, is spannedby the IC funtions Φrisa = EriEsaΨ

(0)
m and Φsira = EsiEraΨ

(0)
m with the inativeindies r ≤ s.For eah set of three �rsi� indies, two di�erent orthonormal eigenfuntions (per-
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l spaesturbers) orresponding to the same eigenvalue Eirs,µ

(−1) an be de�ned:
Ψ

(−1)
ris,µ =

1√
2

act∑

a

(Φrisa + Φsira)ca,µ (A.5)
Ψ

′(−1)
ris,µ =
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6

act∑
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(Φrisa − Φsira)ca,µ (A.6)The perturbative oe�ients are:
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ris,µ = − (rs, µi)′

ǫr + ǫs − ǫi + ǫµ
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R
(1)
a′,a being the one-partile spinless density matrix.In the ase of r = s one has to onsider only

C
(−1)(1)
rir,µ = − (rr, µi)

2ǫr − ǫi + ǫµ
(A.12)with
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〈rr|ia〉Sa,µ. (A.13)A.0.6 The S
(1)
ij,r SpaeThe treatment of this subspae, where two ore eletrons are exited to the ativeand virtual spaes respetively, is analogous to the previous one. The spae is de�nedby the funtions Φrjai = ErjEaiΨ

(0)
m and Φriaj = EriEajΨ

(0)
m with i ≤ j. The two



117orthogonal funtions are:
Ψ

(−1)
rji,µ =

1√
2

act∑

a

(Φrjai + Φriaj)ca,µ (A.14)
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(ji, rµ) and (ji, rµ)′ are de�ned exatly as in eqs.A.18 and A.19 with the replaementof a virtual index with a ore index:
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Appendix BMatrix elements of PC-NEVPT3B.0.12 V(0)V(0) ClassObviously, for the monodimensional S(0)
ij,rs spae the �partially ontrated� approahis oinident with the �strongly ontrated� one and therefore the third order ontri-bution from V (0)V (0) lass is
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where the four terms val1, val2, val3 and val4 are evaluated by the subroutines
Ejpspiprp_risj produed by FRODO.
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〈
Ψ

′(1)
r′i′j′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

1√
6

act∑

a

〈
Ψ(0)

m

∣∣∣Ei′aEj′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.8)
− 1√

6

act∑

a

〈
Ψ(0)

m

∣∣∣Ej′aEi′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

A ∗ caµ

+
1√
6

act∑

a

〈
Ψ(0)

m

∣∣∣Ei′aEj′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

B ∗ caµ

− 1√
6

act∑

a

〈
Ψ(0)

m

∣∣∣Ej′aEi′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

B ∗ ca,µ

For the ase i′ = j′ one has
〈
Ψ

(1)
r′i′i′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

a

〈
Ψ(0)

m

∣∣∣Ei′aEi′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.9)
+

act∑

a

〈
Ψ(0)

m

∣∣∣Ei′aEi′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

B ∗ caµ

B.0.14 V(0)V(−1) ClassObviously, the treatment of this lass parallels the previous one with the two or-thonormal perturbers, for the ase r 6= s, being
Ψ

(−1)
risµ =

1√
2

act∑

a

(EriEsa + EsiEra)Ψ
(0)
m ca,µ (B.10)

Ψ
′(−1)
risµ =

1√
6

act∑

a

(EriEsa − EsiEra)Ψ
(0)
m ca,µ. (B.11)Analogously to eq.B.30, when the two virtual indies are oinident (r = s) theperturber is

Ψ
(1)
rirµ =

act∑

a

EriEraΨ
(0)
m ca,µ (B.12)In the former ase (r 6= s), two matrix elements have to be omputed:
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〈
Ψ

(−1)
r′i′s′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

1√
2

act∑

a

〈
Ψ(0)

m

∣∣∣Eas′Ei′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.13)
+

1√
2

act∑

a

〈
Ψ(0)

m

∣∣∣Ear′Ei′s′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

A ∗ caµ

+
1√
2

act∑

a

〈
Ψ(0)

m

∣∣∣Eas′Ei′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

B ∗ caµ

+
1√
2

act∑

a

〈
Ψ(0)

m

∣∣∣Ear′Ei′s′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

B ∗ ca,µ

〈
Ψ

(−1)
r′i′s′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

1√
6

act∑

a

〈
Ψ(0)

m

∣∣∣Eas′Ei′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.14)
− 1√

6

act∑

a

〈
Ψ(0)

m

∣∣∣Ear′Ei′s′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

A ∗ caµ

+
1√
6

act∑

a

〈
Ψ(0)

m

∣∣∣Eas′Ei′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

B ∗ caµ

− 1√
6

act∑

a

〈
Ψ(0)

m

∣∣∣Ear′Ei′s′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

B ∗ ca,µ

For r = s the interation redues to
〈
Ψ

(−1)
r′i′r′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

a

〈
Ψ(0)

m

∣∣∣Ear′Ei′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.15)
+

act∑

a

〈
Ψ(0)

m

∣∣∣Ear′Ei′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

B ∗ caµ



125B.0.15 V(0)V(2) ClassTwo ases have to be onsidered:1. i 6= j → Ψ
(2)
ijµ =

∑act
ab EbiEajΨ

(0)
m cabµ2. i = j → Ψ

(2)
ijµ =

∑act
a≤bEbiEaiΨ

(0)
m c′abµTherefore, the matrix elements are

〈
Ψ

(2)
i′j′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

ab

〈
Ψ(0)

m

∣∣∣Ej′aEi′bĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.16)
+

act∑

ab

〈
Ψ(0)

m

∣∣∣Ej′aEi′bĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

B ∗ caµand
〈
Ψ

(2)
i′i′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

a≤b

〈
Ψ(0)

m

∣∣∣Ei′aEi′bĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.17)
+

act∑

a≤b

〈
Ψ(0)

m

∣∣∣Ei′aEi′bĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

B ∗ caµ

B.0.16 V(0)V(−2) ClassThis lass losely follows the V (0)V (2) lass previously examined. The perturbationfuntions are:1. r 6= s→ Ψ
(−2)
rsµ =

∑act
ab ErbEsaΨ

(0)
m cabµ2. r = s→ Ψ

(−2)
rsµ =

∑act
a≤bErbEraΨ

(0)
m c′abµand the orresponding matrix elements an be written as

〈
Ψ

(−2)
r′s′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

ab

〈
Ψ(0)

m

∣∣∣Eas′Ebr′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.18)
+

act∑

ab

〈
Ψ(0)

m

∣∣∣Eas′Ebr′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

B ∗ caµ
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〈
Ψ

(−2)
r′r′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

a≤b

〈
Ψ(0)

m

∣∣∣Ear′Ebr′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.19)
+

act∑

a≤b

〈
Ψ(0)

m

∣∣∣Ear′Ebr′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

B ∗ caµ

B.0.17 V(0)V(0′) ClassFor the S̄(0)
ir subspae the perturbers have the form:

Ψ
(0)
irµ =

act∑

ab

EriEabΨ
(0)
m cabµ +

act∑

ab

EaiErbΨ
(0)
m c′abµ (B.20)so, the interation with the Ψ

(0)
ijrs an be written as follows

〈
Ψ

(0)
i′r′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

ab

〈
Ψ(0)

m

∣∣∣EbaEi′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

caµ ∗ A (B.21)
+

act∑

ab

〈
Ψ(0)

m

∣∣∣Ebr′Ei′aĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

c′aµ ∗ A

+

act∑

ab

〈
Ψ(0)

m

∣∣∣EbaEi′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

caµ ∗B

+

act∑

ab

〈
Ψ(0)

m

∣∣∣Ebr′Ei′a′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

c′a,µ ∗B

B.0.18 V(0)V(1′) ClassThe perturbers belonging to the S̄(1)
i subspae are

Ψ
(1)
iµ =

act∑

abc

EbiEacΨ
(0)
m cabcµ (B.22)and the resulting matrix elements have the form
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〈
Ψ

(1)
i′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

abc

〈
Ψ(0)

m

∣∣∣EcaEi′bĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.23)
+

act∑

abc

〈
Ψ(0)

m

∣∣∣EcaEi′bĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

B ∗ caµ

B.0.19 V(0)V(−1
′) ClassFinally, the treatment of the V (0)V (−1′) lass is analogous to that previously seen.Given the form of the perturbation funtions

Ψ(−1)
rµ =

act∑

abc

ErbEacΨ
(0)
m cabcµ (B.24)the interation is

〈
Ψ

(−1)
r′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

abc

〈
Ψ(0)

m

∣∣∣EcaEbr′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.25)
+

act∑

abc

〈
Ψ(0)

m

∣∣∣EcaEbr′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

B ∗ caµ

B.0.20 V(1)V(1) ClassThe third order ontribution for the V (1)V (1) lass is
E(3) =

virt∑

r,r′

core∑

ij,i′j′

∑

µ,µ′

C
(1)(1)
i′j′r′µ′C

(1)(1)
ijrµ

〈
Ψ

(1)
i′j′r′µ′

∣∣∣Ĥ − Ĥ0

∣∣∣Ψ(1)
ijrµ

〉 (B.26)For the diagonal ase the ontribution of Ĥ0 is
E(3) = ǫµ + ǫr − ǫi − ǫj (B.27)For the S(1)

ijr subspae the perturbers are expressed as
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Ψ

(11)
rji,µ =

1√
2

act∑

a

(ErjEai + EriEaj)Ψ
(0)
m ca,µ (B.28)

Ψ
′(11)
rji,µ =

1√
6

act∑

a

(ErjEai − EriEaj)Ψ
(0)
m ca,µ. (B.29)and, for the ase i = j, as

Ψ
(1)
riiµ =

act∑

a

EriEaiΨ
(0)
m ca,µ (B.30)All the possible matrix elements have to be onsidered.

〈
Ψ

(1)
r′i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1

2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′iĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1

2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

+
1

2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

+
1

2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.31)
〈
Ψ

′(1)
r′i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1

6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′iĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1

6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

− 1

6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

+
1

6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.32)
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〈
Ψ

(1)
r′i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′iĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

+
1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

− 1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.33)
〈
Ψ

′(1)
r′i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′iĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

− 1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

− 1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.34)
Furthermore, other �ve ases have to be onsidered:

• i = j and i′ = j′

〈
Ψ

(1)
r′i′i′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

act∑

aa′

〈
Ψ(0)

m

∣∣∣Ei′a′Ei′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

ca′µ′caµ (B.35)
• i = j and i′ 6= j′

〈
Ψ

′(1)
r′i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

1√
6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

(B.36)
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〈
Ψ

(1)
r′i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

1√
2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

(B.37)
• i 6= j & i′ = j′

〈
Ψ

(1)
r′i′i′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1√
6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.38)
〈
Ψ

(1)
r′i′i′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1√
2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.39)
B.0.21 V(1)V(−1) ClassFor the S(−1)

ris subspae the perturbers have the following form
Ψ

(−1)
ris,µ =

1√
2

act∑

a

(EriEsa + EsiEra)Ψ
(0)
m c2a,µ (B.40)

Ψ
′(−1)
ris,µ =

1√
6

act∑

a

(EriEsa − EsiEra)Ψ
(0)
m c2a,µ . (B.41)and, for the ase r = s, they are expressed as

Ψ
(1)
rirµ =

act∑

a

EriEraΨ
(0)
m c2a,µ (B.42)As in the previous ase, all the possibilities must be examined:
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〈
Ψ

(−1)
r′i′s′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1

2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1

2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

+
1

2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

+
1

2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.43)
〈
Ψ

′(−1)
r′i′s′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1

6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1

6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

− 1

6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

+
1

6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.44)
〈
Ψ

(−1)
r′i′s′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

+
1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

− 1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.45)
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〈
Ψ

′(−1)
r′i′s′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

− 1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

− 1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.46)
Then, analogously, we have
• i = j and r′ = s′

〈
Ψ

(−1)
r′i′r′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

act∑

aa′

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

c2a′µ′
caµ (B.47)

• i = j and r′ 6= s′

〈
Ψ

′(1)
r′i′s′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

1√
6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3 (B.48)
〈
Ψ

(−1)
r′i′s′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

1√
2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3 (B.49)
• i 6= j and r′ = s′
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〈
Ψ

(1)
r′i′r′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1√
6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2 (B.50)
〈
Ψ

(1)
r′i′r′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1√
2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2 (B.51)B.0.22 V(1)V(2) ClassIf i 6= j, for the S(2)
ij spae the perturbers are given by:

Ψ
(2)
ijµ =

act∑

a,b

EbiEajΨ
(0)
m c2ab,µ

(B.52)whereas, for the ase i = j they are
Ψ

(2)
iiµ =

act∑

a≥b

EbiEajΨ
(0)
m c′2ab,µ

(B.53)The matrix elements that have to be omputed are:
〈
Ψ

(2)
i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1√
2

act∑

aa′b′

c2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

aa′b′

c2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.54)
〈
Ψ

(2)
i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1√
6

act∑

aa′b′

c2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

aa′b′

c2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.55)
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〈
Ψ

(2)
i′i′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1√
2

act∑

a′≥b′

act∑

a

c′2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

a′≥b′

act∑

a

c′2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.56)
〈
Ψ

(2)
i′i′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1√
6

act∑

a′≥b′

act∑

a

c′2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

a′≥b′

act∑

a

c′2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.57)
B.0.23 V(1)V(0′) ClassWe reall that the perturbation funtions belonging to the S̄(0)

ir spae an be writtenas
Ψ

(2)
irµ =




act∑

a,b

EriEabc2ab,µ
+

act∑

a,b

EaiErbc
′
2ab,µ


Ψ(0)

m (B.58)therefore, the interation elements are
〈
Ψ

(0)
i′r′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1√
2

act∑

a′b′a

c2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

a′b′a

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

+
1√
2

act∑

a′b′a

c′2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′r′Ei′a′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

+
1√
2

act∑

a′b′a

c′2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′r′Ei′a′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.59)
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〈
Ψ

(0)
i′r′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1√
6

act∑

a′b′a

c2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

a′b′a

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

+
1√
6

act∑

a′b′a

c′2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′r′Ei′a′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

− 1√
6

act∑

a′b′a

c′2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′r′Ei′a′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.60)
Finally, one has to onsider the ase i = j, in whih the perturbers of the S̄(1)

iirhave the form
Ψ

(1)
riiµ =

act∑

a

EriEaica,µΨ(0)
m (B.61)The interation beomes:

〈
Ψ

(0)
i′r′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

act∑

a′b′a

c2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′a′Ei′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+

act∑

a′b′a

c′2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′r′Ei′a′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

(B.62)
B.0.24 V(1)V(−1

′) ClassThe perturbers of the S̄(−1)
r spae are

Ψ(−1)
rµ =

act∑

a,b,c

ErbEaccabc,µΨ(0)
m (B.63)Thus, the matrix elements have the form

〈
Ψ

(−1)
r′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1√
2

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Eb′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Eb′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.64)



136 Chapter B. Matrix elements of PC-NEVPT3
〈
Ψ

(−1)
r′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1√
6

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Eb′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Eb′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.65)Then, when i = j, the interation simply redues to
〈
Ψ

(−1)
r′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Eb′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

(B.66)B.0.25 V(1)V(1′) ClassThe treatment of this lass is lose to that previously examined. The perturbationfuntions for the S̄(1)
i are

Ψ
(1)
iµ =

act∑

a,b,c

EbiEaccabc,µΨ(0)
m (B.67)and the interation elements beome

〈
Ψ

(1)
i′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1√
2

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Ei′b′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Ei′b′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.68)
〈
Ψ

(1)
i′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1√
6

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Ei′b′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Ei′b′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.69)and, �nally, for the ase i = j one has
〈
Ψ

(1)
i′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Ei′b′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

(B.70)
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