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Prefa
eQuantum Chemistry has be
ome an important and powerful tool to investigate agreat deal of 
hemi
al and physi
al phenomena. Nowadays, the rapid growth of the
omputational power along with the 
orresponding development of methodologies,tailored to approa
h large s
ale systems, allows to treat problems of in
reasing sizeand 
omplexity.A large domain of appli
ation of rigorous quantum me
hani
s 
al
ulations isthe a

urate predi
tion of ex
itation energies and other spe
tros
opi
 parametersvaluable for the interpretation of the experimental measurements. The des
riptionof ele
troni
ally ex
ited states represents a severe task for approximated theoreti-
al approa
hes, even in the 
ase of small-sized mole
ules. In su
h 
ases, the simpleone-determinant approximation (the well-known Hartree-Fo
k theory) turn out to bedefe
tive and a multireferen
e wavefun
tion, a

ounting for all the relevant ele
troni

on�gurations, should be used. An important �eld of appli
ations of the Multiref-eren
e Perturbation Theories (MRPTs) is just the 
al
ulation of the ele
troni
allyex
ited states of mole
ules, where the strong di�erential 
orrelation e�e
ts and thepossible multireferen
e nature of the wavefun
tions 
an be, in prin
iple, su

essfullyhandled by a �variational plus perturbation� s
heme.This Ph.D. thesis deals with the development and the appli
ations of N -Ele
tronValen
e State Perturbation Theory (NEVPT), a novel form of MRPT put forward in
ollaboration between the theoreti
al 
hemistry groups of the universities of Ferraraand Toulouse.After a �rst general overview on the basi
 mathemati
al tools and theoreti
almethods (Chap. 1), in Chapter 2 we will introdu
e the NEVPT philosophy andpresent the major development e�ort a

omplished during the Ph.D: the implemen-tation of the third order 
orre
tion to the energy in the so 
alled �partially 
ontra
ted�s
heme. Then, the large part devoted to the appli
ations follows. Part I 
on
ernsthe 
al
ulation of ele
troni
ally ex
ited states. Di�erent issues will be addressed: onthe one hand the treatment of small aromati
 mole
ules, Pyrrole, Furan and Thio-phene (Chap. 3), whose des
ription is 
ompli
ated by the possible intera
tion with



2 Prefa
elow-lying Rydberg states and by the ioni
 nature of some valen
e states, extremelysensitive to the so-
alled dynami
al σ − π polarization; on the other hand the 
aseof a large-sized aromati
 mole
ule, Free-Base Porphin (Chap. 4), for whi
h the 
ru-
ial problem is the 
hoi
e of a balan
ed variational spa
e to a

urately des
ribe thewavefun
tions of the ground and of the ex
ited states. Finally, Chap. 5 is devotedto the des
ription, by means of MRPT, of the Ele
tron Transfer (ET) pro
ess inMixed-Valen
e systems. The investigation is 
arried out on a model spiro π− σ− π
ompound, for whi
h the ET rea
tion is simulated using a simpli�ed one-mode two-state model. The inadequa
y of a standard se
ond order MRPT approa
h will beshown and the appli
ation of an alternative and e�e
tive 
omputational strategy willbe dis
ussed.



Chapter 1Mathemati
al tools and methods
1.1 Complete set expansionsLet f(x) be a fun
tion de�ned in the interval (a, b) and let Φ = {φ1, φ2, . . . , φn} bea set of fun
tions de�ned in the same interval. One 
an express the fun
tion f(x) asa linear 
ombination, with properly 
hosen 
oe�
ients, of φi

f(x) ≃ fn(x) =

n∑

i=1

ciφi (1.1)where the 
oe�
ients ci are determined through minimization of the mean-squaredeviation of fn(x) from f(x). The a

ura
y of su
h expansion depends on the 
om-pleteness of the set of basis fun
tions and at the limit of an in�nite set (n→ ∞) wehave fn(x) → f(x).It is possible to generalize these 
onsiderations to fun
tions of several variables.To this purpose we 
onsider the 
ase of a wavefun
tion depending on the 
oordinatesof n ele
trons Ψel(x1, x2, . . . , xn). Given a 
omplete set of one-ele
tron spin-orbitals,
{ψ1, ψ2, . . . , ψn . . .}, if the 
oordinates of n − 1 ele
trons are 
onsidered �xed, theresulting fun
tion 
an be expanded in the form

Ψel(x1, x2, ..., xn) =

+∞∑

i=1

ci(x2, x3, ..., xn)ψi(x1) (1.2)where the 
oe�
ients ci, being a
tually fun
tions themselves, hold the dependen
eon the 
oordinates of the remaining n− 1 ele
trons.Again, 
onsidering �xed x3, x4, . . . , xn, the 
oe�
ients ci, whi
h are now fun
tionsof a single variable, x2, 
an be expanded on the same basis of spin-orbitals as
ci =

+∞∑

j=1

djψj(x2) (1.3)



4 Chapter 1. Mathemati
al tools and methodsRepeating su
h pro
edure for the 
oordinates of the remaining n − 2 ele
trons, one
an have the exa
t expansion of the ele
troni
 wavefun
tion over the given set ofspin-orbitals:
Ψel(x1, x2, . . . , xn) =

∑

i,j,...,p

ci,j...,pψi(x1)ψj(x2) . . . ψp(xn), (1.4)where the indi
es i, j, . . . , p run over all possible 
hoi
es of the spin-orbitals belongingto the basis set.1.2 Antisymmetry: Slater's formalismAs above stated, equation (1.4) gives the exa
t expansion of a many-parti
le wave-fun
tion over a 
omplete set of monoele
troni
 spin-orbitals; however, a natural lawimposes a severe restri
tion to a fermioni
 wavefun
tion: the antisymmetry prop-erty. In other terms, for a n-ele
tron wavefun
tion Ψel(x1, x2, . . . , xn) the followingrelationship must be satis�ed:
PΨel(x1, x2, . . . , xn) = σP Ψel(x1, x2, . . . , xn) (1.5)where P performs any permutation of the spin-
oordinates x1, x2, . . . , xn and σPequals ±1 a

ording as the permutation is given by an even or odd number of trans-positions.To over
ome the di�
ulties of building an antisymmetri
 many-ele
tron wave-fun
tion, a possible strategy is to perform an expansion over a set of antisymmetrizedspin-orbital produ
ts, the Slater determinants:

Ψel(x1, x2, . . . , xn) =
∑

I

CIΦI (1.6)with
ΦI =

1√
n!

∣∣∣∣∣∣∣∣∣∣

ψi1(1) ψi2(1) · · · ψin(1)

ψi1(2) ψi2(2) · · · ψin(2)... ... ... ...
ψi1(n) ψi2(n) · · · ψin(n)

∣∣∣∣∣∣∣∣∣∣

=
1√
n!

det |ψi1(1)ψi2(2) . . . ψin(n)|(1.7)Here the basis set has been 
hosen as orthonormal (〈ψi|ψj〉 = δij) and, 
onsequently,the resulting set of Slater determinants turns out to be orthogonal (〈ΦK |ΦL〉 = 0 for
K 6= L).The use of Slater determinants automati
ally guarantees the antisymmetry ofthe wavefun
tion, sin
e the sign of the determinant of the matrix (1.7) 
hanges uponswapping of two 
olumns (permutation of the spin-
oordinates of two ele
trons).



Antisymmetry: Slater's formalism 1.2 5Furthermore, in the 
ase of a one-determinant approximation to the wavefun
tion,the quantum-me
hani
al form of the Pauli's prin
iple dire
tly follows, sin
e the de-terminant in eq. (1.7) vanishes when two 
olumns have the same value (two identi
alspin-orbitals).1.2.1 Con�guration Intera
tion Approa
hWithin the Born-Oppenheimer approximation (�xed nu
lei model), in whi
h the ele
-troni
 and nu
lear motions 
an be de
oupled and two separate equations 
an besolved, the ele
troni
 time-independent S
hrödinger equation has the form
ĤelΨel(X;Q) = Eel(Q)Ψel(X;Q) (1.8)where the ele
troni
 wavefun
tion posseses a parametri
 dependen
e on the nu
lear
oordinates Q. Substitution of (1.6) in equation (1.8) gives:
∑

I

ĤelΦIcI = Eel

∑

I

ΦIcI (1.9)By appli
ation of the �bra� ve
tor 〈ΦJ | to both sides of equation (1.6) one has
∑

I

〈ΦJ | Ĥel |ΦI〉 cI = EelcJ (1.10)whi
h 
an be put in matrix form H
 = E
 (1.11)where the matrix H has elements HJI = 〈ΦJ | Ĥel |ΦI〉 and the 
oe�
ients cJ havebeen 
olle
ted in the 
olumn ve
tor 
.We note that the problem of solving the ele
troni
 S
rhödinger equation has beenredu
ed to a purely algebrai
 problem of diagonalizing the Hamiltonian matrix H.Expression (1.11) is known as the full Con�guration Intera
tion (FCI) expansionand provides the exa
t solution to the ele
troni
 S
rhödinger equation within a givenone-ele
tron basis set. The number of determinants in a FCI expansion, obtaineddistributing n ele
trons into N orbitals, is given by
(
N

n

)
=

N !

n!(N − n)!
(1.12)This fa
torial dependen
e of the number of Slater determinants on the number ofspin-orbitals and ele
trons makes the FCI approa
h pra
ti
ally appli
able only tovery small mole
ular systems [1,2℄. However, in those 
ases in whi
h FCI 
al
ulations
an be 
arried out, the results serve as useful ben
hmarks for evaluating the a

ura
yof other theoreti
al methods.



6 Chapter 1. Mathemati
al tools and methodsSlater's rulesHere, resorting to the well-known Slater's rules for one- and two-ele
tron operators,we shall illustrate a fast way to evaluate the Hamiltonian matrix elements HJI .Given a one-ele
tron operator F̂ =
∑n

i=1 f̂(i), only two 
ases in whi
h the matrixelements give a non zero result are possible:
• if the two determinants are identi
al, ΦJ = ΦI , one has

HII =

n∑

j=1

〈
ψij

∣∣ f̂
∣∣ψij

〉 (1.13)
• if the two determinants have a single spin-orbital di�eren
e (ΦJ 6= ΦI , with
ψjk

6= ψik) the result is
HJI = 〈ψjk

| f̂ |ψik〉 (1.14)Clearly, all the matrix elements between Slater determinants di�ering for more thanone spin-orbital are zero. In a similar way, for a two-ele
tron operator
Ĝ =

1

2

n∑

i6=j

ĝ(i, j) (1.15)the following three possibilities o

ur:
• if ΦJ = ΦI one has

GII =
1

2

n∑

k,l=1

(〈ψikψil | ĝ |ψikψil〉 − 〈ψikψil | ĝ |ψilψik〉) (1.16)
• if ΦJ 6= ΦI for a single spin-orbital di�eren
e (ψjk

6= ψik)
GJI =

n∑

l=1

(〈ψjk
ψil | ĝ |ψikψil〉 − 〈ψikψil | ĝ |ψilψik〉) (1.17)

• if ΦJ 6= ΦI for two spin-orbital di�eren
es (ψjk
6= ψik and ψjl

6= ψil)
GJI = 〈ψjk

ψjl
| ĝ |ψikψil〉 − 〈ψjk

ψjl
| ĝ |ψilψik〉 (1.18)We should stress that in the above expressions we have impli
itly assumed that theequal spin-orbitals appear in the same order in the two determinants; if, instead, theorder is di�erent, the possible 
hange in sign due to the permutations must be takeninto a

ount.



An alternative approa
h: se
ond quantization 1.3 71.3 An alternative approa
h: se
ond quantization1.3.1 The Fo
k spa
eThe formalism we present in this se
tion is known as se
ond quantization; it was �rstdeveloped in physi
s (�eld theory) and later widely used also in quantum 
hemistry(see Ref. [3℄).In the se
ond quantization language there is a one-to-one 
orresponden
e be-tween the ele
troni
 wavefun
tion Ψel(x1, x2, . . . , xn), in whi
h the spin-orbitals
ψi, ψj , . . . , ψp are o

upied by ele
trons and a state ve
tor (ket) |k〉, where onlythe o

upation numbers (0 or 1) of the whole set of spin-orbitals are given, that is

|k〉 = |k1, k2, . . . , kN 〉 , ki =





1 if ψi is o

upied
0 if ψi is uno

upied. (1.19)The linear ve
tor spa
e spanned by basis ve
tors in
luding all possible kets (1.19),obtained distributing n ele
trons in N spin-orbitals, is known as the Fo
k Spa
e.Thereby, ea
h Slater determinant has its 
orresponding o

upation number ve
tor inthe Fo
k spa
e and vi
e versa:

|ij . . . p〉 =
1√
n!

∣∣∣∣∣∣∣∣∣∣

ψi(x1) ψj(x1) . . . ψp(x1)

ψi(x2) ψj(x2) . . . ψp(x2)... ... ... ...
ψi(xn) ψj(xn) . . . ψp(xn)

∣∣∣∣∣∣∣∣∣∣Due to the antisymmetry property, the order in whi
h the spin-orbitals appear (thelabels in the ket ve
tors) is important and one has
|ji . . . p〉 =

1√
n!

∣∣∣∣∣∣∣∣∣∣

ψj(x1) ψi(x1) . . . ψp(x1)

ψj(x2) ψi(x2) . . . ψp(x2)... ... ... ...
ψj(xn) ψi(xn) . . . ψp(xn)

∣∣∣∣∣∣∣∣∣∣

= − |ij . . . p〉therefore, ea
h ve
tor is multiplied by σP (= ±1) under label permutation.A parti
ular ve
tor of the Fo
k spa
e is the �va
uum� ve
tor, representing the situ-ation in whi
h no parti
les are present
|vac〉 = |01, 02, . . . , 0N 〉 . (1.20)1.3.2 Creation and annihilation operatorsIn order to 
onne
t ve
tors with di�erent number of ele
trons, we de�ne two opera-tors, 
alled 
reation and annihilation operators. The 
reation operator, a+

r , is su
h
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a+

r |ij . . . p〉 =




|rij . . . p〉 if r 6∈ (ij . . . p)

0 if r ∈ (ij . . . p).
(1.21)Therefore, if the ket does not in
lude the o

upation number of the spin-orbital ψrthen a parti
le is added and an (n+1)-ele
tron wavefun
tion is obtained, Φ(x1, x2, . . . , xn, xn+1);otherwise, if r is already o

upied in the asso
iate Slater determinant, upon appli-
ation of a+

r it vanishes, as a 
onsequen
e of the antisymmetry requirement (twoidenti
al 
olumns).Similarly, one may de�ne the annihilation operator, ar, su
h that
ar |rij . . . p〉 =




|ij . . . p〉 if r ∈ (ij . . . p)

0 if r 6∈ (ij . . . p).
(1.22)where the se
ond 
ase expresses the impossibility of annihilating an ele
tron in auno

upied spin-orbital.Con
luding, we note that all state ve
tors 
an be generated by appli
ation of theproper �string� of 
reation operators to the va
uum state

a+
i a

+
j . . . a

+
p |vac〉 = |ij . . . p〉and that the antisymmetry property of the basis ve
tors is ensured by the anti
om-mutative properties of these operators:

a+
i a

+
j + a+

i a
+
j =

[
a+

i , a
+
j

]
+

= 0

aiaj + aiaj =
[
ai, aj

]
+

= 0

aia
+
j + a+

j ai =
[
ai, a

+
j

]
+

= δij1.3.3 Representation of one- and two-ele
tron operatorsThe form of a one-ele
tron operator in �rst quantization is
F̂ fq =

n∑

i=1

f(i) (1.23)where the sum runs over the number of ele
trons n of the system. Re
alling Slater'srules, illustrated in se
tion (1.2.1), this operator gives null matrix elements when theSlater determinants di�er for more than one spin-orbital. The se
ond quantizationanalogue of (1.23) 
an be expressed as a linear 
ombination of produ
ts of 
reationand annihilation operators:
F̂ sq =

∑

r,s

frsa
+
r as, (1.24)
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h: se
ond quantization 1.3 9where the indi
es r and s run over the whole set of spin-orbitals and the the matrix
F is hermitian with frs = f∗sr. As 
an be easly proved (see for instan
e Ref. [4℄), by
omparison with Slater's rules for a one-ele
tron operator (se
tion 1.2.1), 
hoosing

frs =

∫
ψ∗

r (xi)f̂(xi)ψs(xi)dxi (1.25)the �rst quantization one-ele
tron operator F̂ in (1.23) is equivalent to the se
ondquantization form in (1.24).We shall now 
onsider the 
ase of a two-ele
tron operator, su
h as, for instan
e,the interele
troni
 repulsion term of the ele
troni
 Hamiltonian; as known, in �rstquantization it is expressed as
Ĝfq =

1

2

n∑

i,j

′g(xi, xj). (1.26)We re
all that for a two-ele
tron operator the matrix elements between two Slaterdeterminants are non zero only if the determinants 
ontain at least two ele
trons andif they do not di�er by more than two spin-orbitals.Analogously, in se
ond quantization a two-ele
tron operator has the following form:
Ĝsq =

1

2

∑

rstu

grs,tua
+
r a

+
s auat (1.27)where the matrix G is hermitian (grs,tu = g∗tu,rs) and the symmetry property grs,tu =

gsr,ut is imposed.One 
an easly demonstrate that the �rst (1.26) and se
ond quantization (1.27)forms be
ome identi
al if the parameter grs,tu are properly 
hosen as
grs,tu =

∫ ∫
ψ∗

r (x1)ψ
∗
s(x2)g(x1, x2)ψt(x1)ψu(x2)dx1dx2 (1.28)Making use of the above presented results for generi
 two- and one-ele
tron op-erators, we may now get the se
ond quantization representation of the ele
troni
Hamiltonian within the Born-Oppenheimer approximation:

Ĥel =
∑

r,s

〈ψr|h |ψs〉 a+
r as +

1

2

∑

rstu

〈
ψrψs

∣∣∣∣
1

r12

∣∣∣∣ψtψu

〉
a+

r a
+
s auat (1.29)Con
luding, it is worthwhile summarizing the relevant 
hara
teristi
s of operators in�rst and se
ond quantization formalisms. The �rst important di�eren
e between thetwo representations 
on
erns the dependen
e on the number of ele
trons: whereas the�rst quantization operators (1.23) and (1.26) make expli
it referen
e to the numberof ele
trons, their se
ond quantization analogues (1.24) and (1.27) do not have su
hdependen
e. Furthermore, the two languages have dissimilar ways of in
orporating
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al tools and methodsthe basis set dependen
e. In parti
ular, in �rst quantization the determinants dependon the spin-orbital basis, while the operators are invariant with respe
t to the 
hoi
eof the basis. On the 
ontrary, in the se
ond quantization representation, the stateve
tors do not have any referen
e to the spin-orbitals and this information is, instead,
ontained in the operators through the frs (1.25) and grs,tu (1.28) parameters.1.3.4 The spin-tra
ed repla
ement operatorsA useful simpli�
ation in the evaluation of the matrix elements of one- and two ele
-tron operators 
an be obtained through the de�nition of so-
alled spin-free operators.Given a set of spin-orbitals (ψi, ψj , . . . ψp), originated from the same set of spatialorbitals (φi, φj . . . φp) with α and β o

upations, for a spinless one-ele
tron operatorsone has
F̂ =

∑

rs

〈φr| t |φs〉 (a+
rαasα + a+

rβasβ) (1.30)were we note that the summation runs just over the spatial orbitals. The spin-tra
edrepla
ement operator is de�ned as
Ers = a+

rαasα + a+
rβasβ (1.31)The 
ommutation rule for two spin-tra
ed operators is

[Ers, Etu] = δstEru − δruEts (1.32)and an important property of su
h operators is that they 
ommute with the totalspin momentum S2 and with its z 
omponent, Sz.Following the above s
hemae one arrives at the de�nition of a spinless two-ele
tronoperator:
Ĝ =

1

2

∑

rstu

〈φrφs| g |φtφu〉 (ErsEtu − δtsEru). (1.33)So, �nally, using expressions (1.30), (1.31) and (??), the ele
troni
 Hamiltonian 
anbe written as
Ĥ =

∑

rs

hrsErs +
1

2

∑

rstu

〈
φrφs

∣∣∣∣
1

r12

∣∣∣∣φtφu

〉
(ErsEtu − δtsEru). (1.34)1.4 One-determinant approximation: Hartree-Fo
k the-oryAmong the simplest approximations to the ele
troni
 wavefun
tion, one 
an quotethe Hartree-Fo
k theory, where only one Slater determinant

Ψ(x1, x2, ..., xn) = ‖ψ1ψ2...ψn‖ (1.35)
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k theory 1.4 11is 
onsidered and where the spin-orbitals ψi are optimized by minimizing the expe
-tation value of the ele
troni
 energy 〈Ψ
∣∣∣Ĥ
∣∣∣Ψ
〉. The Hartree-Fo
k method 
an beapplied to the des
ription of the ground state as well as to that of the lowest-energystate of any given spatial or spin symmetry. This simple and apparently rough ap-proximation is, however, able to provide, parti
ularly in 
losed shell systems neartheir equilibrium geometry, ele
troni
 energies that are in error by less than 1%, anda number of mole
ular properties (dipole moments, for
e 
onstants et
...) with areasonable a

ura
y. Due to its low 
omputational 
ost, the Hartree-Fo
k methodis routinely used for qualitative studies of large mole
ular systems. For a

uratequantitative studies, instead, the Hartree-Fo
k wavefun
tion represents the startingpoint for more sophisti
ated approa
hes, like the perturbative Møller-Plesset (MP)
orre
tions and the 
oupled-
luster (CC) method ( [4℄, [5℄).1.4.1 Self-Consistent Field (SCF) theoryGiven the one-determinant expansion of the ele
troni
 wavefun
tion

Ψ(x1, x2, . . . , xn) = (n)−1/2det|ψ1ψ2 . . . ψn| (1.36)the 
entral point of the Hartee-Fo
k theory is to �nd the �best� spin-orbitals (ψ1, ψ2, . . . , ψn)to use in the Slater determinant. As is well-known, these optimal spin-orbitals arethe eigenfun
tions of a one-ele
tron eigenvalue equation
F̂ψ = ǫψ (1.37)where F̂ , termed the Fo
k operator, is an operator of a single ele
tron whi
h takesa

ount of an �e�e
tive �eld� due to the presen
e of the nu
lei and of the remaining

n − 1 ele
trons. The Hartee-Fo
k method is a parti
ular form of the independent-parti
le model (IPM), where the ele
troni
 intera
tions are evaluated by means ofan �e�e
tive potential� through the Fo
k operator and the wavefun
tion is expressedas an antisymmetri
 produ
t of one-ele
tron fun
tions.In order to obtain equation (1.37), we start expressing the variational energyapproximation of the one-determinant wavefun
tion (1.36)
E =

〈
Ψ
∣∣∣Ĥ
∣∣∣Ψ
〉

=

n∑

i

〈ψi |h|ψi〉 +
1

2

n∑

i,j

〈ψiψj ||ψiψj〉 (1.38)where we have used a shorter notation, indi
ating
〈ψiψj ||ψiψj〉 = 〈ψiψj |g|ψiψj〉 − 〈ψiψj |g|ψjψi〉 (1.39)Let we 
hoose an orthonormalized set of spin orbitals, su
h that 〈ψi |ψj | =〉 δij . Atthe stationary point, for any in�nitesimal variation ψi = ψi + δψi the 
ondition
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δE = 0 must be ful�lled. Su
h an in�nitesimal variation of the spin orbital basis 
anbe obtained applying the unitary operator Û = eT̂ to the wavefun
tion Ψ , where T̂is an antihermitian operator, that in se
ond quantization 
an be expressed as

T̂ = −T̂+ =
∑

r,s

trsa
+
r as (1.40)with trs = −tsr.Upon opportune manipulations, one arrives at

δE =
n∑

i=1

∑

a>n

tai 〈Ψ| Ĥ |Ψa
i 〉 + c.c. (1.41)where �
.
.� indi
ates the 
omplex 
oniugate of the �rst term and the 
onvention ofindi
ating with indi
es i, j . . . the o

upied spin-orbitals and with a, b, . . . the virtualones has been adopted The relation tai = −t∗ia has been used and we also haveintrodu
ed the shorter notation |Ψa

i 〉 to indi
ate the Slater determinant in whi
h thespin-orbital ψi has been repla
ed by ψa.Equation 1.41 dire
tly leads to the well-known form of the Brillouin Theorem [6,7℄
〈Ψa

i | Ĥ |Ψ〉 = 0 (1.42)whi
h states that the �best� spin-orbitals to use are su
h that the intera
tion between
Ψ and any singly ex
ited determinant Ψa

i is zero.Resorting to Slater's rules (se
tion 1.2.1) and introdu
ing two auxiliary operators,
Ĵ (Coulomb operator)

〈ψr| Ĵ |ψs〉 =

n∑

j=1

〈ψrψj|
1

r12
|ψsψj〉and K̂ (Ex
hange operator)

〈ψr| K̂ |ψs〉 =
n∑

j=1

〈ψrψj |
1

r12
|ψjψs〉one 
an write the generalized Hartree-Fo
k equations

F̂ |ψi〉 =
n∑

j=1

|ψj〉 ǫji (1.43)where we have de�ned the Fo
k operator F̂ = ĥ + Ĵ − K̂ and ǫji = 〈ψj| F̂ |ψi〉 =

〈ψi| F̂ |ψj〉∗.We 
an exploit the hermiti
ity of ǫ, 
onsidering the unitary transormation U+ǫU
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h diagonalizes ǫ and noting that 
hanging the spin-orbitals a

ording to thetransformation
ψ′

i =

n∑

j=1

ψjUjithe Fo
k operator remains invariant under su
h transformation. So from the gener-alized equations (1.43) one arrives at the 
anoni
al Hartree-Fo
k equations:
F̂ψ′

i = ǫiψ
′
i (1.44)We re
all that, sin
e F̂ depends on its eigenfun
tions ψi, eq. (1.44) 
annot besolved in a single step. An iterative method must instead be used, starting from aguess of spin-orbitals, building an approximated F̂ , diagonalizing it and pro
eedinguntil 
onvergen
e is rea
hed (self 
onsisten
y).1.4.2 Koopmans' TheoremThe eigenvalues of the 
anoni
al Fo
k equations (1.44) are termed �orbital energies�and have a dire
t physi
al interpretation, sin
e −ǫi represents a �rst approximationto the Ionization Potential (IP), namely the energy needed to remove an ele
tron fromthe spin-orbital ψi. Analogously, −ǫr is a �rst approximation to the Ele
tron A�nity(EA) of the neutral mole
ule. This result is known as Koopmans' Theorem [8℄ andan interesting dis
ussion 
an be found in Ref. [9℄.Let us 
onsider the ionized system obtained by removing an ele
tron from thespin-orbital ψi in the Hartree-Fo
k determinant Ψ. The energy of the n − 1 deter-minant is

E+
i =

〈
aiΨ

∣∣∣Ĥ
∣∣∣ aiΨ

〉
=
〈
Ψ
∣∣∣a+

i Ĥai

∣∣∣Ψ
〉 (1.45)

= E +
〈
Ψ
∣∣∣[a+

i , Ĥ]ai

∣∣∣Ψ
〉
. (1.46)Equation (1.46) 
an be easily manipulated exploiting the 
ommutation rules between
reation and annihilation operators (see se
tion 1.3.2) and one promptly arrives atthe formulation of the Koopmans' Theorem for the ionization energy:

〈
Ψ
∣∣∣[a+

i , Ĥ]ai

∣∣∣Ψ
〉

= −hii − (Jii −Kii) = −ǫi (1.47)An analogous expression 
an be derived for the Ele
tron A�nity E − E−
k = −ǫkThis approximation is based on a simple model for the open-shell ionized system,where the ioni
 wavefun
tion is not allowed to relax upon the ionization pro
ess (re-laxation energy) but it is instead built from the �frozen� MOs of the neutral mole
ule;as a 
onsequen
e, too large IPs and too small EAs are attained. In addition to theseorbital relaxation e�e
ts, the HF method also negle
ts the 
orrelation energy; how-ever, while for the IPs, the KT approximation yields reasonable results, due to a sortof 
an
ellation of errors, for the EAs it generally fails.
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al tools and methods1.5 The Ele
tron 
orrelation problem1.5.1 Ele
tron distribution: density fun
tions and density matri
esIn order to better dis
uss the problem of the ele
tron 
orrelation energy, whi
h rep-resents one of the 
entral issues in the ele
troni
 stru
ture theory, here, we shallintrodu
e the 
on
epts of density fun
tions and density matri
es [10�13℄. The greatadvantage of using this fun
tions basi
ally arises from their relative simpli
ity, par-ti
ularly when 
ompared to the 
omplexity of sophisti
ated wavefun
tions, and fromthe prompt insight they give about the physi
al 
ontent of the ele
tron distribution.Let us 
onsider a n-ele
tron wavefun
tion Ψ(x1, x2, . . . , xn), the probability of�nding ele
tron 1 in x1 and at the same time ele
tron 2 in x2 et
. is given by
dP (x1, x1 + dx1; . . . ;xn, xn + dxn) = Ψ(x1, x2, . . . , xn)Ψ∗(x1, x2, . . . , xn)dx1 dx2.(1.48)Then, the probability on any of n ele
tron in dx1 is expressed as
dP (x1, x1 + dx1) = dx1

∫
Ψ(x1, x2, . . . , xn)Ψ∗(x1, x2, . . . , xn) dx2 dx3 . . . dxn(1.49)By multiplying eq.(1.49) by the number of ele
trons, n, we obtain the amount of
harge in volume dx1. We write this probability as ρ(x1)dx1 where we have intro-du
ed the density fun
tion ρ(x1) de�ned as

ρ(x1) = n

∫
Ψ(x1, x2, . . . , xn)Ψ∗(x1, x2, . . . , xn)dx2dx3 . . . dxn (1.50)We should stress that x1 on the left of eq. (1.50) does not indi
ate the 
oordinatesof ele
tron 1 but the �point 1� of the whole spa
e in whi
h the density is evaluated.By integration over the spin 
oordinates, it is then possible to obtain the probabilityof �nding an ele
tron at point 1 regardless of its spin:

P (r1) =

∫
ρ(dx1)ds1. (1.51)Su
h de�nitions given for a single ele
tron 
an be easily extended to two or moreparti
les; so, in the 
ase of two ele
trons, the pair density fun
tion be
omes

ρ(x1, x2) = n(n− 1)

∫
Ψ(x1, x2, . . . , xn)Ψ∗(x1, x2, . . . , xn)dx3dx4 . . . dxn (1.52)and its spinless 
ounterpart is
P (r1, r2) =

∫
ρ(x1, x2)ds1ds2. (1.53)
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orrelation problem 1.5 15Let F̂ =
∑n

i=1 f(xi) be a one-ele
tron multipli
ative operator and
Ψ(x1, x2, . . . , xn) a n-ele
tron wavefun
tion, the expe
tation value of F̂ is

〈F 〉 =
n∑

i=1

∫
Ψ∗(x1, x2, . . . , xn)f(xi)Ψ(x1, x2, . . . , xn) dx1 dx2 . . . dxn

= n

∫
Ψ∗(x1, x2, . . . , xn)f(x1)Ψ(x1, x2, . . . , xn) dx1 dx2 . . . dxn. (1.54)Sin
e f(x1) is just a multiplier, expression (1.54) 
an be rearranged, using the de�-nition of density fun
tion given in eq. (1.50), to obtain

〈F 〉 =

∫
f(x1)ρ(x1) dx1. (1.55)We note that in the more general 
ase of non-multipli
ative operator f(x1), eq.(1.54) 
annot be simply put in the form (1.55), sin
e Ψ∗(x1, x2, . . . , xn) 
annot beshifted to the right of the operator. However, a simple mathemati
al tri
k 
an beused: sin
e f(x1) works only on fun
tions of x1, Ψ∗ 
an be made exempt from thea
tion of f(x1) just 
hanging the name of the variable from x1 to x′1; then, upon thea
tion of f(x1) on Ψ we 
an 
hange ba
k x′1 → x1 and pro
eed to the integration.Pra
ti
ally, the expe
tation value be
omes

〈F 〉 =

∫

x′

1=x1

f(x1)ρ(x1, x
′
1) dx1. (1.56)where the the density matrix

ρ(x1;x
′
1) = n

∫
Ψ(x1, x2, . . . , xn)Ψ∗(x′1, x2, . . . , xn) dx2 dx3 . . . dxn (1.57)has been introdu
ed.For two-ele
tron operators, the two-parti
le density matrix 
an be de�ned

ρ(x1, x2;x
′
1, x

′
2) = n(n− 1)

∫
Ψ(x1, x2, . . . , xn)Ψ∗(x′1, x

′
2, . . . , xn) dx3 dx4 . . . dxn(1.58)and hen
e the expe
tation value of a generi
 two-ele
tron operator

Ĝ =
1

2

n∑

i6=j=1

ĝ(xi, xj)
an be obtained simply evaluating
〈G〉 =

1

2

∫

x′

1 = x1

x′

2 = x2

ĝ(x1, x2) ρ(x1, x2;x
′
1, x

′
2) dx1 dx2 (1.59)
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al tools and methodsIntegrating over the spin 
oordinates, the spinless density matri
es analogous of thespinless density fun
tions (1.51) and (1.53) are de�ned:
ρ(r1; r

′
1) =

∫

s′1=s1

ρ(x1;x
′
1) ds1 (1.60)and

ρ(r1, r
′
1; r2, r

′
2) =

∫

s′1 = s1

s′2 = s2

ρ(x1, x
′
1;x2, x

′
2) ds1 ds2 (1.61)Obviously, following the same formalism, density matri
es for three or more parti
les
an be de�ned.Finally, it is worthwhile to point out that the density matrix ρ(x1;x

′
1) does nothave an a
tual physi
al meaning in itself but only its diagonal part ρ(x1;x1), whi
h
oin
ides with the density fun
tion ρ(x1).Then, given a 
omplete set of orthonormal basis fun
tions {ψ1, ψ2, . . .}, we mayexpand the one and two-parti
le density matri
es in the forms

ρ(x1;x
′
1) =

∑

i,j

Rijψi(x1)ψ
∗
j (x

′
1) (1.62)and

ρ(x1, x2;x
′
1, x

′
2) =

∑

i,j,k,l

Rij;klψi(x1)ψj(x2)ψ
∗
k(x

′
1)ψ

∗
l (x

′
2) (1.63)where the 
oe�
ients Rij and Rij;kl are numeri
al fa
tors.Finally, the expe
tation values of one- and two-ele
tron operators 
an be evaluatedrespe
tively as

F̂ =

∫

x′

1=x1

f̂(x1)ρ(x1;x
′
1) dx1 =

∑

i,j

RijFji (1.64)and
Ĝ =

1

2

∫

x′

1 = x1

x′

2 = x2

ĝ(x1, x2)ρ(x1, x
′
1;x2, x

′
2) dx1 dx2 =

1

2

∑

i,j,k,l

Rij;klGkl;ij (1.65)where the matri
es F and G have elements
Fji = 〈ψj |f(x1)|ψi〉 (1.66)and

Gkl;ij = 〈ψkψl |g(x1, x2)|ψiψj〉 (1.67)



The Ele
tron 
orrelation problem 1.5 171.5.2 The one-determinant approximation 
aseIn the 
ase of a one-determinant n-ele
tron wavefun
tion
Ψ(x1, . . . , xn) =

1√
n!
‖ψ1ψ2 . . . ψn‖the forms of the one- and two-parti
le density matri
es 
an be obtained 
omparingthe above expressions (1.64) and (1.65) with the expe
tation value of the ele
troni
Hamiltonian in Slater's formalism (see se
tion 1.2.1)

E =
〈
Ψ
∣∣∣Ĥ
∣∣∣Ψ
〉

=
∑

i

〈ψi |h|ψi〉 +
1

2

∑

ij

(〈ψiψj |g|ψiψj〉 − 〈ψiψj |g|ψjψi〉) (1.68)For the one-ele
tron part of Ĥ we have that the following equality must be satis�ed
Rij = δij → ρ(x1;x

′
1) =

n∑

i=1

ψi(x1)ψ
∗
i (x

′
1) (1.69)with both i and j o

upied; for the two-ele
tron 
omponent, we obtain the relations





Rij;ij = 1

Rij;ji = −1

Rii;ii = 0again with i and j o

upied and thus
ρ(x1, x2;x

′
1, x

′
2) =

n∑

i,j=1

(ψi(x1)ψj(x2)ψ
∗
i (x

′
1)ψ

∗
j (x

′
2) − ψi(x1)ψj(x2)ψ

∗
j (x

′
1)ψ

∗
i (x

′
2)).(1.70)An important result is that eq. (1.70) 
an be expressed in terms of one-ele
trondensity matrix

ρ(x1, x2;x
′
1, x

′
2) = ρ(x1;x

′
1)ρ(x2;x

′
2) − ρ(x2;x

′
1)ρ(x1;x

′
2) (1.71)and, more generally, for any n-ele
tron density matrix it may be shown that

ρn(x1, . . . , xn;x′1, . . . , x
′
n) =

∣∣∣∣∣∣∣∣∣∣

ρ(x1;x
′
1) ρ(x1;x

′
2) · · · ρ(x1;x

′
n)

ρ(x2;x
′
1) ρ(x2;x

′
2) · · · ρ(x2;x

′
n)... ... ... ...

ρ(xn;x′1) ρ(xn;x′2) · · · ρ(xn;x′n)

∣∣∣∣∣∣∣∣∣∣

(1.72)Re
alling the de�nition given of the spinless density matri
es (1.60, 1.61) anddi�erentiating the spin-orbitals a

ording to their spin fa
tor, for a 
losed-shell de-terminant we 
an write
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ρ(x1;x

′
1) =

n/2∑

iα=1

φi(r1)φ
∗
i (r

′
1)α(s1)α

∗(s′1) +

n/2∑

iβ=1

φi(r1)φ
∗
i (r

′
1)β(s1)β

∗(s′1)

= Pαα
1 α(s1)α(s′1) + P ββ

1 β(s1)β(s′1) (1.73)and integrating over the spin we obtain the spinless density matrix
P1(r1; r

′
1) = Pαα

1 + P ββ
1 (1.74)with Pαα

1 = P ββ
1 .We now turn to the pair density matrix; as 
an be shown, for a wavefun
tion ofde�nite spin, it 
onsists of six 
omponents (αααα, ββββ, αβαβ, βαβα, αββα and

βααβ), whi
h redu
e to four after integration over the spin
P2(r1, r

′
1; r2, r

′
2) = Pαααα

2 + P ββββ
2 + Pαβαβ

2 + P βαβα
2 (1.75)Re
alling that in the one-determinant 
ase the two-parti
le density matrix 
an be fa
-torized in terms of the one-parti
le density matri
es (1.71), the following expressionsare obtained for the pair fun
tions (imposing r′1 = r1 and r′2 = r2)

Pαα
2 (r1, r2) = Pα

1 (r1)P
α
1 (r2) − Pα

1 (r1; r2)P
α
1 (r2; r1) (1.76)

P ββ
2 (r1, r2) = P β

1 (r1)P
β
1 (r2) − P β

1 (r1; r2)P
β
1 (r2; r1) (1.77)

Pαβ
2 (r1, r2) = Pα

1 (r1)P
β
1 (r2) (1.78)

P βα
2 (r1, r2) = P β

1 (r1)P
α
1 (r2) (1.79)From these expressions, indi
ating the probability of �nding ele
trons simultane-ously at two point in spa
e with a given spin 
on�guration, we 
an get a promptunderstanding of the ele
tron 
orrelation problem. As is apparent, the motion ofele
trons with the same spin, αα (2.5) or ββ (1.77), is des
ribed by 
orrelated fun
-tions and Pαα

2 (r1, r2) vanishes as r2 → r1. This type of 
orrelation, known as Fermi
orrelation, avoids ele
trons of parallel spin being at the same point of spa
e anddire
tly arises from the antisymmetry property of a fermioni
 wavefun
tion. On the
ontrary, from eqs. (1.78) and (1.79), we see that there is no 
orrelation between themotion of ele
trons with opposite spin, sin
e the probability of �nding them in r1and r2 at the same time is given just by the produ
t of the probabilities of the ea
hof two independent events. This la
k of 
orrelation (Coulomb 
orrelation) is 
learlya serious defe
t in the one-determinant model, sin
e the mutual repulsion betweenpairs of ele
trons is not properly taken into a

ount and the probability of �ndingthem 
lose together does not de
rease as the distan
e de
reases.
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al and Dynami
al CorrelationFrom a �quantitative� point of view, the 
orrelation energy is de�ned (Löwdin, 1955)as the di�eren
e between the �exa
t� energy (pra
ti
ally the energy of FCI wavefun
-tion) and the energy of the Hartree-Fo
k wavefun
tion
Ecorr = Eexact − EH−Fwithin a given basis set approximation. Although in itself it represents a very smallfra
tion of the ele
troni
 energy, its a

urate treatment is essential when dealing withenergy di�eren
es whi
h are of the same order of magnitude of the 
orrelation energy(
hemi
al rea
tivity, ex
itation energies et
.).A
tually, two di�erent e�e
ts of ele
troni
 
orrelation exist:

• the stati
al 
orrelation, whi
h is asso
iated with the problems of the multi
on-�gurational 
hara
ter of the wavefun
tion;
• the dynami
al 
orrelation, whi
h is, instead, related to the e�e
ts of the inter-ele
troni
 intera
tions.Referring the the Hartree-Fo
k des
ription of the H2 mole
ule disso
iation, the dis-tin
tion between the stati
al and the dynami
al e�e
ts be
omes 
lear. At the equi-librium geometry, the wavefun
tion is qualitatively well des
ribed by the 
losed-sellHartree-Fo
k determinant and the 
orrelation energy essentially arises from the dy-nami
al e�e
ts of the interele
troni
 repulsions. On the other hand, at the disso
ia-tion limit, where there is no 
oulomb repulsion between the two ele
trons, the failureof the one-determinant approximation is due to the need to take into a

ount thenear-degenera
y between the σ2

g and σ2
u 
on�gurations.1.6 Handling the Stati
al Correlation: MCSCF TheoryAs above stated, in many 
hemi
al and physi
al phenomena, su
h as the rupture orformation of 
hemi
al bonds, or the des
ription of ele
troni
ally ex
ited states, theone-determinant approximation dramati
ally fails due to the intrinsi
 multireferen
enature of the problem. These stati
al 
orrelation e�e
ts 
an be properly taken intoa

ount resorting to a multideterminant expansion of the wavefun
tion, in whi
h asimultaneous variational optimization of spin-orbitals and expansion 
oe�
ients isperformed: su
h strategy is 
alled Multi
on�gurational Self-Consistent Field (MC-SCF) approa
h.Starting from a trun
ated CI expansion

Ψ =

N∑

K=1

CKΦK , (1.80)
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al tools and methodsin order to build a MCSCF wavefun
tion we need to impose that the energy variationwith respe
t to an in�nitesimal variation of both orbitals (φ′ = φ+δφ) and 
oe�
ients(C ′
K = CK + δCK) is zero.The optimization 
an be performed resorting to both a single-step Newton-Rahpson te
hnique and a two-step approa
h (Super CI), where �rst the 
oe�
ients

CK and then the orbitals are iteratively optimized until self-
onsisten
y is rea
hed.Following the pro
edure presented in se
tion (1.4.1) for the Hartree-Fo
k theory,the self-
onsisten
y 
ondition is here expressed as
∑

rs

trs

(
〈Ψ| Ĥ |ErsΨ〉 − 〈EsrΨ| Ĥ |Ψ〉

)
= 0 (1.81)and it is satis�ed by the Extended-Brillouin Theorem [14℄

〈Ψ| Ĥ |(Ers − Esr)Ψ〉 = 0 (1.82)In other terms, when the energy is stationary, the 
ontra
ted single ex
itations Ψr
s =

(Ers−Esr)Ψ do not intera
t with the optimized MCSCF wavefun
tion. The Super CImethod is pra
ti
ally based upon an iterative pro
edure, whi
h 
onsists in buildingan improved wavefun
tion
Ψ′ = Ψ +

∑

r>s

crsΨ
r
s (1.83)diagonalizing the CI matrix and then using the 
oe�
ients of the single-ex
itedfun
tions, crs, for 
onstru
ting the matrix T, whi
h operates the unitary orbitaltransformation (U = eT).1.6.1 Complete A
tive Spa
e (CAS)The key issue in the 
onstru
tion of a redu
ed CI spa
e in whi
h to expand theMC wavefun
tion is essentially how to sele
t a limited number of ele
troni
 
on�g-urations able to properly take into a

ount the stati
al 
orrelation energy e�e
ts.In the present work we shall adopt a parti
ular and largely used type of MCSCFwavefun
tion, known as Complete A
tive Spa
e Self-Consistent Field (CASSCF)wavefun
tion [15℄. As we shall widely dis
uss in the next 
hapter, this fun
tion rep-resents the zero order wavefun
tion, Ψ(0), in our perturbative approa
h.The idea of A
tive Spa
e provides a useful �pre
ept� to 
hoose the relevant 
on-�gurations of the CI expansion (1.80). It is based upon the partitioning of thespin-orbitals into three 
lasses:1. 
ore (i, j, . . . ), whi
h have o

upation number equal to 1 in all the determinants

ΦK ;
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tive (a, b, . . . ), with all the possible o

upation number from 0 to 1;3. virtual (r, s, . . . ), whi
h are never o

upied in any determinant ΦK .The CASSCF wavefun
tion is built by performing a Full CI expansion within thea
tive orbitals subspa
e and then optimizing 
oe�
ients and orbitals until self-
onsisten
y. However, it is important to stress that the CASSCF approa
h is nota �bla
k-box� method and there is not a re
ipe to sele
t the �right� a
tive spa
e.However, it should be always 
arefully 
hosen in order to in
lude all the orbitals thatare thought to be involved in some measure in the 
hemi
al and physi
al pro
essunder 
onsideration.





Chapter 2
N -ele
tron Valen
e StatePerturbation TheoryMultireferen
e perturbation theories (MRPT) represent a powerful and relatively in-expensive tool for the treatment of ele
troni
 
orrelation in mole
ules. As dis
ussedin the previous 
hapter (se
tion 1.5.3), in many mole
ular phenomena su
h as thebreaking of a 
hemi
al bond or the ele
troni
 transition to an ex
ited state, a sin-gle referen
e wavefun
tion does not su�
e to provide a good approximation to thesolution of the time independent S
hrödinger equation; many ele
troni
 
on�gura-tions 
an be important and a zero order des
ription of the ele
troni
 stru
ture of themole
ule may not leave out of 
onsideration su
h quasidegenerate 
on�gurations.The in
lusion of the quasidegenerate 
on�gurations a

ounts for what is 
alled thestati
al 
orrelation (se
tion 1.6); the dynami
al 
omponent 
ould be dealt with per-turbationally with a suitable MRPT. A key issue in MRPT 
on
erns the de�nitionof a proper zero order Hamiltonian H0. In the early theories, whi
h were developedat the beginning of the 1970's, su
h as CIPSI [16℄, H0 was de�ned in terms of aone�ele
tron, Fo
k�like, operator and the zero order fun
tions (perturbers), used tobuild the �rst order 
orre
tion to the wavefun
tion, were simple Slater determinants.The idea that H0 should be based on a one�ele
tron operator still persists in mostmodern MRPT's. For instan
e in CASPT2 [17,18℄, one of the most su

essful formsof MRPT, H0 is a proje
ted generalized Fo
k operator and the perturbers are builtin terms of internally 
ontra
ted ex
itations (vide infra). Dyall [19℄ showed thatthe usage of 
orre
tion fun
tions deriving from a one�ele
tron operator introdu
es abias in the energy 
al
ulation sin
e the zero order referen
e wavefun
tion properlytakes into 
onsideration the biele
troni
 intera
tions o

urring among the a
tive ele
-trons whereas the 
orre
tion fun
tions are not allowed to do so. In order to obviatesu
h di�
ulty Dyall proposed the use of a model Hamiltonian, partially biele
troni
.In 2001, based on Dyall's work, the �n�ele
tron valen
e state perturbation theory�
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tron Valen
e State Perturbation Theory(NEVPT) [20�25℄ was developed, in 
ollaboration between the theoreti
al 
hemistrygroups of the universities of Ferrara and Toulouse. The 
hapter has the followingstru
ture: a brief résumé of the Rayleigh-S
hrödinger Perturbation Theory (RSPT)and of the Møller-Plesset Theory will be proposed in se
tion 2.1 and 2.2 respe
tively.Then we shall present the se
ond order NEVPT approa
h in its single-state (se
tion2.3) and quasidegenerate (se
tion 2.6) formulations; se
tion 2.7 is instead devotedto the third order NEVPT and Internally Contra
ted CI method, whose �partially
ontra
ted� version implementation takes a 
entral part in the present resear
h work.2.1 Rayleigh-S
hrödinger Perturbation TheoryThe basi
 idea of the perturbative methods is to express the true Hamiltonian Ĥas the sum of an �unperturbed� Hamiltonian (model Hamiltonian), Ĥ0, and of aperturbation operator,V̂ ,
Ĥ = Ĥ0 + λV̂ (2.1)where λ gives the extent of the perturbation. Supposing to be in a non-degenerate
ase, the eigenstates and the asso
iated eigenvalues of the unperturbed Hamiltonian

Ĥ0 are known
Ĥ0Ψ

0
n = E0

nΨ0
n n = 0, 1, 2, . . . (2.2)Due to the e�e
t of the perturbation, whi
h is however supposed to be small, theeigenfun
tions and the eigenvalues of Ĥ will 
hange as a fun
tion of the parameter

λ. In the Rayleigh-S
hrödinger (RS) s
heme, the energy and the wavefun
tion areexpanded in Taylor's series to obtain
En = E(0)

n + λE(1)
n + λ2E(2)

n + . . . (2.3)
Ψn = Ψ(0)

n + λΨ(1)
n + λ2Ψ(2)

n + . . . (2.4)To simplify the derivation, we suppose that the eigenstates of Ĥ0 are normalized(〈Ψ(0)
n |Ψ(0)

n 〉 = 1); moreover, we also impose the intermediate normalization 
ondition
〈Ψ0

n|Ψn〉 = 1. By substitution of expressions (2.3) and (2.4) into the S
hrödingerequation ĤΨn = EnΨn, we obtain
λ0(Ĥ0Ψ

(0)
n − E(0)

n Ψ(0)
n )

+ λ1(Ĥ0Ψ
(1)
n + V̂Ψ(0)

n −E(0)
n Ψ(1)

n − E(1)
n Ψ(0)

n )

+ λ2(Ĥ0Ψ
(2)
n + V̂Ψ(1)

n −E(0)
n Ψ(2)

n − E(1)
n Ψ(1)

n − E(2)
n Ψ(0)

n )

+ . . . = 0 (2.5)We see that eq. (2.5) is satis�ed only if the terms inside parenthesis are zero, thenthe equations obtained for the di�erent orders 
an be manipulated and one arrives
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ontribution of k order 
orre
tion to theenergy:
E(k)

n =
〈
Ψ(0)

n

∣∣∣ V̂
∣∣∣Ψ(k−1)

n

〉
. (2.6)For the �rst and the se
ond order one has

E(1)
n =

〈
Ψ(0)

n

∣∣∣ V̂
∣∣∣Ψ(0)

n

〉 (2.7)
E(2)

n =
〈
Ψ(0)

n

∣∣∣ V̂
∣∣∣Ψ(1)

n

〉 (2.8)with Ψ
(1)
n given by

Ψ(1)
n = −RnV̂Ψ(0)

n (2.9)where Rn (termed the �resolvent operator�), in absen
e of degenera
y of Ψ
(0)
n , hasthe form

Rn =
∑

k 6=n

∣∣Ψ0
k

〉 〈
Ψ0

k

∣∣
E0

k − E0
n

(2.10)Equation (2.9) 
an be substituted into eq. (2.8) to obtain:
E

(2)
0 = −

∑

k 6=0

∣∣∣
〈
Ψ

(0)
n

∣∣∣ V̂
∣∣∣Ψ(0)

k

〉∣∣∣
2

E
(0)
k − E

(0)
n

(2.11)For the third order 
orre
tion, instead, one has
E(3)

n =
〈
Ψ(0)

n

∣∣∣ V̂
∣∣∣Ψ(2)

n

〉whi
h be
omes
E(3)

n =
〈
Ψ(1)

n

∣∣∣ V̂
∣∣∣Ψ(1)

n

〉
+ E(1)

n ‖Ψ(1)
n ‖2 (2.12)2.2 Møller-Plesset TheoryIn the Møller-Plesset theory [26℄ the model Hamiltonian is a n-parti
le operator, also
alled the Fo
kian, whi
h in se
ond quantization has the form:

F̂ =
∑

r

ǫra
+
r ar. (2.13)The perturbation operator, V̂ (also termed �u
tuation potential) is given by thedi�eren
e

V̂ = Ĥ − F̂ . (2.14)The zero order wavefun
tion is the Hartree-Fo
k determinant |Ψ0〉 built up with nspin-orbitals ψi, whi
h are solutions of the 
anoni
al Hartree-Fo
k equations f̂ψi =

ǫiψi; the zero order energy is E0 =
∑n

i=1 ǫi.
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tron Valen
e State Perturbation TheoryHowever, we note that any other determinant |Ψk〉, built with n arbitrary spin-orbitals ψi, is an eigenfun
tion of F̂ with eigenvalue E(0)
k =

∑n
i=1 ǫki

, thus the �rstand se
ond order 
ontribution to the energy are respe
tively
E

(1)
0 = 〈Ψ0| Ĥ − F̂ |Ψ0〉 = EH−F

0 −
n∑

i=1

ǫi (2.15)and
E

(2)
0 = −

∑

k 6=0

∣∣∣〈Ψ0| Ĥ |Ψk〉
∣∣∣
2

E
(0)
k − E

(0)
0

(2.16)As is evident from equation (2.15), the �rst order 
ontribution (MP1) does not bringabout any 
orre
tion to the Hartree-Fo
k energy (E(0)
0 + E

(1)
0 = EH−F

0 ). Instead,for the se
ond order 
orre
tion (MP2), from eq. (2.16) 
omes that only the doubly-ex
ited determinants will give a 
ontribution, sin
e the singly-ex
ited determinantsdo not intera
t with the HF wavefun
tion as stated by Brillouin's theorem. Indi
atingwith ∣∣∣Ψab
ij

〉 the determinant in whi
h two o

upied spin-orbitals (i, j) have beensubstituted by two virtual ones (a, b), eq. (2.16) be
omes:
E

(2)
0 = −

occ∑

i<j

virt∑

a<b

|〈ψaψb| |ψiψj〉|2
ǫa + ǫb − ǫi − ǫj

(2.17)2.3 NEVPT2 philosophyMultireferen
e perturbation theories 
an be 
lassi�ed, a

ording to the strategyadopted to obtain the 
orre
ted energies and wavefun
tions, into two 
ategories:
• �perturb then diagonalize�, where an e�e
tive Hamiltonian is perturbativelybuilt in a model spa
e and then diagonalized;
• �diagonalize then perturb�, where the perturbation is performed upon a zeroorder wavefun
tion obtained by diagonalization of the Hamiltonian in a givendeterminant spa
e.As above mentioned, in the NEVPT approa
h, whi
h belongs to the diagonalizethen perturb methods, a CASSCF (or CASCI) referen
e wavefun
tion is employedand the zero order Hamiltonian is built by means of Dyall's Hamiltonian [19℄

ĤD = Ĥi + Ĥv + C, (2.18)where Ĥi is a one�ele
tron operator de�ned in terms of orbital energies and 
re-ation/destru
tion pairs
Ĥi =

core∑

i

ǫiEii +
virt∑

r

ǫrErr, (2.19)
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Hv is a two�ele
tron operator 
on�ned to the a
tive orbital spa
e

Hv =
act∑

ab

heff
ab Eab +

1

2

act∑

abcd

〈ab|cd〉(EacEbd − δbcEad), (2.20)and C is a suitable 
onstant assuring that ĤD is equivalent to Ĥ within the CASspa
e (C = 2
∑core

i hii +
∑core

ij (2〈ij|ij〉 − 〈ij|ji〉) − 2
∑core

i ǫi.) The quantities heff
abappearing in eq.(2.20) are the usual one�ele
tron matrix elements hab, where the
ontribution deriving from the e�e
tive �eld of the 
ore ele
trons (heff

ab = hab +∑core
j (2〈aj|bj〉 − 〈aj|jb〉)) is added. The energies of the 
ore, ǫi, and virtual, ǫr,orbitals are usually 
hosen as those whi
h result from the diagonalization of thegeneralized Fo
k matrix (
anoni
al orbitals).The zero order wave fun
tions external to the CAS-CI spa
e and di�ering from

Ψ
(0)
m for a well-de�ned pattern of the ina
tive orbitals are referred to as �perturberfun
tions� (or �perturbers�). The perturbers are indi
ated as Ψ

(k)
l,µ and the spa
ethey belong to as S(k)

l , where �l� is the o

upation pattern of the ina
tive orbitals,�k�is the number of ele
trons promoted (removed) to (from) the a
tive spa
e and �µ�simply enumerates the various perturbers. There are only eight typologies of S(k)
lsubspa
es: S(0)

ij,rs with two 
ore orbitals substituted by two virtuals, S(0)
i,r with one
ore orbital substituted by one virtual, S(+1)

ij,r with one 
ore substituted by one virtualand one 
ore ele
tron added to the a
tive spa
e, S(+1)
i with one 
ore ele
tron addedto the a
tive spa
e, S(−1)

i,rs with one 
ore orbital substituted by one virtual and onea
tive ele
tron ex
ited into a virtual, S(−1)
r with one a
tive ele
tron ex
ited into avirtual, S(+2)

ij with two 
ore ele
trons ex
ited to the a
tive spa
e, S(−2)
rs with twoa
tive ele
trons ex
ited to the virtual spa
e (see Fig. 2.1).If the full dimensionality of su
h subspa
es is exploited, diagonalizing the trueHamiltonian or the model Dyall's Hamiltonian within ea
h S(k)

l spa
es, one has theso-
alled �totally un
ontra
ted� NEVPT2 [25℄. However, su
h formulation, not yetimplemented, would be feasible for CAS of small and medium size; it is pra
ti
allynot appli
able for CAS spa
es greater than few thousands 
on�gurations, whi
h is
ommon pra
ti
e in nowadays 
al
ulations.2.4 Internally 
ontra
ted approa
hThe prohibitive 
omputational 
ost of the totally un
ontra
ted formalism 
an be 
on-siderably redu
ed if the perturbers are built as internally 
ontra
ted (IC) fun
tions.This leads to the �partially 
ontra
ted� NEVPT2 and to its further simpli�
ation,the �strongly 
ontra
ted� NEVPT2.
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V(−2)

V(0’)

V(+1’)

V(−1’)Figure 2.1: Graphi
al representation of the eight typologies of S(k)
l spa
es.Let Φ be a fun
tion external to the CAS spa
e intera
ting with the referen
ewavefun
tion Ψ

(0)
m , then it has been shown [27, 28℄ that

〈
Ψ(0)

m

∣∣∣Ĥ
∣∣∣Φ
〉

=
〈
Ψ(0)

m

∣∣∣Ĥ
∣∣∣ P̂ICΦ

〉 (2.21)where P̂IC performs a proje
tion onto the �internally 
ontra
ted� �rst order spa
egenerated by all the fun
tions, external to the CAS, obtained by appli
ation of properstrings of spin-tra
ed ex
itation operators to the referen
e wavefun
tion, EwxEyzΨ
(0)
m .It follows that the �rst order 
orre
ted wavefun
tion, Ψ

(1)
m , whi
h has to be builtto 
ompute the se
ond order 
orre
tion to the energy E(2)
m =

〈
Ψ

(0)
m |V |Ψ(1)

m

〉, 
anbe restri
ted to belong to the IC �rst order intera
ting spa
e. Consequently, thedimensionality of the eight S(k)
l subspa
es will be now substantially redu
ed sin
ethey will be only spanned by the IC fun
tions EwxEyzΨ

(0)
m . Nevertheless, we shouldstress that the EwxEyzΨ

(0)
m fun
tions are not orthogonal and, generally, not evenlinearly independent, so that 
are has to be taken in removing the possible lineardependen
ies.2.4.1 The Partially Contra
ted NEVPT2The partially 
ontra
ted NEVPT (PC-NEVPT2) approa
h 
onsists in building theperturbers as multireferen
e wavefun
tions belonging to a subspa
e S̄(k)

l of the vari-



Internally 
ontra
ted approa
h 2.4 29ous IC S
(k)
l spa
es. One possibility would be to diagonalize the true Hamiltonian Hwithin ea
h su
h spa
e

P
S

(k)
l

ĤP
S

(k)
l

Ψ
(k)
l,µ = E

(k)
l,µ Ψ

(k)
l,µbut this would be 
omputationally too expensive. A
tually, we have adopted themore 
onvenient 
hoi
e of diagonalizing the model Hamiltonian ĤD. Indeed, it isworthwhile to noti
e that within a given S(k)

l spa
e
• the a
tive part of ĤD (Ĥv) has matrix elements whi
h do not depend on theina
tive orbital pattern l (independent of the spe
i�
 ina
tive orbital indi
es
hosen);
• the ina
tive part Ĥi only gives rise to an energy shift within S(k)

l , whi
h is equalto the di�eren
e between the orbital energies of the virtual and 
ore orbitalsinvolved in the ex
itation pro
ess.Thus, for ea
h of the eight typologies of S(k)
l , only one single diagonalization has tobe performed to get all the eigenfun
tions (perturbers) and eigenvalues of ĤD. Thegeneral form of the eigenvalues is:

E
(k)
l,µ = E(0)

m + ∆ǫl + eµ (2.22)where ∆ǫl equals the di�eren
e of the virtual and 
ore orbital energies involved inthe de�nition of S(k)
l and where E(0)

m + eµ is the µ-th eigenvalue of the proje
tionof Ĥv onto the IC S
(k)
l ; eµ is independent of the ina
tive orbitals and represents aphysi
al pro
ess o

urring in the a
tive spa
e. In parti
ular, in the S(+1)

ij,r subspa
es,
eµ approximates an ele
tron a�nity due to an ele
tron passing from the 
ore to thea
tive spa
e, in the S(+2)

ij subspa
es the eigenvalues eµ approximate an energy ofdouble ionization and so on for the other subspa
es.The zero order Hamiltonian of PC-NEVPT 
an be written as follows:
ĤPC

0 = PCASĤPCAS +
∑

l,k

P
S

(k)
l

ĤDP
S

(k)
l

(2.23)where P
S

(k)
l

is the proje
tor onto the S(k)
l spa
e de�ned above. It should be remarkedthat the PC-NEVPT2 has exa
tly the same degree of 
ontra
tion of CASPT2 [17,18℄;the di�eren
e between the two approa
hes is that PC-NEVPT2 uses multireferen
e
orre
tion fun
tions Ψ

(k)
l,µ whi
h are eigenfun
tions of a simpli�ed two�ele
tron Hamil-tonian (ĤD) taking into due a

ount the biele
troni
 intera
tions among the a
tiveele
trons.
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tron Valen
e State Perturbation TheoryFor ea
h of the eight S(k)
l spa
es, with the ex
eption of the one-dimensional S(0)

ij,rsspa
e, the partially 
ontra
ted perturbation fun
tions are expressed as
Ψ

(k)
l,µ = |Φ〉C (2.24)where the C matrix is obtained by diagonalization of ĤD in S

(k)
l . The �rst or-der 
orre
tion to the wave fun
tion is then expressed as linear 
ombination of theperturbation fun
tions

Ψ(1)(S
(k)
l ) =

∑

µ

Ψ
(k)
l,µC

(k)(1)
l,µ (2.25)where the 
oe�
ients C(k)(1)

l,µ have the form
C

(k)(1)
l,µ = −

〈
Ψ

(k)
l,µ

∣∣∣Ĥ
∣∣∣Ψ(0)

m

〉

E
(k)
l,µ − E

(0)
m

(2.26)and the fun
tions are assumed to be normalized.A s
hemati
 analysis of the eight S(k)
l spa
es is proposed in Appendix A, fo
usingattention above all on the form of perturbation fun
tions Ψ

(k)
l and of the perturbative
oe�
ients C(k)(1)

l,µ , whi
h will be used in the following for the formulation of the PC-NEVPT3.2.4.2 The Strongly 
ontra
ted NEVPT2A further simpli�
ation of the NEVPT2 approa
h 
an be a
hieved sele
ting a singleperturber Ψ
(k)
l from ea
h IC S(k)

l subspa
e. Ψ
(k)
l is 
hosen by the following proje
tion:

Ψ
(k)
l = P

S
(k)
l

ĤΨ(0)
m . (2.27)In this way a set of orthogonal (but not normalized) 
orre
tion fun
tions Ψ

(k)
l isobtained; their energies are 
omputed as

E
(k)
l =

〈
Ψ

(k)
l |H|Ψ(k)

l

〉

〈Ψ(k)
l |Ψ(k)

l 〉
(2.28)where the use of the Dyall's Hamiltonian guarantees, as usual, a further simpli�
a-tion. This formulation is 
alled strongly 
ontra
ted NEVPT2 (SC-NEVPT2) and isthe �rst approa
h that has been pra
ti
ally implemented [21, 22℄.The zero order Hamiltonian of SC-NEVPT2 
an be expressed as a spe
tral de-
omposition:

HSC
0 = PCASĤPCAS +

∑

l,k

∣∣∣Ψ(k)′
l

〉
E

(k)
l

〈
Ψ

(k)′
l

∣∣∣ (2.29)
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(k)′
l = Ψ

(k)
l /‖Ψ(k)

l ‖ are the normalized perturbers. The se
ond order 
ontri-bution to the energy, as shown in Ref. [22℄, 
an be expressed as
E(2)

m =
∑

l,k

‖Ψ(k)
l ‖2

E
(0)
m − E

(k)
l

. (2.30)The detailed treatment of the various 
ontributions 
an be found in Ref. [22℄. De-spite the low number of 
orre
tion fun
tions employed, the SC-NEVPT2 usuallyyields results very 
lose to those of the more elaborated PC-NEVPT2. An inter-esting inequality was proved in Ref. [22℄, showing that, for ea
h S(k)
l subspa
e, the
ontribution to the se
ond order 
orre
tion to the energy of PC-NEVPT2 is alwayslower (negative and larger in absolute value) than that of SC-NEVPT2. Cases of
onsistent dis
repan
ies between SC- and PC-NEVPT2 are usually indi
ative of somedefe
t in the zero order wavefun
tion Ψ

(0)
m [24, 29�31℄.2.5 Major NEVPT2 properties2.5.1 Absen
e of intruder statesA well-known problem in MRPTs based on a monoele
troni
 zero order Hamiltonianis the appearan
e of the so-
alled intruder states. These are perturbation fun
tions(eigenfun
tions of Ĥ0) with an energy very 
lose to the energy of the referen
e wave-fun
tion E(0)

m , thus produ
ing near divergen
es in the perturbation summation. Thisphenomenon is basi
ally related to the improper des
ription of the two-ele
tron in-tera
tions between the perturber fun
tions. The intruder state problem a�e
ts, forinstan
e, the CASPT2 
al
ulations, where an ad ho
 unphysi
al level shift [32℄ 
anbe used in the denominators to prevent the o

urren
e of su
h divergen
es. BothNEVPT2 variants are pra
ti
ally exempt from the intruder state problem: the energyof the perturbers are always well separated from that of the referen
e wavefun
tion.Considering, for instan
e, the partially 
ontra
ted approa
h with Dyall's Hamilto-nian we have that the energy of the 
orre
tion fun
tions Ψ
(k)
l,µ are given by

E
(k)
l,µ = E(0)

m + ∆ǫ
(k)
l + eµ (2.31)where ∆ǫ

(k)
l and eµ are both positive quantities, avoiding too small denominators(E(k)

l,µ − E
(0)
m ). We should stress that, however, the S(−1)

r subspa
e, where an a
tiveele
tron is ex
ited to the virtual spa
e and the other ex
itation takes pla
e withinthe a
tive spa
e, 
ould be, in prin
iple and only for highly ex
ited states, liable tothe possibility of intruder states. In fa
t, in presen
e of extremely di�use virtualorbitals, ǫr is 
lose to zero and eµ, whi
h refers to an ionization pro
ess in the a
tivespa
e, 
ould be very small. Neverthless, in the 
al
ulations 
arried out up to now,we have never observed intruder state problems.
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tron Valen
e State Perturbation Theory2.5.2 Invarian
e under orbital rotationsAs ea
h S
(k)
l subspa
e is a 
omplete a
tive spa
e, it is 
learly invariant under anarbitrary rotation of the a
tive orbitals; this invarian
e is guaranteed in the threeformulations of the method. On the 
ontrary, of 
ourse, all the NEVPT methods arenot invariant under rotations between a
tive and ina
tive orbitals, so that attentionhas to be paid to the 
hoi
e of the a
tive spa
e in order to avoid possible ex
hangesof the orbital identities. Moreover, we should stress that the form of Dyall's Hamil-tonian of eq. (2.18) is also not invariant under rotations of 
ore and virtual orbitalsand 
anoni
al ina
tive orbitals (those that diagonalize the Fo
k matrix) have to beused. A
tually, using 
anoni
al orbitals is not always possible, like for instan
e whena priori lo
alized orbitals are adopted, so a non
anoni
al PC-NEVPT2 approa
h hasalso been implemented in our laboratory. In this 
ase a modi�ed Dyall's Hamiltonian
an be used su
h that this invarian
e property is ful�lled; the ina
tive part of ĤD isrewritten as

Ĥ ′
i =

core∑

ij

fijEij +

virt∑

rs

frsErs (2.32)where fij and frs are elements of generalized Fo
k matri
es:
fij = −

〈
aiΨ

(0)
m

∣∣∣Ĥ
∣∣∣ ajΨ

(0)
m

〉
+ δijE

(0)
m (2.33)

frs =
〈
a+

r Ψ(0)
m

∣∣∣Ĥ
∣∣∣ a+

s Ψ(0)
m

〉
− δrsE

(0)
m (2.34)The zero order Hamiltonian is then de�ned as

H0 = PCASĤPCAS +
∑

l,k

l′k′

P
S

(k)
l

ĤDP
S

(k′)

l′

(2.35)The perturbation equations are solved using a system of linear equations
Ψ(1)

m =
∑

l,k,µ

c
(k)
lµ Ψ

(k)
l,µ

∑

l′k′µ′

c
(k′)
l′µ′

〈
Ψ

(k)
l,µ

∣∣∣Ĥ0 − E(0)
m

∣∣∣Ψ(k′)
l′,µ′

〉
= −

〈
Ψ

(k)
l,µ

∣∣∣V̂
∣∣∣Ψ(0)

m

〉where the Ψ
(k)
l,µ fun
tions are obtained by a preliminary PC�NEVPT2 
al
ulationmaking use of only the diagonal elements of the Fo
k matri
es.2.5.3 Size 
onsisten
eThe property of size 
onsisten
e, in the form of stri
t separability dire
tly derives fromthe above dis
ussed invarian
e under rotation of the a
tive orbitals (see Ref. [20℄ for
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all that the stri
t separability property assures that, at thelimit of non-intera
tion, the energy of a system A�B is equal to the sum of theenergies of the two subsystems A and B 
al
ulated separately.2.6 Quasidegenerate NEVPT2A well-known defe
t of the MRPTs belonging to the "diagonalize then perturb philos-ophy" 
onsists in the fa
t that the �rst order 
orre
tion to the wavefun
tion does notbring modi�
ation to the referen
e fun
tion. Su
h defe
t turns out to be rather 
on-sistent in 
ases where the mixing of the 
on�gurations in the zero order wavefun
tionis not properly des
ribed due to strongly di�erent 
orrelation e�e
ts; typi
al exam-ples are the avoided 
rossing between ioni
 and 
ovalent states or ex
ited states witha mixed valen
e-Rydberg nature. The reorganization of the determinant 
oe�
ientsin the zero order wavefun
tion 
an be obtained by applying a quasidegenerate per-turbative approa
h [33�35℄, where an e�e
tive Hamiltonian is diagonalized within a
on�gurational spa
e of limited dimension. The quasidegenerate formalism has beenimplemented for both the strongly and partially 
ontra
ted (QD-SCNEVPT2 andQD-PCNEVPT2) approa
hes using the model Dyall's Hamiltonian and is presentedin Ref. [23℄.In the QD-NEVPT2 approa
h a model spa
e is built by 
hoosing as basis set afew solutions of the CAS�CI problem {Ψ(0)
1 ,Ψ

(0)
2 , . . . ,Ψ

(0)
g } with

PCASĤPCASΨ(0)
m = E

(0)
m Ψ

(0)
m . The purpose of the QD formalism is to provide thetrue eigenvalues of the Hamiltonian and the proje
tions of the true eigenfun
tionsonto the model spa
e with the use of an e�e
tive Hamiltonian

He�Ψ̃m = EmΨ̃m, (2.36)where Ψ̃m = PΨm, P =
∑g

k=1

∣∣∣Ψ(0)
k

〉〈
Ψ

(0)
k

∣∣∣ and Em is the true eigenvalue asso
iatedto the true eigenfun
tion Ψm. Introdu
ing the wave operator, ΩΨ̃m = Ψm, thee�e
tive Hamiltonian 
an be written as Ĥe� = PĤΩ and Ω is obtained by solvingthe generalized Blo
h equation
ΩPĤΩ − ĤΩ = 0. (2.37)Adopting a partition of the Hamiltonian, Ĥ = Ĥ0 + V̂ , with Ĥ0Ψ

0
m = E0

mΨ0
m andexpanding Ω and Ĥe� in a perturbation series

Ω = P + Ω(1) + Ω(2) + · · · (2.38)
Ĥe� = Ĥ

(0)e� + Ĥ
(1)e� + Ĥ

(2)e� + · · · (2.39)
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tron Valen
e State Perturbation Theoryone promptly arrives at the �rst-order term of Ω

[
Ω(1),H0

]
= QV P (2.40)and to the following terms of Ĥe�

Ĥ
(0)e� = PĤ0P ; (2.41)

Ĥ
(1)e� = PV̂ P = 0; (2.42)

Ĥ
(2)e� = PV̂ Ω(1). (2.43)Sin
e NEVPT2 is a state-spe
i�
 method with Ĥ0 depending on a spe
i�
 referen
efun
tion Ψ

(0)
m , in order to solve the ambiguity about the perturbation fun
tions touse, the multipartitioning te
hnique by Zaitsevski and Malrieu [36℄ is adopted. Su
happroa
h 
onsists in the use of di�erent partitions of the Hamiltonian a

ording tothe various wavefun
tions Ψ

(0)
m of the model spa
e

Ĥ = Ĥ0(m) + V̂ (m) (2.44)with
Ĥ0(m) = PCASĤPCAS +

∑

l,k,µ

∣∣∣Ψ(k)
l,µ (m)

〉
E

(k)
l,µ

〈
Ψ

(k)
l,µ (m)

∣∣∣ , (2.45)where the perturbation fun
tions Ψ
(k)
l,µ (m) are IC fun
tions generated by applyingthe ex
itation operators to Ψ

(0)
m . The matrix elements of Ĥe� up to se
ond order aregiven by:

〈
Ψ(0)

n

∣∣∣Ĥe�∣∣∣Ψ(0)
m

〉
= E(0)

m δmn +
∑

l,k,µ

〈
Ψ

(0)
n

∣∣∣Ĥ
∣∣∣Ψ(k)

l,µ (m)
〉〈

Ψ
(k)
l,µ (m)

∣∣∣Ĥ
∣∣∣Ψ(0)

m

〉

E
(0)
m −E

(k)
l,µ (m)

. (2.46)The approximate proje
tions Ψ̃m and the 
orresponding eigenvalues Em are thenobtained by diagonalization of theHe� matrix. We should note that the Ĥe� operatoris not hermitian but, if desired, a hermitian matrix 
an be written using a similaritytransformation [37℄
H ′e� = T−1He�T, (2.47)where T is S 1

2 with Skl = 〈Ψ̃k|Ψ̃l〉. Finally, we should stress that the QD ap-proa
h requires just a small 
omputational overhead in 
omparison to the single-stateNEVPT2, sin
e, for the evaluation of the matrix elements of Ĥe� also the transitiondensity matri
es have to be 
omputed, but with parti
le rank not higher than three.
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ted CI 2.7 352.7 Third order NEVPT and Internally Contra
ted CIAlthough, usually, a se
ond order treatment is able to provide a 
onspi
uous fra
tionof the dynami
al 
orrelation energy, evaluating the third order 
orre
tion 
an be veryuseful, without prohibitive 
omputational 
osts, in order to 
he
k on the stabilityjudging on the quality of the referen
e wave fun
tion. In fa
t, when a strong dis
rep-an
y is found between the se
ond and third order results, it 
an be often attributedto a defe
tive zero order des
ription.As stated in se
tion 2.1, in the RSPT the third order 
orre
tion to the energy isgiven by
E(3)

m =
〈
Ψ(1)

m |V |Ψ(1)
m

〉
− E(1)

m ||Ψ(1)
m ||2 (2.48)but, sin
e in NEVPT the �rst order 
ontribution to the energy is null, eq. (2.48)redu
es to

E(3)
m =

〈
Ψ(1)

m |V |Ψ(1)
m

〉
. (2.49)In the strongly and partially 
ontra
ted approa
hes Ψ

(1)
m is expanded on a ratherlimited set of 
orre
tion fun
tions and, as was formerly shown by Werner [38℄ in hisCASPT3 formulation, the task of building a third order algorithm 
an be a
hievedwithout ex
essive 
omputational e�ort. For both the NEVPT variants, the thirdorder 
orre
tion has been implemented in our group [24,25℄ and a 
onsistent numberof appli
ations of its simpler version (SC-NEVPT3) has also been published [24,29�31, 39�44℄.Here, we shall introdu
e the third order equations pertaining to the more elab-orated partially 
ontra
ted approa
h, sin
e its implementation has taken a 
onsid-erable part of the present resear
h work. The PC �rst order wavefun
tion has theform given in (2.25) so, the working equation for PC-NEVPT3 is

E(3)
m =

∑

l′,k′,µ′

∑

l,k,µ

C
(k′)(1)∗
l′,µ′ C

(k)(1)
l,µ

〈
Ψ

(k′)
l′,µ′

∣∣∣Ĥ − Ĥ0

∣∣∣Ψ(k)
l,µ

〉
. (2.50)We note that the 
oe�
ients C(k)(1)

l,µ are 
omputed and stored at the se
ond orderlevel (eq. 2.26) and that Ĥ0 gives a non null 
ontribution, equal to E(k)
l,µ , only in thediagonal 
ase (l, k, µ = l′, k′, µ′). Therefore, the PC-NEVPT3 implementation dealswith the evaluation of the intera
tion via the Hamiltonian operator between twoInternally Contra
ted (IC) fun
tions. The main problem of 
omputing the matrixelements 〈Ψ

(k)′
l,µ

∣∣∣Ĥ
∣∣∣Ψ(k)

l,µ

〉, for all possible o

urren
e of the IC fun
tions, has beensolved by implementing, in the MuPAD [45℄ 
omputer algebra system, a symboli
program named FRODO (after �Formal Redu
tion Of Density Operators�) [46,47℄. Infa
t, the program FRODO manipulates these matrix elements through the systemati
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tron Valen
e State Perturbation Theoryelimination of the ina
tive indi
es from the repla
ement operators, yielding a list ofnumeri
al fa
tors, mono and biele
troni
 symboli
 integrals and strings of ex
itationoperators only 
on�ned to the a
tive indi
es. Then this result is further elaboratedin order to produ
e a Fortran subroutine to perform the 
al
ulation of the requestedmatrix element and, optionally, a LATEX �le.A detailed analysis of all the 31 
lasses of intera
tion that have to be 
onsid-ered is proposed in Appendix B, where, for the sake of simpli
ity, the nomen
lature�V (k′)V (k)� is used to indi
ate the generi
 
lass 〈Ψ
(k′)
l′ |V |Ψ(k)

l

〉.Finally, the knowledge of the matrix elements of H between the 
orre
tion fun
-tions makes it possible to build a 
ompletely variational 
al
ulation where the trialwavefun
tion is expressed as a linear 
ombination in the form
Ψtrial

m = c0Ψ
(0)
m +

∑

l,k,µ

c
(k)
lµ Ψ

(k)
l,µ . (2.51)In the 
ase of the partially 
ontra
ted approa
h su
h an expansion 
orresponds toan Internally Contra
ted Con�guration Intera
tion (IC�CI) [48℄ limited to the singleand double 
ontra
ted ex
itations of Ψ

(0)
m . IC�CI's are expe
ted to show the samedisadvantages present in the more 
ommon single referen
e SD�CI 
al
ulations; inparti
ular they loose the size 
onsisten
e property enjoyed by the NEVPT approa
h.An example of IC�CI is provided in Ref. [24℄, 
on
erning the Cr2 potential energy
urve, where the IC�CI result is shown to parallel the third order des
ription.2.8 A test 
ase: the X

1Σ+
g and B

′1Σ+
g states of C2Sin
e the C2 mole
ule is a 
entral 
ompound in various interstellar 
hemi
al phenom-ena and 
ombustion rea
tions, a 
onsiderable attention has been paid, by various the-oreti
al 
hemists [49�53℄, to the study of the its spe
tros
opi
 properties. The majorpe
uliarity of this system is the presen
e of many low-lying ele
troni
 states abovethe ground state state, X1Σ+

g . The lowest-energy ex
ited state (3Πu) appears only716 
m−1 above the ground state and 16 other ex
ited states have been experimen-tally observed [54℄. This near degenera
y of di�erent ele
troni
 states is signi�
anteven at the equilibrium geometry and be
omes more problemati
 as the interatomi
distan
e in
reases, making the use of MR-based methods ne
essary. Therefore, theC2 mole
ule represents a good example to test the performan
e and the reliability ofa MRPT method, whi
h should be, in prin
iple, able to a

urately handle nearde-genera
y problems and bond�breaking phenomena.In the present 
on
lusive se
tion the C2 mole
ule is 
hosen as example to presentthe full set of NEVPT2, NEVPT3 and IC-CI results. The a

ura
y of our approa
h
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g and B′1Σ+

g states of C2 2.8 37will be judged by 
omparison with previously published Full CI results [50℄, whi
h,we re
all, within a given one-ele
tron basis set approximation, provide the exa
tsolution to the ele
troni
 S
hrödinger equation (see Se
. 1.2.1).2.8.1 Method of 
al
ulationIn the light of the testing purpose of the present 
al
ulations, essentially aimedto illustrate the behavior of the di�erent degrees of approximation in the NEVPTs
heme rather than to provide a 
omprehensive des
ription of the system, we re-stri
ted the study to the ground state, X1Σ+
g , and to the �rst ex
ited state B′1Σ+

g .Sin
e an avoided 
rossing o

urs between these states around 1.70 Å, we 
arried outQDNEVPT2 
al
ulations to properly 
ompute the whole Potential Energy Curves(PECs). Besides, in order to obtain a more a

urate treatment of the region aroundthe minimum (r ≤ 1.70 Å) se
ond and third order SS-NEVPT as well as at IC-CI
al
ulations were performed on the ground state.To make the 
omparison meaningful, we have used the standard 6 − 31G∗ basisset [55℄, used in the previous Full CI study by Abrams and Sherrill [50℄.The zero order wavefun
tions were obtained using the MOLPRO2008.2 pa
kage[56℄: a State�Averaged CASSCF (SA�CASSCF) 
al
ulation on the two 1Σ+
g stateswas performed for the QDNEVPT2 
al
ulations, whereas a single-root optimizationon the ground X1Σ+

g state was adopted around the equilibrium distan
e before theNEVPT3 and IC-CI 
omputations. Sin
e MOLPRO 
an only handle with Abelianpoint groups not higher than D2h , the redu
ed D2h symmetry was used and thea
tive spa
e was made up by the 8 valen
e ele
trons and 8 valen
e orbitals (2σg,
2σu, 3σg, 3σu, 1πx,u, 1πy,u, 1πx,g and 1πx,g).2.8.2 Results and dis
ussionThe PC-QDNEVPT2 and FCI [50℄ potential energy 
urves for the ground state,
X1Σ+

g , and for the ex
ited state, B′1Σ+
g , are displayed in Fig. 2.8.2 and the totalenergies are reported in Tab.2.1. While obtaining of the SA-CASSCF wavefun
tiondoes not pose parti
ular di�
ulties at short distan
es, it be
omes quite a di�
ulttask as the bonds is elongated. At longer distan
es, indeed, the energy 
urve of the

1∆g state (a
tually, its 
omponent belonging to the Ag irrep. in the D2h point group)�rst drops below the B′1Σ+
g (in the range between 1.25 and 1.75 Å) and then alsobelow the X1Σ+

g . At SA-CASSCF level, with the MOLPRO pa
kage, the sele
tionof the two Σ+
g roots was possible by for
ing the 
onvergen
e to the states with thedesired value of the quantum number Λ. As stated, the avoided 
rossing appearsaround 1.7 Å, where, both at FCI [50℄ and NEVPT level, the separation betweenthe states is roughly 10 k
al/mol. Then, the B′1Σ+

g starts to go up in energy but



38 Chapter 2. N-ele
tron Valen
e State Perturbation Theoryit be
omes again very 
lose to the other at longer distan
es. In fa
t, both statesdisso
iate at the same limit 2 C(1s22s22p2, 3P ). As is shown in Fig.2.8.2, where wehave plotted only the PC results, the QDNEVPT2 PECs perfe
tly mimi
 the shapeof the FCI ones, with an overall di�eren
e in the absolute energies amounting to
≃ 0.02 Hartree.
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g and B′1Σ+

g states of the C2 mole
ule.A deeper analysis of the 
omputed wavefun
tions explains the reasons whi
hmake the C2 mole
ule a 
hallenging test 
ase even for highly�
orrelated single-referen
e methods, at the level, for instan
e, of Singles and Doubles Couple Clusterwith perturbative Triples [CCSD(T)℄ or high�order Con�guration Intera
tion (CI).Near the equilibrium distan
e (around 1.25 Å), the ground state wavefun
tion showsa surprising multireferen
e 
hara
ter, being mainly des
ribed by the 
on�guration(1σ2
g1σ

2
u2σ2

g2σ
2
u1π2

x,u1π2
y,u) with a weight of about 70%, but with a not negligible
ontribution amounting, to 14%, of the doubly ex
ited 
on�guration (1σ2

g1σ2
u2σ2

g

1π2
x,u1π2

y,u3σ2
g). At the same geometry, the ex
ited state B′1Σ+

g is dominated bythe 
on�gurations (1σ2
g1σ

2
u2σ2

g2σ
2
u1π2

x,u3σ2
g) and (1σ2

g1σ
2
u2σ2

g2σ
2
u1π2

y,u3σ2
g) appearingwith the same 
oe�
ient and by a minor 
ontribution of (1σ2

g1σ
2
u2σ2

g1π
2
x,u1π2

y,u3σ2
g).



A test 
ase: the X1Σ+
g and B′1Σ+

g states of C2 2.8 39As the interatomi
 distan
e in
reases, the nature of the ground state 
hanges due tothe mixing with the B′1Σ+
g state: the weight of the doubly ex
ited determinant (2σ2

g)
→ (3σ2

g) de
reases while that of the two 
on�gurations (1σ2
g1σ

2
u2σ2

g2σ
2
u1π2

x,u3σ2
g) and(1σ2

g1σ
2
u 2σ2

g2σ
2
u1π2

y,u3σ2
g) progressively in
reases. Then, around 1.8-1.9 Å the 
har-a
ter of the two states is inter
hanged as a 
onsequen
e of the avoided 
rossing.Table 2.1: QD-NEVPT2 and FCI [50℄ absolute energies (Hartree) for C2. The bonddistan
e, r, in Angstrom.
X1Σ+

g B′1Σ+
gr SC-QDPT2 PC-QDPT2 FCI SC-QDPT2 PC-QDPT2 FCI0.90 -75.296945 -75.299147 -75.317618 -75.093846 -75.098434 -75.1177170.95 -75.436746 -75.438997 -75.457665 -75.240892 -75.245426 -75.2647741.00 -75.537208 -75.539483 -75.558335 -75.352471 -75.356832 -75.3764491.05 -75.607410 -75.609677 -75.628645 -75.437589 -75.441688 -75.4616631.10 -75.654410 -75.656632 -75.675637 -75.501883 -75.505691 -75.5260031.15 -75.683662 -75.685806 -75.704813 -75.549173 -75.552701 -75.5732731.20 -75.699424 -75.701464 -75.720475 -75.582615 -75.585889 -75.6066361.25 -75.705037 -75.706960 -75.725995 -75.604984 -75.608032 -75.6288831.30 -75.703134 -75.704938 -75.724026 -75.618661 -75.621510 -75.6424141.35 -75.695795 -75.697484 -75.716657 -75.625626 -75.628297 -75.6492241.40 -75.684667 -75.686253 -75.705544 -75.627482 -75.629992 -75.6509291.50 -75.656049 -75.657494 -75.677127 -75.620627 -75.622839 -75.6437941.60 -75.625210 -75.626783 -75.646930 -75.604767 -75.606582 -75.6275611.70 -75.598549 -75.600391 -75.621163 -75.582627 -75.583782 -75.6048391.80 -75.577403 -75.579135 -75.600442 -75.557715 -75.558759 -75.5801011.90 -75.559176 -75.560657 -75.582417 -75.535582 -75.536670 -75.5584382.00 -75.543159 -75.544477 -75.566646 -75.518210 -75.519213 -75.5414792.20 -75.518133 -75.519152 -75.542142 -75.496885 -75.497636 -75.5208062.40 -75.502044 -75.502818 -75.526459 -75.487530 -75.488060 -75.5118482.60 -75.492845 -75.493427 -75.517449 -75.483723 -75.484098 -75.5082252.80 -75.487899 -75.488369 -75.512568 -75.482140 -75.482413 -75.5067033.00 -75.485347 -75.485723 -75.509925 -75.481448 -75.481702 -75.506025In Tab.2.2 the single�state NEVPT and IC-CI total energies for the X1Σ+

g are listedfor 0.90 ≤ r ≤ 1.70, where the intera
tion with the B′1Σ+
g state 
an still regardedas minor. Notwithstanding, as shown in Fig.2.8.2, where the per
entage error withrespe
t to the FCI ban
hmark is plotted for ea
h method, approa
hing the avoided
rossing point the single�state treatment be
omes defe
tive. Indeed, while all theerror 
urves are �at up to r ≃ 1.4 Å, the errors rapidly rise at longer distan
es.At r = 1.7 Å the deviation from the FCI values amounts about to 22-23% (16-18 k
al/mol) at the se
ond order level and to 10-11% (8-9 k
al/mol) at the third



40 Chapter 2. N-ele
tron Valen
e State Perturbation Theoryorder and IC-CI level. Apart from the sensible improvement attained going to thethird order 
orre
tion to the energy, the most a

urate des
ription is obtained atIC-CI level when the partially 
ontra
ted IC fun
tions are employed. The relativeper
entage error in this 
ase is ≃ 2% at short distan
es and remains slightly lessthan 10% at r = 1.7 Å.Table 2.2: NEVPT2, NEVPT3 and IC-CI absolute energies (Hartree) for the
X1Σ+

g state. The bond distan
e, r, in Angstrom.r SC-PT2 PC-PT2 SC-PT3 PC-PT3 SC-IC-CI PC-IC-CI0.90 -75.297081 -75.299068 -75.311196 -75.313399 -75.312439 -75.3152170.95 -75.437028 -75.439017 -75.451120 -75.453322 -75.452245 -75.4550931.00 -75.537684 -75.539638 -75.551769 -75.553914 -75.552795 -75.5556481.05 -75.608046 -75.609935 -75.622131 -75.624174 -75.623075 -75.6258781.10 -75.655131 -75.656936 -75.669217 -75.671126 -75.670091 -75.6728071.15 -75.684415 -75.686127 -75.698500 -75.700254 -75.699311 -75.7019191.20 -75.700177 -75.701792 -75.714253 -75.715847 -75.715033 -75.7175021.25 -75.705769 -75.707290 -75.719835 -75.721268 -75.720538 -75.7229161.30 -75.703826 -75.705256 -75.717885 -75.719157 -75.718543 -75.7208011.35 -75.696422 -75.697776 -75.710476 -75.711597 -75.711080 -75.7132361.40 -75.685189 -75.686475 -75.699246 -75.700227 -75.699799 -75.7018601.45 -75.671413 -75.672644 -75.685483 -75.686336 -75.685988 -75.6879621.50 -75.656105 -75.657292 -75.670201 -75.670942 -75.670664 -75.6725571.55 -75.640055 -75.641214 -75.654199 -75.654842 -75.654616 -75.6564401.60 -75.623880 -75.625027 -75.638106 -75.638661 -75.638475 -75.6402351.65 -75.608072 -75.609222 -75.622421 -75.622899 -75.622772 -75.6244421.70 -75.593056 -75.594225 -75.607585 -75.607996 -75.607849 -75.609495The SS-NEVPT and IC-CI PECs (strongly 
ontra
ted on the top and partially
ontra
ted on the bottom) are plotted along with the FCI ones in Fig.2.8.2. The
lose-up insets in Fig.2.8.2 make the small di�eren
es among the various levels ofapproximation appre
iable.Finally, using a simple polynomial interpolation around the equilibrium distan
e,it has been possible to 
ompute the spe
tros
opi
 
onstants reported in Tab.2.3,where the 
orresponding experimental values [57℄ and some FCI results [58℄ arealso listed. As is apparent, improving the level of approximation, going from theCASSCF to the partially 
ontra
ted IC-CI, progressively improves the a

ura
y ofthe 
omputed re. But, the error still remains ≃ 0.021 Å for the PC-IC-CI methods. Agood agreement with the experimental values is attained for the harmoni
 vibrational
onstant, ωe, and for the rotational 
onstant, Be; larger dis
repan
ies are, instead,obtained for the anharmoni
ity 
onstant ωexe.
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Figure 2.3: NEVPT and IC-CI errors (%) in the total energies with respe
t to the FCIvalues [50℄ for the X1Σ+
g state of C2.Table 2.3: Spe
tos
opi
 
onstants for X1Σ+

g state of C2. Energies in Hartree,re in Angstrom and the other parameters in 
m−1.Method Ue re ωe ωexe BeCASSCF -75.617539 1.2676 1868 13.0 1.747SC-NEVPT2 -75.706137 1.2650 1860 14.9 1.754PC-NEVPT2 -75.707627 1.2643 1860 15.3 1.756SC-NEVPT3 -75.720198 1.2649 1860 14.9 1.755PC-NEVPT3 -75.721578 1.2637 1860 15.7 1.758SC-IC-CI -75.720871 1.2642 1858 14.7 1.756PC-IC-CI -75.723224 1.2636 1859 15.7 1.758FCI/6-31G∗∗ [58℄ -75.726127 1.2596 1859 13.2 1.771FCI/

-pVDZ [58℄ -75.729852 1.2727 1813 13.5 1.734Experiment [57℄ 1.2425 1855 13.3 1.820
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g state. All the 
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ulationshave been 
arried out with a standard 6 − 31G∗ basis set.
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Chapter 3The hetero�
y
lopentadienesPyrrole, Furan and Thiophene (Fig. 3.1) are 1�hetero�2,4�
y
lopentadienes, 
on-sisting of a butadiene unit linked via an �hetero�atom bridge� (N, O and S respe
-tively) (Fig. 3.1).

Figure 3.1: Mole
ular stru
tures of Pyrrole, Furan and ThiopheneThe experimental and theoreti
al investigation of the ele
troni
 absorption spe
-tra of the �ve�membered six π�ele
trons 
ompounds has re
eived a parti
ular at-tention sin
e the beginning of the last 
entury. The ongoing interest in their phys-i
al 
hemistry properties and spe
tros
opi
al features is 
ertainly motivated by theprominent r�le they play in the biologi
al and pharma
euti
al 
hemistry, as well as inthe modern material s
ien
e (preparation of polymeri
 and 
o�polymeri
 monolayersfor data�storage appli
ations [59, 60℄). However, despite the large number of jointexperimental and theoreti
al e�orts, a detailed interpretation of the absorption spe
-tra of these mole
ules still remains to be rea
hed and, by now, they are regarded asprototypi
 examples for the theoreti
al studies of ex
ited states. The VUV spe
traof these systems show a 
omplex pro�le be
ause of the appearan
e of ri
h series ofRydberg transitions, that overlap the valen
e bands and make the identi�
ation ofthe states quite a di�
ult task.



46 Chapter 3. The hetero�
y
lopentadienesAfter a brief introdu
tion addressing the qualitative interpretation of the valen
estates (se
tion 3.1), the problem of the Rydberg states and of their mixing withthe valen
e transitions will be dis
ussed (se
tion 3.2). The 
omputational strategyadopted will be then presented in se
tion 5.4. Finally, the results obtained for Pyr-role, Furan and Thiophene will be analyzed in se
tions 3.4, 3.5 and 3.6 respe
tively.3.1 Ioni
 valen
e statesPyrrole, Furan and Thiophene belong to the C2v point group and, following Mul-liken's re
ommendation, the mole
ules have been pla
ed in the yz plane with the zaxis being the C2 axis. Thus, the �ve valen
e π orbitals belong to the B1 and A2irreps and are in the order of energy 1b1, 2b2, 1a2, 3b1 and 2a2 (2b1, 3b2, 1a2, 4b1and 2a2 for Thiophene). That is, at the single Slater determinant level, the ele
troni

on�guration is
• (σ�
ore)(1b1)2(2b1)2(1a2)2 (Pyrrole and Furan)
• (σ�
ore)(1b1)2(2b1)2(3b1)2(1a2)2 (Thiophene)where the σ�
ore is 
omposed of 30 ele
trons in the former 
ase and of 36 ele
tronsin the latter.The two highest�energy π MOs, 2b1 and 1a2 for Pyrrole and Furan and 3b1 and 1a2for Thiophene, are essentially delo
alized over the whole mole
ular skeleton, whereasthe lowest�energy one, 1b1, is lo
alized on the hetero�atom. It follows that the fourlowest�energy valen
e π → π∗ states are two states of A1 symmetry and two statesof B2 symmetry.A qualitative interpretation of the nature of the π → π∗ valen
e states of the�ve�membered hetero�
y
lopentadienes 
an be obtained by referring to the PPPmodel [61, 62℄ for the alternant hydro
arbons. We re
all that a hydro
arbon is
lassi�ed as alternant if its C atoms 
an be partitioned into two 
ategories, in su
h away that two adja
ent atoms belong always to di�erent 
ategories (the linear polyenesas well as the even�membered 
y
li
 hydro
arbons are alternant systems).For these systems the PPP Hamiltonian is invariant under parti
le�hole permutationand it 
an be proved that the energies of the o

upied and virtual orbitals (Fig. 3.2)are symmetri
 with respe
t to the LUMO-HOMO energy di�eren
e [63, 64℄.Let us indi
ate with . . . , 3, 2, 1 the o

upied MOs, in in
reasing order of energy,and with 1′, 2′, 3′, . . . the uno

upied ones (Fig. 3.2), where the orbitals i and i′ aretermed a 
onjugated pair. It follows that the two ex
itations i → j′ and j → i′ aredegenerate and result in a pair of minus, �−�, and plus, �+�, states. The former statehas lower energy and a neutral 
hara
ter, whereas the latter plus state is dominated
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Figure 3.2: S
hemati
 representation of the energies of the o

upied and virtual orbitals ofan alternant hydro
arbon.by ioni
 
on�gurations. The HOMO→LUMO (1 → 1′) ex
itation gives rise to anioni
 plus state as well. Then, the ground state and the doubly�ex
ited 
on�gurations
(i)2 → (j′)2 also are 
lassi�ed as minus states. Finally, some simple rules, based onthe pairing properties of su
h systems, predi
t that only the ex
itations to plus stateshave os
illator strength di�erent from zero, being, instead, forbidden the transitionfrom a minus state (the ground state) to another minus state.Even if the pairing properties are no longer satis�ed in the �ve�membered six�πele
trons 
ompounds due to the presen
e of the hetero�atom, it is still possible tore
ognize for these mole
ules a spe
tros
opi
al behavior similar to that of alternanthydro
arbons. Therefore, the pair of 1A1 states are a 
ovalent minus state (1A−

1 ) andan ioni
 plus state (1A+
1 ), arising respe
tively from the symmetri
 and antisymmetri

ombination of the two quasi�degenerate 
on�gurations 1a2 → 2a2 and 2b1 → 3b1;the HOMO→LUMO transition is also a ioni
 plus state (1B+

2 ). It is worthwhile tostress, however, that, due to the breakdown of the alternant symmetry in the �ve�membered ring 
ompounds, the ex
itation to the 1A−
1 state is not stri
tly forbidden(it appears with low intensity around 6 eV) and the doubly�ex
ited 
on�gurations((HOMO)2→(LUMO)2) 
an intera
t with both 1A−

1 and 1A+
1 states.The theoreti
al des
ription of ioni
 valen
e π → π∗ in aromati
 mole
ules hasbeen shown to be an extremely di�
ult task, even for the most re�ned quantumme
hani
s methodologies. As dis
ussed by Serrano-Andrés et al. [65℄, it requiresthe use of quite large basis sets, to properly des
ribe the di�use nature of someex
ited states, as well as of highly�
orrelated methods, in order to take into a

ountthe various and di�erential e�e
ts of the dynami
al 
orrelation. In parti
ular, thein
lusion of the so-
alled �dynami
al σ polarization� (above all its σ−π 
omponent),i.e. the response of the σ framework to the 
hange of the 
harge distribution in theioni
 states, is thought to be 
ru
ial to get an a

urate treatment of these states.This issue has been deeply investigated in a re
ent work [44℄, where the ioni
 V stateof ethene is taken as a prototype for the study of the ioni
 π → π∗ states of aromati
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y
lopentadienesand hetero�aromati
 mole
ules. Through a Valen
e Bond (VB) de
omposition of thewavefun
tion the nature of the σ polarization is analyzed and an additional (se
ondorder) physi
al e�e
t is introdu
ed: the spatial 
ontra
tion of the π orbitals as a
onsequen
e of the 
harge displa
ement due to the polarization of the σ skeleton.In fa
t, as pointed out by the author [44℄, in the ioni
 forms, the e�e
t of the σpolarization 
onsists in moving the 
harge away from the atom bearing the two πele
trons. Su
h 
harge redu
tion results in a 
ontra
tion of the π orbitals, that, ifnot properly taken into a

ount, signi�
antly 
ompromises the quality of the results.Clearly a �CASSCF plus perturbation� s
heme, with the mole
ular orbitals optimizedat the zero order level, without 
onsidering the e�e
t of the dynami
al polarization,is unable to provide good quality results. The strategy adopted in Ref. [44℄ toadequately treat the π 
ontra
tion is based on an optimization of the MOs in aRASSCF [66℄ 
al
ulation with an appropriate 
hoi
e of the RAS spa
es in orderto in
lude, at the zero order level, all the ex
itations des
ribing the dynami
al σpolarization [44℄. The author showed that, if the orbitals are properly optimized,a

urate results 
an be obtained at the pertubative level, even using a minimala
tive spa
e.As we shall widely dis
uss later, also in these hetero�aromati
 ring 
ompounds thedes
ription of the two ioni
 valen
e states (1A+
1 and 1B+

2 ) poses parti
ular problems,partially alleviated by the in
lusion in the a
tive spa
e of π∗ orbitals, whi
h allowsfor a partial 
onta
tion of the π orbitals through the intera
tion with higher energy
π → π∗ states. However, following the strategy suggested by Angeli [44℄, the e�e
t ofa full RASSCF optimization of the orbitals will be the subje
t of future investigations.3.2 Valen
e�Rydberg intera
tionA well�known problem in the spe
tros
opy of small and medium�sized mole
ules isthe appearen
e of low�lying Rydberg ex
ited states, whi
h due to the overlap withvalen
e transitions, 
ompli
ate the interpretation of the ele
troni
 spe
tra. We re
allthat the Rydberg states arise from the promotion of one ele
tron to a very di�useorbital, 
hara
terized by an high quantum number n. Conventionally, for mole
ules
ontaining atoms belonging to the �rst and se
ond rows of the periodi
 system, onlythe orbitals with n ≥ 3 are 
lassi�ed as Rydberg orbitals. Note that in the labellingof the Rydberg states of Thiophene, for analogy with Pyrrole and Furan, we haveadopted the 
onvention of 
hoosing 3 as the lowest value of n, instead of 4, thatwould be the appropriate 
hoi
e for a mole
ule, 
ontaining atoms belonging to thethird row (see Ref. [67℄).The Rydberg states are of 
ru
ial importan
e in the 
hara
terization of the spe
-tros
opy and photo
hemistry of small mole
ules, sin
e they usually appear in the
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h 3.3 49same energy region of the prin
ipal valen
e π → π∗ transitions. Therefore, an a
-
urate theoreti
al study on the spe
tros
opy of small� and medium�sized mole
ulesrequires a simultaneous treatment of the valen
e and, at least, of the lowest�energyRydberg states. This poses parti
ular di�
ulties when a MRPT approa
h is em-ployed. In fa
t, the Rydberg states, due to their �di�use� nature, with the ex
itedele
tron far from the mole
ular frame, are less sensitive to the dynami
al 
orreletione�e
ts than the valen
e ex
ited states. Therefore, at CASSCF level, Rydberg stateslie at low energy, 
lose to the valen
e states and a mixing among the wavefan
tionsmay o

ur. When at CASSCF level su
h valen
e�Rydberg mixing takes pla
e, theappli
ation of a single�state perturbative 
orre
tion, leaving the 
oe�
ients of thezero order wavefun
tion un
hanged, is unreliable and a quasi�degenerate perturba-tive approa
h (se
tion 2.6) should be applied. On the other hand, it is also possiblethat two or more states, whi
h are not mixed in the zero order des
ription, be
omenear degenerate after the perturbative 
orre
tion in su
h a way that a mixing is liableto happen.In the 
ase of the hetero�
y
lopentadienes, the ex
itation from the HOMO (1a2)into di�use s, p and d orbitals originates the R�series states, whereas the ex
itationout of the SHOMO (2b1 for Pyrrole and Furan and 3b1 for Thiophene) gives rise tothe so�
alled R′�series of Rydberg states. Sin
e the energy di�eren
es between the�rst (IP1) and se
ond (IP2) are around 1.0-1.5 eV, a ri
h stru
ture of Rydberg bandsis expe
ted to appear in the UV spe
tra. As dis
ussed in the following, the e�e
ts ofthe valen
e�Rydberg mixing were found to be signi�
ant for Furan and Thiopheneand have been suitably treated at QD�NEVPT2 level.3.3 Computational approa
hFor the 
omputation of the verti
al transition energies the experimental ground stategeometries were used [68�70℄. It is worthwhile to stress that the �theoreti
al verti
al�transition energy is 
omputed as the di�eren
e between the energy of the groundstate at its equilibrium geometry (the minimum of the Potential Energy Surfa
e)and that of the ex
ited state again at the ground state equilibrium geometry; thisvalue is usually 
ompared with the peak of the experimental absorption band. How-ever, as argued by Davidson and Jarze
ki [71℄, this assumption holds, within theBorn�Oppenheimer and Fran
k�Condon approximations (Fig. 3.3), provided thatthe vibroni
 ex
ited state is high enough. But, as 
on�rmed by the frequently ob-served asymmetry of the absorption bands, this 
ould not be the 
ase for small andmedium size mole
ules, with ex
ited states only slightly distorted. As a 
onsequen
e,the 
omparison between the experimental maximum of the band and the 
omputedverti
al ex
itation energy should always be regarded with 
are.
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Figure 3.3: Ele
troni
 verti
al transitions.All the 
al
ulations were 
arried out with a 
ontra
ted ANO-L basis set [72℄adopting the 
ontra
tion s
heme S[5s4p2d℄, C,N,O[4s3p1d℄ and H[2s1p℄. Note thatthis is the same valen
e basis set employed in the �rst CASPT2 work by Serrano-Andrés et al. [73℄. In order to des
ribe the Rydberg mole
ular orbitals, the abovementioned valen
e basis set was augmented with mole
ule�
entered [74℄ di�use fun
-tions. These basis fun
tions were obtained by 
ontra
tion of a set of 8s8p8d gaussianprimitives, whose exponents were optimized as des
ribed by Kaufmann et al. [75℄(Tab. 3.1). The 
ontra
tion 
oe�
ients, reported in Tab. 3.1, were 
omputed fol-lowing the methodology developed by Roos et al. [74℄ with a 
ontra
tion s
heme[1s1p1d℄, thus 
on�ning ourselves to the 
al
ulation of 3s, 3p and 3d Rydberg states.As already mentioned, Pyrrole, Furan and Thiophene belong to the C2v pointgroup, and the mole
ules have been pla
ed in the yz plane with the z axis as the C2symmetry axis. The 
lassi�
ation in the C2v point group of the Rydberg orbitals isreported in Tab. 3.2.The mole
ular orbitals were obtained from average CASSCF 
al
ulations using theMOLCAS5.4 pa
kage [76℄, averaging over all the states of interest for a given sym-metry. Finally, the �ve 1s orbitals were kept un
orrelated during the subsequentse
ond and third order NEVPT treatment.
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h 3.3 51exponent 
ontra
tion 
oe�
ientsPyrrole Furan Thiophene1s 0.0246239324 0.3491 0.3219 0.42750.0112533427 -2.3860 -2.2167 -2.28810.0058583805 2.9273 2.5387 2.51270.0033459739 -4.4334 -3.8427 -3.83230.0020484225 5.2412 4.5278 4.51080.0013236424 -4.4946 -3.8760 -3.85980.0008930958 2.4185 2.0836 2.07460.0006243129 -0.5996 -0.5163 -0.51401p 0.0423352810 0.0639 0.0764 0.16680.0192542060 -0.7939 -0.7924 -0.52500.0099882106 0.0798 0.0453 -0.27210.0056893607 -0.8192 -0.7636 -0.58770.0034756797 0.8973 0.8328 0.45750.0022420590 -0.8142 -0.7546 -0.42940.0015106399 0.4682 0.4337 0.24640.0010547527 -0.1255 -0.1162 -0.06601d 0.0605402013 0.0079 0.0115 0.11900.0274456919 -0.2356 -0.2534 0.33150.0142043987 -0.2935 -0.3072 0.27790.0080765930 -0.4987 -0.4892 0.39670.0049271863 0.0186 0.0370 -0.04640.0031748110 -0.1878 -0.1860 0.15980.0021371230 0.0991 0.1011 -0.08700.0014910155 -0.0292 -0.0297 0.0255Table 3.1: Exponents [75℄ and 
ontra
tion 
oe�
ients (8s8p8d) → [1s1p1d] for the Rydbergbasis set3.3.1 A
tive Spa
esPyrrole and FuranThe study was addressed to the 
omputation of the three lowest�energy valen
e
π → π∗ states (1B+

2 , 1A−
1 and 1A+

1 ) as well as the six π → π�Rydberg and π → σ�Rydberg states, with n = 3. Therefore, sin
e no ex
itations from σ orbitals were
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y
lopentadienesSymmetry Orbitalsa1 ns, npz, ndz2 , ndx2−y2b1 npx, ndxzb2 npy, ndyza2 ndxyTable 3.2: Classi�
ation of the Rydberg orbitals into C2v point group
onsidered, only the six π�ele
trons were a
tive and two di�erent types of a
tivespa
e were used.Wee shall refer to every a
tive spa
e with a sequen
e of four indi
es, where ea
hindex indi
ates the number of orbitals for a given symmetry spe
ies (a1, b1, b2, a2 inorder).For the 
al
ulations of the π→ σ∗ states (B1 and A2) one need not in
lude in thea
tive spa
e π�type Rydberg orbitals, while for the des
ription of π→π∗ states (A1and B2) only π�type mole
ular orbitals (valen
e and Rydberg) are ne
essary. So,for the π→π∗ states the smallest a
tive spa
e 
onsists of the �ve (0302) valen
e πorbitals and three (0201) Rydberg�type orbitals (0503), whereas for the π→σ∗ statesit is 
omposed of the �ve valen
e π orbitals and six (4020) Rydberg�type orbitals(4322) (see Tab. 3.2). However, in order to estimate the e�e
ts of the enlargementof the a
tive spa
e with π virtual orbitals, we have also 
arried out some 
al
ulationswith eleven (0704), thirteen (0805) and �fteen (0906) a
tive orbitals. We shall dis
ussin detail the e�e
ts of the a
tive spa
e size for the Pyrrole mole
ule, presenting theresults 
omputed with all the above indi
ated a
tive spa
es. Otherwise, sin
e wefound a similar behavior for the ex
ited states of Furan, in se
tion 3.5 we shalljust report the CAS(0906) and CAS(0805) results. A summary of all the a
tivespa
es used and the 
orresponding number of states in
luded in the average CASSCF
al
ulations is given in Tab. 3.3.Table 3.3: A
tive spa
es and number of states used in the CASSCF 
al
ulations.Nature Symmetry A
tive spa
e Number of states
π→π∗

A1 (0503), (0704), (0805), (0906) 6

B2 4

π→σ∗
B1 (4322) 6

A2 6



Pyrrole 3.4 53ThiopheneFor the Thiophene mole
ule, we fo
used on the 
omputation of the verti
al ex
itationenergy of the four low�lying π → π∗ valen
e states: the two 1B2 states mainlydominated by the 1a2 → 4b1 and 3b1 → 2a2 ex
itations respe
tively and the two
1A1 states arising from the antisymmetri
 (1A1(V )) and symmetri
 (1A1(V

′)) linear
ombination of the two 1a2 → 2a2 and 3b1 → 4b1 
on�gurations1. Moreover, sin
ethe experimental ionization potential of the 11a1 lone pair amounts to 12.1 eV [77℄,two n→ π∗ valen
e states (A2 and B1 symmetries) are expe
ted near 9-10 eV. So, forthe 
al
ulations of π → π∗, n → π∗ and π → σ∗ ex
ited states, the six π�ele
tronsand the two lone pair ele
trons were a
tive in all the 
al
ulations (the 1b1 π orbital,lo
alized on the sulfur atom, was in
luded into the ina
tive 
ore). Two di�erenttypes of a
tive spa
es were employed: one to 
ompute the π → π∗ and n→ π∗ statesand one for the π → σ∗ states. For the 
al
ulations of π�type ex
ited states, theminimum a
tive spa
e should in
lude the �ve π valen
e orbitals, the lone pair orbitaland the three π Rydberg orbitals, resulting in a spa
e (1503). Nevertheless, also forThiophene, the use of su
h a
tive spa
e has been proved to be inadequate to get asatisfa
tory des
ription of the π → π∗ valen
e states; therefore, here we shall presentonly the results obtained with a larger spa
e, 
omposed of 12 a
tive orbitals (1704)and 8 a
tive ele
trons. Then, for the 
al
ulations of the π→σ∗ states one need notin
lude in the a
tive spa
e π�type Rydberg orbitals (b1 and a2 symmetries), and thesmallest a
tive spa
e is a (5322) spa
e, 
omposed of the lone pair orbital, the �ve πvalen
e orbitals and of the six Rydberg σ�type orbitals. However, as we shall dis
usslater (se
tion 3.6.1), in order to treat the e�e
ts of the mixing o

urring among alow�energy π → σ∗ valen
e state and some 3p and 3d Rydberg states, the use ofan extended a
tive spa
e, in
luding one more orbital of b2 symmetry (5332), wasne
essary. The ex
itation energy of ea
h state was determined with respe
t to the
orresponding ground state 1A1, 
omputed for both the 1704 and 5332 spa
es, takinginto a

ount that, while a state�averaged CASSCF 
al
ulation was performed in theformer 
ase, a single�root optimization was 
arried out in the latter.3.4 Pyrrole3.4.1 The UV absorption spe
trumThe ele
troni
 absorption spe
trum of Pyrrole, in the region between ≃ 5 and ≃ 8 eV,has been widely investigated by both theoreti
al [73,78�87℄ and experimental [77,78,1Note that for the the valen
e states of Thiophene, following the previous studies, we haveadopted a di�erent notation with respe
t to the usual minus and plus nomen
lature used for Furanand Pyrrole.
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y
lopentadienes88�96℄ studies. However, in spite of su
h a high number of studies an unambiguousassignment of the main spe
trum features still remains to be rea
hed.The spe
trum pro�le shows two regions of intense absorption, lo
ated around 6 and7.5 eV respe
tively; another weak 
entral band appears near 7 eV. A

ording to thetraditional experimental interpretation [90,92,95℄, the intensity of the lowest-energyband 
an be as
ribed to a valen
e π → π∗ state (1B+
2 ) while the se
ond intenseabsorption region is attributed to the presen
e of high�lying valen
e states, like thestrong 1A+

1 transition. Another low�energy π → π∗ state (1A−
1 ) is expe
ted to belo
ated in the �rst band system but, be
ause of its weak intensity, an experimentalassignment is not available in the literature.Overlaid on these valen
e bands are two sets of Rydberg series, termed R� andR′�series. For a more 
omprehensive histori
al review see Ref. [73, 79℄. Here wejust remark that most of the dis
repan
ies among the previous ab initio studiesmainly 
on
ern the interpretation of the lowest�energy band. The issue is whetherthe 1B+

2 valen
e state belongs to the �rst absorption region or not. CASPT2 studiespublished �rst by Serrano-Andrés et al. [73℄ and then by Roos et al. [79℄, in agreementwith the traditional interpretation, lo
ate this valen
e verti
al transition at 6.00 and5.87 eV respe
tively. However, almost all the subsequent ab initio investigations,starting from the multireferen
e Møller-Plesset (MRMP) 
al
ulations by Hashimotoet al. [87℄ and in
luding the sophisti
ated 
oupled 
luster study by Christiansen etal. [83℄, yielded results signi�
antly higher (0.5-0.7 eV) than those obtained in theCASPT2 works. As pointed out by Roos et al. [79℄, some experimental eviden
eis 
onsistent with the CASPT2 attribution of the valen
e state 1B+
2 to the lowest�energy absorption region. This band is observed both in the vapor and 
ondensedphases with a maximum lo
ated at 5.96 [97℄ and 5.90 eV [93℄ respe
tively. This peak
an also be found, pla
ed at 6.0 eV [93℄, in the 
rystal spe
trum. Sin
e Rydbergstates are thought to be less important in 
ondensed phase, it is most unlikely thatthis band should arise solely from pure Rydberg transitions.On the other hand, a better agreement is a
hieved among the various theoreti
alstudies for the transition energies of Rydberg states, whi
h are generally less sensitiveto the dynami
al 
orrelation e�e
ts.Anyway, it is important to keep in mind that, as shown by Werner in a re
entpaper [85℄, the valen
e ex
ited states have non�planar equilibrium stru
tures, sothat a 
onsiderable geometry relaxation is expe
ted. A study involving only theplanar stru
tures therefore tends to underestimate these relaxation e�e
ts. Thedi�
ult handling of the Rydberg�valen
e mixing, that may o

asionally o

ur in the
al
ulations, 
ould be another sour
e for su
h dis
repan
ies.



Pyrrole 3.4 553.4.2 The singlet valen
e statesAs is expe
ted on the basis of the 
onsiderations reported in se
tion 3.1 aboutthe spe
tros
opi
al behavior of the �ve�membered ring 
ompounds, both the 1A1states have a multireferen
e nature (symmetri
 and antisymmetri
 
ombination ofthe 1a2 → 2a2 and 2b1 → 3b1 
on�gurations) and a small fra
tion (more 
onsistentin the minus state) of the doubly ex
ited 
on�guration (1a2)
2 → (3b1)

2 is expe
tedto be present.As is apparent from the values in Tab. 3.12, in the 
al
ulations with the small-est a
tive spa
e (0503) a di�erent behavior in the treatment of the three valen
estates 
an be re
ognized: the des
ription of the 
ovalent state appears quite 
oher-ent, whereas 
onsiderable variations are evident in the NEVPT results for the twoioni
 states. In parti
ular, for the plus states, the SC-NEVPT2 and PC-NEVPT2
al
ulations provided ex
itation energies signi�
antly dissimilar, revealing a de�
ientCASSCF des
ription. The di�eren
e between the two NEVPT2 results amounts to0.36 eV for the 1A+
1 state and 0.23 eV for the 1B+

2 state and the sizeable in
rease ofthe ex
itation energies produ
ed by the third order 
orre
tion is a further indi
ationof an improper referen
e wavefun
tion. Also, for these ioni
 states, it is interestingto noti
e that at the se
ond order level a large redu
tion of the CASSCF transitionenergies is found (1.28 eV for the 1B+
2 state and 0.72 eV for the 1A+

1 state).In order to improve the CASSCF fun
tion, 
al
ulations using a
tive spa
es ofin
reasing size were performed. A
tually, we have also made use of a
tive spa
esin
luding o

upied and virtual σ orbitals, but no remarkable improvements in theperturbative trend were observed, therefore these results are not reported here. Onthe 
ontrary, the in
lusion of π virtual orbitals into the a
tive spa
e yielded bet-ter results, as shown by the values in Tab. 3.12. As 
an be seen, the extension ofthe CAS spa
e produ
es a pronoun
ed lowering of the CASSCF ex
itation energies,amounting to ≃ 0.7 eV in the 
ase of the 1B+
2 state and ≃ 0.9 eV for the 1A+

1 state.An improved 
onsisten
y among the NEVPT values was 
onsequently a
hieved usingthe (0704), (0805) and (0906) CAS spa
es, but it must be stressed that the latterspa
es (0805 and 0906) do not bring substantial improvements with respe
t to the(0704) one.With the (0704) spa
e for instan
e, the dis
repan
ies between the SC-NEVPT2 andPC-NEVPT2 ex
itation energies were redu
ed to 0.12 eV for the 1A+
1 state and 0.15eV for the 1B+

2 state. As a 
on�rmation of the improvement obtained in the CASSCFdes
ription, the third order 
orre
tion brought about just a small in
rease in the tran-sition energies with respe
t to those 
al
ulated at PC-NEVPT2 level.But, despite the improvement yielded by the extension of the CAS spa
e, for the
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y
lopentadienesioni
 states the NEVPT results turn out signi�
antly higher than those of the othertheoreti
al methods.Our largest 
al
ulation (SC-NEVPT3 with 0906), for istan
e, lo
ates the verti
altransition to the 1B+
2 state at 7.05 eV, where a value of 5.87 eV is obtained by Rooset al. [79℄, of 6.63 eV (CC3) by Christiansen et al [83℄ and of 6.51 eV by Hashimotoet al [87℄.Table 3.4: Verti
al ex
itation energies (eV) for the π→ π∗ valen
e states ofPyrrole. Comparison between the NEVPT and previous theoreti
al results.Method 1A−

1 (π→π∗) 1B+
2 (π→π∗) 1A+

1 (π→π∗)A
tive spa
e (0503)CASSCF 6.55 7.94 9.68SC-NEVPT2 6.85 6.66 8.96PC-NEVPT2 6.78 6.43 8.62SC-NEVPT3 6.68 7.07 9.14A
tive spa
e (0704)CASSCF 6.33 7.27 8.71SC-NEVPT2 6.66 7.22 8.54PC-NEVPT2 6.62 7.07 8.42SC-NEVPT3 6.51 7.24 8.50A
tive spa
e (0805)CASSCF 6.37 7.23 8.76SC-NEVPT2 6.57 7.11 8.43PC-NEVPT2 6.53 6.96 8.30SC-NEVPT3 6.51 7.12 8.47A
tive spa
e (0906)CASSCF 6.37 7.23 8.82SC-NEVPT2 6.63 7.07 8.44PC-NEVPT2 6.59 6.95 8.29SC-NEVPT3 6.56 7.05 8.48previous worksCASPT2a[73℄/ [79℄ 5.92/5.82 6.00/5.87 7.46MRMP/MCQD [87℄ 5.98/6.01 6.51/6.51 7.48/7.51CC3 [83℄b 6.37 6.63 8.07CCSD(R) [83℄b 6.43 6.63 8.12CCSD [83℄
 6.53 6.61 8.00MRCI [86℄ 6.11 6.73 8.19SAC-CI [81℄ 6.41 6.48 7.88ADC(2) [80℄ 6.66 6.71 7.75DFT (B97-2) [86℄ 6.61 6.55a MS-CASPT2 
al
ulations in Ref. [79℄b Experimental equilibrium geometry and basis set as Ref. [73℄
 aug-

-pVTZ basis set with 7s7p7d mole
ule-
entered fun
tions



Pyrrole 3.4 57In the more re
ent CASPT2 study [79℄ the authors found a strong intera
tionbetween this valen
e state and the Rydberg 1a23px so that the multi�state approa
heven reversed their positions. To investigate the e�e
ts of the valen
e�Rydbergintera
tion on the states of B2 symmetry, we have also applied a quasi�degeneratese
ond order 
orre
tion (QD-NEVPT2) [23℄, but, as shown in Tab. 3.5, we didnot �nd 
onsiderable 
hanges in the ex
itation energies. Indeed, in the NEVPT
al
ulations, the sizable energy di�eren
e (slightly lower than 1 eV) between the 1B+
2and 1a2→3px state does not allow any mixing between the wavefun
tions.Table 3.5: QD-NEVPT2 veri
al transition energies (eV) for the states of B2 symmetryof Pyrrole. A
tive spa
e (0704) A
tive spa
e (0805)States SC-QDPT2 PC-QDPT2 SC-QDPT2 PC-QDPT2

11B2(1a2→3px) 6.15 6.09 6.09 6.02
21B2(1a2→3dxz) 6.86 6.80 6.80 6.72
31B2(2b1→3dxy) 7.89 7.85 7.82 7.76
41B+

2 (π→π∗) 7.26 7.15 7.14 7.04Similar remarks 
an be made about the 1A+
1 state, whose multireferen
e nature,in addition to its ioni
 
hara
ter, makes it a di�
ult task for all the ab initio meth-ods. The NEVPT ex
itation energies are signi�
antly higher (roughly 1 eV) thanthe CASPT2 values [73, 79℄, but a better agreement is otherwise attained with the
oupled 
luster results [83℄. With the (0704), (0805) and (0906) spa
es the di�er-en
e between NEVPT values and those 
al
ulated by Christiansen et al. [83℄ neverex
eeds 0.5 eV, as was the 
ase for the 1B+

2 state.Finally some interesting remarks 
an be made about the 
ovalent valen
e state
1A−

1 , whose CASSCF des
ription appears satisfa
tory even with (0503) spa
e. Asis evident, very similar results were obtained from the two di�erent se
ond order
al
ulations: with all the a
tive spa
es the di�eren
e between SC-NEVPT2 and PC-NEVPT2 is always lower than 0.1 eV. The third order 
orre
tion brought just a smallredu
tion of the transition energies, amounting roughly to 0.1 eV in the (0503) and(0704) spa
e, to 0.02 eV in (0805) and, �nally, to 0.05 eV in the (0906) spa
e.Overall, our results for this state agree with the previous ab initio 
al
ulations byTro�mov and S
hirmer [80℄, Wan et al. [81℄ and Christiansen et al. [83℄. The bestNEVPT3 values (0704, 0805, 0906 spa
es) and the CC3 verti
al transition energydi�er by ∼ 0.2 eV at most. Otherwise, our perturbative results are again signi�
antlyhigher (∼ 0.7 eV) than those 
al
ulated in the CASPT2 studies by Serrano-Andrés
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y
lopentadieneset al. [73℄ and Roos et al. [79℄.3.4.3 The π�type Rydberg statesTable 3.6: Verti
al ex
itation energies (eV) for the π�type Rydberg states of Pyrrole.Comparison between the NEVPT and previous theoreti
al results.
21A1 31A1 51A1 11B2 21B2 31B2Method 1a2→3dxy 2b1→3px 2b1→3dxz 1a2→3px 1a2→3dxz 2b1→3dxyA
tive spa
e (0503)SC-NEVPT2 6.95 7.19 7.69 6.24 6.95 7.96PC-NEVPT2 6.96 7.19 7.65 6.26 6.97 7.98SC-NEVPT3 6.62 6.83 7.39 5.90 6.61 7.58A
tive spa
e (0704)SC-NEVPT2 6.82 7.08 7.80 6.17 6.88 7.89PC-NEVPT2 6.83 7.09 7.81 6.13 6.85 7.84SC-NEVPT3 6.63 6.81 7.52 5.92 6.64 7.61A
tive spa
e (0805)SC-NEVPT2 6.78 6.97 7.72 6.10 6.82 7.81PC-NEVPT2 6.77 6.96 7.71 6.05 6.77 7.76SC-NEVPT3 6.66 6.82 7.56 5.94 6.68 7.64A
tive spa
e (0906)SC-NEVPT2 6.75 6.92 7.71 6.08 6.80 7.78PC-NEVPT2 6.74 6.90 7.70 6.06 6.78 7.75SC-NEVPT3 6.67 6.78 7.55 5.98 6.62 7.59previous worksCASPT2a[73℄/ [79℄ 6.54 6.65 7.36 5.78/6.09 6.53 7.43MRMP/MCQD [87℄ 6.38/6.37 6.62/6.64 7.20/7.20 5.87/5.88 6.61/6.62 7.36/7.39CC3 [83℄b 6.77 6.94 7.60 5.98 6.91 7.66CCSDR(3) [83℄b 6.78 6.95 7.62 5.97 6.89 7.67CCSD [83℄
 6.73 6.89 7.53 5.82 6.86 7.59MRCI [86℄ 6.51 6.67 7.35 5.86 6.57 7.37SAC-CI [81℄ 6.64 6.86 7.49 5.88 6.76 7.55ADC(2) [80℄ 6.54 6.43 7.23 5.86 6.48 7.26DFT (B97-2) [86℄ 6.86 6.05 6.90a MS-CASPT2 
al
ulations in Ref. [79℄b Experimental equilibrium geometry and basis set as Ref. [73℄
 aug-

-pVTZ basis set with 7s7p7d mole
ule�
entered fun
tionsAs 
an be seen in Tab. 3.6, the NEVPT results of the pure Rydberg states showquite a 
oherent trend. Sin
e no signi�
ant valen
e�Rydberg mixing o

urred, thezero order des
ription was not problemati
 and even the smallest a
tive spa
e (0503)
ould provide good results. Contrary to what we have previously seen for the va-len
e states, the di�eren
es between the values of the two se
ond order variants are



Pyrrole 3.4 59negligible (the largest deviation amounts to 0.05 eV). The progressive extension ofthe CAS spa
e gave rise to a lowering of the se
ond order ex
itation energies and toa 
orresponding attenuation of the third order 
orre
tion. With the ex
eption of the
2b1 → 3dxz state in the (0503) 
al
ulation, where probably a small Rydberg�valen
emixing takes pla
e, the NEVPT3 results, using di�erent a
tive spa
es, for a giventransition are all very similar, with di�eren
es not ex
eeding 0.07 eV. Furthermore,a remarkable agreement is obtained between NEVPT3 and the best 
oupled�
lusterresults (CC3), with the di�eren
e not ex
eeding 0.23 eV (21B2 state). A weak in-tera
tion with the π → π∗ valen
e state (1B+

2 ) might be the reason for this smalldis
repan
y.Finally, a good a

ordan
e is obtained between the SC-NEVPT3 and the theCASPT2 results. Nevertheless, the NEVPT2 ex
itation energies for the six π Ry-dberg states are, on average, higher (≤ 0.4 eV) than the CASPT2 ones of Serrano-Andrés et al. [73℄, MRCI by Palmer et al. [86℄ and SAC-CI by Wan et al. [81℄3.4.4 The σ�type Rydberg statesTable 3.7: Verti
al ex
itation energies (eV) for the 1B1 Rydberg states of Pyrrole. Com-parison between the NEVPT and previous theoreti
al results.
11B1 21B1 31B1 41B1 51B1 61B1Method 1a2→3py 2b1→3s 1a2→3dyz 2b1→3pz 2b1→3da1

2b1→3da1SC-NEVPT2 6.19 6.40 6.79 7.07 7.76 7.86PC-NEVPT2 6.21 6.42 6.81 7.09 7.79 7.89SC-NEVPT3 5.84 5.99 6.47 6.67 7.32 7.41previous worksCASPT2a[73℄/ [79℄ 5.85/5.87 5.97 6.40 6.62 7.32 7.39MRMP/MCQD [87℄ 5.81/5.80 5.70/5.75 6.45/6.44 6.48/6.50 7.14/7.13 7.23/7.21CC3 [83℄b 5.85 5.99 6.47 6.72 7.31 7.37CCSDR(3) [83℄b 5.86 6.01 6.47 6.74 7.32 7.39CCSD [83℄
 5.82 5.97 6.43 6.67 7.33 7.45MRCI [86℄ 5.84 6.34 6.45 6.89 7,30 7.48DFT (B97-2) [86℄ 6.00 6.11 6.61SAC-CI [81℄ 5.80 6.05 6.39 6.68 7.34 7.26ADC(2) [80℄ 5.69 5.59 6.20 7.00 6.88a MS-CASPT2 
al
ulations in Ref. [79℄b Experimental equilibrium geometry and basis set as in Ref. [73℄
 aug-

-pVTZ basis set with 7s7p7d mole
ule�
entered fun
tionsThe perturbative results, obtained with the (4322) spa
e, show an extremely
onsistent trend (Tabs. 3.7 and 3.8): the di�eren
e between the SC-NEVPT2 andPC-NEVPT2 values is indeed never larger than 0.03 eV and, moreover, the thirdorder 
orre
tion leads to a regular de
rease in the transition energies, amounting
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y
lopentadienesroughly to 0.4 eV. Sin
e no low�energy valen
e states were present in the averageCASSCF 
al
ulations and hen
e the zero order des
ription was not a�e
ted by anyRydberg�valen
e mixing e�e
t, one 
an 
learly appre
iate the systemati
 improve-ment brought by the third order 
orre
tion. It is interesting to remark that, probablydue to the same reason, the verti
al ex
itation energies obtained from the various abinitio methods are quite similar. However, this is not the 
ase for the MRCI resultsby Palmer et al. [86℄, whi
h are, on average, higher than those reported in the otherhigh�level studies.The NEVPT3 ex
itation energies are in ex
ellent agreement with the CC3 results,with a di�eren
e never going beyond 0.06 eV (21A2 state). Furthermore, in opposi-tion to what was found for the valen
e and π Rydberg states, a remarkable a

or-dan
e with the CASPT2 [73℄ results was also attained; indeed, the SC-NEVPT3 andCASPT2 transition energies di�er by 0.05 eV at most.Table 3.8: Verti
al ex
itation energies (eV) for the 1A2 Rydberg states of Pyrrole. Com-parison between the NEVPT and previous theoreti
al results.
11A2 21A2 31A2 41A2 51A2 61A2Method 1a2→3s 1a2→3pz 1a2→3da1

1a2→3da1
2b1→3py 2b1→3dyzSC-NEVPT2 5.43 6.11 6.74 6.84 7.22 7.77PC-NEVPT2 5.45 6.14 6.77 6.87 7.23 7.79SC-NEVPT3 5.10 5.80 6.40 6.52 6.81 7.36previous worksCASPT2a[73℄/ [79℄ 5.08/5.22 5.83/5.97 6.42 6.51 6.77 7.31MRMP/MCQD [87℄ 4.92/4.91 5.74/5.74 6.38/6.37 6.44/6.43 6.70/6.65 7.25/7.22CC3 [83℄b 5.10 5.86 6.43 6.50 6.84 7.36CCSDR(3) [83℄b 5.12 5.87 6.44 6.52 6.86 7.37CCSD [83℄
 5.12 5.83 6.40 6.48 6.81MRCI [86℄ 5.59 6.12 6.80 6.57 6.71 7.30DFT (B97-2) [86℄ 5.18 5.97 6.61 6.55SAC-CI [81℄ 5.11 5.81 6.38 6.44ADC(2) [80℄ 4.99 5.65 6.21 6.33 6.41 6.92a MS-CASPT2 
al
ulations in Ref. [79℄b Experimental equilibrium geometry and basis set as in Ref. [73℄
 aug-

-pVTZ basis set with 7s7p7d mole
ule�
entered fun
tions3.5 Furan3.5.1 The UV absorption spe
trumThe investigation of the ele
troni
 absorption spe
trum of Furan has a long historyand a large number of experimental [77, 94�96, 98�104℄ and theoreti
al works [73,81,82,84,103,105�109℄ have been published. Analogously to Pyrrole, the ultraviolet
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trum exhibits two prin
ipal regions of absorption, lo
ated around 6 and8 eV and two ri
h series of overlapped π → Rydberg transitions. While the variousexperimental and theoreti
al studies are in substantial agreement in as
ribing thetwo absorption regions to the π→π∗ valen
e states 1B+
2 and 1A+

1 respe
tively, somedis
ussion 
on
erns the exa
t position of the 
ovalent 1A−
1 state. The 
ontroversialquestion is whether the verti
al transition to the 1A−

1 state is lower or higher in energythan the 1B+
2 one. Palmer and 
o�workers, in their MRCI study [103℄, 
omputed the

1A−
1 state to lie below the 1B+

2 one and assigned the former to a peak observed at 5.80eV. Their 
on
lusions were also 
orroborated by some experimental works [101,104℄,su
h as the UV absorption study on jet�
ooled Furan by Roebber et al. [101℄, whosuggested that the peak at 5.80 eV should show a valen
e 
hara
ter be
ause of itsinsensitivity to the formation of mole
ular 
lusters, where the Rydberg states arethought to play a minor role. Nevertheless, all the more re
ent ab initio 
al
ulations[81,107�109℄ do not support this interpretation, 
omputing the 1A−
1 valen
e transitionat the high�energy side of the 1B+

2 state. Indeed, as shown by Gromov et al. intheir extensive mole
ular dynami
s study [109℄, the partial valen
e 
hara
ter andthe unexpe
ted intensity of the forbidden 1A2(3s) ex
itation, 
an be explained by avibroni
 intera
tion with higher energy dipole�allowed transitions, like the 1B+
2 and

1A−
1 valen
e states. Finally, other ambiguities 
on
ern the assignment of the B1(3py)and B2(3px) states as well as other high�energy Rydberg states [103, 107℄.3.5.2 Valen
e�Rydberg mixingIn Tabs. 3.9 and 3.10 the single�state and quasi�degenerate NEVPT ex
itationenergies for the π→π∗ states of Furan (1A1 and 1B2 respe
tively) are reported. Asis apparent, despite the use of rather large a
tive spa
es, the perturbative treatmentof the two ioni
 valen
e states (1B+

2 and 1A+
1 ) remains problemati
, as was alsothe 
ase for the ioni
 valen
e states of Pyrrole [29℄(Se
. 3.4). Indeed, both in thesingle�state and quasi�degenerate (QDNEVPT2) 
al
ulations, signi�
ant di�eren
es(≃ 0.2 eV) between the SC and PC se
ond order results are evident. Then, further
ompli
ations arise from the strong valen
e�Rydberg e�e
ts that take pla
e both atthe zero and se
ond order level. In order to 
he
k on the o

urren
e of valen
e�Rydberg intera
tions in the zero order des
ription, we have evaluated, as is 
ommonpra
ti
e, the expe
tation value of the se
ond moment of the 
harge distribution:values of 〈x2〉 in the range between 25-35 a.u. are indeed typi
al values for purevalen
e states.
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y
lopentadienesTable 3.9: Single�state and quasi�degenerate (QD) verti
al transition energies(eV) for the 1A1 states of Furan.Method 1A−
1 1a2→3dxy 2b1→3px 2b1→3dxz

1A+
1A
tive spa
e (0704)SC-NEVPT2 6.77 7.44 8.22 8.89 8.94PC-NEVPT2 6.73 7.44 8.20 8.88 8.77SC-NEVPT3 6.67 7.33 8.02 8.69 8.71SC-QDNEVPT2 6.76 7.45 8.22 9.11 8.72PC-QDNEVPT2 6.71 7.46 8.20 9.10 8.56A
tive spa
e (0805)SC-NEVPT2 6.68 7.44 8.16 8.83 8.87PC-NEVPT2 6.64 7.42 8.13 8.80 8.69SC-NEVPT3 6.64 7.37 8.06 8.73 9.00SC-QDNEVPT2 6.68 7.44 8.16 9.03 8.67PC-QDNEVPT2 6.62 7.43 8.13 9.01 8.49Table 3.10: Single-state and quasi�degenerate (QD) verti
al transition energies (eV)for the 1B2 states of Furan.Method 1a2→3px 1a2→3dxz

1B+
2 2b1→3dxyA
tive spa
e (0704)SC-NEVPT2 6.74 7.36 7.22 8.97PC-NEVPT2 6.67 7.29 7.04 8.88SC-NEVPT3 6.64 7.27 7.42 8.82SC-QDNEVPT2 7.05 7.65 6.63 8.97PC-QDNEVPT2 6.91 7.67 6.42 8.88A
tive spa
e (0805)SC-NEVPT2 6.71 7.29 7.23 8.92PC-NEVPT2 6.63 7.21 7.05 8.82SC-NEVPT3 6.65 7.26 7.37 8.85SC-QDNEVPT2 7.02 7.61 6.61 8.92PC-QDNEVPT2 6.87 7.62 6.41 8.82In Tab. 3.11 the values of 〈x2〉 obtained from the average CASSCF 
al
ulationsare listed and 
ompared with those re
omputed after the QD 
orre
tion. At the



Furan 3.5 63average CASSCF level, for the ex
ited states of A1 symmetry the valen
e�Rydbergmixing 
an be regarded as negligible, whereas a 
onsistent mixing is evident for the
1B2 states. Indeed, with both a
tive spa
es, the 1A−

1 and 1A+
1 states have valuesof 〈x2〉 of ≃ 25 and ≃ 32 a.u., in a

ordan
e with their valen
e 
hara
ter; on the
ontrary, the 1B+

2 state shows too large a value of 〈x2〉 (≃ 45 a.u.), revealing a smallRydberg 
omponent. As shown both by the NEVPT results in Tab. 3.9 and thevalues of 〈x2〉 in Tab. 3.11, the 
ovalent valen
e state 1A−
1 and the two 1a2 → 3dxyand 2b1 → 3px Rydberg states are not a�e
ted by any mixing.The appli
ation of the QD approa
h leaves substantially un
hanged their ex
ita-tion energies and the SC-NEVPT3 result 
an be regarded as reliable.On the other hand, after the se
ond order 
orre
tion the 1A+

1 valen
e state and the
2b1 → 3dxz Rydberg state be
ome very 
lose in energy and, sin
e their 
oupling(≃ 0.09 a.u.) is greater than their energy di�eren
e (≃ 0.04 a.u.), the QD 
orre
-tion allows for a 
onsistent intera
tion between the two wavefun
tions. As one 
anreasonably expe
t, the appli
ation of the QD approa
h brings about a de
rease inthe ex
itation energy of the valen
e state (≃ 0.2 eV), whi
h is more sensitive to thedynami
al 
orrelation e�e
ts, and a 
orresponding in
rease in the ex
itation energyof the Rydberg state. Also, as is apparent in Tab. 3.11, after the QD approa
h thevalue of 〈x2〉 of the valen
e (Rydberg) state is in
reased (de
reased) by about 5 a.u.Table 3.11: 〈x2〉 
omponent of the se
ond moment of the 
harge distri-bution (a.u.) for the 1A1 and 1B2 states of Furan. The values have beenobtained using two di�erent a
tive spa
esA
tive Spa
e (0704) A
tive Spa
e (0805)State Nature 〈x2〉a 〈x2〉b 〈x2〉a 〈x2〉b

1A−
1 π→π∗ 25.84 24.85 25.26 24.74

1A1 1a2 → 3dxy 88.22 88.95 89.93 90.30
1A1 2b1 → 3px 75.29 74.95 76.66 76.35
1A1 2b1 → 3dxz 86.20 81.86 86.18 81.53
1A+

1 π→π∗ 32.72 37.07 31.68 36.64
1B2 1a2 → 3px 73.38 70.65 73.59 68.68
1B2 1a2 → 3dxz 81.68 89.62 79.81 89.02
1B+

2 π→π∗ 44.86 38.09 45.15 39.82
1B2 2b1 → 3dxy 87.93 87.95 89.08 89.08a Values obtained from the average CASSCF 
al
ulationsb Values re
omputed after the PC-QDNEVPT2 
orre
tionSin
e a remarkable valen
e�Rydberg mixing o

urs both at the zero order andse
ond order levels, the treatment of the states of B2 symmetry turns out to be
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y
lopentadienesrather problemati
. As 
an be noti
ed in Tab. 3.10 only the 2b1 → 3dxy state isnot in�uen
ed by the appli
ation of the QD 
orre
tion. The strongest mixing takespla
es between the 1a2 → 3px and the valen
e state in su
h a way that the appli
ationof the quasi�degenerate approa
h even inter
hanges their positions. After the QD
al
ulations, the identi�
ation of the valen
e and Rydberg states was possible onthe basis of the re
omputed values of the se
ond moment of the 
harge distribution.As shown in Tab. 3.11, at the �partially 
ontra
ted� level, where the intera
tion ismore 
onsistent and hen
e the QD approa
h is more e�
ient, the value of 〈x2〉 ofthe 1B+
2 state amounts to ≃ 39 a.u, whereas a value of ≃ 45 a.u. was obtained fromthe average CASSCF 
al
ulations. Finally, a noti
eable 
hange in the ex
itationenergies of the 1a2 → 3dxz Rydberg state is also observed; its transition energies arein
reased by ≃ 0.3 eV with respe
t to those 
omputed at the single�state level.In 
on
lusion, it is interesting to remark that no signi�
ant improvements wereobtained in
reasing from eleven (0704) to thirteen (0805) the number of a
tive or-bitals, sin
e the extent of the valen
e�Rydberg mixing is not modi�ed and the low-ering of the se
ond order transition energies amounts to 0.1 eV at most.3.5.3 Singlet Valen
e StatesIn Tab. 3.12 the SC-NEVPT3 and PC-QDNEVPT2 ex
itation energies, obtainedwith the (0805) spa
e are reported and 
ompared with the previous theoreti
al re-sults and the available experimental assignments. Sin
e, as previously dis
ussed(se
tion 3.6.1), the two ioni
 states (1B+

2 and 1A+
1 ) are strongly in�uen
ed by theintera
tion with the Rydberg states, the 
onsistent di�eren
es (≃ 0.6 eV) betweenthe SC-NEVPT3 and PC-QDNEVPT2 values are not surprising. Therefore for thesetwo states, in the following dis
ussion, we shall refer only to the QD ex
itation en-ergies.The PC-QDNEVPT2 
al
ulation lo
ates the 1B+

2 state at 6.41 eV, in ex
ellentagreement with the previous 
oupled 
luster 
omputations by Christiansen and Jør-gensen [107℄, SAC-CI by Wan et al. [81℄ and EOM-CCSD by Gromov et al [108℄.A very good agreement with the 
oupled 
luster results is also observed for the
1A+

1 state, whose PC-QDNEVPT2 ex
itation energy is 8.49 eV, only 0.14 eV higherthan the CC3 result and 0.07 eV lower than the CCSD one. This agreement is evenmore meaningful when 
onsidering that the CC 
omputations were performed usingthe same geometry [69℄ and ANO basis set [72℄ used in the present study. Takinginto a

ount the rather signi�
ant dis
repan
ies (≃ 0.2-0.3 eV) [107, 108℄ betweenthe 
omputed verti
al transition energy and the observed maximum of the band, ourpresent results 
on�rm the traditional attribution of the broad bands at 6 and 8 eV
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e 1B+
2 and 1A+

1 states respe
tively.Table 3.12: Computed verti
al transition energies for the π→π∗ valen
e statesof Furan 
ompared with the previous theoreti
al results and the experimentaldata.Method 1B+
2

1A−
1

1A+
1SC-NEVPT3a 7.37 6.64 9.00PC-QDNEVPT2a 6.41 6.62 8.49previous worksCASPT2 [73℄ 6.04 6.16 7.74MRMP/MCQD [105℄ 5.95/5.99 6.16/6.19 7.69/7.72CC3 [107℄b 6.35 6.61 8.35CCSD [107℄b 6.49 6.86 8.56CCSD [107℄
 6.45 6.82 8.34MRCI [103℄ 6.76 6.02 8.32SAC-CI [81℄ 6.40 6.79 8.34ADC(2) [106℄ 6.37 6.70 8.16TD-DFT (B97-1) [84℄ 6.12 6.76EOM-CCSD [108℄ 6.49 6.84Expt.(vert.) 6.04d,e 7.80ea A
tive Spa
e (0805)b Experimental equilibrium geometry [69℄ and basis set as in Ref. [73℄
 aug-

-pVTZ basis set augmented with 7s7p7d ring�
entered di�use fun
-tionsd Refs. [77, 95, 98, 99℄e Ref. [103℄Finally, the NEVPT 
al
ulations, in agreement with most of all the other abinitio studies and with the traditional experimental interpretation, predi
t the 1A−

1state to be about 0.2 eV higher in energy than the 1B+
2 one. Its ex
itation energyat SC-NEVPT3 level is 
omputed at 6.64 eV, only 0.03 eV higher than the CC3result (6.61 eV). A good a

ordan
e with the TD-DFT [84℄ and EOM-CCSD [108℄ex
itation energies is also attained. On the other hand, for the three valen
e states,the CASPT2 results by Serrano-Andrés et al. [73℄ and MRMP by Hashimoto etal. [105℄ turn out to be signi�
antly lower than the NEVPT ones. Apart from the
ase of the 1A+

1 state, where, as pointed out by the authors [73℄, the presen
e ofintruder states 
ould 
ompromise the a

ura
y of the result, the di�eren
es betweenthe NEVPT and CASPT2 values amount roughly to 0.4-0.5 eV.



66 Chapter 3. The hetero�
y
lopentadienes3.5.4 Singlet Rydberg statesIn Tab. 3.13 the SC-NEVPT3 and PC-QDNEVPT2 ex
itation energies (0805 spa
e)of the π�type Rydberg states are reported and 
ompared with those obtained in theprevious theoreti
al works and with the experimental data. Instead, in Tabs. 3.14and 3.15 we present the se
ond and third order single�state NEVPT results obtainedfor the σ�type Rydberg states: the ex
ited states are separated into the 1a2 → 3l(Tab. 3.14) and 2b1 → 3l states (Tab. 3.15).Table 3.13: Computed verti
al transition energies for the π�type Rydberg states of Furan
ompared with the previous theoreti
al results and the experimental data.
1A1

1A1
1A1

1B2
1B2

1B2Method 1a2→3dxy 2b1→3px 2b1→3dxz 1a2→3px 1a2→3dxz 2b1→3dxySC-NEVPT3a 7.37 8.06 8.73 6.65 7.26 8.85PC-QDNEVPT2a 7.43 8.13 9.01 6.87 7.62 8.82previous worksCASPT2 [73℄ 7.31 6.48 7.13MRMP/MCQD [105℄ 7.26/7.29 6.50/6.11 7.18/7.21CCSD [107℄b 7.58 8.26 6.94 7.72MRCI [103℄ 7.75 8.15 8.33 6.66 7.71 8.94SAC-CI [81℄ 7.36 8.14 8.95 6.82 7.51 8.79ADC(2) [106℄ 7.22 7.71 8.51 6.73 7.35 8.32TD-DFT (B97-1) [84℄ 7.47 6.83 7.55Expt. 7.28
, 7.52d 8.46(?)d 6.47d 8.77da (0805)A
tive Spa
eb aug-

-pVTZ basis set augmented with 7s7p7d ring�
entered di�use fun
tions
 Refs. [77, 95, 98, 99℄d Ref. [103℄3s Rydberg StatesIn the NEVPT 
al
ulations the 1a2 → 3s Rydberg transition is predi
ted to bethe lowest�energy ex
ited state of Furan (Tab. 3.14). At the se
ond order level itsex
itation energy is 
omputed at 6.11 (SC-NEVPT2) and 6.13 eV (PC-NEVPT2); aslight redu
tion (≤ 0.1 eV) is observed in the SC-NEVPT3 
al
ulation, where thisstate is 
omputed at 6.00 eV. As 
an be seen, the 
omputed ex
itation energies agreewith those obtained in the previous theoreti
al studies [73, 81, 84, 103, 107, 108℄.
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Table 3.14: Computed verti
al ex
itation energies (eV) for the 1a2 → σ∗ Rydberg states ofFuran 
ompared with the previous theoreti
al results and the experimental data.
1a2 → 3l 1A2

1B1
1A2

1A2
1B1

1A2Method 3s 3py 3pz 3dx2
−y2 3dyz 3dz2SC-NEVPT2 6.11 6.67 6.77 7.26 7.39 7.44PC-NEVPT2 6.13 6.68 6.79 7.28 7.39 7.46SC-NEVPT3 6.00 6.56 6.65 7.14 7.27 7.31previous worksCASPT2 [73℄ 5.92 6.46 6.59 7.00 7.15 7.22MRMP/MCQD [105℄ 5.84/5.84 6.40/6.40 6.53/6.54 6.98/6.98 7.10/7.12 7.18/7.19CCSDa[107℄ 6.11 6.64 6.80 7.12 7.32 7.39MRCI(DZPR) [103℄ 5.95 6.63 6.41 7.15 6.99 7.40TD-DFT (B97-1
) [84℄ 5.97 6.58 6.69 7.03 7.21 7.27SAC-CI [81℄ 5.99 6.45 6.66 7.04 7.14 7.27ADC(2) [106℄ 5.86 6.35 6.50 6.89 6.98 7.11EOM-CCSD [109℄ 6.04 6.56 6.71Expt. 5,94d,5.80b 6.47b, 6.76
 6.61b 7.28
a aug-

-pVTZ basis set with 7s7p7d mole
ule�
entered fun
tionsb Refs. [77, 95, 98, 99, 102℄
 Ref. [103℄d Refs. [101, 104℄On the basis of ele
tron�energy loss (EEL) measurements, the 2b1 → 3s (1B1)transition was assigned by Palmer and 
o�workers [103℄ to a peak at 7.38 eV. Themost a

urate NEVPT result pla
es the verti
al transition of this state at 7.41 eV(SC-NEVPT3 value in Tab. 3.15), in agreement with the experimental assignmentand the previous CCSD [107℄, SAC-CI [81℄ and TD-DFT [84℄ results.3p Rydberg StatesThe three 1a2 → 3p Rydberg states are one π-type state (1B2(3px)) and two σ�typestates (1B1(3py) and 1A2(3pz)). Some dis
ussion 
on
erns the energeti
al order of the

1B1(3py) and 1B2(3px) states. In parti
ular, two p�type Rydberg transitions wereexperimentally observed at 6.47 [77,96,99,103℄ and 6.76 eV [102,103℄. In their MRCIstudy, Palmer and 
o�workers [103℄ assigned the lower transition (6.47 eV) to the
1B2(3px) state and the higher one (6.76 eV) to the 1B1(3py) state. However, in thesubsequent theoreti
al studies [81, 84, 106, 107℄, the assignment proposed by Palmeret al. [103℄ was questioned and reversed. For instan
e, in the best CC 
al
ulations[107℄ the 1B1(3py) state was estimated to be about 0.3 eV lower then the 1B2(3px)one. Similar results were also attained in the more re
ent SAC-CI [81℄ and TD-DFT [84℄ studies. Our most a

urate 
al
ulations lo
ate the verti
al transition to the
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y
lopentadienes
1B1(3py) and 1B2(3px) states at 6.56 (Tab. 3.14) and 6.87 eV (Tab. 3.13) respe
tively.Thus, the NEVPT results fully 
on�rm the energy di�eren
e amounting to ≃ 0.3 eV
omputed in the CC [107℄ and TD-DFT [84℄ studies and the reassignment suggestedby those authors. Finally, a peak lo
ated at 6.61 eV was attributed by Fli
ker etal. to the 1a2 → 3pz transition. The SC-NEVPT3 ex
itation for the 1A2(3pz) stateis 6.65 eV (Tab. 3.14), in ex
ellent a

ordan
e with experiments and the previousSAC-CI (6.66 eV) [81℄, TD-DFT (6.69 eV) [84℄ and EOM-CCSD (6.69 eV) [108℄
al
ulations.Table 3.15: Computed verti
al ex
itation energies (eV) for the 2b1 → σ∗ Rydberg states ofFuran 
ompared with the previous theoreti
al results and the experimental data.
2b1 → 3l 1B1

1A2
1B1

1B1
1A2

1B1Method 3s 3py 3pz 3dx2−y2 3dyz 3dz2SC-NEVPT2 7.68 8.18 8.30 8.83 8.85 9.00PC-NEVPT2 7.69 8.18 8.31 8.84 8.85 9.02SC-NEVPT3 7.41 7.99 7.99 8.53 8.64 8.69previous worksCASPT2 [73℄ 7.21MRMP/MCQD [105℄ 7.31/7.25CCSDa[107℄ 7.52 8.14 8.11MRCI(DZPR) [103℄ 7.14 7.90 8.04 8.36 8.00 8.39TD-DFT (B97-1
) [84℄ 7.41 8.07SAC-CI [81℄ 7.45 8.07 8.54 8.87ADC(2) [106℄ 7.05 7.57 7.61 8.06 8.16 8.23Expt.b 7.38 8.10 8.46 8.77(?)a aug-

-pVTZ basis set with 7s7p7d mole
ule�
entered fun
tionsb Ref. [103℄It is 
ertainly rather problemati
 to get an a

urate des
ription of the high�energyRydberg states. However, for the three 2b1 → 3p transitions, the PC-NEVPT2 ex-
itation energies are 8.13 (1A1(3px) in Tab. 3.13), 8.18 (1A2(3py) in Tab. 3.15)and 8.31 eV (1B1(3pz) in Tab. 3.15). A slight lowering of the transition energiesis observed at the third order level (SC-NEVPT3), where the three states are 
om-puted at 8.06, 7.99 and 7.99 eV respe
tively. However, a reversed energeti
al or-der (1B1(3pz) ≤ 1A2(3py) ≤ 1A1(3px)) is found in the 
oupled 
luster study byChristiansen and Jørgensen [107℄, and di�erent orders are also obtained from theMRCI [103℄ and SAC-CI [81℄ 
al
ulations. In addition, a �rm experimental assign-



Thiophene 3.6 69ment is not available for these states, with the ex
eption of the 1A1(3px)) transition,lo
ated by Palmer et al. [103℄ at 8.10 eV.3d Rydberg StatesThe best NEVPT ex
itation energies of the �ve 1a2 → 3d states are 7.14 (1A2(3dx2−y2)in Tab. 3.14), 7.27 eV (1B1(3dyz) in Tab. 3.14), 7.31 eV (1A2(3dz2) in Tab. 3.14),7.33 eV (1A1(3dxy) in Tab. 3.13) and, �nally, 7.62 eV (1B2(3dxz) in Tab. 3.13). As
an be seen, due to its intera
tion with the 1B+
2 valen
e state, the transition energy ofthe 1a2 → 3dxz state is noti
eably underestimated (about 0.3-0.4 eV) at the single�state level and this pronoun
ed valen
e�Rydberg mixing 
ould be the reason for thetoo low ex
itation energy (7.13 eV) 
omputed in the single�state CASPT2 studyby Serrano�Andrés et al [73℄. On the 
ontrary, for this state, the PC-QDNEVPT2result agrees with the CCSD [107℄, MRCI [103℄, SAC-CI [81℄ and TD-DFT [84℄ tran-sition energies. A satisfa
tory a

ordan
e with the previous theoreti
al studies isalso attained for the other four states: with the ex
eption of some MRCI results (see

1B1(3dyz) and 1A1(3dxy) states), the largest dis
repan
ies amount indeed to ≃ 0.2eV. Finally, our most a

urate ex
itation energies for the �ve 2b1 → 3d Rydbergstates are 8.53 (1B1(3dx2−y2) in Tab. 3.14), 8.64 (1A2(3dyz) in Tab. 3.14), 8.69(1B1(3dz2) in Tab. 3.14), 8.85 (1B2(3dxy) in Tab. 3.13) and 9.01 eV (1A1(3dxz) inTab. 3.13). As is apparent, very di�erent values have been obtained for these high�energy Rydberg states in the previous theoreti
al studies [81, 103, 106℄ and, up tonow, no well�established experimental assignments are available in the literature.Sin
e, as estimated by Christiansen and Jørgensen [107℄, the di�eren
e between theadiabati
 and verti
al transition energy, for the 1a2 → 3l states, does not ex
eed0.16 ± 0.03 eV, the NEVPT verti
al ex
itation energies support the attribution ofthe peak at 8.46 eV [103℄ to the the 1B1(3dx2−y2) state (
omputed at 8.53 eV).3.6 ThiopheneAs we shall dis
uss later, no large attention has been paid in the literature to thetheoreti
al investigation of the ele
troni
 spe
trum of Thiophene and therefore itsinterpretation is still far from being 
omplete, sin
e 
onsistent dis
repan
ies (i.e. upto 0.7-0.8 eV) among the various ab initio results exist. For this reason, for almostall the x
ited states under 
onsideration, the a

ura
y of the NEVPT results wasalso judged with respe
t to some referen
e 
oupled 
luster 
al
ulations (CCSD andCCSDR(3)) [110, 111℄, spe
i�
ally performed for this study. These 
omputationswere 
arried out with the DALTON program [112℄, using the same geometry [70℄
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y
lopentadienesand ANO+1s1p1d basis set employed for the NEVPT ones. The os
illator strengthsfor the ex
ited states were 
al
ulated with the CASSCF state intera
tion (CASSI)method [113℄, using the NEVPT2 and NEVPT3 energy di�eren
es. Moreover, forthose states subje
ted to quasi�degenerate NEVPT2 treatment, the transition dipolemoments were re
omputed using the 
orre
ted linear 
ombinations obtained by di-agonalization of the QD-NEVPT2 matrix.3.6.1 Valen
e�Rydberg mixingAs 
an be seen in Tab. 3.16, where the CASSCF, QD-NEVPT2 and CCSD values ofthe 〈x2〉 
omponent of the se
ond moment of the 
harge distribution for the π → π∗are 
olle
ted, at the zero order level, the more 
onsistent mixing e�e
ts take pla
eamong the states of the B2 and A2 symmetries. In fa
t, both the lower�energy
π → π∗ valen
e state (41B2(V )) and the n → π∗ (21A2) state show too di�use a
hara
ter for pure valen
e states, with values of 〈x2〉 amounting roughly to 39 and42 a.u. respe
tively; indeed, the ground state of Thiophene has a value of 〈x2〉 ofabout 30 a.u. Then, a minor valen
e�Rydberg mixing 
an also be dete
ted amongthe 21A1(V ) valen
e state and the 3b1 → 3px (31A1) and 1a2 → 3dxy (41A1) Rydbergstates.Table 3.16: CASSCF, QDNEVPT2 and CCSD 〈x2〉 
omponent of the se
ond moment ofthe 
harge distribution (a.u.) for the π → π∗ and n→ π∗ ex
ited states of Thiophene.

〈x2〉State Assignment CASSCF SC-QDNEVPT2 PC-QDNEVPT2 CCSD
21A1(V ) π→π∗ 33.57 31.19 30.65 31.26
31A1 3b1 → 3px 90.13 91.79 91.03 88.12
41A1 1a2 → 3dxy 89.02 90.36 90.45 87.01
51A1 3b1 → 3dxz 89.80 89.52 69.48 85.15
61A1(V

′) π→π∗ 32.65 32.56 63.43 40.91
11B2 1a2 → 3px 93.17 93.12 93.42 89.91
21B2 1a2 → 3dxz 86.76 89.52 89.38 88.06
31B2 3b1 → 3dxy 83.88 86.69 81.71 85.34
41B2(V ) π→π∗ 38.81 32.85 32.62 31.55
51B2(V

′) π→π∗ 33.85 34.15 40.04 35.99
11A2 n→ 3dxy 81.52 90.89 90.67
21A2 n→ π∗ 41.81 32.32 32.89The single�state and quasi�degenerate NEVPT ex
itation energies of the 1A1,

1B2 states, together with the CCSD and CCSDR(3) ones, are reported in Tabs. 3.17
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tively. Instead, in Tab. 3.19 are shown the NEVPT results for thestates of A2 symmetry.Table 3.17: NEVPT, CCSD and CCSDR(3) verti
al transition energies (eV) of the 1A1ex
ited states of Thiophene.Method π→π∗ 3b1 → 3px 1a2 → 3dxy 3b1 → 3dxz π→π∗CASSCF 5.71 6.36 6.88 7.02 8.06SC-NEVPT2 5.94 7.17 7.56 7.89 8.00PC-NEVPT2 5.89 7.18 7.56 7.90 7.86SC-NEVPT3 5.78 6.97 7.41 7.69 7.94SC-QDNEVPT2 5.88 7.18 7.55 7.89 8.04PC-QDNEVPT2 5.80 7.20 7.56 7.89 7.94CCSD 5.78 7.11 7.53 7.83 7.93CCSDR(3) 5.70 7.10 7.50 7.81 7.71Table 3.18: NEVPT, CCSD and CCSDR(3) verti
al transition energies (eV) of the 1B2ex
ited states of Thiophene.Method 1a2 → 3px 1a2 → 3dxz 3b1 → 3dxy π→π∗ π→π∗CASSCF 6.17 6.83 7.01 7.16 8.88SC-NEVPT2 6.94 7.58 7.85 6.47 8.30PC-NEVPT2 6.95 7.59 7.86 6.37 8.12SC-NEVPT3 6.70 8.36SC-QDNEVPT2 6.94 7.64 7.92 6.34 8.31PC-QDNEVPT2 6.95 7.69 7.97 6.14 8.14CCSD 6.84 7.56 7.81 6.23 7.96CCSDR(3) 6.81 7.54 7.80 6.10 7.85As is apparent in Tab. 3.17, the appli
ation of the QD approa
h leads to aslight lowering (≤ 0.1 eV) of the single�state NEVPT2 ex
itation energy of the
21A1(V ) state, in agreement with the slight redu
tion observed in its value of 〈x2〉,passing from ≃ 33 (CASSCF) to ≃ 30 a.u. (PC-QDNEVPT2). However, as theCASSCF mixing 
an be regarded as negligible, the trend of the single�state NEVPTresults appears 
oherent, with the SC-NEVPT3 
al
ulation lo
ating this state at 5.78eV. A value of 5.80 eV is obtained from the PC-QDNEVPT2 
al
ulation. A goodagreement is also a
hieved with the CC results, where this transition is predi
tedat 5.78 (CCSD) and 5.70 eV (CCSDR(3)). As 
an be seen from the results in Tab.3.17 and from the values of 〈x2〉 reported in Tab. 3.16, the des
ription of the other
1A1 states is essentially not in�uen
ed by the appli
ation of the QD formalism, with
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y
lopentadienesthe only ex
eption of the 61A1(V
′) state at the PC level. Con
erning this issue someremarks are needed. Similarly to what we found for Pyrrole [29℄(se
tion 3.4) andFuran [30℄ (se
tion 3.5), the ioni
 
hara
ter of the higher�energy 1A1 valen
e state, inaddition to its partial nature of double ex
itation, makes the 
al
ulation of this staterather problemati
. The di�
ulties are 
learly shown by the di�eren
e (0.15-0.2 eV)between the strongly 
ontra
ted and the partially 
ontra
ted results. Note that forthis state, a remarkable di�eren
e, amounting roughly to 0.2 eV, is also obtainedfrom CCSD and CCSDR(3) 
al
ulations. So, at the partially 
ontra
ted level, wherethe 61A1(V

′) state is 
omputed at signi�
antly lower energy, a quasi degenera
y withthe 3b1 → 3dxz Rydberg state o

urs, with the two states being separated by lessthan 0.04 eV. The QD formalism, applied at the PC-NEVPT2 level, gives rise toa strong mixing between the two wavefun
tions, in su
h a way that the resultingroots have values of 〈x2〉 amounting to ≃ 69 and ≃ 63 a.u. (values in Tab. 3.16).A similar mixing, even if less pronoun
ed, was also found in the CCSD 
al
ulations,where the 
omputed 〈x2〉 are ≃ 85 and ≃ 41 a.u. for the Rydberg and valen
e staterespe
tively. The SC-NEVPT3 ex
itation energy of the 61A1(V
′) state is 7.94 eV, inex
ellent a

ordan
e with the value of 7.93 eV obtained from the CCSD 
al
ulation.As above mentioned and shown by the results in Tab. 3.16 and 3.18, the valen
e�Rydberg mixing e�e
ts are more prominent among the 1B2 states. The 41B2(V )valen
e state, mixed at CASSCF level with the 21B2 and 31B2 Rydberg states, afterthe QD 
al
ulation, shows a remarkable redu
tion (≃ 6 a.u.) in the value of its

〈x2〉; the re
overy of the valen
e nature is, obviously, followed by the lowering inits ex
itation energy, whi
h, at the more a

urate PC level, redu
es from 6.37 to6.14 eV. In a

ordan
e with the PC-QDNEVPT2 result, the CCSDR(3) transitionenergy of this state is 6.10 eV (〈x2〉 ≃ 31 a.u.), whereas a value of 6.23 eV is attainedat CCSD level. Obviously, the opposite behaviour is observed for the two Rydbergstates, whose transition energies slightly in
rease (≃ 0.1 eV). However, the se
ondmoments of the 
harge distribution, reported in Tab. 3.16, indi
ate that at the PClevel, where the two states are more 
lose in energy, a small mixing o

urs betweenthe 3b1 → 3dxy Rydberg state and the 51B2(V
′) valen
e state; as 
an be seen in Tab.3.18, however, the e�e
ts on the ex
itation energies are negligible. A small mixingis also found at CCSD level, where the 
omputed values of 〈x2〉 are ≃ 36 and ≃ 85a.u. for the valen
e and Rydberg state respe
tively.Finally, the QD approa
h was proved to be important also for the 
al
ulation ofthe two π�type 1A2 states, whi
h appear mixed in the CASSCF des
ription. At thePC level, where the 
orre
tion is more e�
ient, the QDNEVPT2 ex
itation energy(Tab. 3.19) for the valen
e (Rydberg) state turns out to be about 0.2 eV lower(higher) than that obtained from the single�state 
al
ulations. Also, the values of

〈x2〉 re
omputed in the 
orre
t zero order spa
e (Tab. 3.16) are in a

ordan
e with
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al for pure valen
e and Rydberg states, being ≃ 32 and ≃ 90 a.u.Table 3.19: Single�state and quasi�degenerate NEVPT2verti
al transition energies (eV) of the π�type 1A2 ex
itedstates of Thiophene.Method n→ 3dxy n→ π∗CASSCF 9.77 10.07SC-NEVPT2 10.49 10.13PC-NEVPT2 10.45 10.04SC-QDNEVPT2 10.61 10.01PC-QDNEVPT2 10.64 9.86An important di�eren
e in the spe
tros
opi
al features of Thiophene with respe
tto the analogous hetero�
y
les, Pyrrole [29℄ and Furan [30℄, is the presen
e of twolow�energy π → σ∗ states, one of B1 symmetry and one of A2 symmetry, stronglyintera
ting with 3p and 3d type Rydberg states.In Tab. 3.20 the values of 〈x2〉 for the σ�type states, the zero order assignments,the CASSCF and single�state NEVPT ex
itation energies of the �rst seven ex
itedstates of B1 and A2 symmetry are listed.Table 3.20: CASSCF and single�state NEVPT ex
itation energies (eV) for the σ�type ex
ited states of Thiophene. The CASSCF values of the 〈x2〉 
omponent ofthe se
ond moment of the 
harge distribution and the nature of the states are alsoreported. CASSCF SC-PT2 PC-PT2 SC-PT3State Assignment 〈x2〉 ∆E ∆E ∆E ∆E

11B1 3b1 → 3s + 1a2 → 3py 51.12 6.76 6.45 6.51 6.24
21B1 (1a2 → 3py + σ∗) + 3b1 → 3s 47.99 6.90 6.50 6.54
31B1 3b1 → 3pz + 1a2 → 3dyz 49.30 7.27 7.06 7.11 6.82
41B1 1a2 → 3dyz + σ∗ 45.64 7.44 6.97 7.00
51B1 3b1 → 3da1

54.23 7.88 7.60 7.64 7.38
61B1 3b1 → 3da1

72.12 7.96 7.50 7.48 7.34
71B1 1a2 → σ∗ + 3dyz 34.53 8.53 7.16 7.12
11A2 1a2 → 3s 51.26 6.48 6.10 6.15 5.90
21A2 1a2 → 3pz 50.18 7.03 6.77 6.82 6.55
31A2 3b1 → 3py + 3dyz + σ∗ 43.48 7.12 6.64 6.65
41A2 1a2 → 3da1

63.22 7.49 7.22 7.27 7.01
51A2 1a2 → 3da1

63.33 7.54 7.17 7.20 6.99
61A2 3b1 → 3dyz + 3py + σ∗ 46.72 7.69 7.23 7.24
71A2 3b1 → σ∗ + 3dyz 38.20 8.48 7.53 7.50As 
an be seen, for the 1B1 states, apart from a slight mixing between the 3b1 →

3s and 1a2 → 3py as well as the 3b1 → 3pz and 1a2 → 3dyz Rydberg states, the



74 Chapter 3. The hetero�
y
lopentadienesmost signi�
ant valen
e�Rydberg intera
tion takes pla
e between the 1a2 → σ∗ andthe 1a2 → 3dyz states; moreover, also the 1a2 → 3py state exhibits a partial valen
e
hara
ter. The CASSCF se
ond moments for the Rydberg states are ≃ 48 (3p) and
≃ 45 a.u (3dyz), where a value of ≃ 34 a.u. is attained for the 71B1 state.An analogous situation o

urs among the states of A2 symmetry, where the threestates whi
h mix are again the 71A2, having a σ∗ dominant 
hara
ter, and the two
3b1 → 3dyz and 3b1 → 3py Rydberg states; the 
omputed 〈x2〉 are 38.20, 46.72 and43.48 a.u. respe
tively.The QDNEVPT2 
al
ulations were 
arried out on �ve states of B1 symmetry (1-41B1 and 71B1) and on three states of A2 symmetry (31A2, 61A2 and 71A2). Thethird order 
omputations were performed only for those states not involved in thevalen
e�Rydberg mixing.After the appli
ation of the QD formalism, the interpretation of the states interms of Rydberg 3py, 3dyz and valen
e σ∗ states turn out to be rather problemati
.However, on the basis of the evaluation of the values of 〈x2〉 in the 
orre
ted zero orderspa
e, some 
onsiderations, 
on
erning the valen
e or Rydberg nature, are possible.In addition, further information has been obtained by 
omputing the natural orbitalsfor ea
h eigenstate of the QD-PT matrix in order to build the CASCI mole
ularorbitals in the 
orre
ted zero order spa
e. In Tab. 3.21 the re
omputed values of
〈x2〉 and the QDNEVPT2 ex
itation energies are reported. The CC results for allthe σ�type states are, instead, listed in Tab. 3.22.Table 3.21: Values of the 〈x2〉 
omponent of the se
ond moment of the 
harge distribution (a.u.)and QDNEVPT2 ex
itation energies for some σ�type ex
ited states of Thiophene.SC-QDNEVPT2 PC-QDNEVPT2State 〈x2〉 Assignment ∆E 〈x2〉 Assignment ∆E

11B1 36.49 1a2 → σ∗ + 3py 6.33 32.77 1a2 → σ∗ + 3py 6.10
21B1 44.48 1a2 → 3py + σ∗ + 3dyz 6.38 51.66 3b1 → 3s 6.52
31B1 51.15 3b1 → 3s 6.47 48.17 1a2 → 3py 6.86
41B1 49.34 3b1 → 3pz 7.07 49.30 3b1 → 3pz 7.14
51B1 45.19 1a2 → 3dyz + σ∗ 7.45 46.61 1a2 → 3dyz 7.65
11A2 33.75 3b1 → σ∗ 6.46 31.14 3b1 → σ∗ 6.22
21A2 48.02 3b1 → 3py + 3dyz 7.19 49.79 3b1 → 3py 7.25
31A2 46.27 3b1 → 3dyz + 3py + σ∗ 7.75 47.58 3b1 → 3dyz 7.94First of all, some important remarks 
on
ern the di�erent behaviour of the twoQDNEVPT2 variants. Indeed, as 
an be observed in Tab. 3.21, while the mixingamong the 3py, 3dyz and σ∗ states persists at the strongly 
ontra
ted level, the nature
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al
ulations; only the
1B1 (1a2 → σ∗) state shows a slight Rydberg 
hara
ter. The di�erent nature of thestates obtained from the SC and PC 
al
ulations is, obviously, the reason for theremarkable deviations observed between the SC-QDNEVPT2 and PC-QDNEVPT2ex
itation energies. Note that these deviations 
an be, instead, regarded as negligible(0.07 eV at most) for the 3b1 → 3s and 3b1 → 3pz Rydberg states. At the SClevel, the ex
itation energies of the Rydberg states, whi
h still have a partial valen
e
hara
ter, are signi�
antly lower (even ≃ 0.3 eV for the 1a2 → 3py state) than those
omputed at PC level; obviously, too high ex
itation energies are, instead, obtainedfor the two valen
e states.Table 3.22: CCSD and CCSDR(3) ex
itation energies (eV) for the σ�typeex
ited states of Thiophene. The 〈x2〉 
omponent of the se
ond moment of the
harge distribution and the nature of the states are also reported.CCSD CCSDR(3)State Assignment 〈x2〉 ∆E ∆E

11B1 1a2 → σ∗ mix. 36.41 6.28 6.20
21B1 3b1 → 3s 48.84 6.40 6.36
31B1 1a2 → 3py mix. 44.94 6.85 6.81
41B1 3b1 → 3pz 47.79 7.01 6.99
51B1 3b1 → 3da1 55.68 7.46 7.43
61B1 3b1 → 3da1 61.64 7.52 7.50
71B1 1a2 → 3dyz mix. 45.06 7.60 7.55
11A2 1a2 → 3s 49.15 6.10 6.05
21A2 3b1 → σ∗ mix. 32.11 6.31 6.26
31A2 1a2 → 3pz 48.97 6.78 6.74
41A2 3b1 → 3py 53.47 7.14 7.11
51A2 1a2 → 3da1 46.94 7.18 7.14
61A2 1a2 → 3da1 63.73 7.23 7.19
71A2 3b1 → 3dyz mix. 46.14 7.81 7.80Although the 1a2 → σ∗ state still shows a small 3p 
hara
ter, the PC-QDNEVPT2approa
h brings about a remarkable de
rease (≃ 1 eV) with respe
t to the single�state ex
itation energy of the 71B1 state, whi
h, at the CASSCF level, is the statewith the strongest valen
e nature (see Tab. 3.20); indeed, the transition energy
hanges from 7.12 to 6.10 eV. At the strongly 
ontra
ted level as well as at CCSDlevel, this state is 
omputed with a value of 〈x2〉 of ≃ 36 a.u., that is somewhatdi�use for a pure valen
e state. As a 
onsequen
e of this partial Rydberg 
hara
terthe SC-QDNEVPT2 and CC ex
itation energies turn out to be higher than the PCone, being 6.33 and 6.30 eV (CCSDR(3)) respe
tively. On the 
ontrary, both the
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y
lopentadienes
3b1 → 3s and 3b1 → 3pz Rydberg states are essentially not a�e
ted by the appli-
ation of the QD approa
h: their values of 〈x2〉 remain the same as 
omputed atCASSCF level and hen
e the single�state and quasi�degenerate ex
itation energiesare very similar.As shown in Tab. 3.20, the third order 
al
ulations, for both these states, bringabout a lowering in the ex
itation energies slightly less than 0.3 eV, lo
ating thestates at 6.24 eV (3s) and 6.82 eV (3pz). For these two states, a good a

ordan
eis also attained with the CC results (Tab. 3.22), that turn out to be only ≃ 0.15eV higher than the SC-NEVPT3 ones. At PC-QDNEVPT2 level, the 1a2 → 3pyis 
omputed at 6.86 eV, in remarkable a

ordan
e with the CC results, that lo
atethis state at 6.85 (CCSD) and 6.81 eV (CCSDR(3)). Then, at the PC level, the
1a2 → 3dyz is 
al
ulated to lie at 7.65 eV, about 0.7 eV above the value 
omputed inthe single�state approa
h for the 41B1 state (see Tab. 3.20). Very similar transitionenergies were provided by the CC 
al
ulations, where the state is lo
ated at 7.60 and7.55 eV (respe
tively CCSD and CCSDR(3) values in Tab. 3.22).Similar remarks 
an be made for the three 1A2 states, whi
h, after the PC-QDNEVPT2 treatment, result in a pure valen
e state (〈x2〉 ≃ 31 a.u.) and two pureRydberg 3py and 3dyz states. At PC-QDNEVPT2 level, the 3b1 → σ∗ transition ispredi
ted at 6.22 eV in very good agreement with the CC values (see Tab. 3.22),where the state is lo
ated at 6.31 (CCSD) 6.26 eV (CCSDR(3)), with a value of
〈x2〉 of 32.11 a.u. Instead, the two Rydberg states are shifted at higher energy withrespe
t to single�state ex
itation energies: the 3b1 → 3py state is 
omputed at 7.25eV (PC-QDNEVPT2), with an 〈x2〉 of ≃ 49 a.u. and the 3b1 → 3dyz ex
itationin predi
ted at 7.94 eV (PC-QDNEVPT2) with an 〈x2〉 of ≃ 47 a.u. The CC ex-
itation energies, reported in Tab. 3.22, are only slightly lower (≃ 0.15) than thePC-QDNEVPT2 ones. Note that at the single�state level, the two states were 
al-
ulated at 6.65 and 7.50 eV respe
tively (PC-NEVPT2 values in Tab. 3.20). Finally,as 
an be seen in Tab. 3.20, for the other four Rydberg states, not involved in theCASSCF mixing, the appli
ation of the SC-NEVPT3 
orre
tion produ
es a small(0.15-0.25 eV) and regular lowering in the se
ond order ex
itation energies. Compa-rable transition energies, even if always slightly higher than the SC-NEVPT3 ones,were obtained from the CC 
al
ulations (see values in Tab. 3.22).3.6.2 The VUV absorption spe
trumIn 
ontrast to the large number of theoreti
al works dedi
ated to the absorptionspe
tra of Pyrrole and Furan, surprisingly few ab initio studies on the ele
troni
spe
trum of Thiophene have been published. Indeed, the �rst CI study by Bendazzoliet al., published in 1978 [114℄, was followed only by three high�level ab initio studies,



Thiophene 3.6 77namely, a single�state CASPT2 study in 1993 [115℄, a MRCI investigation in 1999 [67℄and, �nally, a SAC-CI work in 2001 [116℄. In addition, some TD-DFT [117℄ andADC(2) [118℄ results have also been presented. Although there is, overall, a goodagreement in the assignments of the four lowest�energy π → π∗ states, a number ofin
onsisten
ies still exists in the interpretation of some Rydberg states.The most a

urate NEVPT ex
itation energies and the 
orresponding os
illatorstrengths, whi
h are used to dis
uss the interpretation of the spe
trum, are shown inTab. 3.9, together with the CCSDR(3) results and those of the previous theoreti
alstudies [67, 115�117℄.Energy range 5-6.5 eVIn this energy range is lo
ated the �rst absorption region, whi
h is 
omposed of thetwo histori
al A and B bands. The �rst system (A band), whose valen
e π → π∗ na-ture was experimentally assessed on the basis of the 
omparison of gas phase resultswith 
ondensed�phase measurements [114,123�125℄, begins at 5.16 eV with the max-imum at 5.39 eV. Furthermore, in the magneti
 
ir
ular di
hroism spe
trum (MCD)of Thiophene in hexane, two bands with opposite signs in their B-values [126�128℄were dete
ted at 5.27 and 5.64 eV, 
on�rming the presen
e of two π → π∗ tran-sitions in the low�energy tail of the �rst VUV band. On the basis of PPP 
al
u-lations [126℄ and ab initio predi
tion of the B-values [114℄, the lower�energy peakwas attributed to the 1A1(V ) state. Our most a

urate results predi
t the verti
altransitions to the 1A1(V ) and 1B2(V ) states to be 5.78 (SC-NEVPT3) and 6.14 eV(PC-QDNEVPT2) respe
tively; the 
omputed os
illator strengths are 0.130 (1A1(V ))and 0.107 (1B2(V )). Taking into a

ount that for these aromati
 mole
ules, the ver-ti
al transition and the observed maximum of the band may di�er signi�
antly, withthe former being even 0.2 eV [83, 107, 108℄ above the latter, our present results 
on-�rm the traditional valen
e interpretation of the A band. The CCSDR(3) ex
itationenergies are in remarkable a

ordan
e with the NEVPT ones, lo
ating the 1A1(V )state at 5.70 eV and the 1B2(V ) transition at 6.10 eV, with very similar intensities(0.082 and 0.080 respe
tively). The present results also agree with those 
omputedin the MRCI study by Palmer et al. [67℄, whereas larger deviations (≃ 0.4 eV) areobserved with the CASPT2 [115℄ and SAC-CI [116℄ values.Then, the weak �ne stru
ture near 6 eV [67,95,129,130℄, known as the B band, isinterpreted as Rydberg in nature, prin
ipally arising from the symmetry forbidden
1a2 → 3s state; this system indeed does not appear in the 
ondensed�phase spe
trum[114, 123, 124℄, where the Rydberg states are thought to play a negligible r�le. The
1a2 → 3s state (1A2) is 
omputed, at SC-NEVPT3 level, at 5.90 eV, in perfe
ta

ordan
e with experiments and with the CASPT2 result [115℄ (5.93 eV); slightly
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Thehetero
�
y
lopenta

dienes Table 3.23: NEVPT and CC verti
al transition energies (eV) and os
illator strengths (within parentheses) of the singletex
ited states of Thiophene 
ompared with the previous theoreti
al results.NEVPTaState Nature SC3 PC-QD CCSDR(3)a,b SAC-CI [116℄ MRCI [67℄ CASPT2 [115℄ TD-DFT [117℄ Exp.d

1A1(V ) π→π∗ 5.78 5.80 5.70 5.41 5.69 5.33 5.64 5.39(0.130) (0.153) (0.082) (0.091) (0.119) (0.089) (0.058)

1A2 1a2 → 3s 5.90 6.05 5.70 5.78 5.93 5.94 5.93

1B1 1a2 → σ∗ 6.10 6.30 5.87 6.41 6.20
 5.67(0.004) (0.015) (0.011) (0.002)
 (0.005)

1B2(V ) π→π∗ 6.14 6.10 5.72 6.00 5.72 5.65 5.64(0.107) (0.080) (0.113) (0.154) (0.070) (0.074)

1A2 3b1 → σ∗ 6.22 6.28 6.03 6.85 6.26
 6.04

1B1 3b1 → 3s

6.24 6.52 6.36 6.12 6.33 6.23 6.32(0.000) (0.001) (0.002) (0.000) (0.000) (0.000) (0.002)

1A2 1a2 → 3pz 6.55 6.74 6.41 7.03 6.58 6.59 6.60

1B2 1a2 → 3px

6.70 6.95 6.81 6.41 7.02 6.56 6.74 6.60(0.040) (0.045) (0.032) (0.038) (0.034) (0.030) (0.023)

1B1 1a2 → 3py

6.86 6.81 6.47 6.39 6.30 6.72 6.60(0.021) (0.022) (0.016) (0.000) (0.030) (0.017)

1B1 3b1 → 3pz

6.82 7.14 6.99 7.17 6.73 6.83 6.7-7.0(0.025) (0.024) (0.024) (0.019) (0.029) (0.020)
1A1 3b1 → 3px

6.97 7.20 7.10 6.73 7.31 6.76 6.7-7.0(0.022) (0.051) (0.041) (0.065) (0.021) (0.015)
1A2 3b1 → 3py 7.25 7.11 6.89 6.39 6.35 6.7-7.0

1A2 1a2 → 3da1

6.99 7.14 6.73 7.93 6.97 6.91
1A2 1a2 → 3da1

7.01 7.19 6.75 7.85 7.08 7.07
1A1 1a2 → 3dxy

7.41 7.55 7.50 7.08 7.93 7.23 7.45 7.33(0.002) (0.000) (0.013) (0.018) (0.001) (0.001) (0.037)
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Table 3.9: ContinuedNEVPTaState Nature SC3 PC-QD CCSDR(3)a,b SAC-CI [116℄ MRCI [67℄ CASPT2 [115℄ TD-DFT [117℄ Exp.d
1B1 1a2 → 3dyz

6.65 7.55 7.15 7.24 7.32(0.000) (0.000) (0.000) (0.001) (0.000)
1B2 1a2 → 3dxz

7.69 7.54 7.12 8.11 7.28 7.43(0.001) (0.002) (0.003) (0.000) (0.001) (0.014)
1B1 3b1 → 3da1

7.34 7.43 7.21 8.18 7.37(0.001) (0.000) (0.000) (0.000)
1B1 3b1 → 3da1

7.38 7.50 7.14 8.26 7.67(0.001) (0.000) (0.000) (0.001)
1A1 3b1 → 3dxz

7.69 7.89 7.81 7.47 8.05 7.57(0.000) (0.077) (0.017) (0.034) (0.000)
1A2 3b1 → 3dyz 7.94 7.80 7.59 7.64 7.95

1B2 3b1 → 3dxy

7.97 7.80 7.46 7.92 7.53 7.95(0.129) (0.007) (0.024) (0.002)
1A1(V

′) π→π∗ 7.94 7.94 7.71 7.32 7.91 6.69 7.35 7.05(0.238) (0.069) (0.294) (0.361) (0.429) (0.185) (0.121)

1B1 n → π∗ 8.26 7.86 8.83 7.77(0.034) (0.000) (0.033)
1B2(V

′) π→π∗ 8.36 8.14 7.85 7.40 8.10 7.32 7.34 7.50(0.412) (0.276) (0.105) (0.120) (0.131) (0.392) (0.071)

1A2 n → π∗ 9.86 10.34 9.69
1A2 n → 3dxy 10.64 10.75 10.27a This workb The reported os
illator strengths were 
omputed at CCSD level
 Values from Ref. [117℄d Values from Refs. [67, 94, 119�122℄
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y
lopentadieneslower ex
itation energies were instead obtained from the MRCI [67℄ (5.78 eV) andSAC-CI [116℄ (5.70 eV) 
al
ulations. In the CCSDR(3) 
omputations this transitionis instead obtained at 6.10 eV. Our results, in a

ordan
e with the SAC-CI [116℄,MRCI [67℄, CASPT2 [115℄ and TD-DFT [117℄, also predi
t the 3b1 → 3s Rydbergstate to belong to the B band, with a SC-NEVPT3 verti
al ex
itation energy of 6.24eV. Moreover, on the basis of the present 
al
ulations, two other valen
e π → σ∗states, partially mixed with the 3py and 3dyz states, should be attributed to thisband: the 1a2 → σ∗ state (1B1) is 
omputed at 6.10 eV (PC-QDNEVPT2) with an
〈x2〉 of ≃ 32.5 a.u. and a negligible os
illator strength (0.004) and the 3b1 → σ∗ state(1A2) is instead lo
ated at 6.22 eV (PC-QDNEVPT2) with an 〈x2〉 of ≃ 31 a.u. Verysimilar ex
itation energies were obtained from the CC 
al
ulations, where the statesare 
omputed at slightly higher energy (6.30 and 6.28 eV respe
tively) and witha slightly more di�use 
hara
ter (36.41 and 32.11 a.u. respe
tively). This partialRydberg (3p) nature of the 1B1 state justi�es the greater os
illator strength (0.015)
omputed at CC level. In the SAC-CI study [116℄ these two states are 
al
ulated at5.87 (1B1) and 6.03 eV (1A2) and the 
orresponding values of se
ond moments of the
harge distribution are ≃ 35 and ≃ 32 a.u. Values of 6.41 (1B1) and 7.85 eV (1A2)are reported in the MRCI work [67℄ and, �nally, ex
itation energies of 6.20 (1B1) and6.26 eV (1A2) have been obtained at CASPT2 level [117℄.Energy range 6.5-7.8 eVThis spe
tral region, known as C Band, is 
onsidered as prin
ipally originated fromthe 
ouple of higher�energy π→π∗ states [67,77℄: 1A1(V

′) and 1B2(V
′) in in
reasingenergeti
al order. However, the shape of the spe
trum in this region is 
ompli
atedby a number of Rydberg states, whi
h are expe
ted to appear both at the low andhigh energy tails of the C band. In the Ele
tron Energy Loss (EEL) spe
trum themaximum appears at 7.05 eV and it was attributed to Rydberg (3b1 → 3p) and/orto valen
e (1B2(V

′)) ex
itations [67℄. The rising side, with a maximum dete
ted at6.60 eV, was, instead, assigned to a 1a2 → 3p state [67, 77℄.The best NEVPT results lo
ate the verti
al transitions to the two higher�energy
π → π∗ states at 7.94 (1A1(V

′)) and 8.14 eV (1B2(V
′)), whereas ex
itation energies of7.71 and 7.85 were obtained from the CCSDR(3) 
al
ulations. In 
omparison to theexperimental assignments, the NEVPT and CCSDR(3) transition energies turn outto be slightly higher, 
on�rming the di�
ulty, already dis
ussed for the analogoushetero�
y
les in Refs. [29,30℄, of obtaining a

urate theoreti
al results for these ioni
high�energy π → π∗ states. As is apparent in Tab. 3.9, for both these valen
estates, dissimilar os
illator strengths were obtained at SC3 and PC-QD level; this isnot surprising 
onsidering that, above all for the 1A1(V

′) state, a remarkable mixing
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al
ulations (see subse
tion 3.6.1). Very similar ex
itation energies are reported inthe MRCI study [67℄, where the 1A1(V
′) state is 
omputed at 7.91 eV and the 1B2(V

′)one at 8.10 eV. On the 
ontrary, larger di�eren
es (up to 1 eV) are observed betweenthe NEVPT and the CASPT2 [115℄ results, whi
h lo
ate the two states at 6.69(1A1(V
′)) and 7.32 eV (1B2(V

′)).The �rst three members of the 1a2 → 3p Rydberg series have been 
omputed tohave verti
al ex
itation energies of 6.55 (pz), 6.70 (px) and 6.86 eV (py), in a

ordan
ewith the experimental assignments [67, 77℄ of the stru
ture below 7 eV to a 3p-typestate 
onverging to IP1 (8.872 eV). A good agreement (within 0.2 eV) is attainedwith the CCSDR(3) ex
itation energies, whereas signi�
ant dis
repan
ies are evidentamong those of the previous works. Apart from the MRCI results [67℄, whi
h seemto overestimate the ex
itation energies of both the 3pz and 3px states, the maindi�
ulties 
on
ern the 
al
ulation of the σ�type 3py state. The SAC-CI [116℄, MRCI[67℄ and single�state CASPT2 [115℄ ex
itation energies are 6.47, 6.39 and 6.30 eV,whi
h are remarkably lower than the best NEVPT and CC values. On the 
ontrary, avalue of 6.72 eV was obtained from the TD-DFT 
omputations [117℄. The explanationfor su
h too low ex
itation energies 
an be attributed to the partial valen
e σ∗
hara
ter of the 3py state. The SAC-CI 〈x2〉 of this state is ≃ 43 a.u. [116℄, where avalue of ≃ 47 is reported in the CASPT2 work [115℄. Note that the single�state PC-NEVPT2 ex
itation energy of this state, partially mixed with the 3dyz and σ∗ states,was 6.54 eV (Tab. 3.20 in subse
tion 3.6.1), noti
eably lower than the 
orrespondingQD value but mu
h more similar to the SAC-CI and single�state CASPT2 results.On the basis of our a

urate NEVPT 
al
ulations, also the 3p 
omponents ofthe se
ond Rydberg series (R′) are expe
ted to belong to the C Band, with verti-
al ex
itation energies of 6.82 (3pz), 6.97 (3px) and 7.25 eV (3py); the CCSDR(3)
omputations lo
ate the states at 6.99, 7.10 and 7.11 eV respe
tively. Again, thevalen
e�Rydberg mixing seems to be the reason for the strong di�eren
es in the
omputed transition energies of the 3b1 → 3py state.The �ve members of the 1a2 → 3d Rydberg series are 
omputed to lie in therange between ≃ 7 and ≃ 7.7 eV, on the high�energy tail of the C Band, with avery low intensity. The best NEVPT results are 6.99 and 7.01 eV, for the two quasi�degenerate 3da1 states and 7.41 (3dxy), 7.65 (3dyz) and 7.69 eV (3dxz) for the others.As 
an be seen (Tab. 3.9), the CCSDR(3) ex
itation energies fully agree with theNEVPT results, with di�eren
es not ex
eeding 0.2 eV. On the 
ontrary, remarkablydissimilar values (up to ≃ 1 eV) have been obtained in the previous ab initio studies.Finally, on the higher energy shoulder of this band, the present results lo
atealso the �rst three 
omponents of the 3b1 → 3d Rydberg series, whose NEVPTex
itation energies are 7.34 and 7.38 eV for the two 3da1 type states and 7.69 eV for
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y
lopentadienesthe 3b1 → 3dxz state; however, there are not available experimental assignments forthis region of the spe
trum. As already pointed out, the larger os
illator strengthobtained at PC-QD level for the 3b1 → 3dxz state, with respe
t to that 
omputedat CC level as well as those reported in the other studies, has to be as
ribed to themixing with the strong valen
e transition (subse
tion 3.6.1).Energy range 7.8-10 eVAs suggested by some previous experimental [67, 77, 129℄ and theoreti
al works [67,116℄, the region between 7.8-8.8 eV is dominated by ex
itations to Rydberg states.Sin
e the present study is restri
ted to the 
omputations of the only 3l Rydbergstates, the experimental assignments of the higher 
omponents of the two Rydbergseries will be left out (see Refs. [67, 116℄ for a detailed dis
ussion).Palmer et al. [67℄, on the basis of their joint experimental and theoreti
al work,assigned the peak at 7.95 eV to a 3b1 → 3d state. The NEVPT results fully 
on�rmthis assignment, 
omputing two 
omponents of the 3d′ series near 7.95 eV: the dipole�forbidden 3b1 → 3dyz transition is predi
ted to be lo
ated at 7.94 eV and the 3b1 →
3dxy state at 7.97 eV, with an os
illator strength of 0.129, due to the intera
tion withthe strong 1B2(V

′) transition. In good agreement with the NEVPT results, bothstates are 
al
ulated at 7.80 eV at CCSDR(3) level. On the 
ontrary, signi�
antlylower values are reported in the CASPT2 study [115℄, where the states are given at7.64 (3dyz) and 7.53 eV (3dxy).Up to now, there is no dire
t experimental eviden
e of ex
itations from the lonepair orbital on the sulfur atom to π∗ orbitals. However, the two lowest�energy n→ π∗states are expe
ted to be lo
ated in this energy region, 
ompletely hidden by intense
π → π∗ transitions. Our results predi
t the two states at 8.26 (1B1) and 9.86 eV(1A2); in the MRCI study [67℄ they are 
omputed at 8.83 (1B1) and 10.34 eV (1A2)and, �nally, at 7.77 (1B1) and 9.69 eV (1A2) in the CASPT2 work [115℄. A Rydbergstate n→ 3dxy has also been dete
ted at 10.64 eV; a similar ex
itation energy (10.75eV) is reported by Palmer et al. [67℄, whereas a value of 10.27 eV was obtained bySerrano-Andrés et al. [115℄.



Chapter 4The verti
al ele
troni
 spe
trum ofFree�Base Porphin
4.1 The UV spe
trum of free-base porphinDue to their 
ru
ial r�le in a great deal of biologi
al phenomena, su
h as the photo-synthesis and the oxygen absorption and transport pro
esses, the photo
hemi
al andphotophysi
al properties of the porphyrins have been extensively studied [131�133℄.Parti
ular attention has been obviously paid to the experimental and theoreti
alinvestigation of the ele
troni
 spe
trum of free base porphin (FBP), the basi
 build-ing blo
k of the porphyrins and related systems (Fig. 4.1). Sin
e the FBP hasbe
ome tra
table for 
orrelated theoreti
al methods, a large number of studies hasbeen published, among whi
h we quote the most re
ent SAC-CI [134�136℄, STEOM-CC [137, 138℄, MRPT [139, 140℄, MRMP [141℄ and, �nally, TD-DFT [132, 142�145℄
al
ulations. Certainly, FBP, with its valen
e π system 
omposed of 24 orbitals and26 ele
trons, represents a severe 
hallenge for highly a

urate ab initio 
al
ulations,at the level, for instan
e, of 
oupled 
luster or multireferen
e perturbation theoryand despite the large number of published studies some spe
tral assignments are stilldebated.The most investigated portion of the absorption spe
trum extends from ≃ 2 to
≃ 5.5-6.0 eV and is 
hara
terized by three prin
ipal regions [146�148℄. The lowest�energy band (1.98-2.42 eV), the so�
alled Q band, is 
omposed of two peaks, des-ignated, a

ording to their polarization, as Qx and Qy bands. The most intenseabsorption region, known as Soret Band (or B band) is lo
ated in the range between3.13 and 3.33 eV and a shoulder on its high�energy tail is instead 
alled N band (3.65eV). Finally, two weak and broad peaks (L and M bands) appear at 4.25 and 5.50eV.The traditional interpretation of the �rst two bands (Q and B) is based on the �four�
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Figure 4.1: Mole
ular stru
ture of Free Base Porphin (FBP)orbital model� introdu
ed by Gouterman and 
o�workers [149�151℄ in the 1960's.A

ording to this model, the low-energy region of the spe
trum 
an be a

ounted forin terms of single ex
itations from the two highest o

upied MOs (5b1u and 2au inthe D2h symmetry group) to the two lowest uno

upied MOs (4b2g and 4b3g) (Figure4.2). So, if the mole
ule is pla
ed in the xy plane with the x axis passing along thepyrroli
 hydrogens, the x and y 
omponents of the Q band should be as
ribed to the
11B3u and 11B2u states respe
tively; the 21B3u and 21B2u transitions are instead re-sponsible for the B band. Although Gouterman's model holds for the interpretationof the Q band, it has proved to fail for the the B band, where ex
itations from thelower b1u orbitals play a non negligible r�le.4.2 Computational approa
hThe geometry of the ground state of FBP was optimized at B3LYP/6-31G∗ level,imposing D2h symmetry, whi
h, on the basis of previous theoreti
al 
al
ulations[152,153℄, was shown to be the most stable one. Following the 
onvention adopted inmost previous theoreti
al works, the mole
ule has been pla
ed in the xy plane withthe two internal hydrogens along the x axis (Fig. 4.1). All the 
al
ulations were
arried out with a 6-31G∗ basis set [55℄, 
onsisting of 364 basis fun
tions. The zeroorder des
ription was attained using two di�erent a
tive spa
es, named CAS(4/4)and CAS(14/13), where the notation (m/n) indi
ates, as usual, m a
tive ele
trons
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Figure 4.2: HOMO (2au), HOMO-1 (5b1u), LUMO (4b3g) and LUMO+1 (4b2g) MOs ofFree Base Porphinand n a
tive orbitals. In all the 
al
ulations, the 24 1s orbitals were kept frozen atthe CASSCF level.Table 4.1: A
tive spa
es, basis set and number of states used in the CASSCF
al
ulations.Basis set A
tive Spa
e Compositiona Number of states
B3u B2u6-31G∗

CAS(4/4)b 5b1u,4b2g,4b3g,2au 2 2CAS(14/13)
 3-5b1u,3-6b2g ,3-6b3g,1-2au 4 4a At the SCF level the ground state ele
troni
 
on�guration is
20ag17b3u17b2u14b1g5b1u3b2g3b3g2aub Single�state CASSCF 
al
ulations
 State�averaged CASSCF 
al
ulationsThe detailed 
omposition of the two a
tive spa
es is given in Tab. 4.1, wherethe number of the 
omputed states is also reported. In the CAS(4/4) 
al
ulationsthe zero order wavefun
tion was obtained from single�root CASSCF 
al
ulations,whereas with the CAS(14/13) spa
e, state�averaged CASSCF optimizations wereperformed. The ex
itation energies were obtained with respe
t to the 
orresponding
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al ele
troni
 spe
trum of Free�Base Porphinground state 11A1g, whi
h was 
al
ulated both for the CAS(4/4) and CAS(14/13)spa
es.4.3 NEVPT resultsIn Tab. 4.2 the CASSCF and NEVPT2 ex
itation energies are gathered and 
om-pared with those 
omputed in the most re
ent theoreti
al studies; the experimentaldata are also reported.Table 4.2: Verti
al ex
itation energies of the �rst four ex
ited states of B3u and B2usymmetries of free base porphin 
ompared with other theoreti
al results and experimentaldata.Method Ex
ited States
11B3u 11B2u 21B3u 21B2u 31B3u 31B2u 41B3u 41B2uCAS(4/4)CASSCF 3.48 3.71 5.08 5.12SC-NEVPT2 2.05 2.53 3.25 3.33PC-NEVPT2 2.04 2.51 3.22 3.30CAS(14/13)CASSCF 3.12 3.80 4.72 5.22 5.74 6.15 7.52 6.27SC-NEVPT2 2.21 2.76 3.49 3.62 4.10 4.40 4.93 4.47PC-NEVPT2 2.05 2.56 3.30 3.35 3.84 4.13 4.50 4.10Previous worksCASPT2 [139℄ 1.63 2.11 3.12 3.08 3.53 3.42 4.04 3.96MRPT2 [140℄ 1.73 2.25 2.96 3.02SAC-CI [135℄ 1.75 2.23 3.56 3.75 4.24 4.52 5.45 5.31STEOM-CC [138℄ 1.72 2.61 3.66 3.77 4.28 4.67 5.38 5.26TD-DFT [144℄ 2.16 2.29 2.98 3.01 3.47 3.41 3.76 3.77TD-DFT [132℄ 2.27 2.44 3.33 3.41 3.61 3.56 3.89 3.89Expt. values 1.98-2.02a 2.33-2.42a 3.13-3.33b 3.13-3.33b 3.65
 4.25
Assignment Qx Qy Bx By N La Refs. [148,154,155℄b Refs. [146,148,155℄
 Ref. [148℄Before dis
ussing in detail the interpretation of the spe
trum, some general re-marks are possible. First of all, 
ontrary to the trend observed in the results of theother ab initio methods [135, 138�140℄, whi
h, with the ex
eption of the TD-DFT
al
ulations [132,144℄, seem to overestimate the 
orrelation energy of the 11B3u statewith respe
t to the ground state, the NEVPT2 ex
itation energies turn out to beslightly higher than the experimental values; a similar behaviour is also noti
ed forthe 11B2u state. Also, while a perfe
t a

ordan
e, with di�eren
es not ex
eeding 0.03
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an be observed between the SC and PC transition energies in the CAS(4/4) 
al-
ulation, signi�
ant deviations are found using the larger a
tive spa
e. The di�erentbehaviour in the se
ond order 
orre
tion between the two NEVPT variants, 
anbe understood 
onsidering the in
reasing a

ura
y of the PC approa
h, involving amu
h larger number of perturbation fun
tions with respe
t to the SC 
ase, as thesize of the a
tive spa
e in
reases.Table 4.3: Analysis of the CASSCF wavefun
tion 
omposition. Only the 
on�gura-tions with weight greater than 5% are 
onsidered.CAS(4/4) CAS(14/13)State Con�g. Weight Con�g. Weight(%) (%)
11B3u 5b1u → 4b2g 43 5b1u → 4b2g 46

2au → 4b3g 55 2au → 4b3g 42
21B3u 5b1u → 4b2g 52 5b1u → 4b2g 25

2au → 4b3g 39 4b1u → 4b2g 22
2au → 4b3g 35

31B3u 5b1u → 4b2g 37
4b1u → 4b2g 34
2au → 4b3g 9

41B3u 3b1u → 4b2g 87
11B2u 5b1u → 4b3g 40 5b1u → 4b3g 41

2au → 4b2g 58 2au → 4b2g 51
21B2u 5b1u → 4b3g 55 5b1u → 4b3g 43

2au → 4b2g 36 2au → 4b2g 37
31B2u 4b1u → 4b3g 56

3b1u → 4b3g 20
41B2u 4b1u → 4b3g 66

5b1u → 4b3g 14A
tually, as is apparent, these deviations are more 
onsistent for the higher ex-
ited states and the maximum value (0.43 eV) is obtained for the 41B3u state. These
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trum of Free�Base Porphinin
reasing dis
repan
ies are a 
lear 
lue of the inadequa
y of su
h an a
tive spa
e,in
luding only 13 valen
e π orbitals (slightly more than half of the 
omplete π valen
espa
e), to des
ribe high�energy ex
ited states. Then, it should be 
onsidered thatthe use of mole
ular orbitals not fully optimized, but obtained from state�averaged
al
ulations, possibly 
ontributes to the defe
tive zero order des
ription.The most a

urate NEVPT results predi
t the verti
al transition to the 11B3uand 11B2u states at 2.05 and 2.56 eV (CAS(14/13) 
al
ulation), in remarkable a

or-dan
e with the experimental values of 1.98-2.02 (Qx) and 2.33-2.42 eV (Qy). Also,we note that, for the Q band, the results obtained from the �four�orbital� based 
al-
ulations (CAS(4/4) spa
e) 
an be regarded as satisfa
tory. Moreover, the splittingbetween the 11B3u and 11B2u states, 
omputed to be 0.47 eV, at the PC level, fullyagrees with the observed value of 0.44 eV [148℄.If on the one hand the Q band assignment is, altogether, well established, on theother hand the interpretation of the B band is still debated in the literature. Infa
t, a

ording to Gouterman's model [149�151℄ two 
omponents, with perpendi
u-lar polarizations, should be distinguished: the Bx and By bands, arising from the
21B3u and 21B2u states respe
tively. The line splitting between the two 
omponentsof the B band, measured at low temperature [146℄, amounts to 0.03 eV. This tradi-tional interpretation, supported by some experimental eviden
e [147℄, as well as bythe CASPT2 [139, 156℄, TD-DFT [144℄ and MRPT [140℄ 
al
ulations, was howeverquestioned by Nakatsuji et al. [134℄ and Tokita et al. [135℄, who, on the basis of theirSAC-CI 
al
ulations, assigned the 21B3u state to the B band, but the 21B2u stateto the N band, appearing as a shoulder to the intense B band. Nevertheless, theSAC-CI os
illator strengths of the two transitions, not mat
hing with the spe
trumpro�le, seem to be a weak point of their 
on
lusions (see Ref. [138℄).The PC-NEVPT2(4/4) results lo
ate the 21B3u state at 3.22 eV and the 21B2u stateat 3.30 eV, predi
ting a splitting of 0.08 eV, slightly greater then the experimentalvalue of 0.03 eV. A small redu
tion of this splitting is observed in the CAS(14/13)
al
ulations, where the two states are 
omputed, at the PC level, at 3.30 and 3.35eV respe
tively, in reasonable agreement with experiments (3.13-3.33 eV). While thedes
ription of the 21B2u state provided by the CAS(4/4) 
al
ulations is 
omparableto that obtained using the larger a
tive spa
e, this is not the 
ase for the 21B3ustate. Indeed, as shown in Tab. 4.3, while, with both a
tive spa
es, the referen
ewavefun
tion of the 21B2u state is dominated by the 4b1u → 4b3g and 2au → 4b2g
on�gurations, in the larger 
al
ulation, the 21B3u state is also des
ribed by the
4b1u → 4b3g ex
itation (22%), not 
onsidered in Gouterman's four�orbital model.The interpretation of the two higher�energy bands is 
ertainly more 
omplex andalso the experimental eviden
e is less 
lear. Moreover, as shown by Gwaltney andBartlett [138℄, in this region of the spe
trum (4.5-5 eV) the Rydberg transitions are
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ted to start. By now, the �rmest assignment, suggested by Serrano-Andrèset al. [139℄, is that the N band has to be as
ribed to the pair of states 31B3u-
31B2u and, analogously, the so-
alled L band is assigned to the 41B3u-41B2u states.However, as apparent in Tab. 4.2, quite a 
on�i
ting pi
ture emerges from theresults of the various theoreti
al methods, with di�eren
es in the 
omputed ex
itationenergies greater than 1 eV. At the partially 
ontra
ted level, the 31B3u-31B2u statesare 
omputed at 3.84-4.13 eV, whereas the other pair of states 41B3u-41B2u is lo
atedat 4.50-4.10 eV. Our results, overall, are 
onsistent with the CASPT2 interpretation,sin
e the largest deviation between the PC-NEVPT2 and CASPT2 amounts roughlyto 0.7 eV (31B2u state). Nevertheless, a too sizable splitting, with respe
t to that
omputed by Serrano-Andrés et al. [139℄, is found between the 
omponents of ea
hpair of states. However, at the present stage of 
al
ulation, sin
e the ground stategeometry, basis set and, above all, the a
tive spa
e used for this study are not thesame as in Ref. [139℄, and hen
e also the nature of the ex
ited states 
omputed isnot exa
tly the same, the dire
t 
omparison with the CASPT2 results should beregarded with 
are.
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Chapter 5Ele
tron transfer in a model spirosystem
5.1 Introdu
tionThe present 
hapter addresses the problem of the des
ription of the Ele
tron Transfer(ET) pro
esses in Mixed�Valen
e (MV) 
ompounds in the framework of multirefer-en
e perturbation theory. The investigation is 
arried out on the model MV spiro sys-tem reported in Fig. 5.1, (the 5,5′(4H,4H′)- spirobi[
y
lopenta[
℄pyrrole℄2,2′ ,6,6′te-trahydro 
ation) [157℄, whi
h, due to its relatively small size, allows the appli
ationof highly�
orrelated methodologies.

Figure 5.1: Mole
ular stru
ture of the spiro mole
uleThe work presented here [42, 43℄ was thought as the extension of a previousCASSCF and MRCI study [158℄, whi
h reports an extensive investigation by usingdi�erent basis sets and 
omputational approa
hes (
anoni
al vs. lo
alized orbitals).After a short introdu
tion to the ET pro
esses in MV systems (se
tion 5.2), themodel spiro system, subje
t of the present investigation, is presented in se
tion 5.3and the 
omputational approa
h is, instead, illustrated in se
tion 5.4. Se
tion 5.5shows that MRPT treatments (su
h as, for instan
e, NEVPT2 and CASPT2 [17℄)



94 Chapter 5. Ele
tron transfer in a model spiro systemwith a standard de�nition of the MO's and of their energies are inadequate for theMV systems, leading to an unphysi
al des
ription of the ele
troni
 energy 
urve asa fun
tion of the rea
tion 
oordinate. In the same se
tion, it is shown that theappli
ation of the perturbation approa
h to the third order in the energy is ableto restore the 
orre
t shape of the energy pro�le. The origin of su
h a behaviouris illustrated in se
tion 5.6, by resorting to a simple Mar
us�like two�state model
omprising only three ele
trons in four orbitals. By using this model, a strategybased on the use of the 
anoni
al orbitals of a state�averaged 
al
ulation and withstate�averaged orbital energies is proposed with the aim to over
ome the failure ofthe se
ond order perturbation treatment based on state�spe
i�
 
anoni
al orbitalsand energies. This strategy is adopted in a
tual 
al
ulations on spiro in se
tion 5.7,
on�rming its validity.5.2 Ele
tron Transfer rea
tions and Mixed�Valen
yThe pivotal r�le played by the ET pro
esses in a great deal of 
hemi
al�physi
al andbiologi
al phenomena, a

ounts for the extensive resear
h e�orts addressed to theunderstanding of its me
hanisms. In the domain of the intramole
ular ET, Mixed�Valen
e (MV) 
ompounds play a relevant r�le as simple model systems suitablefor understanding the adiabati
 ET phenomena [159�164℄. Furthermore, MV 
om-pounds are extensively investigated, both experimentally and theoreti
ally, parti
u-larly in the �eld of the inorgani
 binu
lear MV 
omplexes [165℄, for their appealingopti
al and magneti
 properties as well as for their possible appli
ation in mole
ularele
troni
s and photoni
s [166℄. Nevertheless, more re
ently, an in
reasing attentionhas been paid to the purely organi
 MV systems (see, for instan
e, the extensive workon the triarylamine�based MV systems by Lambert and Nöll [167℄), sin
e their InterValen
e Charge Transfer (IV-CT) band is, generally, not a�e
ted by the overlap withother low�lying transitions, 
ontrary to what may o

ur for inorgani
 
ompounds dueto appearan
e of the d → d metal to ligand (MLCT) or ligand to metal (LMCT)
harge transfer ex
itations.The simplest MV 
ompound is 
omposed of two moieties (hereafter indi
ated withA and B), linked either dire
tly or via a bridge, where an inter�valen
e ET (IV-ET)o

urs between the two redox sites being in di�erent oxidation states. The ele
troni

oupling between the two ideally non�intera
ting systems, where the ele
tron (hole)is lo
alized either on the left or on the right moiety, governs the 
ommuni
ationbetween the two subunits, determining the general properties of the system. Su
hintera
tion is expressed by the Hamiltonian matrix element Hab =
〈
Ψa

∣∣∣Ĥ
∣∣∣Ψb

〉,where Ψa and Ψb are the diabati
 states, one with the ele
tron/hole lo
alized on the
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y 5.2 95(left) subunit A and the other on the (right) subunit B.A

ording to the usual 
lassi�
ation by Robin and Day [168℄, MV systems 
anbe divided into three 
lasses:
• 
lass I: redox 
enters strongly lo
alized (
omplete valen
e trapping);
• 
lass II : partial delo
alization arising from a weak ele
troni
 intera
tion (va-len
e trapping);
• 
lass III : strong ele
troni
 
oupling whi
h gives rise to a 
omplete delo
alizedsystem with a single minimum for the ground state (delo
alized valen
y).

E op = λ

 ∆E = 2H AB

(a) 
lass II  ∆E = 2H AB(b) 
lass IIIFigure 5.2: Potential Energy Surfa
es (PESs) of an ET rea
tion in a symmetri
 MV 
om-pound.In the 
ase of 
lass II and 
lass III 
ompounds (Fig. 5.2), the analysis of theIV-CT band, either based on the semi
lassi
al Hush theory [169, 170℄ or on a morerigorous quantum me
hani
al approa
h [171℄, provides a dire
t way to estimate Hab,and the reorganization energy, λ. The extent of the ele
troni
 
oupling 
an alsobe obtained experimentally by means of Ele
tron Spin Resonan
e (ESR), Nu
learMagneti
 Resonan
e (NMR) Spe
tros
opy as well as Photoele
tron Spe
tros
opymeasures (see Refs. [172, 173℄ for a more detailed overview). Nevertheless, sin
e theobtaining of a reliable experimental measure of Hab is often not possible, parti
ularlyfor strongly 
oupled systems, where the ET rates are mu
h faster than the typi
altime s
ale of the above 
ited experimental te
hniques and, additionally, the signi�-
ant vibroni
 
oupling makes the Hush theory no longer appli
able, the developmentof a

urate and e�
ient 
omputational strategies represents a 
ru
ial issue in thestudy of MV systems. Moreover, the a

urate theoreti
al predi
tion of the ele
troni
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oupling would represent a powerful tool for the design of new �spa
ers�, allowing thespe
i�
 modulation of the properties of the ET pro
ess (e.g. long or short distan
eET). In the framework of the widely used two�state one�mode model and in the sim-ple 
ase of symmetry�equivalent donor and a

eptor groups, the ele
troni
 
oupling
Hab is de�ned as half the energy splitting (∆E) between the two adiabati
 potentialsurfa
es at the 
rossing seam, and it 
an be 
omputed using di�erent methodologiesand approa
hes [157, 158, 167, 174�186℄.Nevertheless, the theoreti
al study of thise kind of systems presents di�
ulties:the e�e
t of the dynami
al 
orrelation has to be evaluated, improving the qualitativeminimal des
ription given by the simple mixing of the quasi degenerate determi-nants a

ounting for the two 
harge distributions. These di�
ulties are related tothe intrinsi
 multireferen
e (MR) nature of the ground and the �rst ex
ited statewavefun
tions of these systems and to their dimension, whi
h makes impra
ti
al theuse of too expensive 
omputational approa
hes. MR perturbation theory (MRPT),among the other MR methods, is a good 
andidate due to the reliability shown inmany MR appli
ations and due to the s
aling properties of the 
omputational 
ostwith respe
t to the dimensions of the system. With the ex
eption of some re
entsemiempiri
al Austin Model 1 (AM1) 
omputations [167, 183℄, the most frequentlyapplied methods, to study the ET pro
ess, are based on Density Fun
tional [176℄and Time�Dependent Density Fun
tional Theories (TD-DFT) [180, 181℄. However,as shown in di�erent appli
ations [181,187℄, some doubts have been raised 
on
erningthe appli
ability of the DFT approa
h to the study of the ele
tron transfer in MV
ompounds, sin
e the 
omputed ele
troni
 
oupling has been shown to be system-ati
ally underestimated by 20-30% in 
omparison to the results of more re�ned abinitio 
al
ulations.5.3 The model Spiro systemThe π-σ-π spiro mole
ule (reported in Fig. 5.3) 
onsists of two pyrroli
 units (πsystems), lying on two perpendi
ular planes, 
onne
ted by a spiro
y
loalkane rigid σbridge. The symmetry of the neutral mole
ule is D2d, with the C2 axis (the z axis)passing through the two N atoms; if an ele
tron is removed from the system, thepositive 
harge tends to lo
alize on the left or on the right pyrroli
 unit, distortingthe symmetry and giving rise to two equivalent C2v minima. These are separated bya symmetri
al D2d saddle point at the 
rossing seam, 
orresponding to the situationof a 
omplete delo
alization of the positive 
harge over the whole mole
ule.Although some arguments about the equilibrium geometry of the spiro 
ationin either its left/right�lo
alized or delo
alized stru
tures have been provided and C1
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Figure 5.3: Stru
ture of the spiro mole
uleand C2 symmetries have been respe
tively suggested [177℄, here, as in Refs. [158,186℄,we adopt the C2v point group for the two minima with the lo
alized 
harge and theD2d symmetry for the stru
ture at the saddle point.The �π system� of the spiro 
ation, 
omposed of the π systems lo
alized on thetwo pyrroli
 rings, 
omprises 11 π ele
trons and 10 π orbitals and, at the singledeterminant level and in the C2v point group, the ele
troni
 
on�guration is givenby (σ�
ore)(1b1)2(2b1)2(1b2)2(2b2)2(1a2)
2(2a2)

1. Therefore, the ground and the �rstex
ited states, involved in the ET pro
ess, are two states of A2 symmetry, denotedas 2A2(1) and 2A2(2) in the following.The ET pro
ess was studied along an ad ho
 approximate rea
tion path, de�nedby the linear mixing of the 
artesian 
oordinates of the two optimized C2v geometries[158℄:
Q(ξ) =

(
1

2
− ξ

)
QA +

(
1

2
+ ξ

)
QB (5.1)where the mixing parameter ξ was varied, in steps of 0.05, from -1.50 to +1.50and QA and QB are ve
tors 
olle
ting the 
oordinates of the two optimized C2vgeometries. Therefore, the two equivalent minima are in ξ = −0.50 (QA, 
harge onthe left A moiety) and ξ = +0.50 (QB, 
harge on the right B moiety). An �averaged�D2d geometry, whi
h was however found to be very 
lose to the optimized one (seeRef. [158℄), is obtained at the 
rossing seam point (ξ=0.0). Nevertheless, sin
e theMOLCAS pa
kage [76℄, used to obtain the CASSCF wavefun
tions, 
an only dealwith Abelian point groups, the 
al
ulations for the non�Abelian D2d group wereperformed using the redu
ed C2v symmetry.
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tron transfer in a model spiro system5.4 Computational detailsFollowing the previous works, the 
al
ulations were 
arried out with basis sets ofAtomi
 Natural Orbitals (ANO-L) [72℄ type. Di�erent 
ontra
tions levels wereadopted: C,N[2s1p℄ and H[1s℄ (SZ); C,N[3s2p℄ and H[2s℄ (DZ); C,N[3s2p1d℄ andH[2s1p℄ (DZP) and, �nally, C,N[4s3p1d℄ and H[3s1p℄ (TZP).For the 
al
ulation of the rea
tion 
oordinate (see se
tion 5.3), use has been madeof the geometries optimized in Ref. [158℄ at the Restri
ted Open Shell Hartree�Fo
k(ROHF) level with a triple zeta plus Polarization (TZP) ANO basis set [72℄.State�averaged CASSCF 
al
ulations were performed for the two 2A2 states usingdi�erent a
tive spa
es: CAS(3/2), just 
omposed of the three ele
trons and the twoa2 (HOMO and HOMO-1) orbitals; CAS(11/10), 
omprising the whole π system ofthe mole
ule, obtained distributing eleven a
tive ele
trons into ten a
tive orbitals andan intermediate spa
e, 
omposed of seven ele
trons and four orbitals, CAS(7/4). Theexpli
it 
omposition, in the C2v point group, of the a
tive spa
es used, is reportedin Tab. 5.1. Table 5.1: A
tive spa
e 
omposition and nomen
lature.A
tive Spa
e CompositionaCAS(3/2) 3-4a2CAS(7/4) 12b1, 12b2,3-4a2CAS(11/10) 11-13b1, 11-13b2, 3-6a2a At the SCF level, in the C2v point group, the groundstate ele
troni
 
on�guration of the neutral system is
(25a1)

2(12b1)
2(12b2)

2(4a2)
2.In all the perturbative 
al
ulations, the 1s orbitals of N and C were kept un
or-related.Finally, all the energy di�eren
es, reported in the next se
tions, were 
omputedwith respe
t to the energy of the ground state of the 
ation at the C2v geometry with

ξ = +0.5 (ξ = −0.5), 
orresponding to that of the optimized geometry QA (QB),although it might not be the a
tual minimum of the 
urve.5.5 Se
ond and third order standard MRPTThis se
tion is devoted to the dis
ussion of the results provided by a standard pertur-bation approa
h (hereafter indi
ated as NEVPT(
an) and CASPT2(
an)), whi
h isbased on the use of state�spe
i�
 
anoni
al mole
ular orbitals and orbital energies.Therefore, the zero order wavefun
tions were de�ned performing a state�averaged
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al
ulation on the two 2A2 states, followed by two distin
t single�rootCASCI 
al
ulations, in order to build the 
anoni
al orbitals and to 
ompute theorbital energies for ea
h state. Here, we shall just report the results 
omputed withthe minimal basis set (SZ) and a
tive spa
e, CAS(3/2).The 
omputed CASSCF, NEVPT2(
an), CASPT2(
an) and NEVPT3(
an) en-ergy di�eren
es are 
olle
ted in Tab. 5.2. As is apparent from the energy pro�lesreported in Fig. 5.5, and from the 
omputed values of the energy barriers in Tab. 5.2,a non�physi
al des
ription of the two adiabati
 PES, in proximity of the symmetri
alsaddle point is attained with both the NEVPT2 and CASPT2 approa
hes.Table 5.2: Spiro 
ation: NEVPT2(
an), NEVPT3(
an) and CASPT2(
an) energies (kJ/mol) ofthe ground state, 2A2(1), at ξ = 0.0 and of the �rst ex
ited state, 2A2(2), at ξ = 0.0 and ξ = −0.5.All the energies are 
omputed with respe
t to the energy of the ground state at ξ = −0.5. For thesake of 
larity the energy splitting (∆E kJ/mol) between the two states at ξ = 0.0 is also reported.For the CASPT2 results the level shift was varied from 0.0 to 0.2 hartree.States CAS NEVPT(
an) CASPT2(
an)SC-PT2 PC-PT2 SC-PT3 L.S. 0.0 L.S. 0.1 L.S. 0.2
ξ = −0.5
2A2(2) 56.690 51.442 51.441 51.539 50.001 50.043 50.151
ξ = 0.0
2A2(1) 8.328 -5.117 -5.330 3.765 -5.790 -5.724 -5.503
2A2(1) 17.371 4.726 4.505 12.983 4.017 4.087 4.314
∆E (ξ = 0.0)
2A2(2) 9.043 9.843 9.835 9.218 9.807 9.811 9.817In parti
ular, an in
reasing overestimation of the 
orrelation energy, starting at

ξ = −0.15 and 
ulminating at ξ = 0, is observed, with the 
onsequent loss of thebarrier and the appearan
e of a �well� in the avoided�
rossing region. Indeed, bothNEVPT2(
an) and CASPT2(
an) 
al
ulations, irrespe
tive of whether a level shift isused or not in the latter 
ase (thereby ex
luding an intruder state problem), yield forthe 2A2(1) state the D2d nu
lear 
on�guration ≃5 kJ/mol below the C2v minimum.As shown in Fig. 5.5, the SC�NEVPT2(
an) and the CASPT2(
an) 
urves arealmost parallel along the rea
tion 
oordinate and the 
omputed energy di�eren
es
olle
ted in Tab. 5.2 are in very good a

ordan
e. The energy splitting at the D2dgeometry amounts roughly to 9.8 kJ/mol, very 
lose to that 
omputed at CASSCFlevel (≃9 kJ/mol). As is apparent, pro
eeding up to the third order is essential torestore the 
orre
t behavior of the two PES, with the expe
ted double�well pro�lefor the ground state and with the smooth paraboli
 
urve for the �rst ex
ited state.
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an), SC-NEVPT3(
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an) (no level shift) PES ofthe 2A2(1) and 2A2(2) states of the spiro 
ation. All the 
urves are shifted in order to have thetwo C2v minima at zero energy. Full lines and �+� points, NEVPT2(
an) energies; dashedlines and �×� points, CASPT2(
an) energies; dotted lines and �∗� points, NEVPT3(
an)energies.The SC-NEVPT3 [24℄ 
al
ulation is rather expensive on this system and one
an reasonably expe
t the PC-NEVPT3 and CASPT3 results to agree with the SC-NEVPT3. The energy barrier 
omputed at SC-NEVPT3(
an) level is 3.765 kJ/mol,whereas a value of 8.328 kJ/mol is obtained from the CASSCF 
al
ulation. Finally,it is interesting to noti
e that the splitting of the two states seems to be una�e
tedby the wrong se
ond order des
ription, being essentially the same at the CASSCF,se
ond and third order PT levels. In the following se
tion, this general failure of theMRPT2 treatment making use of a partially monoele
troni
 zero order Hamiltonianand of state�spe
i�
 
anoni
al orbitals and orbital energies, together with the bene�tbrought by the third order 
orre
tion, will be demonstrated and dis
ussed, for asimple Mar
us�like two�state model.
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h 5.6 1015.6 Failure of a standard MRPT approa
h5.6.1 A simple two-state modelLet us 
onsider a model system A, with two ele
trons and two orbitals, a and a∗ (alower in energy than a∗). In a perturbation s
heme, using the Møller-Plesset [26℄partition of the Hamiltonian, the zero�order wavefun
tion is the determinant ‖aā‖and only one perturber (‖a∗ā∗‖) must be 
onsidered (if the orbitals are supposedto be optimized, the single ex
itations are ex
luded due to Brillouin's theorem [7℄).The �rst order 
orre
tion to the wavefun
tion is
Ψ(1) = − 〈aa|a∗a∗〉

2(εAa∗ − εAa )
‖a∗ā∗‖ (5.2)and the se
ond and third order 
orre
tions to the energy are:

E
(2)
A = −|〈aa|a∗a∗〉|2

2(εAa∗ − εAa )
(5.3)

E
(3)
A =

〈
Ψ(1) |V|Ψ(1)

〉
− E(1)〈Ψ(1)|Ψ(1)〉

=
|〈aa|a∗a∗〉|2
4(εAa∗ − εAa )2

[E (‖a∗ā∗‖) − E (‖aā‖)] + E
(2)
A (5.4)where V is the perturbation operator (Ĥ = Ĥ0 + V),

εAa = 〈a |h| a〉 + 〈aa|aa〉 (5.5)
εAa∗ = 〈a∗ |h| a∗〉 + 2〈a∗a|a∗a〉 − 〈a∗a|aa∗〉 (5.6)are the orbital energies of the a and a∗ orbitals (the supers
ript A has been addedto stress that the orbital energies refer to the A system treated alone) and

E (K) =
〈
K
∣∣∣Ĥ
∣∣∣K
〉 (5.7)is the energy of determinant K.Consider now a se
ond system B, equal to A, and the supersystem (A· · ·B)+where A and B are weakly intera
ting (Fig. 5.6.1). The mole
ular orbitals of theAB system 
an be regarded as lo
alized and they are very 
lose to the orbitals of Aand B: they are therefore indi
ated in the following with a, a∗, b and b∗.The ground state zero order wavefun
tion for the supersystem is des
ribed bythe linear 
ombination of the two quasi�degenerate determinants ‖abb̄‖ and ‖aāb‖(
orresponding to the A+ · · ·B and A· · ·B+ 
harge distributions, respe
tively):

Ψ(0) = c1‖abb̄‖ + c2‖aāb‖ . (5.8)
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Figure 5.6: S
hemati
 representation of the A+· · ·B and A· · ·B+ systemsWe suppose a small relaxation of the geometry going from A (B) to A+ (B+). Theweak 
oupling between the two systems A and B is given by an e�e
tive Hamiltonianof the form:
H =

∣∣∣∣∣
k1(

1
2 − ξ)2 k2

k2 k1(
1
2 + ξ)2

∣∣∣∣∣ (5.9)where ξ is a �rea
tion 
oordinate�: with ξ = −0.5 the system is des
ribed by A+· · ·Bwhile with ξ = 0.5 the system is A· · ·B+. The values of k1 and k2 are su
h that c1remains 
lose to 1 for ξ < −δ and is 
lose to 0 for δ < ξ, with 0 < δ ≪ 1.5.6.2 Se
ond order 
orre
tionTo 
ompute the se
ond order 
orre
tion to the energy one has to use in this 
ase aMRPT s
heme, and in order to keep the approa
h as simple as possible, the Møller�Plesset bary
entri
 [188℄ (MPB) partition of the Hamiltonian is adopted. The orbitalenergies of the (A· · ·B)+ system are 
omputed using the formula [189℄:
εi = 〈i |h| i〉 +

∑

k

nk

[
〈ik|ik〉 − 1

2
〈ik|ki〉

] (5.10)where nk is the natural o

upation of orbital k (na = 1 + |c2|2, nb = 1 + |c1|2, and
na∗ = nb∗ = 0). In the MPB partition, the zero order energy of the ground state is:

E(0) = (1 + |c2|2)εa + (1 + |c1|2)εb (5.11)In order to simplify the derivation, we use the approximation to negle
t thebiele
troni
 integrals in whi
h one ele
troni
 distribution (of ele
tron 1 or 2) is theprodu
t of orbitals one on A and the other on B. With this approximations, the
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h 5.6 103orbital energies are:
εa = 〈a |h| a〉 +

1 + |c2|2
2

〈aa|aa〉 +
(
1 + |c1|2

)
〈ab|ab〉 (5.12)

εb = 〈b |h| b〉 +
1 + |c1|2

2
〈bb|bb〉 +

(
1 + |c2|2

)
〈ab|ab〉 (5.13)

εa∗ = 〈a∗ |h| a∗〉 +
(
1 + |c2|2

)
〈aa∗|aa∗〉 − 1 + |c2|2

2
〈aa∗|a∗a〉 +

+
(
1 + |c1|2

)
〈a∗b|a∗b〉 (5.14)

εb∗ = 〈b∗ |h| b∗〉 +
(
1 + |c1|2

)
〈bb∗|bb∗〉 − 1 + |c1|2

2
〈bb∗|b∗b〉 +

+
(
1 + |c2|2

)
〈b∗a|b∗a〉 (5.15)We note that the dependen
e of these orbital energies on ξ (through the de-penden
e of c1 and c2 on ξ) agrees with the one found in the NEVPT 
al
ulationsreported in the previous se
tion, as is apparent from Fig. 5.7 where the orbital en-ergies used in the NEVPT2 
al
ulation for four representative ina
tive orbitals arereported as a fun
tion of ξ. The dependen
e of the 
harge of the B moiety (equivalentto |c2|2 in the model) as a fun
tion of ξ is also reported for the sake of 
larity.Let us turn to the 
al
ulation of the se
ond order perturbation 
orre
tion to theenergy: the single ex
itations are 
onsidered to give negligible 
ontributions, sin
elo
al single ex
itations on the two systems 
an be disposed of if the orbitals aresupposed to be optimized (
ontra
ted singles would yield stri
tly zero a

ording tothe Generalized Brillouin theorem [14℄) and, moreover, intersystem ex
itations arethought to have a small 
ontribution due to the weak intera
tion between the twosystems. Therefore only the two doubly ex
ited perturbers, ‖ab∗b̄∗‖ and ‖a∗ā∗b‖(with zero order energy εa + 2εb∗ and εb + 2εa∗ , respe
tively) must be 
onsidered,obtaining for the se
ond order 
orre
tion to the energy:

E(2) = −|c1|2
|〈bb|b∗b∗〉|2

2εb∗ −
(
1 + |c1|2

)
εb − |c2|2 εa

−|c2|2
|〈aa|a∗a∗〉|2

2εa∗ −
(
1 + |c2|2

)
εa − |c1|2 εb

(5.16)and for the �rst order 
orre
tion to the wavefun
tion
Ψ(1) = −c1

〈bb|b∗b∗〉
2(εb∗ − εb)

‖ab∗b̄∗‖ − c2
〈aa|a∗a∗〉

2(εa∗ − εa)
‖a∗ā∗b‖ . (5.17)Sin
e the two subsystems A+ and B (or A and B+) are supposed to be weaklyintera
ting and given that the ionized system need not be 
orrelated, the se
ond
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ξ Figure 5.7: Spiro 
ation: variation of the 
harge of the B moiety (in %) and of the orbitalenergies (in hartree) of two 
ore and two virtual representative orbitals along the rea
tion
oordinate ξ. Charge of the B moiety, full line and �+� symbols; energy of a 
ore and avirtual π orbital lo
alized on A, �×� and open square symbols, respe
tively; energy of a 
oreand a virtual π orbital lo
alized on B, �∗� and bla
k square symbols, respe
tively.order approximation to the energy, E(2), is expe
ted to be very 
lose (equal at thenon�intera
tion limit) to that of the isolated system A (or B), 
omputed in equation(5.3) for all −0.5 ≤ ξ ≤ 0.5.Note that for ξ = −0.5 and ξ = 0.5 (c1 ≃ 1, c2 ≃ 0 and c1 ≃ 0, c2 ≃ 1,respe
tively), equation (5.16) 
orre
tly redu
es to equation (5.3), apart from thesmall integrals 〈ab|ab〉 and 〈a∗b|a∗b〉.Let us 
onsider the 
ase ξ = 0: making use of the equalities |c1|2 = |c2|2, εa∗ = εb∗and εa = εb and noting that 〈aa|a∗a∗〉 = 〈bb|b∗b∗〉, one has
E(2) = −|〈aa|a∗a∗〉|2

2(εa∗ − εa)
(5.18)and

Ψ(1) = − 〈aa|a∗a∗〉
2(εa∗ − εa)

[
c1‖ab∗b̄∗‖ + c2‖a∗ā∗b‖

] (5.19)where
εa = 〈a |h| a〉 + 0.75〈aa|aa〉 + 1.5〈ab|ab〉 (5.20)
εa∗ = 〈a∗ |h| a∗〉 + 1.5〈a∗a|a∗a〉 − 0.75〈a∗a|aa∗〉 + 1.5〈a∗b|a∗b〉 (5.21)
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h 5.6 105Expressions (5.20) and (5.21) for the orbital energies are di�erent from those reportedin eqs. (5.5) and (5.6), even disregarding the small integrals 〈ab|ab〉 and 〈a∗b|a∗b〉.The denominator in (5.18) is smaller than the one in (5.3) (the onsite repulsionintegrals 〈aa|aa〉 and 〈a∗a|a∗a〉 being large and positive) and the 
orrelation energyis therefore larger in module.It is worthwhile to point out that the model here dis
ussed involves only a
tiveand virtual orbitals. The in
lusion of 
ore orbitals 
ompli
ates the derivation. How-ever, one 
an show that for ξ = 0 the perturbers obtained by a promotion of two
ore ele
trons into the a
tive spa
e (V (+2) or 2h 
lass) are asso
iated with a denom-inator larger than the 
orre
t one and therefore their 
ontribution to the 
orrelationenergy is too small. The same happens for the promotion of one 
ore ele
tron intothe a
tive spa
e a

ompanied by an ex
itation inside the a
tive spa
e (V (+1)′ or 1h
lass). In the 
ases where both the 
ore and the virtual orbitals are involved in theex
itation pro
ess (V (0) or 2h− 2p, V (+1) or 1h− 2p, V (−1) or 2h− 1p, and V (0)′or 1h− 1p 
lasses) the analysis is more 
omplex and there is a 
ompetition betweenthe e�e
t of the virtual orbital energies (whi
h tend to give too small denominators)and the one of the 
ore orbital energies (whi
h, on the 
ontrary, tend to give toolarge denominators).The analogy between the model system and the NEVPT2 des
ription of thespiro mole
ule is 
on�rmed by the 
urves shown in Fig. 5.8 where the NEVPT2
orrelation energy for ea
h ex
itation 
lass is plotted as a fun
tion of ξ. In orderto have a prompt 
omparison of the behavior of the di�erent NEVPT2 
lasses, theorigin of the energy s
ale is di�erent for ea
h 
lass and all plots have the same energyrange (for more details, see 
aption of Fig. 5.8). As expe
ted the V (−2) 
lass (twoa
tive ele
trons promoted to the virtual spa
e) shows a sharp pro�le with too large a
orrelation energy 
lose to ξ = 0. All the other 
lasses, apart from the V (−1)′ 
lass,involve both 
ore and virtual orbitals and the e�e
t of the virtual orbital energies isdominant for the V (1) and V (−1) 
lasses, while for the V (0)′ the e�e
t of the 
oreorbital energies slightly prevails. The two e�e
ts almost 
ompensate ea
h other inthe 
ase of the V (0) 
lass. The behavior of the V (−1)′ 
lass is pe
uliar: given thatin this 
ase only virtual ina
tive orbitals are involved in the ex
itation pro
ess, fromthe model system one 
an expe
t for this 
lass a behavior similar to the one observedfor the V (−2) 
lass, while the NEVPT2 
urve shows an opposite shape. One musthowever note that, in the same energy s
ale of the other 
lasses, the 
ontributionof this 
lass is almost 
onstant and that the deviation from the 
orre
t behavioris negligible. However, the 
urve of the total CASSCF+NEVPT2 energy, reportedin Figure 5.5, indi
ates that the e�e
t of the virtual orbital energies (too large a
orrelation energy for ξ = 0) is dominant.



106 Chapter 5. Ele
tron transfer in a model spiro system

 0

 1

 2

 3

 4

−1  0  1

E
ne

rg
y 

(m
h)

ξ 

V(0)

−1  0  1
ξ 

V(1)

−1  0  1
ξ 

V(−1)

 0

 1

 2

 3

 4

−1  0  1

E
ne

rg
y 

(m
h)

ξ 

V(−2)

−1  0  1
ξ 

V(−1)′

−1  0  1
ξ 

V(0)′

Figure 5.8: Spiro 
ation: 
ontribution of the di�erent 
lasses to the NEVPT se
ond order
orre
tion to the energy (in millihartree, mh) as a fun
tion of the rea
tion 
oordinate ξ.The V (2) and V (+1)′ 
lasses give vanishing 
ontribution. In order to make the 
omparisonbetween the di�erent 
lasses easier, the energy reported in �gure is E(2)+Eshift, where Eshift(in hartree, h) is di�erent for ea
h 
lass: V (0) → Eshift = 0.6480 h, V (1) → Eshift = 0.0185h, V (−1) → Eshift = 0.0730 h, V (−2) → Eshift = 0.0115 h, V (−1)′ → Eshift = 0.0030 h,and V (0)′ → Eshift = 0.3000 h. Moreover the same energy s
ale is adopted for all plots.5.6.3 Third order 
orre
tionFor the third order 
orre
tion to the energy, the full derivation is rather irksome,even 
onsidering only a
tive and virtual orbitals. In this 
ase, one 
an, however,easily prove that for ξ = −0.5 and ξ = 0.5 the 
orre
t behavior is obtained.For ξ = 0 one has
E(3) =

|〈aa|a∗a∗〉|2
4(εa∗ − εa)2

[
E (‖a∗ā∗b‖) − E

(
Ψ(0)

)]
+ E(2) (5.22)where use has been made of the relations E (‖a∗ā∗b‖) = E

(
‖ab∗b̄∗‖

) and〈
‖a∗ā∗b‖ |V| ‖ab∗b̄∗‖

〉
= 0. Introdu
ing the new quantities

∆ε = 2
(
εAa∗ − εAa

) (5.23)
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h 5.6 107and
∆ = ∆ε− 2 (εa∗ − εa) (5.24)one 
an expand E(2) and E(3) in M
Laurin series with respe
t to ∆/∆ε (whi
h isexpe
ted to be ≪ 1) obtaining to the �rst order:
E(2) ≃ E

(2)
A

(
1 +

∆

∆ε

) (5.25)
E(3) ≃ |〈aa|a∗a∗〉|2

(∆ε)2

[
E (‖a∗ā∗b‖) − E

(
Ψ(0)

)](
1 + 2

∆

∆ε

)
+ E

(2)
A

(
1 +

∆

∆ε

)

≃ E
(3)
A +E

(2)
A

(
1 − 2

[
E (‖a∗ā∗b‖) − E

(
Ψ(0)

)]

∆ε

)
∆

∆ε
(5.26)where the relation E (‖a∗ā∗b‖) − E

(
Ψ(0)

)
≃ E (‖a∗ā‖) − E (‖aā‖) has been used(the equality holds if A and B are non intera
ting). Therefore, neither E(2) nor E(3)show the 
orre
t behavior (whi
h is E(2)

A and E(3)
A , respe
tively) at the �rst order in

∆/∆ε, but the sum of the two 
orre
tions
E(2) + E(3) ≃ E

(2)
A + E

(3)
A + 2E

(2)
A

(
1 −

[
E (‖a∗ā∗b‖) − E

(
Ψ(0)

)]

∆ε

)
∆

∆ε(5.27)has the 
orre
t expression if E (‖a∗ā∗b‖)−E
(
Ψ(0)

)
= ∆ε. Even though su
h equal-ity does not hold rigorously, the two terms 
an be supposed to be 
lose, the �rstrepresenting the energy di�eren
e between ‖a∗ā∗b‖ and Ψ(0) 
omputed with the fullHamiltonian, the se
ond the same energy di�eren
e, but using the zero order Hamil-tonian.5.6.4 Con
lusive remarksThis simple model allows the full rationalization of the results reported in se
tion5.5: the energy 
urve 
orre
ted to the se
ond order using MRPTs in whi
h the zeroorder Hamiltonian depends (at least partially) upon the orbital energies, shows anunphysi
al behavior with a �well� around the symmetri
 situation ξ = 0. BothNEVPT2 and CASPT2 are a�e
ted by this error but su
h behavior is expe
ted tobe 
ommon to pra
ti
ally all MRPTs (with a possible ex
eption of the ones based onEpstein�Nesbet partition of the Hamiltonian [188℄). However, while for NEVPT2,in whi
h Ĥ0 
ontains the orbital energies only for the ina
tive (
ore and virtual)orbitals the problem 
an be, in prin
iple, alleviated by enlarging the a
tive spa
e,for CASPT2 this strategy is destined to fail, be
ause of the monoele
troni
 natureof Ĥ0 in all orbital spa
es.



108 Chapter 5. Ele
tron transfer in a model spiro systemThe irregularity is almost 
ompletely removed if the perturbation approa
h isapplied up to the third order, thus restoring a regular 
urve. But, in the perspe
tiveof applying MRPT methods to real MV systems with a good quality basis set andreasonably large a
tive spa
es, the strategy to perform a third order 
al
ulationappears as too expensive a solution.To this aim, this model suggests a pra
ti
al strategy for limiting the 
al
ulationto the se
ond order: indeed, if equations 5.12-5.15 are made independent of c1 and
c2, the se
ond order energy remains 
onstant for all ξ and the unphysi
al �well� isremoved. This 
an be obtained, for instan
e, by using |c1|2 = |c2|2 = 0.5, or equiv-alently by taking, for ea
h orbital energy, the average of the two values 
omputedat ξ and −ξ. In the a
tual 
al
ulations this results 
an be obtained 
omputing, forea
h nu
lear geometry, the orbital energies as the average between those pertain-ing to the ground state (GS) and to the �rst ex
ited state of the same symmetry;in other terms, this �
harge�averaged� MRPT2 strategy (hereafter referred to as�NEVPT2(av)�), relies on the use of state�averaged 
anoni
al mole
ular orbitals,obtained by diagonalization of the state�averaged Fo
k operator.Finally, we note that in the NEVPT2(av) strategy, one has to give up the 
orre
tabsolute value of the se
ond order energy (noti
e that in this approa
h for ξ = −0.5and ξ = +0.5 E(2) 6= E

(2)
A ), the trade�o� being a 
oherent evaluation of the energyalong the �rea
tion path�. This allows to get an a

urate estimate of all those energydi�eren
es, su
h as the extent of the barrier, the energy splitting at the 
rossingseam as well as the ex
itation energy for the opti
ally�a
tivated ET, whi
h are thekey parameters in the study of the ET pro
esses. Some further remarks may beaddressed to the question of how general su
h �
harge�averaged� MRPT2 approa
h
an be. A
tually, the strategy of using a zero order wavefun
tion as the result of anaverage pro
edure along the whole rea
tion path between the two 
harge distributions
an be, in prin
iple, extended to non�symmetri
al MV systems, to MV 
ompounds
ontaining transition metals and also to strongly 
oupled systems. About the lastpoint, it should be noted that the in
orre
t des
ription of the region around thesaddle point is basi
ally related to the weak 
oupling between the two subunits,that brings about a sudden 
hange in the monoele
troni
 energy di�eren
es as thenu
lear 
on�guration approa
hes the symmetri
al delo
alized 
onformation. Thus,even though the NEVPT2(av) method is well appli
able to more strongly 
oupled
ompounds, in these kinds of systems the appli
ation of a standard MRPT2 approa
his expe
ted to be less problemati
 due to the more gradual 
hange of the nature ofthe wavefun
tion when passing from one 
harge distribution to the other.



The use of state�averaged orbitals 5.7 1095.7 The use of state�averaged orbitalsTabs. 5.3 and 5.4 display the CASSCF and NEVPT ex
itation energies obtainedwith the four basis sets and the two largest a
tive spa
es, CAS(7/4) and CAS(11/10)respe
tively. Tab. 5.5 
olle
ts the MRCI results published in Ref. [158℄ and here usedas ben
hmark values to judge on the quality of those obtained at NEVPT2(av) andNEVPT3(
an) levels; the 
omparison is made more meaningful by the use of thesame basis sets (ANO-L [72℄ with SZ and DZ 
ontra
tions) and of the same a
tivespa
e, CAS(7/4). The MRCI results reported here have been obtained at CAS+SDlevel using both an internally�
ontra
ted [48℄ (C-CAS+SD) and an un
ontra
ted(CAS+SD) approa
h; �nally, the subs
ript �
an� indi
ates that 
anoni
al mole
ularorbitals were used. We have reported the ex
itation energies (kJ/mol) from theground state, 2A2(1), at its energy minimum, taken as the value at ξ = −0.5, to the�rst ex
ited state, 2A2(2), both at the C2v (ξ = −0.5) and D2d (ξ = 0.0) points; theheight of the barrier for the thermal ET and the energy splitting ∆E at the 
rossingseam were also 
omputed.5.7.1 The energy barrierAs expe
ted on the basis of the 
onsiderations reported in se
tion 5.6, sin
e in theNEVPT2 s
heme the dependen
e of Ĥ0 on the orbital energies is limited to the ina
-tive (
ore and virtual) orbitals, the strategy of enlarging the a
tive spa
e alleviatesthe problem around the symmetri
 D2d geometry in the standard PT2 treatment.Therefore we noti
e that, with the minimal basis set, the barrier goes from a slightlynegative value, ≃ -2.5 kJ/mol, with the CAS(7/4) to a slightly positive value, ≃3 kJ/mol, with the largest a
tive spa
e; we re
all that the 
orresponding value,
omputed with the minimal CAS(3/2) spa
e (see se
tion 5.5), amounts about to -5kJ/mol. As shown by the energy pro�les shown in Fig. 5.9, su
h little bene�t ishowever made 
ompletely fruitless when the dimension of the basis is in
reased and,even with the DZ basis set, a negative energy barrier is again obtained with theCAS(11/10) (see Tab. 5.4). To 
larify this behavior, it is worthwhile to point outthat going from the minimal SZ basis to the DZ one produ
es a redu
tion in theenergy gap between the o

upied orbitals, whi
h are shifted to higher energies, andthe virtual orbitals, whose energies are, instead, brought down. This e�e
t makesthe system more sensitive to the 
hange of the energy di�eren
es in proximity of thesymmetri
 D2d point, undoing, therefore, the slight improvement obtained by theenlargement of the CAS dimensions. Su
h phenomenon, although still present, is
ertainly less pronoun
ed going from the DZ to DZP and then to the TZP basis sets.Moreover, as shown by a �rst 
omparison between the results in Tabs. 5.3 and5.4 and those in Tab. 5.5, the third order 
omputation is unable to 
ompletely
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tron transfer in a model spiro systemTable 5.3: Spiro 
ation�CAS(7/4): NEVPT2(
an), NEVPT3(
an), NEVPT2(av) energies(kJ/mol) of the ground state, 2A2(1), at ξ = 0.0 and of the �rst ex
ited state, 2A2(2), at
ξ = 0.0 and ξ = −0.5. All the energies are 
omputed with respe
t to the energy of theground state at ξ = −0.5. For the sake of 
larity the energy splitting (∆E kJ/mol) betweenthe two states at ξ = 0.0 is also reported. NEVPT(
an) NEVPT2(av)States CASSCF SC-PT2 PC-PT2 SC-PT3 SC-PT2 PC-PT2SZ basis set

ξ = −0.5 2A2(2) 56.69 51.50 51.49 51.32 49.63 49.50
ξ = 0.0

2A2(1) 8.33 -2.15 -2.89 5.03 4.98 4.76
2A2(2) 17.37 7.56 6.79 14.23 14.67 14.42

∆E 9.04 9.71 9.68 9.20 9.70 9.66DZ basis set
ξ = −0.5 2A2(2) 45.82 38.82 38.71 42.94 40.53 40.36
ξ = 0.0

2A2(1) 5.64 -7.82 -8.57 8.33 4.68 4.45
2A2(2) 15.63 2.69 1.91 18.33 15.04 15.03

∆E 9.99 10.52 10.47 10.00 10.36 10.58DZP basis set
ξ = −0.5 2A2(2) 46.38 36.47 36.34 38.00 37.73
ξ = 0.0

2A2(1) 6.53 -11.70 -12.53 4.96 4.85
2A2(2) 16.19 -1.31 -2.19 15.33 15.44

∆E 9.66 10.38 10.33 10.36 10.59TZP basis set
ξ = −0.5 2A2(2) 46.14 36.43 36.33 38.72 38.44
ξ = 0.0

2A2(1) 6.75 -11.54 -12.39 6.50 6.42
2A2(2) 16.38 -1.23 -2.17 17.15 16.99

∆E 9.63 10.31 10.23 10.66 10.57restore the 
orre
t shape of the 
urve. Indeed, one 
an appre
iate that, while a gooda

ordan
e between the NEVPT3(
an) and NEVPT2(av) results is obtained whenthe NEVPT2(
an) barrier is just slightly negative (see CAS(7/4)/SZ and CAS(11/10)values in Tabs. 5.3 and 5.4), the third order 
orre
tion tends to overestimate thedepth of the well when the NEVPT2(
an) gives 
onsiderably wrong results. Indeed,with CAS(7/4) and DZ basis set, where the NEVPT2(
an) predi
ts the D2d pointto be about 8 kJ/mol below the C2v minimum, the energy barrier is estimated to beabout 8 kJ/mol at NEVPT3(
an) level, whereas a value amounting to ≃ 4.5 kJ/molis obtained with the NEVPT2(av) approa
h; su
h value is 
orroborated by the MRCI
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ation�CAS(11/10): NEVPT2(
an), NEVPT3(
an), NEVPT2(av) ener-gies (kJ/mol) of the ground state, 2A2(1), at ξ = 0.0 and of the �rst ex
ited state, 2A2(2),at ξ = 0.0 and ξ = −0.5. All the energies are 
omputed with respe
t to the energy of theground state at ξ = −0.5. For the sake of 
larity the energy splitting (∆E kJ/mol) betweenthe two states at ξ = 0.0 is also reported. NEVPT(
an) NEVPT2(av)States CASSCF SC-PT2 PC-PT2 SC-PT3 SC-PT2 PC-PT2SZ basis set
ξ = −0.5 2A2(2) 55.51 47.34 47.13 48.34 46.93 46.76
ξ = 0.0

2A2(1) 7.99 3.13 3.01 5.33 5.62 5.49
2A2(2) 15.40 11.41 11.39 13.52 13.88 13.86

∆E 7.41 8.28 8.38 8.19 8.27 8.37DZ basis set
ξ = −0.5 2A2(2) 47.61 34.93 34.49 39.71 36.29 35.73
ξ = 0.0

2A2(1) 6.92 -1.40 -3.21 6.33 5.17 4.02
2A2(2) 15.45 7.75 5.89 15.40 14.33 13.13

∆E 8.53 9.15 9.10 9.07 9.16 9.11DZP basis set
ξ = −0.5 2A2(2) 47.10 32.99 32.54 34.10 33.60
ξ = 0.0

2A2(1) 7.04 -4.96 -6.92 5.18 4.22
2A2(2) 15.55 4.21 2.17 14.45 13.40

∆E 8.51 9.18 9.10 9.27 9.18TZP basis set
ξ = −0.5 2A2(2) 46.66 33.21 32.81 36.90 36.47
ξ = 0.0

2A2(1) 7.17 -4.85 -6.61 7.16 6.34
2A2(2) 15.62 4.24 2.40 16.39 15.48

∆E 8.45 9.09 9.01 9.22 9.15results [158℄, whi
h estimate the height of the barrier to be about 4.5 kJ/mol (see theDZ values reported in Tab. 5.5). These 
onsiderations, apart from the expensivenessof the third order 
al
ulations, that makes this strategy not e�
iently appli
ableto large�sized MV systems, 
on�rm the NEVPT2(av) te
hnique as a valuable ande�
ient approa
h to study the ET pro
ess in this 
lass of 
ompounds. The reliabilityand the �rmness of the new proposed perturbative strategy is further assessed by thegood a

ordan
e shown by the results obtained with the two di�erent a
tive spa
esemployed: the height of the barrier is 
omputed to be in the range 4-5 kJ/mol withthe three smallest basis sets and to be ≃ 6 kJ/mol with the TZP basis. These



112 Chapter 5. Ele
tron transfer in a model spiro systemTable 5.5: Spiro 
ation�CAS(7/4): CAS+SDcan and C-CAS+SDcan energies (kJ/mol) ofthe ground state, 2A2(1), at ξ = 0.0 and of the �rst ex
ited state, 2A2(2), at ξ = 0.0 and
ξ = −0.5. The values have been obtained from the values reported in Ref. [158℄, taking asthe zero energy the that of the ground state 2A2(1) at ξ = −0.5. See Ref. [158℄ for furtherdetails. States CAS+SDcan C-CAS+SDcan CAS+SDcan C-CAS+SDcanSZ basis set DZ basis set

ξ = −0.5 2A2(2) 53.80 53.76 43.86 44.00
ξ = 0.0

2A2(1) 6.48 6.68 4.41 4.67
2A2(2) 15.72 16.01 14.60 14.96

∆E 9.25 9.32 10.19 10.29values are in reasonable a

ordan
e with the results of the more 
orrelated MRCI
al
ulations (Tab. 5.5): here, with the CAS(7/4), the barrier is 
omputed, both atthe internally�
ontra
ted [48℄ (C-CAS+SD) and un
ontra
ted CAS+SD level, to beabout 6.5 kJ/mol (SZ) and 4.5 kJ/mol (DZ).5.7.2 The energy splittingAs appears from the results in Tabs. 5.3 and 5.4, the energy splitting ∆E at the
rossing seam, being twi
e the value of the ele
troni
 
oupling Hab, is essentiallynot a�e
ted by the wrong behavior of the standard PT2 approa
h. One 
an indeednoti
e a remarkable agreement between the values provided by the NEVPT2(
an)
al
ulations and those attained at NEVPT3(
an) and NEVPT2(av) levels. A smalle�e
t of the dynami
al 
orrelation is also evident, sin
e a reasonable estimate of thisparameter is already obtained at CASSCF level. Moreover, as also found at MRCIlevel [158℄, this energy di�eren
e shows pra
ti
ally no dependen
e on the basis setdimension (with the ex
eption of a small underestimation with the minimal basis)sin
e a value of ≃ 9 kJ/mol is 
omputed with the CAS(11/10) and ≃ 10 kJ/molwith the CAS(7/4). These values for ∆E are in noti
eable a

ordan
e with those
omputed in Ref. [158℄ and reported in Tab. 5.5, where the splitting, with the largerbasis set, is 
al
ulated to be 10.2 and 10.3 kJ/mol at un
ontra
ted CAS+SD andinternally 
ontra
ted C-CAS+SD levels respe
tively. Then, very similar values werealso obtained in the previous 
al
ulations by Sanz et al. [176℄: the splitting was
omputed to be 9.5 (DFT), 11.0 (UHF) and 11.9 kJ/mol (DDCI). Then, a simpleway to get a �rst estimate of the energy splitting between the two adiabati
 surfa
esat the 
rossing seam is to apply Koopmans' theorem [8, 9℄. Sin
e, within a single�determinant approximation, the two ele
troni
 
on�gurations 
orresponding to the
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an), SC-NEVPT3(
an) (full lines with �+� and �∗� pointsrespe
tively) and SC-NEVPT2(av) (dashed lines with �×�points) energy pro�les ofthe ground, 2A2(1), and of the �rst ex
ited state, 2A2(2), of the spiro mono
ation.All the PES have been shifted in order to have the two C2v minima at zero energy(see text for 
omputational details).ground state of the mono
ation and to its �rst ex
ited state 
an be obtained fromtwo appropriate ionization pro
esses from the 
losed�shell 
on�guration, ∆E 
an beapproximated by the di�eren
e in the RHF energies of the HOMO and HOMO-1orbitals of the neutral system at the symmetri
al geometry. The values 
omputedusing su
h a rough approa
h provide results in good agreement with those obtainedat higher levels of 
al
ulations: the splitting is indeed 
al
ulated to be 9.98 (SZ),10.76 (DZ), 10.50 (DZP) and 10.24 kJ/mol (TZP).5.7.3 Ex
itation energy to the 2A2(2) stateThe other key parameter in the study of the ET pro
ess is the ex
itation energy
orresponding to the opti
ally�indu
ed ET, namely the verti
al ex
itation energyfrom the ground state at its 
harge-lo
alized minimum to the �rst ex
ited state. Were
all that in the simple Hush's approa
h [169,170℄, for MV systems 
hara
terized bya weak ele
troni
 
oupling, this quantity equals the reorganization energy λ. As isapparent from the results in Tabs. 5.3 and 5.4, this energy di�eren
e appears to be



114 Chapter 5. Ele
tron transfer in a model spiro systemmu
h more sensitive to the 
orrelation energy, as well as to the dimension of the basisset, than the above dis
ussed ∆E. Overall, a small and progressive redu
tion 
anbe observed going from the minimal basis to the largest one; while this redu
tionis sizable when passing from SZ to DZ (slightly less than 10 kJ/mol), it tends tobe
ome negligible pro
eeding up to the DZP and TZP basis sets. The same trendwas found at MRCI level [158℄ and, as shown in Tab. 5.5, the ex
itation energy ofthe 2A2(2) state, at the C2v minimum, de
reases by ≃ 10 kJ/mol when in
reasingthe basis set dimension. Furthermore, one 
an noti
e that also the enlargementof the a
tive spa
e results in a similar small lowering in the energy, anyway notex
eeding 4 kJ/mol. Finally, referring to the results obtained with the same a
tivespa
e and basis sets (CAS(7/4)/SZ, DZ), a good a

ordan
e, up to within 5 kJ/mol,was a
hieved between the MRCI 
omputations [158℄ and the present NEVPT3(
an)and NEVPT2(av) results.



Appendix APC-NEVPT2 S
(k)
l

spa
es
A.0.4 The S

(0)
ij,rs Spa
eThe V̂ (0)

ij,rs operator has the form
V̂

(0)
ij,rs = γijγrs (〈rs|ij〉EriEsj + 〈rs|ji〉ErjEsi) i ≤ j, r ≤ s, (A.1)where γmn = 1 − 1

2δmn.The perturbation fun
tion is written as
Ψ

(0)
ri,sj =

γijγrs√
N

(0)
ij,rs

(〈rs|ij〉EriEsj + 〈rs|ji〉EsiErj)Ψ
(0)
m (A.2)with the norm given by

N
(0)
ij,rs = 4γijγrs(〈rs|ij〉2 + 〈rs|ji〉2 − 〈rs|ij〉 〈rs|ji〉). (A.3)Finally, the perturbative 
oe�
ient c(0)(1)ij,rs is

C
(0)(1)
ij,rs = −

√
N

(0)
ij,rs

ǫr + ǫs − ǫi − ǫj
. (A.4)A.0.5 The S

(−1)
i,rs Spa
eThis spa
e, 
orresponding to an ex
itation of one ele
tron from the 
ore to the virtualspa
e and of another ele
tron from the a
tive again to the virtual spa
e, is spannedby the IC fun
tions Φrisa = EriEsaΨ

(0)
m and Φsira = EsiEraΨ

(0)
m with the ina
tiveindi
es r ≤ s.For ea
h set of three �rsi� indi
es, two di�erent orthonormal eigenfun
tions (per-
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l spa
esturbers) 
orresponding to the same eigenvalue Eirs,µ

(−1) 
an be de�ned:
Ψ

(−1)
ris,µ =

1√
2

act∑

a

(Φrisa + Φsira)ca,µ (A.5)
Ψ

′(−1)
ris,µ =

1√
6

act∑

a

(Φrisa − Φsira)ca,µ (A.6)The perturbative 
oe�
ients are:
C

(−1)(1)
ris,µ = − (rs, µi)

ǫr + ǫs − ǫi + ǫµ
(A.7)and

C
(−1)(1)′

ris,µ = − (rs, µi)′

ǫr + ǫs − ǫi + ǫµ
(A.8)respe
tively; the quantities indi
ated with (rs, µi) and (rs, µi)′ are instead 
omputedas

(rs, µi) =
1√
2

act∑

a

(〈rs|ia〉 + 〈sr|ia〉)Sa,µ (A.9)
(rs, µi)′ =

√
3

2

act∑

a

(〈rs|ia〉 − 〈sr|ia〉)Sa,µ (A.10)with
Sa,µ =

act∑

a′

c∗a′,µR
(1)
a′,a (A.11)

R
(1)
a′,a being the one-parti
le spinless density matrix.In the 
ase of r = s one has to 
onsider only

C
(−1)(1)
rir,µ = − (rr, µi)

2ǫr − ǫi + ǫµ
(A.12)with

(rr, µi) =

act∑

a

〈rr|ia〉Sa,µ. (A.13)A.0.6 The S
(1)
ij,r Spa
eThe treatment of this subspa
e, where two 
ore ele
trons are ex
ited to the a
tiveand virtual spa
es respe
tively, is analogous to the previous one. The spa
e is de�nedby the fun
tions Φrjai = ErjEaiΨ

(0)
m and Φriaj = EriEajΨ

(0)
m with i ≤ j. The two



117orthogonal fun
tions are:
Ψ

(−1)
rji,µ =

1√
2

act∑

a

(Φrjai + Φriaj)ca,µ (A.14)
Ψ

′(−1)
rji,µ =

1√
6

act∑

a

(Φrjai − Φriaj)ca,µ. (A.15)Analogously, the perturbative 
oe�
ients are de�ned as
C

(−1)(1)
rji,µ = − (ji, rµ)

ǫr − ǫi − ǫj + ǫµ
(A.16)

C
(−1)(1)′

rji,µ = − (ji, rµ)′

ǫr − ǫi − ǫj + ǫµ
. (A.17)

(ji, rµ) and (ji, rµ)′ are de�ned exa
tly as in eqs.A.18 and A.19 with the repla
ementof a virtual index with a 
ore index:
(ij, rµ) =

1√
2

act∑

a

(〈ra|ji〉 + 〈ra|ij〉)Sa,µ (A.18)
(ij, rµ)′ =

√
3

2

act∑

a

(〈ra|ji〉 − 〈ra|ij〉)Sa,µ (A.19)with
Sa,µ =

act∑

a′

c∗a′,µR̃
(1)
a′,a (A.20)where R̃(1)

a′,a is the one-hole spinless density matrix.If i = j, as previously seen, one has only C(−1)(1)
rii,µ with (ii, rµ).A.0.7 The S

(−2)
rs Spa
eFor the 
ase r < s the S(−2)

rs spa
e is generated by the fun
tions Φrsab = ErbEsaΨ
(0)
m .The perturbation fun
tions are

Ψ(−2)
rs,µ =

act∑

ab

= Φrsabcab,µ. (A.21)and the perturbative 
oe�
ients
C(−2)(1)

rs,µ = − (rs, µ)

ǫr + ǫs + ǫµ
(A.22)with

(rs, µ) =

act∑

ab

〈rs|ba〉Sab,µ (A.23)
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l spa
esand Sab,µ =

∑
a′b′ c

∗
a′b′,µR

(2)
a′b′,ab.For the 
ase r = s, sin
e

Ψ
(=)
rrabEraErbΨ

(0)
m = ErbEraΨ

(0)
m = Φrrba (A.24)we note that the S(−2)

rr spa
e has dimension nact(nact + 1)/2 instead of n2
act as in the
ase with r < s, therefore we have

Ψ(−2)
rr,µ =

act∑

a≥b

Φrr,abc
′
ab,µ. (A.25)The perturbative 
oe�
ients are:

C(−2)(1)
rr,µ = − (rr, µ)

2ǫr + ǫ′µ
(A.26)with

(rr, µ) =
act∑

ab

= 〈rr|ba〉S′
ab,µ (A.27)and

S′
ab,µ =

1

2

act∑

a′b′

c∗a′b′,µ(R
(2)
a′b′,ab +R

(2)
a′b′,ba) (A.28)where R(2) is the two-parti
le spinless density matrix.A.0.8 The S

(2)
ij Spa
eObviously, this 
ase is exa
tly analogous to the previous one, with the repla
ementof the two-parti
le spinless density matrix R(2) with the two-hole spinless densitymatrix R̃(2). Here, we shall limit ourselves to list the prin
ipal formulas. With i ≤ j,one has:

Ψ
(2)
ij,µ =

act∑

ab

Φijabcab,µ (A.29)with Φijab = EbiE − ajΨ
(0)
m .

C
(2)(1)
ij,µ = − (µ, ij)

ǫµ − ǫi − ǫj
(A.30)If i = j, instead, one has

Ψ
(2)
ii,µ =

act∑

a≥b

Φiiabc
′
ab,µ. (A.31)with Φiiab = EbiEaiΨ

(0)
m . The 
oe�
ients are:

C
(2)(1)′

ii,µ = − (µ, ii)

pǫµ − 2ǫi
. (A.32)



119A.0.9 The S
(0)
i,r Spa
eThis subspa
e is spanned by the fun
tions Φriab = EriEabΨ

(0)
m and Φriab

′ = EaiErbΨ
(0)
m .The single ex
itations from the 
ore to the virtual spa
e EriΨ

(0)
m are already 
onsid-ered, sin
e ∑act

a EriEaaΨ
(0)
m = nactEriΨ

(0)
m .The perturbation fun
tions are:

Ψ
(0)
ir,µ =

act∑

ab

(Φriabcab,µ + Φ′
riabc

′
ab,µ) (A.33)and the 
oe�
ients:

C
(0)(1)
ir,µ = −(ri, µ) + (ri, µ)′

ǫµ + ǫr − ǫi
(A.34)A.0.10 The S

(−1)
r Spa
eThe S(−1)

r spa
e, providing for an ex
itation within the a
tive spa
e and the pro-motion of an a
tive ele
tron to the virtual spa
e, is generated by the fun
tions
Φrbac = ErbEacΨ

(0)
m and the eigenfun
tions of the Dyall's Hamiltonian ĤD are ex-pressed as

Ψ(−1)
r,µ =

act∑

abc

Φrbaccabc,µ (A.35)and the form of the perturbative 
oe�
ients is
C(−1)(1)

r,µ = − (r, µ)

ǫµ + ǫr
(A.36)A.0.11 The S

(1)
i Spa
eThe treatment of this subspa
e 
losely follows that previously seen for the S(−1)

r sub-spa
e. One has to 
onsider the fun
tions Φiabc = EbiEacΨ
(0)
m and by diagonalizationof ĤD within this subspa
e one obtains the perturbers Ψ
(1)
i,µ written as

Ψ
(1)
i,µ =

act∑

abc

Φiabccabc,µ (A.37)and from the intera
tion of Ψ
(1)
i,µ with Ψ

(0)
m one 
an 
ompute the 
oe�
ients C(1)(1)

i,µas
C

(1)(1)
i,µ = − (i, µ)

ǫµ − ǫi
. (A.38)
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Appendix BMatrix elements of PC-NEVPT3B.0.12 V(0)V(0) ClassObviously, for the monodimensional S(0)
ij,rs spa
e the �partially 
ontra
ted� approa
his 
oin
ident with the �strongly 
ontra
ted� one and therefore the third order 
ontri-bution from V (0)V (0) 
lass is

E(3) =
core∑

i′≤j′

virt∑

r′≤s′

core∑

i≤j

virt∑

r≤s

C
(0)(1)
i′j′,r′s′C

(0)(1)
ij,rs

〈
Ψ

(0)
i′j′,r′s′

∣∣∣Ĥ − Ĥ0

∣∣∣Ψ(0)
ij,rs

〉 (B.1)where the 
ontribution of Ĥ0 for the diagonal 
ase is ∆ǫ = ǫi + ǫj − ǫr − ǫs. Giventhe form of the perturber
Ψ

(0)
ij,rs = (AEriEsj +BEsiErj)Ψ

(0)
m (B.2)with A =

γijγrs
q

N
(0)
ij,rs

〈rs|ij〉 and B =
γijγrs

q

N
(0)
ij,rs

〈rs|ji〉. The matrix element in eq.B.1 
anbe rewritten as follows
〈
Ψ

(0)
i′j′,r′s′

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=
〈
Ψ(0)

m

∣∣∣Ej′s′Ei′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A2 (B.3)
+
〈
Ψ(0)

m

∣∣∣Ej′s′Ei′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

A ∗B

+
〈
Ψ(0)

m

∣∣∣Ej′r′Ei′s′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

B ∗ A

+
〈
Ψ(0)

m

∣∣∣Ej′r′Ei′s′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

B2

where the four terms val1, val2, val3 and val4 are evaluated by the subroutines
Ejpspiprp_risj produ
ed by FRODO.
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e, given the i, j, r indi
es, two orthonormal perturbation fun
tions are de�ned
Ψ

(1)
rji,µ =

1√
2

act∑

a

(ErjEai + EriEaj)Ψ
(0)
m ca,µ (B.4)

Ψ
′(1)
rji,µ =

1√
6

act∑

a

(ErjEai − EriEaj)Ψ
(0)
m ca,µ. (B.5)two di�erent matrix elements have to be 
onsidered. Moreover, it is ne
essary todistinguish the 
ase i = j, for whi
h the perturber is

Ψ
(1)
riiµ =

act∑

a

EriEaiΨ
(0)
m ca,µ (B.6)and the perturbative 
oe�
ient C(1)(1)

ijr is di�erent.
〈
Ψ

(1)
r′i′j′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

1√
2

act∑

a

〈
Ψ(0)

m

∣∣∣Ei′aEj′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.7)
+

1√
2

act∑

a

〈
Ψ(0)

m

∣∣∣Ej′aEi′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

A ∗ caµ

+
1√
2

act∑

a

〈
Ψ(0)

m

∣∣∣Ei′aEj′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

B ∗ caµ

+
1√
2

act∑

a

〈
Ψ(0)

m

∣∣∣Ej′aEi′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

B ∗ ca,µ



123and
〈
Ψ

′(1)
r′i′j′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

1√
6

act∑

a

〈
Ψ(0)

m

∣∣∣Ei′aEj′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.8)
− 1√

6

act∑

a

〈
Ψ(0)

m

∣∣∣Ej′aEi′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

A ∗ caµ

+
1√
6

act∑

a

〈
Ψ(0)

m

∣∣∣Ei′aEj′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

B ∗ caµ

− 1√
6

act∑

a

〈
Ψ(0)

m

∣∣∣Ej′aEi′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

B ∗ ca,µ

For the 
ase i′ = j′ one has
〈
Ψ

(1)
r′i′i′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

a

〈
Ψ(0)

m

∣∣∣Ei′aEi′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.9)
+

act∑

a

〈
Ψ(0)

m

∣∣∣Ei′aEi′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

B ∗ caµ

B.0.14 V(0)V(−1) ClassObviously, the treatment of this 
lass parallels the previous one with the two or-thonormal perturbers, for the 
ase r 6= s, being
Ψ

(−1)
risµ =

1√
2

act∑

a

(EriEsa + EsiEra)Ψ
(0)
m ca,µ (B.10)

Ψ
′(−1)
risµ =

1√
6

act∑

a

(EriEsa − EsiEra)Ψ
(0)
m ca,µ. (B.11)Analogously to eq.B.30, when the two virtual indi
es are 
oin
ident (r = s) theperturber is

Ψ
(1)
rirµ =

act∑

a

EriEraΨ
(0)
m ca,µ (B.12)In the former 
ase (r 6= s), two matrix elements have to be 
omputed:
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〈
Ψ

(−1)
r′i′s′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

1√
2

act∑

a

〈
Ψ(0)

m

∣∣∣Eas′Ei′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.13)
+

1√
2

act∑

a

〈
Ψ(0)

m

∣∣∣Ear′Ei′s′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

A ∗ caµ

+
1√
2

act∑

a

〈
Ψ(0)

m

∣∣∣Eas′Ei′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

B ∗ caµ

+
1√
2

act∑

a

〈
Ψ(0)

m

∣∣∣Ear′Ei′s′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

B ∗ ca,µ

〈
Ψ

(−1)
r′i′s′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

1√
6

act∑

a

〈
Ψ(0)

m

∣∣∣Eas′Ei′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.14)
− 1√

6

act∑

a

〈
Ψ(0)

m

∣∣∣Ear′Ei′s′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

A ∗ caµ

+
1√
6

act∑

a

〈
Ψ(0)

m

∣∣∣Eas′Ei′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

B ∗ caµ

− 1√
6

act∑

a

〈
Ψ(0)

m

∣∣∣Ear′Ei′s′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

B ∗ ca,µ

For r = s the intera
tion redu
es to
〈
Ψ

(−1)
r′i′r′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

a

〈
Ψ(0)

m

∣∣∣Ear′Ei′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.15)
+

act∑

a

〈
Ψ(0)

m

∣∣∣Ear′Ei′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

B ∗ caµ



125B.0.15 V(0)V(2) ClassTwo 
ases have to be 
onsidered:1. i 6= j → Ψ
(2)
ijµ =

∑act
ab EbiEajΨ

(0)
m cabµ2. i = j → Ψ

(2)
ijµ =

∑act
a≤bEbiEaiΨ

(0)
m c′abµTherefore, the matrix elements are

〈
Ψ

(2)
i′j′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

ab

〈
Ψ(0)

m

∣∣∣Ej′aEi′bĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.16)
+

act∑

ab

〈
Ψ(0)

m

∣∣∣Ej′aEi′bĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

B ∗ caµand
〈
Ψ

(2)
i′i′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

a≤b

〈
Ψ(0)

m

∣∣∣Ei′aEi′bĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.17)
+

act∑

a≤b

〈
Ψ(0)

m

∣∣∣Ei′aEi′bĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

B ∗ caµ

B.0.16 V(0)V(−2) ClassThis 
lass 
losely follows the V (0)V (2) 
lass previously examined. The perturbationfun
tions are:1. r 6= s→ Ψ
(−2)
rsµ =

∑act
ab ErbEsaΨ

(0)
m cabµ2. r = s→ Ψ

(−2)
rsµ =

∑act
a≤bErbEraΨ

(0)
m c′abµand the 
orresponding matrix elements 
an be written as

〈
Ψ

(−2)
r′s′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

ab

〈
Ψ(0)

m

∣∣∣Eas′Ebr′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.18)
+

act∑

ab

〈
Ψ(0)

m

∣∣∣Eas′Ebr′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

B ∗ caµ
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〈
Ψ

(−2)
r′r′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

a≤b

〈
Ψ(0)

m

∣∣∣Ear′Ebr′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.19)
+

act∑

a≤b

〈
Ψ(0)

m

∣∣∣Ear′Ebr′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

B ∗ caµ

B.0.17 V(0)V(0′) ClassFor the S̄(0)
ir subspa
e the perturbers have the form:

Ψ
(0)
irµ =

act∑

ab

EriEabΨ
(0)
m cabµ +

act∑

ab

EaiErbΨ
(0)
m c′abµ (B.20)so, the intera
tion with the Ψ

(0)
ijrs 
an be written as follows

〈
Ψ

(0)
i′r′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

ab

〈
Ψ(0)

m

∣∣∣EbaEi′r′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

caµ ∗ A (B.21)
+

act∑

ab

〈
Ψ(0)

m

∣∣∣Ebr′Ei′aĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

c′aµ ∗ A

+

act∑

ab

〈
Ψ(0)

m

∣∣∣EbaEi′r′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

caµ ∗B

+

act∑

ab

〈
Ψ(0)

m

∣∣∣Ebr′Ei′a′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

c′a,µ ∗B

B.0.18 V(0)V(1′) ClassThe perturbers belonging to the S̄(1)
i subspa
e are

Ψ
(1)
iµ =

act∑

abc

EbiEacΨ
(0)
m cabcµ (B.22)and the resulting matrix elements have the form
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〈
Ψ

(1)
i′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

abc

〈
Ψ(0)

m

∣∣∣EcaEi′bĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.23)
+

act∑

abc

〈
Ψ(0)

m

∣∣∣EcaEi′bĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

B ∗ caµ

B.0.19 V(0)V(−1
′) ClassFinally, the treatment of the V (0)V (−1′) 
lass is analogous to that previously seen.Given the form of the perturbation fun
tions

Ψ(−1)
rµ =

act∑

abc

ErbEacΨ
(0)
m cabcµ (B.24)the intera
tion is

〈
Ψ

(−1)
r′µ

∣∣∣Ĥ
∣∣∣Ψ(0)

ij,rs

〉
=

act∑

abc

〈
Ψ(0)

m

∣∣∣EcaEbr′ĤEriEsj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

A ∗ caµ (B.25)
+

act∑

abc

〈
Ψ(0)

m

∣∣∣EcaEbr′ĤEsiErj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

B ∗ caµ

B.0.20 V(1)V(1) ClassThe third order 
ontribution for the V (1)V (1) 
lass is
E(3) =

virt∑

r,r′

core∑

ij,i′j′

∑

µ,µ′

C
(1)(1)
i′j′r′µ′C

(1)(1)
ijrµ

〈
Ψ

(1)
i′j′r′µ′

∣∣∣Ĥ − Ĥ0

∣∣∣Ψ(1)
ijrµ

〉 (B.26)For the diagonal 
ase the 
ontribution of Ĥ0 is
E(3) = ǫµ + ǫr − ǫi − ǫj (B.27)For the S(1)

ijr subspa
e the perturbers are expressed as
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Ψ

(11)
rji,µ =

1√
2

act∑

a

(ErjEai + EriEaj)Ψ
(0)
m ca,µ (B.28)

Ψ
′(11)
rji,µ =

1√
6

act∑

a

(ErjEai − EriEaj)Ψ
(0)
m ca,µ. (B.29)and, for the 
ase i = j, as

Ψ
(1)
riiµ =

act∑

a

EriEaiΨ
(0)
m ca,µ (B.30)All the possible matrix elements have to be 
onsidered.

〈
Ψ

(1)
r′i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1

2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′iĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1

2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

+
1

2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

+
1

2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.31)
〈
Ψ

′(1)
r′i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1

6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′iĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1

6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

− 1

6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

+
1

6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.32)
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〈
Ψ

(1)
r′i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′iĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

+
1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

− 1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.33)
〈
Ψ

′(1)
r′i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′iĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

− 1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

− 1

2
√

3

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.34)
Furthermore, other �ve 
ases have to be 
onsidered:

• i = j and i′ = j′

〈
Ψ

(1)
r′i′i′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

act∑

aa′

〈
Ψ(0)

m

∣∣∣Ei′a′Ei′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

ca′µ′caµ (B.35)
• i = j and i′ 6= j′

〈
Ψ

′(1)
r′i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

1√
6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

(B.36)
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〈
Ψ

(1)
r′i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

1√
2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ej′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

(B.37)
• i 6= j & i′ = j′

〈
Ψ

(1)
r′i′i′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1√
6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.38)
〈
Ψ

(1)
r′i′i′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1√
2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

aa′

ca′µ′caµ

〈
Ψ(0)

m

∣∣∣Ei′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.39)
B.0.21 V(1)V(−1) ClassFor the S(−1)

ris subspa
e the perturbers have the following form
Ψ

(−1)
ris,µ =

1√
2

act∑

a

(EriEsa + EsiEra)Ψ
(0)
m c2a,µ (B.40)

Ψ
′(−1)
ris,µ =

1√
6

act∑

a

(EriEsa − EsiEra)Ψ
(0)
m c2a,µ . (B.41)and, for the 
ase r = s, they are expressed as

Ψ
(1)
rirµ =

act∑

a

EriEraΨ
(0)
m c2a,µ (B.42)As in the previous 
ase, all the possibilities must be examined:
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〈
Ψ

(−1)
r′i′s′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1

2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1

2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

+
1

2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

+
1

2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.43)
〈
Ψ

′(−1)
r′i′s′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1

6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1

6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

− 1

6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

+
1

6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.44)
〈
Ψ

(−1)
r′i′s′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

+
1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

− 1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.45)
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〈
Ψ

′(−1)
r′i′s′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

− 1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

− 1

12

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.46)
Then, analogously, we have
• i = j and r′ = s′

〈
Ψ

(−1)
r′i′r′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

act∑

aa′

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

c2a′µ′
caµ (B.47)

• i = j and r′ 6= s′

〈
Ψ

′(1)
r′i′s′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

1√
6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3 (B.48)
〈
Ψ

(−1)
r′i′s′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

1√
2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′s′Ei′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′s′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3 (B.49)
• i 6= j and r′ = s′
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〈
Ψ

(1)
r′i′r′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1√
6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2 (B.50)
〈
Ψ

(1)
r′i′r′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1√
2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

aa′

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ea′r′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2 (B.51)B.0.22 V(1)V(2) ClassIf i 6= j, for the S(2)
ij spa
e the perturbers are given by:

Ψ
(2)
ijµ =

act∑

a,b

EbiEajΨ
(0)
m c2ab,µ

(B.52)whereas, for the 
ase i = j they are
Ψ

(2)
iiµ =

act∑

a≥b

EbiEajΨ
(0)
m c′2ab,µ

(B.53)The matrix elements that have to be 
omputed are:
〈
Ψ

(2)
i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1√
2

act∑

aa′b′

c2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

aa′b′

c2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.54)
〈
Ψ

(2)
i′j′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1√
6

act∑

aa′b′

c2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

aa′b′

c2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.55)
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〈
Ψ

(2)
i′i′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1√
2

act∑

a′≥b′

act∑

a

c′2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

a′≥b′

act∑

a

c′2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.56)
〈
Ψ

(2)
i′i′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1√
6

act∑

a′≥b′

act∑

a

c′2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

a′≥b′

act∑

a

c′2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ej′a′Ei′b′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.57)
B.0.23 V(1)V(0′) ClassWe re
all that the perturbation fun
tions belonging to the S̄(0)

ir spa
e 
an be writtenas
Ψ

(2)
irµ =




act∑

a,b

EriEabc2ab,µ
+

act∑

a,b

EaiErbc
′
2ab,µ


Ψ(0)

m (B.58)therefore, the intera
tion elements are
〈
Ψ

(0)
i′r′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1√
2

act∑

a′b′a

c2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

a′b′a

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

+
1√
2

act∑

a′b′a

c′2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′r′Ei′a′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

+
1√
2

act∑

a′b′a

c′2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′r′Ei′a′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.59)
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〈
Ψ

(0)
i′r′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1√
6

act∑

a′b′a

c2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′a′Ei′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

a′b′a

c2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′a′Ei′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

+
1√
6

act∑

a′b′a

c′2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′r′Ei′a′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

− 1√
6

act∑

a′b′a

c′2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′r′Ei′a′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val4

(B.60)
Finally, one has to 
onsider the 
ase i = j, in whi
h the perturbers of the S̄(1)

iirhave the form
Ψ

(1)
riiµ =

act∑

a

EriEaica,µΨ(0)
m (B.61)The intera
tion be
omes:

〈
Ψ

(0)
i′r′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

act∑

a′b′a

c2a′b′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′a′Ei′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+

act∑

a′b′a

c′2a′µ′
caµ

〈
Ψ(0)

m

∣∣∣Eb′r′Ei′a′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val3

(B.62)
B.0.24 V(1)V(−1

′) ClassThe perturbers of the S̄(−1)
r spa
e are

Ψ(−1)
rµ =

act∑

a,b,c

ErbEaccabc,µΨ(0)
m (B.63)Thus, the matrix elements have the form

〈
Ψ

(−1)
r′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1√
2

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Eb′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Eb′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.64)
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〈
Ψ

(−1)
r′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1√
6

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Eb′r′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Eb′r′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.65)Then, when i = j, the intera
tion simply redu
es to
〈
Ψ

(−1)
r′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Eb′r′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

(B.66)B.0.25 V(1)V(1′) ClassThe treatment of this 
lass is 
lose to that previously examined. The perturbationfun
tions for the S̄(1)
i are

Ψ
(1)
iµ =

act∑

a,b,c

EbiEaccabc,µΨ(0)
m (B.67)and the intera
tion elements be
ome

〈
Ψ

(1)
i′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

rijµ

〉
=

1√
2

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Ei′b′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

+
1√
2

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Ei′b′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.68)
〈
Ψ

(1)
i′µ′

∣∣∣Ĥ
∣∣∣Ψ

′(1)
rijµ

〉
=

1√
6

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Ei′b′ĤErjEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

− 1√
6

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Ei′b′ĤEriEaj

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val2

(B.69)and, �nally, for the 
ase i = j one has
〈
Ψ

(1)
i′µ′

∣∣∣Ĥ
∣∣∣Ψ(1)

riiµ

〉
=

act∑

a′b′c′a

c2a′b′c′µ′
caµ

〈
Ψ(0)

m

∣∣∣Ec′a′Ei′b′ĤEriEai

∣∣∣Ψ(0)
m

〉

︸ ︷︷ ︸val1

(B.70)
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