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“Theory is when we know everything but nothing works.
Praxis is when everything works but we do not know why.

We always end up by combining theory with praxis:
nothing works... and we do not know why.”

“La teoria è quando si sa tutto e niente funziona.
La pratica è quando tutto funziona e nessuno sa il perchè.

Noi abbiamo messo insieme la teoria e la pratica:
non c’è niente che funzioni... e nessuno sa il perchè.”

A. Einstein
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Introduction

The great improvements in the physics of particle accelerators occurred in the late 1950s have
lead to the discovery of a number of new hadrons produced by experiments. In the 1964, Gell-
Mann and Zweig [1, 2] independently proposed a scheme to categorized many of the observed
hadrons. All the hadrons are described as combination of elementary particles, called quarks,
and the hadrons quantum numbers are calculated from those of quarks. Baryons, including
the protons and the neutrons, consist of three quarks, while mesons, such as pions and kaons,
consist of a pair of quark and antiquark.
Since late 1960s to 1970s, the existence of structure within the proton was established by exper-
iments of electron-proton Deep Inelastic Scattering (DIS) through γ∗ exchange. However, the
experimental results revealed that about half of momentum of the proton can be described by
the charged components (quarks), and neutral particles, called gluons, have to be introduced in
order to explain the other half of the momentum. In hadrons, gluons are created by dynamical
processes: quarks create or absorb gluons, a gluon converts into a quark-antiquarks pair, and
a quark-antiquark pair annihilates into gluons. Such dynamical quarks and gluons are called
partons (parton model).
The theoretical framework to explain the interaction between quarks and gluons is based on
Quantum Chromo Dynamics (QCD) which is a color SU(3) symmetry, a theory of strong in-
teraction which is part of the Standard Model. In the parton model, partons are divided in
three groups: “valence quarks” which carry the quantum number of the hadrons, “sea quarks”
which are quark and anti-quark pairs generated by pair creation in the hadron vacuum, and
“gluons” which are the mediators of the strong force.
Although some proprieties of the proton are explained by valence quarks, it was revealed by
polarized DIS experiments that quarks and antiquarks in the proton carry only ∼ 30% of the
proton spin [3, 4, 5]. The immediate consequence of this result is that there ought to be addi-
tional sources of spin within the nucleon besides the quarks. The most natural candidates are
the spin of the gluon (∆G) and the orbital angular momentum of quarks (Lqz) and gluons (Lgz):

SN =
1

2
=

1

2
∆Σ + ∆G+ Lq + Lg, (1)

where
∆Σ = ∆u+ ∆d+ ∆qs (2)
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is the contribution carried by the valence and sea quark spins, respectively. A variety of ex-
periments have been realized to investigate the nucleon’s spin structure with unprecedented
precision, with the main goal to provide high precision measurements of all the various spin
contributions listed in Eq. (1). In particular, the contribution due to the gluon spin ∆G, was
found to be very small [6, 7, 8], which suggests that the orbital angular momentum terms Lq

and Lg are the dominant factors in Eq. (1).
Experimentally, Semi-Inclusive Deep Inelastic Scattering (SIDIS) measurements are one ap-
proach to probe the spin structure of the nucleon, and in particular they provide a separate
measurement of the valence quarks and sea quarks contributions, as well as information on the
orbital motion at the subatomic level. In particular, this method combines information from the
nucleon target, and uses correlations in the fragmentation process between the observed final
state hadrons and the flavor of its originating parton. The fragmentation process is described
in terms of fragmentation functions.
One of these functions is the Collins fragmentation function [9] which measures how the ori-
entation of the quark spin influences the direction of emission of hadrons in the fragmentation
process and can thus be used as a quark spin analyzer. In other words, the Collins effect is
due to the spin-orbit correlation in the fragmentation process. In addition to SIDIS experi-
ments, it contributes to several Single Spin Asymmetries (SSA) in hard process pp collision,
and e+e− annihilation into hadrons. We use the term Collins asymmetries to denote any asym-
metry where the Collins function plays a role. The first experimental evidence of a non-zero
Collins function for pions comes from the measurement of a Collins Asymmetry in SIDIS on
a proton target by the HERMES Collaboration [10]. The same asymmetry, but on a deuteron
target, was found to be consistent with zero by the COMPASS Collaboration [11]. Direct evi-
dence of a non-zero pion Collins function has been found in e+e− annihilation data from DEL-
PHI [12, 13] and Belle [14, 15]. A global fit to SIDIS and e+e− data allows the simultaneous
extraction of the Collins fragmentation function and of the transversity parton distribution
function, clearly showing the importance of the Collins function as a tool to investigate the
structure of hadrons [16, 17]. The Collins fragmentation function for kaons is at the moment
unknown.

Despite the primary goals of the BABAR experiment are the measurement of CP violation
effects in the B meson system, the precise measurement of the CKM matrix element, and the
measurement of rare B meson decays, a wide range of other physics may also be studied. In
particular, the very clean environment and the good particle identification, make the BABAR

detector suitable also for studies of inclusive hadrons production. In this dissertation, I report
on the first BABAR measurement of the Collins effect in inclusive production of two back-to-back
hadrons in the reaction e+e− → h1h2X .

This thesis is organized in six chapters:
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• Chapter 1: the theoretical motivations of the measurement of the Collins asymmetry are
presented, together with the physics context in which it plays a crucial role;

• Chapter 2: the concept of Fragmentation Function in e+e− annihilation, and the theoreti-
cal aspects of the Collins Fragmentation Function are introduced;

• Chapter 3: it contains information about the general structure of the accelerator facility
and the BABAR detector, with details on the performances of each subsystems;

• Chapter 4: the data analysis is presented. The two different reference frames in which we
perform the measurement of the Collins asymmetries are introduced, then the analysis
strategy is summarized, followed by the the description of the Double Ratio method used
for measuring the azimuthal asymmetry.

• Chapter 5: the systematic uncertainties, the background contributions due to cc, BB, and
τ+τ− events, and cross check studies are discussed;

• Chapter 6: the final results for the light quarks Collins asymmetry are summarized and
discussed. In particular, the asymmetry is shown as a function of the pions fractional
energy (z), pions transverse momentum (pt), and as a function of sin2 θ/(1 + cos2 θ). The
pt dependence has never been studied before in e+e− annihilation.





Chapter 1

Theoretical motivations

The exploration of the internal structure of the nucleon in terms of quarks and gluons1 has
been and still is at the frontier of hadronic high energy physics research. In particular, Deep
Inelastic Scattering (DIS) experiments of high energy leptons off nucleons have led to the most
significant progresses in the knowledge of nucleon structure. By observing the momentum of
the lepton in the final state one obtains information about the quark and the gluon content of
the nucleon. This information is encoded in the Parton Distribution Function (PDF) fa1 (x,Q2)

where x is the fraction of the nucleon momentum which is carried by the parton, Q is the en-
ergy in the center of mass frame, and a = q, g stands for quark and gluon, respectively.
However, our understanding of the nucleon structure from DIS experiments is one dimen-
sional. From DIS we only learn about the longitudinal motion of parton in a fast moving nu-
cleon, since the nucleon is seen as a bunch of fast-moving quarks, antiquarks, and gluons,
whose transverse momenta are not resolved. A fast moving nucleon is Lorentz-contracted, but
its transverse size is still about 1 fm, which is a large distance on the strong interaction scale.
Therefore, it make sense to ask question like: how are the quarks spatially distributed inside
the nucleon? How do they move in the transverse plane?

To answer the above questions, we need to consider the description of a quark in the trans-
verse plane in momentum space and in coordinate space. The theoretical tools adequate to de-
scribe the former are the Transverse Momentum Dependent PDFs (TMDs), and the theoretical
object tailored to describe the spatial distributions of quarks in mixed longitudinal momentum
and transverse space are the Generalized Parton Distributions (GPDs).

Despite the experimental nature of this dissertation, the first part of this chapter is focalized
of the physics formalism of TMDs and Semi-Inclusive DIS, which is necessary for understand-
ing the importance of the measurement of the Collins asymmetry in e+e− annihilation at BABAR.

1Quarks and gluons are the fundamental degrees of freedom of Quantum Chromo Dynamics (QCD)
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1.1 TMDs

The “simplest” TMD is the unpolarized function f q1 (x, k⊥) which describes, in a fast moving
nucleon, the probability to find a quark carrying a fraction x of the nucleon momentum, and
a transverse momentum k⊥ = |k⊥|. It is formally related to the collinear (integrated over k⊥)
PDF by:

f q1 (x) =

∫
d2k⊥ f

q
1 (x, k⊥). (1.1)

In general, the TMDs are defined in terms of the unintegrated quark-quark correlator [18, 19]
in the light-cone coordinate:

Φij(x,k⊥,S)η =

∫
dz−d2z⊥

(2π)3
eik·z < P,S|ψj(0)Wη(0, z)ψi(z)|P,S >

∣∣∣∣
z+=0

, (1.2)

in which the path-dependent gauge link operatorWη(0, z) ensures the color gauge invariance
of the matrix element, and η indicates that Wη(0, z) depends on the process. The light-cone
coordinate are defined in Appendix A.

The power and the rich possibilities of the TMD approach arise from the simplest fact that
k⊥ is a vector which allows various correlations with the other vectors involved: the nucleon
momentum P and the nucleon spin S. Of particular importance are leading-twist TMDs, i.e.
TMDs which enter in observables without power suppression. In this context, a TMD or ob-
servable is said to be twist-t if its contribution to a cross section is suppressed by the factor
(M/Q)t−2 [20] in addition to kinematic overall factors (M is a generic hadronic scale including
the transverse momentum).

Figure 1.1: Leading-twist TMD functions. Rows: nucleon polarization. Columns: quark po-
larization. U=unpolarized, L=longitudinal polarization, T=transverse polarization. TMDs for
antiquarks and gluons are defined similarly in terms of correlators analogous to Eq. (1.2).

The leading-twist TMDs are associated with the large positive component of the nucleon
momentum (in the frame where the nucleon moves fast). For a spin 1/2 particle like the nu-
cleon there are 8 leading-twist TMDs, summarized in Fig. 1.1, where the common subscript 1
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is used to indicate twist-2 TMDs2 (see Appendix B for the complete name description).

1.1.1 Partonic interpretation and proprieties of the TMDs

TMDs contain information on the longitudinal and transverse motion of quarks and gluons
inside a fast moving nucleon. When adding the spin degree of freedom they link the parton
spin (sq) to the parent proton spin (S) and to the intrinsic motion (k⊥). We denote the most
general spin dependent TMD by f q1 (x,k; sq,S), which may depend on all possible combinations
of the pseudo-vector sq, S and the vector k⊥, P.

A similar correlation between spin and transverse motion can occur in the fragmentation
process of a transversely polarized quark, with spin vector sq and three-momentum k⊥, into a
hadron with longitudinal momentum fraction z and transverse momentum P⊥ with respect to
the quark direction. This mechanism is called Collins effect [9] and appears in the fragmenta-
tion via a sq ·(kq×P⊥) term. In particular, for a quark fragmenting into a spinless hadron there
are two independent leading-twist transverse momentum dependent fragmentation function.

Below, we briefly list the eight leading-twist TMD PDFs with their partonic interpretation,
and the two TMD fragmentation functions for a final spinless hadron, which are the main
objects in the investigation of the nucleon momentum structure. The superscript a refers to a
generic parton, q or g.

→ fa1 (x, k⊥) is the unpolarized, k⊥ dependent distribution of parton a inside a proton. Its
integrated version is the usual PDF measured in DIS q(x) = f q1 (x) =

∫
d2k⊥f

q
1 (x, k⊥) for

a quark and similarly for a gluon; in the Quark Parton Model f1(x) = q+(x) + q−(x),
where q+(−) refers to parallel (antiparallel) orientation of the quark and nucleon spins.

Most of experimental and theoretical efforts have so far been dedicated to this PDF, which
are the best known partonic distributions, and the comparison of the predictedQ2 depen-
dence with data has been a great success of perturbative QCD.

→ ga1L(x, k⊥), or simply ga1 , is the unintegrated helicity distribution: the difference between
the number density of partons a with the same and opposite helicity of the parent proton
(g1(x) = q+(x) − q−(x)). Common notations for the integrated helicity distributions for
quarks are ∆q(x) = gq1(x) =

∫
d2k⊥g

q
1(x, k⊥) and similarly for gluons.

The gq1(x)’s are not so well known as the corresponding f1(x), as they require polarized
DIS, but have been measured by several experiments.

→ hq1(x, k⊥) is the transversity distribution. It is the analogue of the helicity distribution,
for transverse nucleon spin. The integrated version has several notations in the literature

2Notice that in the TMD literature is often used a different notation in which, for instance, ∆Nfq/p↑(x, k⊥) =

−(2k⊥/M)f⊥q1T (x, k⊥) [21].
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∆⊥q(x) = hq1(x) =
∫
d2k⊥h

q
1(x, k⊥) for quarks of flavor q, and in a transversity basis

h1(x) = q↑(x) − q↓(x), where the arrows indicate the transverse spin of the quarks with
respect to the direction of motion. For hadrons with spin 1/2, there is no transversity
gluon distribution.

The unpolarized, the helicity and the transversity distribution are the only three indepen-
dent TMD PDFs which survive in the collinear limit (integration over k⊥). In particular,
the transversity distribution is a chiral-odd function and needs to be coupled to another
chiral-odd function to be observed, that is the Collins fragmentation function. In Sec. 1.3.2
the first extraction of the transversity PDF for u and d quarks, obtained by a combined
fits of SIDIS and e+e− data, is discussed.

→ fa⊥1T (x, k⊥) is the Sivers function [22] (chiral-even and naive T-odd function3), appearing
in the distribution of unpolarized partons inside a transversely polarized proton. It links
the parton intrinsic motion to the proton spin via a S · (P× k⊥) term.
Its observation, already confirmed, is a clear indication of parton orbital motion; the op-
posite values for u and d quarks is argued to be linked to the nucleons’ anomalous mag-
netic moments.

→ hq⊥1 (x, k⊥) is the Boer-Mulders function [23], appearing in the distribution of transversely
polarized quarks q inside an unpolarized proton via a sq · (P× k⊥) term.
It is considered as the counterpart of the Sivers function f⊥1T and, like this, it is a naive
T-odd function but chiral-odd. This implies that hq⊥1 , in general, is harder to measure
than f⊥1T .

→ The remaining three TMDs, ga1T (x, k⊥), hq⊥1L(x, k⊥) (worm-gear), and hq⊥1T (x, k⊥) (pret-
zelosity) are related to double spin correlation in the PDFs; respectively, the amount of
longitudinally polarized partons in a transversely polarized proton, of transversely po-
larized quarks in a longitudinally polarized proton, and of transversely polarized quarks
in a transversely (but in a different direction) polarized proton.

• Da
1(z, P⊥) is the unpolarized, P⊥ dependent, parton a Fragmentation Function (FF) into

hadron h, and the integrated version Da
1h(z) =

∫
d2P⊥D

a
1(z, P⊥) is the usual FF [24, 25,

26].

• H⊥q1 (z, P⊥) is the Collins function [9], describing the fragmentation of a polarized quark
into a spinless (or unpolarized) hadron h:

Dq
1(z,P⊥; sq) = Dq

1(z, P⊥) +
P⊥
zMh

H⊥q1 (z, P⊥) sq · (kq ×P⊥). (1.3)

3This term is not related to real violation of T-invariance but, roughly speaking, is associated with a nontrivial
phase at the amplitude level of a process.
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The Collins effect has been observed by several experiments, and it is considered as a
universal property of the quark hadronization process. In addition, its chiral-odd nature
makes it the ideal partner to access chiral-odd TMD PDFs.

1.2 Semi Inclusive Deep Inelastic Scattering

Semi Inclusive Deep Inelastic Scattering (SIDIS) experiments allow to obtain information on
all the leading-twist TMDs previously described. Figure 1.2(a) shows the diagam of the SIDIS
process in which a lepton collides on a nucleon and a hadron, in addition to the scattered
lepton, is observed in the final state.

(a) (b)

Figure 1.2: (a) SIDIS diagram. (b) Illustration of the kinematics, and definition of the azimuthal
angles of SIDIS process in the target rest frame. PhT and ST are the transverse components of
Ph and S with respect to the virtual photon momentum q

In the one-photon exchange approximation, the SIDIS cross section can be decomposed in
terms of structure functions and, following the notation of [27], one has:

dσ

dx dy dz dφS dφh dP
2
hT

∝
{
FUU,T + ε FUU,L +

√
2ε(1 + ε) cosφhF

cosφh
UU (1.4)

+ ε cos(2φh)F
cos(2φh)
UU + λe

√
2ε(1− ε) sinφhF

sinφh
LU

+ S||

[√
2ε(1 + ε) sinφhF

sinφh
UL + ε sin(2φh)F sin 2φh

UL

]
+ S||λe

[√
1− ε2FLL +

√
2ε(1− ε) cosφhF

cosφh
LL

]
+ |S⊥|

[
sin(φh − ψS)(F

sin(φh−φS)
UT,T + εF

sin(φh−φS)
UT,L )

+ ε sin(φh + φS)F
sin(φh+φS)
UT + ε sin(3φh − φS)F

sin(3φh−φS)
UT

+
√

2ε(1 + ε) sinφsF
sinψS
UT +

√
2ε(1 + ε) sin(2φh − φS)F

sin(2φh−φS)
UT

]
+ |S⊥|λe

[√
1− ε2 cos(φh − φS)F

cos(φh−φS)
LT +

√
2ε(1− ε) cosψSF

cosφS
LT

+
√

2ε(1− ε) cos(2φh − φS)F
cos(2φh−φS)
LT

]}
,

where ε is the degree of longitudinal polarization of the virtual photon, S|| denotes the longi-
tudinal target polarization, and λe is the electron helicity. The structure functions FXY (where
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X and Y refer to the electron and nucleon, respectively: U = unpolarized; L,T = longitudinally,
transversely polarized) merely depend on x, z, and PhT ; the third subscript FXY,T specifies the
polarization of the virtual photon, and the azimuthal angles are defined in Fig. 1.2(b). By choos-
ing specific polarization states and weighting with the appropriate azimuthal dependence, one
can extract every structure function in Eq. (1.4).

For TMD studies one is interested in the kinematical region defined by

PhT ' ΛQCD << Q,

for which the structure functions can be written as a convolution of TMDs. For this reason,
measuring the structure functions in Eq. (1.4) allows to obtain information on all eight leading
quark TMDs. In particular, for a spinless final state hadron, one has [27, 28]:

FUU ∼
∑
q

e2
qf

q
1 ⊗D

q
1 F

cos(φ−φS)
LT ∼

∑
q

e2
qg
q
1T ⊗D

q
1 (1.5)

FLL ∼
∑
q

e2
qg
q
1L ⊗D

q
1 F

sin(φ−φS)
UT ∼

∑
q

e2
qf
⊥q
1T ⊗D

q
1 (1.6)

F
cos(2φ)
UU ∼

∑
q

e2
qh
⊥q
1 ⊗H

⊥q
1 F

sin(φ+φS)
UT ∼

∑
q

e2
qh
q
1 ⊗H

⊥q
1 (1.7)

F
sin(2φ)
UL ∼

∑
q

e2
qh
⊥q
1L ⊗H

⊥q
1 F

sin(3φ−φS)
UT ∼

∑
q

e2
qh
⊥q
1T ⊗H

⊥q
1 (1.8)

where eq is the charge of the struck quark in units of the elementary charge (the factorized
expressions for the structure functions in the above equations hold in this form in the parton
model approximation). Notice that the four chiral-even TMDs couple to the well known
unpolarized fragmentation function D1, while the chiral-odd TMDs couple to the chiral-odd
Collins function H⊥1 . The accurate knowledge of the Collins function, therefore, is important
in order to extract information about the chiral-odd TMDs, like the transversity distribution
(or Boer-Mulders function).

In the next Section the first extraction of the transversity PDFs, made possible by the mea-
surement of the Collins FF from e+e− annihilation data, is briefly described. The same proce-
dure can be applied to all chiral-odd TMDs, taking care of the appropriate azimuthal amplitude
in SIDIS.

1.3 Transversity distribution

At leading twist, three collinear distribution functions are needed to describe the quark distri-
bution in the nucleon: f1, g1, and h1. An important difference between transversity h1 and g1
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is that in spin-1/2 hadron there is no gluonic function analogous to transversity. The most im-
portant consequence is that hq1 for a quark of flavor q does not mix with gluons in its evolution
and it behaves as a non-singlet quantity.
In addition, a good knowledge of the transversity distributions h1 for quarks and antiquarks
would allow computation of the tensor charge, given by

∫ 1
0 dx[hq1(x)−hq1(x)], a non perturbative

quantity for which lattice and model computations exist.
For these reasons, the extraction of transversity is of fundamental interest for obtaining a

complete description of the nucleon structure even for the case when the transverse momenta
is integrated over.

1.3.1 The Collins effects

To measure transversity there are essentially two options: single or double transverse spin
asymmetries in ep or pp processes.

The most promising approach is the latter from the study of double transverse spin asym-
metries ATT in Drell-Yan process of two colliding hadrons transversely polarized. This mea-
surement is feasible, for instance, at RICH (

√
s = 200 GeV), with ATT proportional to the

product of the two transversity distributions, one for the quark and one for the antiquark (sea
quark). This means that the ATT values are very small, of the order of few percent or less [29].
A much larger ATT , around 20-40%, could be observed in Drell-Yan processes in pp interaction
at
√
s = 200 GeV, as proposed by the PAX Collaboration [30]. However, this requires the avail-

ability of polarized antiprotons with high efficiency which will be a formidable challenge for
the future.

Presently, the most accessible channel to measure the transversity distribution is the az-
imuthal asymmetry Asin(φh+φS)

UT in Semi Inclusive Deep Inelastic Scattering (SIDIS) processes4

(lp↑ → lhX , see Fig. 1.2) in which one or more final state hadrons are detected togheter with
the scattered lepton. As discussed in section 1.2, at tree level and leading-twist, the SIDIS
F

sin(φh+φS)
UT structure function can be described as a convolution between the transversity hq1T

and the Collins fragmentation function H⊥1 :

F
sin(φh+φS)
UT ∼

∑
q

e2
q h

q
1 ⊗H

⊥q
1 . (1.9)

In order to project out F sin(φh+φS)
UT , the so called Collins amplitude 2〈sin(φh + φS)〉hUT for a

specific hadron h is extracted by measuring the asymmetry:

A
sin(φh+φS)
UT ∝

dσ↑(φh, φS)− dσ↓(φh, φS)

dσ↑(φh, φS) + dσ↓(φh, φS)
(1.10)

4The subscript U indicates un unpolarized lepton beam, and T a transversely polarized target nucleon.
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where the up and down arrows indicate two opposite transverse spin states, and the azimuthal
angles are illustrated in Fig. 1.2(b). This amplitude has so far been extracted by HERMES [10,
31] and COMPASS Collaborations [11, 32, 33], and a selection of results are shown in Fig. 1.3.

Hermes Compass

Figure 1.3: Hermers and Compass results on Collins amplitude.

For the second unknown function in Eq.1.9, the Collins FF, model calculations are avail-
able [34, 35, 36]. However, for a model independent extraction of transversity from SIDIS
asymmetry amplitudes it is necessary to determine the Collins function from an independent
source, like the measurement of azimuthal asymmetries in the distribution of back-to-back pions in two
jet events in e+e− annihilations [37] (e+e− → π+π−X), which is the subject of this dissertation.
The reference frame, the angles involved in e+e− annihilation, and the procedure for extract-
ing the asymmetry are described in detail in Chapter 4. Here, we report the results of the first
measurements of this spin-dependent fragmentation function as a function of pions fractional
energies z (Fig. 1.4), which have been performed by the BELLE Collaboration [14, 15]. Exper-
imentally, double ratios of asymmetries for like-sign (L), unlike-sign (U), and any charged (C)
pion pairs are built in order to cancel contributions from experimental acceptance and radiative
effects. The resulting asymmetries, AUL and AUC , are then sensitive to different combinations
of favored and disfavored fragmentation functions as given in [15] and shown in section 4.4.

The experimental results shown in Fig. 1.3 and 1.4 are striking. First, they clearly demon-
strate that the Collins effect as a manifestation of chiral-odd and naive T-odd mechanisms is
different from zero and not suppressed, both in SIDIS and in e+e− annihilation. Second, the
results for oppositely charged pions (hadrons) in Fig. 1.3 suggest a very peculiar feature of the
Collins FF. As scattering off u quarks dominates these data due to the charge factor, the large
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Figure 1.4: Collins asymmetry A12 for the double ratios for like-sign (L), unlike-sign (U), and
any charged (C) pion pairs as a function of the fractional energies of the two pions, z1 and
z2 [15].

magnitude of π− (ud) amplitudes being of similar size than the π+ (ud) ones but having oppo-
site sign, can only be understood if the disfavored Collins function (H⊥dif1 ) is large and opposite
in sign to the favored one. Opposite signs for favored and disfavored Collins functions are also
supported by the different size of the AUL and AUC asymmetries from Belle, shown in Fig. 1.4,
and from our results reported in chapter 6.

1.3.2 Phenomenological extraction of transversity function

A combined fit of SIDIS asymmetries together with e+e− data allows the simultaneous ex-
traction of the transversity distribution and the Collins FF. The first global analysis has been
performed by M. Anselmino and Collaborators in references [16, 17]. In order to resolve the
convolution in Eq. 1.9, a Gaussian dependence on the intrinsic transverse momentum is used:

f q1 (x, k2
⊥) = f q1 (x)

1

π < k2
⊥ >

exp

(
−

k2
⊥

< k2
⊥ >

)
, (1.11)

Dq
1(z, p2

⊥) = Dq
1(z)

1

π < p2
⊥ >

exp

(
−

p2
⊥

< p2
⊥ >

)
(1.12)

where f1(x) and D1(z) are the usual integrated parton distribution and fragmentation func-
tion, available in literature, and p⊥ = PT − zk⊥ is the transverse momentum of the observed
hadron h with respect to the direction of the fragmenting quark. The transversity and Collins
FF, instead, are unknown, and the following parametrizations are adopted:

hq1(x, k ⊥) =
1

2
N T
q (x)[f q1 (x) + gq1(x)]

1

π < k2
⊥ >

exp

(
−

k2
⊥

< k2
⊥ >

)
(1.13)
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H⊥q1 (z, p ⊥) = 2NC
q (z)Dq

1(z) h(p⊥)
1

π < p2
⊥ >

exp

(
−

p2
⊥

< p2
⊥ >

)
(1.14)

where the functions N T
q (x), NC

q (z), and h(p⊥) are defined in reference [16].5

The results of the global fit analysis for the transversity function and Collins FF are reported
in Fig. 1.5. In particular, the transversity distribution for u and d quarks are plotted in Fig. 1.5(a),
where the shaded area corresponds to the uncertainty in the parameter values. Similarly, the
Collins functions (favored and disfavored) are plotted as a function of z and p⊥ in Fig. 1.5(b),
which confirm the feature discussed in section 1.3.1

(a) (b)

Figure 1.5: (a) Transversity distribution functions (red lines) for u and d quarks as determined
through the global analysis (HERMES, COMPASS, and BELLE data). In the left plots as a func-
tion of x, and in the right plots the unintegrated distribution as a function of k⊥ at a fixed value
of x. The Soffer bound [38] is also shown (blue line), the shaded area is the error band due to
the uncertainty in the determination of the free parameters, and the wider band is the uncer-
tainty obtained in the first extraction in Ref [16].
(b) Favored and disfavored Collins FF as determined through the global fit (red lines). In the
left plots, the z dependence of the p⊥ integrated Collins function and normalized to the twice
corresponding unpolarized fragmentation function are shown. In the right plots, the p⊥ depen-
dence of the Collins function at fixed value of z are shown. The Q2 value is 2.4 GeV2 with the
assumption that the Collins FF Q2 evolution is the same as for the D evolution. The positivity
bound [25] (upper line), the uncertainty region, and the uncertainty obtained in Ref [16] are
also shown. Note that in this thesis we refer to the transversity function as hq1 instead that ∆T q,
and to the Collins function as H⊥1 instead that ∆ND.

5N T
q (x) = NT

q x
α(1 − x)β (α+β)α+β

ααββ
, NC

q (z) = NC
q z

γ(1 − z)δ (γ+δ)γ+δ

γγδδ
, h(p⊥) =

√
2e p⊥

Mh
exp−p2⊥/M2

h , and
|NT

q |, |NC
q | ≤ 1. The coefficients NT

q and NC
q depend on the quark flavor (q = u, d), while all the exponents

α, β, γ, δ, and the dimensional parameter M are taken flavor independent. All these parameters are extracted by
the fit.
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1.3.3 Dihadron fragmentation function

A complementary approach to transversity is provided by semi-inclusive two hadron produc-
tion, ep↑ → e′(h1h2)X , where the two unpolarized hadrons with momenta P1 and P2 emerge
from the fragmentation of the struck quark. This mechanism differs from the Collins mecha-
nism in that the transverse spin of the fragmenting quark is transfered to the relative orbital
angular momentum of the hadron pair. In addition, by detecting a second hadron, the sensiti-
vity to the quark spin survives integration over transverse momenta. Thus, unlike the Collins
effects, collinear models can be used for factorization and the QCD evolution of the fragmen-
tation function is known [39, 40].

The kinematics is similar to the one in single-hadron SIDIS except for the final hadronic
state, where now z = z1 + z2 is the fractional energy carried by the hadron pair, and vectors
Ph = P1+P2 and R = (P1−P2)/2 (see also Fig. 1.6) are introduced, together with the invariant
mass Mh of the pair, which must be considered smaller than the hard scale (P 2

h = M2
h << Q2).

Figure 1.6: Kinematic of the production of two hadrons in SIDIS processes.

In analogy with the Collins function, the expression for unpolarized hadrons (h1, h2) pro-
duced by a transversely polarized quark reads:

Dh1h2/q↑(z,M
2
h ,RT ) = Dq

1(z,M2
h)−H^q

1 (z,M2
h)

S⊥q · (p̂×RT )

Mh
, (1.15)

where RT is the component of R transverse to Ph.
The relevant asymmetry that should be measured in SIDIS is

A
sin(φR+φS) sin(θ)
UT ∝ hq1(x)×H^q

1 (z,M2
h), (1.16)

where θ is the angle between P1 and P2 in the two hadron center of mass frame, and H^
1 is the

Interference Fragmentation Function (IFF, chiral-odd function like Collins FF).
As in the single-hadron production case, transversity can be extracted from the asym-

metry (1.16) only if the unknown H^
1 is independently determined from e+e− annihila-

tion. In this case, two hadron pairs produced in opposite jets are considered: e+e− →
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(π+π−)jet1 (π+π−)jet2 X , with kinematics depicted in Fig. 1.7 (see also reference [41] for a
detailed description).

Figure 1.7: Kinematic for the e+e− → (h1h2)jet1(h1h2)jet2X

In this reaction, the orientation of the two hadrons with respect to each other and to the
jet direction is an indicator of the transverse spin direction of the quark. Such a correlation is
expected to occur due to the strong final state interaction between the two hadrons: different
partial waves can interfere and this is expected to give rise to non-vanishing two-hadron IFFs.
The leading-twist cross section of this process contains many terms [41], among which there is
one involving the product of H^

1 for the quark q and of H^
1 for the q, weighted by cos(φR +

φR). Thus, this contribution can be extracted by defining the so-called Artru-Collins azimuthal
asymmetry [41, 42]:

Acos(φR+φR)(z,M2
h , z,M

2
h) ∝ sin2 θ2

1 + cos2 θ2

|R|
Mh

|R|
Mh

∑
q e

2
q H

^q
1 (z,M2

h)H
^q
1 (z,M

2
h)∑

q e
2
q D

q
1(z,M2

h)D
q
1(z,M

2
h)

, (1.17)

where the di-hadron fragmentation function Dq
1 and H^q

1 are the same universal functions ap-
pearing in the SIDIS asymmetry equation (1.16).

The first measurements of Asin(φR+φS) sin(θ)
UT was performed by the HERMES Collabora-

tion [43], which gave evidence of a non-zero IFF. Preliminary SIDIS data are also available from
the COMPASS Collaboration [44, 45] using transversely polarized deuteron and hydrogen
targets. In addition, results from measurements of the Acos(φR+φR) asymmetry have been
recently published by the BELLE Collaboration in Ref. [46].

1.4 Summary

As shown in this Chapter, the extraction of the Collins FF (H⊥q1 ) is a fundamental tool in order to
have a complete description of the quarks distribution inside the nucleon. In fact, it allows the
extraction of the transversity distribution function (hq1), which is the least known leading-twist
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PDF due to its chiral-odd nature. Since only chiral-even objects are observable, the transversity
function is always coupled with another chiral-odd function like the Collins FF, as explained in
section 1.2. The first measurement of transversity and Collins FF were obtained by Anselmino
and collaborators in reference [16, 17] and briefly described in section 1.3.2. Given the com-
plexity of the subject, an independent measurement of the Collins asymmetries by BABAR, as
described in this dissertation, is advisable in order to both confirm the Belle results and im-
prove the precision of the global fit. To achieve this result, I studied the process e+e− → ππX

with charged pion pairs detected in opposite jets.The analysis strategy, systematics checks, and
results are discussed in the following chapters.





Chapter 2

Fragmentation Functions in e+e−

annihilation

2.1 Introduction

The term “Fragmentation Functions” (FFs) is widely used to describe the energy distribution of
final-state particles in hard processes [47]. In unpolarized semi-inclusive e+e− annihilation, the
cross section at the center-of-mass (CM) energy

√
s = Q via an intermediate photon or Z-boson

is given by

1

σ0

d2σh(e+e− → γ/Z → h+X)

dz d cos θ
=

3

8
(1 + cos2 θ)F hT +

3

4
sin2 θF hL +

3

4
cos θF hA. (2.1)

In this formula, z = 2Eh/
√
s is the scaled energy of the hadron h, and θ is the angle relative

to the electron beam in the CM frame. The transverse and longitudinal FFs, FT and FL, rep-
resent the contributions from γ/Z polarizations transverse or longitudinal with respect to the
direction of motion of the hadron. The parity-violating term with the asymmetric FF FA arises
from the interference between vector and axial-vector contributions. The normalization factors
σ0 used in the literature range from the total cross section σtot for e+e− → hadrons (including
all weak and QCD contributions) to σ0 = 4πα2Nc/3s,1 with Nc = 3.

Integration of Eq. (2.1) over θ yields the total fragmentation function F h = F hT + F hL

1

σ0

dσh

dz
= F h(z, s) =

∑
i

∫ 1

z

dx

x
Ci(x, αs(µ),

s

µ2
)Dh

i (
z

x
, µ2) +O(

1√
s

) , (2.2)

where µ2 is the factorization scale, i = u, u, d, d, ..., g, Ci are coefficient functions calculated
in perturbative QCD, Dh

i are the parton FFs2, and αs is the running coupling constant, whose
dependence from Q2 is:

αs(
√
Q2) =

12π

(33− 2Nf ) ln(Q2/Λ2)
, (2.3)

1The lowest order QED cross section for e+e− → µ+µ− times the number of colors Nc.
2These functions are the final state analogue to the initial state parton distribution functions (PDFs).
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with Nf the number of quark flavors, and Λ the QCD scale parameter3.
The function Dh

i (z, µ2) indicates the probability to find a hadron h with the energy fraction
z, coming from the fragmentation of parton i. Beyond the leading order (LO) of perturbative
QCD, these universal functions depend on the factorization scheme, with ‘reasonable’ scheme
choices retaining certain quark-parton-model constraints such as the momentum sum rule∑

h

∫ 1

0
dz z Dh

i (z, µ2) = 1 . (2.4)

The simpler parton model approach would predict scale-inedependent distributions (‘scal-
ing’) for both the FF F h and the parton FFDh

i . Perturbative QCD corrections lead to logarithmic
scaling violation equations (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi, DGLAP) [48, 49, 50]

δ

δ lnµ2
Di(z, µ

2) =
∑
j

∫ 1

z

dx

x
Pji(x, αs(µ

2))Dj(
z

x
, µ2) , (2.5)

where Pji is the splitting function which describes the parton splitting j → i and which can be
given also as a power series in αs. The effect of the evolution is shown in Fig. 2.1: as the scale
increases, one observes a scaling violation in which the x-distribution is shifted toward lower
values.

Measurements of fragmentation in lepton-hadron and hadron-hadron scattering are com-
plementary to those in e+e− annihilation. The latter provides a clean environment (no initial-
state hadron remnant) and stringent constraints on the combinations Dh

q +Dh
q . However, e+e−

annihilation is far less sensitive to Dh
g and insensitive to the charge asymmetries Dh

q − Dh
q .

These quantities are best constrained in proton-(anti)proton and electro-proton scattering, re-
spectively.
Moreover, unlike e+e− annihilation where q2 = s is fixed by the collider energy, lepton-hadron
scattering has two independent scales, Q2 = −q2 and the invariant mass W 2 of the hadronic
final state, which both can vary by several orders of magnitudes for a given CM energy, thus
allowing the study of fragmentation in different environments by a single experiment. In DIS
(Q2 >> 1 GeV2), using the quark-parton-model (QPM), the hadronic fragments of the struck
quark can be directly compared with the quark fragmentation in e+e− in a suitable frame (Breit
frame [52]4).

The comparison of scaling violation in DIS and e+e− experiments shows a general agree-
ment, as can be seen in Fig. 2.2. However, processes in DIS which are not present in e+e−

annihilation, such as boson-gluon fusion and initial state QCD radiation, can depopulate the
current region of Breit frame. These effects become more prominent at low values of Q and x.
Hence, when compared with e+e− data at

√
s = 5.2, 6.5 GeV [53] (not shown here) the DIS

particle rates tend to lie below those from e+e− annihilation.
3Λ ∼ 200 MeV represents the energy at which αs becomes large and perturbative QCD is not longer valid.
4The Breit frame is defined as the frame in which the exchanged boson is completely space-like.
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Figure 2.1: Fragmentation function in e+e−

annihilation for all charged particles and for
different center of mass energies versus x =
2Eh/

√
s [51].

Figure 2.2: Scaling violations of the FF for all
charged particles in the current region of Breit
frame of DIS and e+e− annihilation [51]. The
data are shown as a function of

√
s for e+e−

results, and as a function of Q for DIS results.

2.2 Fragmentation models

Although the scaling violation can be calculated perturbatively, the parton fragmentation func-
tions are non-perturbative objects. Perturbative evolution gives rise to a shower of quarks and
gluons (partons). Phenomenological hadronization (or fragmentation) models are then used to
model the carry-over parton momenta and flavor of the hadrons. These models, implemented
in the Monte Carlo event generation programs, can be grouped in three classes: independent
fragmentation, string fragmentation, and cluster fragmentation, briefly summarized below.

2.2.1 Independent fragmentation

Historically, one of the first fragmentation models was the independent fragmentation model
of Feynman and Field [54]. In this model, the original quark and antiquark each transform into
a jet of hadrons, independently of each other.

Fig. 2.3 illustrates the creation of a jet by independent fragmentation from a quark q0 created
in the process e+e− → q0q0. First, a quark pair q1q1 is created from the vacuum. q1 and q0

combine to form a meson, leaving behind q1, which has less energy than q0. Then, another pair
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Figure 2.3: Schematic view of the independent fragmentation process into mesons for a jet
originated by the quark q0.

q2q2 is created, and q1 and q2 bind together to form another meson, leaving behind q2 with still
less energy. This process repeats itself until the remaining quark has too little energy to form a
meson. The same kind of iterative process produces a second jet from q0.

In this model it is assumed that the quarks and antiquarks created from the vacuum have
a transverse momentum that is distributed as a Gaussian with an experimentally determined
width σq, and that the total transverse momentum of each pair is zero. Another experimen-
tally measured parameter determines the fraction of vector mesons (the remainder being pseu-
doscalar mesons). A third parameter determines the probability that the created qq pairs are ss
or uu, dd. Another feature of this model is a fragmentation function f(z), which is the proba-
bility density, at each step in the fragmentation chain, that a fraction z of the momentum of a
quark qi goes into the meson hi. Its parameterization is

f(z) = 1− a− 3a(1− z)2, (2.6)

where a is determined from experiment.
The original Feynman-Field model did not include baryon production and gluon jets, which

are introduced by Meyer in reference [55]. However, it has a number of theoretical problems
that makes it difficult to use.

2.2.2 String fragmentation

The string-fragmentation scheme considers the color field between the partons to be the frag-
menting entity rather than the partons themselves. The popular implementation of this model



2.2 Fragmentation models 23

is the Lund model [56], implemented in the JETSET [57], PYTHIA [58], and UCLA [59] Monte
Carlo event generation programs.

The color force fields are modeled by the massless relativistic string with color 3(q) and 3(q)
at the endpoints (the gluons (g, 8 colors) are treated as internal excitations on the string field).
The string is uniform along its length; this means that there is a constant force field (K ' 1

GeV/fm) spanned between the original pair. This pair is produced at the origin O, as shown in
Fig. 2.4, and afterwards the q0q0 are moving apart along the x-axis.

Figure 2.4: String fragmentation and meson production in t− x space.

When the energy stored in the string is sufficient, a qq pair may be created from the vacuum.
Thus, the string breaks up repeatedly into color singlet systems as long as the invariant mass
of the string pieces exceeds the on-shell mass of the hadron.

The creation of a quark-antiquark pair at a point violates the energy conservation if the
quarks have mass or transverse momentum. Thus, the qq pairs are created according to the
probability of tunneling processes

P ∝ exp

(
−πm2

q⊥
K

)
(2.7)

which depends on the transverse mass squared m2
q⊥ ≡

√
m2
q + p2

q⊥ and the string tension K.
The transverse momentum pq⊥ is locally compensated between quark and antiquark.
Due to the dependence of the parton mass, mq, and/or hadron mass, mh, the production of
strange and, in particular, heavy-quark hadrons is suppressed.

The longitudinal momenta pl of the hadrons are determined by a string fragmentation func-
tion, which is a function of the light-cone variable E + pl. The first hadron at the end of the
string takes a fraction z1 of the total (E + p)q of the entire string: (E + pl)1 = z1(E + p)q.
The next hadron created takes another fraction z2 of the remaining available (E + p)q of the
unfragmented string system.
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An important feature of this model is the requirement that, on average, the fragmentation
starting from one end of the string is the same as the fragmentation starting from the other end
of the string. This is given by the Lund Symmetric fragmentation function [60]

f(z) ∼ 1

z
(1− z)α exp

(
−bm2

h⊥
z

)
, (2.8)

where a and b are free parameters. These parameters need to be adjusted to bring the fragmen-
tation into accordance with experimental data.

2.2.3 Cluster fragmentation

The third class of fragmentation models used in high energy physics are the cluster fragmenta-
tion models, implemented in HERWIG [61] and SHERPA [62] Monte Carlo event generators. In
this approach, a leading logarithm parton shower is generated and the evolution of the shower
stops when the parton virtuality Q falls below the cutoff Q0 (Q0 < 1 GeV). At this point all
gluons are split into qq pairs, and adjacent quarks and antiquarks are formed into color-neutral
clusters [63]. The cluster thus formed are fragmented into hadrons. If a cluster is too light to
decay into two hadrons, it is taken to represent the lightest single hadron of its flavor. Its mass
is shifted to the appropriate value by an exchange of 4-momentum with a neighboring cluster
in jet. A decay channel is chosen based on phase-space probability, the density of states, and
the spin degeneracy of the hadrons.

Cluster fragmentation has a compact description with few parameters, due to the phase
space dominance in the hadron formation.

2.3 Theoretical aspects of Collins Fragmentation Function in e+e−

annihilation

After the brief introduction about the physics scenario and the usefulness of the measurement
of the Collins asymmetry described so far, in the following sections we summarize the theoret-
ical formalism of the inclusive two-hadrons production in e+e− annihilation up to order 1/Q,
where the two hadrons belong to different, back-to-back jets (e+e− → h1h2X).

2.3.1 General angular dependence

We consider the process e+e− → h1h2X , where the two leptons annihilate into a photon (or
Z boson) with 4-momentum q = l + l′ (l and l′ are the electron and positron momenta, re-
spectively). The photon momentum sets the scale Q (Q2 ≡ q2) which is much larger than the
characteristic hadronic scale. Denoting the momentum of the outgoing hadrons by Ph, with
h = 1, 2, we define the invariants zh = 2Ph · q/Q2 which are analogous to the Bjorken variable.
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Note that zh are the fractions of the beam energy carried by the hadrons in the e+e− center of
mass system, and they obey the following constraint:

z1 < 1, z2 < 1. (2.9)

In the case of unpolarized leptons and hadrons, and two-jet event topology, the normalized
differential cross section for the process e+e− → h1h2X , where the two hadrons belong to
opposite jets, can be written as:

dN

dΩ
≡
(

dσ

dz1dz2d2qT

)−1 dσ

dz1dz2dΩd2qT
= F1(1 + cos2 θ) + F2(1− 3 cos2 θ) + F3 cos θ (2.10)

+ F4 sin 2θ cosφ+ F5 sin2 θ cos 2φ+ F6 sin θ cosφ

+ F7 sin 2θ sinφ+ F8 sin2 θ sin 2φ+ F9 sin θ sinφ

The functions Fi depend on the invariants zh and on the squared transverse momentum of the
photon with respect to the two hadrons (qT

2 ≡ Q2
T ). The azimuthal angle φ and the polar

angle θ are given in the lepton pair center of mass frame (or equivalently the photon center
of mass frame). If at high Q2 and Q2

T collinear factorization of the cross section is considered,
then at tree level (zeroth order in αs) only F1, F3 will receive non-zero contributions (F3 only
from γ−Z interference), at first order in αs F1, ..., F6 receive contributions, and at second order
all Fi are non zero (no transverse beam polarization is assumed). Below we will discuss the
differential cross section in more detail.

2.3.2 Two-particle inclusive cross section

The square amplitude for e+e− → h1h2X can be split into two parts: the first part is purely
leptonic and the second part is purely hadronic:

|M|2 =
e4

Q4
LµνH

µν . (2.11)

Neglecting the lepton masses and taking into account the helicity conservation, we can write
the lepton tensor as5:

Lµν(l, l′) = 2lµl
′
ν + 2lν l

′
µ −Q2gµν . (2.12)

For the case of two observed hadrons in the final state, the product of the hadronic current
matrix elements is written as:

Hµν(PX ;P1;P2) =< 0|Jµ(0)|PX ;P1;P2 >< PX ;P1;P2|Jν |0 > . (2.13)

5For unpolarized electron and positron beams
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Including the factor 1/2 from averaging over the initial state polarization, the cross section for
inclusive hadron pair production in e+e− annihilation is given by

P 0
1P

0
2 dσ

e+e−

d3P1d3P2
=

α2

4Q6
LµνWµν , (2.14)

with

Wµν(q;P1;P2) =

∫
d3PX

(2π)32P 0
X

δ4(q − PX − P1 − P2)Hµν(PX ;P1;P2) (2.15)

For the calculation of the hadron tensor it will be convenient to define the lightlike direc-
tions using the hadronic momenta. We choose two dimensionless light-cone basis vectors (see
Appendix A):

nµ+ = (1, 0,0T ) , nµ− = (0, 1,0T ) , n+ · n− = 1 , (2.16)

and the hadronic momenta P1 and P2 can be parametrized as (up to Q2
T /Q

2 corrections):

Pµ1 ≡ z1Q√
2
nµ− +

M2
1

z1Q
√

2
nµ+, (2.17)

Pµ2 ≡ M2
2

z2Q
√

2
nµ− +

z2Q√
2
nµ+, (2.18)

qµ ≡ Q√
2
nµ− +

Q√
2
nµ+ + qµT . (2.19)

Vectors transverse to n+ and n− are obtained using the tensors:

gµνT ≡ gµν − n{µ+ n
ν}
− , (2.20)

εµνT ≡ εµνρσn+ρn−σ , (2.21)

where the brackets around the indices indicate symmetrization.
The experimental analysis of the azimuthal asymmetries are not usually performed in the

frame in which the two hadrons are collinear, for which the above (Sudakov) decomposition
into light-like vectors and transverse parts is most suited. Instead it is much more common
to consider angles in the lepton pair center of mass frame. In this case, there is still freedom
to select which momentum or linear combination of momenta, is used to define the ẑ axis.
Two choices are common: Gottfried-Jackson frame (GJ, Fig. 2.5) and Collins-Soper frame (CS,
Fig. 2.6). We describe first the GJ frame. Later we shall consider the CS frame and, finally, we
shall report the results for the frame in which the jet or thrust axis is used to fix the basis.
In order to expand the hadron tensor in terms of independent Lorentz structures, it is conve-
nient to work with vectors orthogonal to q. A normalized time-like vector is defined by q and
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a normalized space-like vector is defined by P̃µ = Pµ − (P · q/q2)qµ for one of the outgoing
momenta (P2 for example):

t̂µ ≡ qµ

Q
, (2.22)

ẑµ ≡ Q

P2 · q
P̃µ2 = 2

Pµ2
z2Q

− qµ

Q
. (2.23)

Figure 2.5: Gottfried-Jackson frame: Kine-
matic of the annihilation process in the e+e−

center of mass frame. P1 and P2 are the mo-
menta of the two hadrons in opposite jets. In
this frame x̂ ≡ ĥ

Figure 2.6: Collins-Soper frame: Kinematic
of the annihilation process in the e+e− center
of mass frame. P1 and P2 are the momenta of
the two hadrons in opposite jets.

This means that in the lepton pair center of mass frame, hadron 2 is moving along the ẑ
direction, as in Fig. 2.5. Vectors orthogonal to ẑ and t̂ are obtained using the tensors:

gµν⊥ ≡ gµν − t̂µt̂ν + ẑµẑν (2.24)

εµν⊥ ≡ −εµνρσ t̂ρẑσ =
1

(P2 · q)
εµνρσP2ρqσ. (2.25)

Since we have chosen hadron 2 to define the longitudinal direction, we can use the momentum
P1 of hadron 1 to express the directions orthogonal to ẑ and t̂. We define the normalized vector
ĥµ = gµν⊥ P1ν/|P1⊥| (Pµ1⊥ = gµν⊥ P1ν), and the second orthogonal direction is given by εµν⊥ ĥν .
Note that the transverse tensors in Eqs. (2.20) and (2.21) are not identical to the perpendicular
ones defined above if the momentum of the outgoing hadron 1 does not vanish (the differences
are of the order 1/Q).

Azimuthal angles will lie inside the plane orthogonal to t̂ and ẑ. In particular, the azimuthal
angle φ gives the orientation of l̂⊥, where l̂µ⊥ denotes the normalized perpendicular part of the
lepton momentum lµ. As we can see in figure 2.5, the angle φ1 is between ĥ ∝ P1⊥ and l̂⊥, and
for a generic vector a we have:

l̂⊥ · a⊥ = −|a⊥| cosφa (2.26)

εµν⊥ l̂⊥µa⊥ν = |a⊥| sinφa (2.27)
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where the convention used for the epsilon tensor is ε0123 = 1.
The cross sections are obtained from the hadron tensor after contraction with the lepton

tensor. The lepton tensor for unpolarized leptons expressed in the e+e− center of mass is given
by:

Lµν = Q2

[
−2A(y)gµν⊥ + 4B(y)ẑµẑν − 4B(y)

(
l̂µ l̂ν +

1

2
gµν⊥

)
− 2C(y)D(y)ẑ{µ l̂

ν}
⊥

]
. (2.28)

In this expression, we encounter the function y = P2 · l/P2 · q ≈ l−/q−, which in the e+e− CM
frame is y = (1 + cos θ∗)/2, where θ∗ ≡ θ2 is the angle of ẑ with respect to the momentum of
the incoming lepton l (as reported in Fig. 2.5):

A(y) =

(
1

2
− y + y2

)
cm
=

1

4
(1 + cos2 θ∗) (2.29)

B(y) = y(1− y)
cm
=

1

4
sin2 θ∗ (2.30)

C(y) = (1− 2y)
cm
= − cos θ∗ (2.31)

D(y) =
√

(y(1− y))
cm
=

1

2
sin θ∗ (2.32)

Denoting the hadron tensor withWµν , we can write the cross section for the process e+e− →
h1h2X in the center of mass frame as:

dσ(e+e−)

dz1dz2dΩd2qT
=

α2

16Q4
z1z2LµνW

µν (2.33)

where dΩ = 2dydφl, with φl giving the orientation of l̂⊥.
As mentioned above, sometimes it may be convenient to choose a rotated set of basis vectors

in the lepton center of mass frame: the CS frame shown in Fig. 2.6. In the lepton center of mass
frame the ẑ axis points now in the direction that bisects the three-vectors P2 and −P1, and the
angle of ẑ with respect to the momentum of the incoming lepton l is θ∗ ≡ θ.
Neglecting the mass correction terms, the basis vectors of the CS and GJ frames for e+e− →
h1h2X are the following [64]:

t̂µCS =
qµ

Q
t̂µGJ =

qµ

Q

ẑµCS =
2Q

s̃Q̃
((P1 · q)P̃µ2 − (P2 · q)P̃µ1 ) ẑµGJ =

Q

P2 · q
P̃µ2 (2.34)

x̂µCS =
2Q

s̃QT Q̃
((P1 · q)P̃µ2 + (P2 · q)P̃µ1 ) x̂µGJ =

2Q

s̃QT
((P1 · ẑGJ)P̃µ2 − (P2 · ẑGJ)P̃µ1 )

where s̃ = (P1 +P2)2 and Q̃2 = Q2 +Q2
T . Note that x̂GJ corresponds to ĥ, and ŷGJ,CS is defined

implicitly by requiring a right-handed basis.
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These two basis coincide in the limit QT → 0. When QT 6= 0 they differ only by a rotation:

ẑGJ = cosβ ẑCS + sinβ x̂CS , (2.35)

x̂GJ = − sinβ ẑCS + cosβ x̂CS (2.36)

where cosβ = Q/Q̃ and sinβ = QT /Q̃.

In summary, we considered two sets of basis vectors, the first set constructed from the two
hadron momenta and the second set from the photon momentum and one of the hadron mo-
menta (P2), both in the e+e− center of mass frame. The respective frames where the momenta
P1 and P2 (CS frame), or q and P2 (GJ frame), are collinear are the natural ones connected to
these two sets. The two reference frames are related to each other via a Lorentz transformation.
Note that in the CS frame (called also ” transverse basis”) q has a transverse component qT ,
while in the GJ frame (or ”perpendicular basis” ) P1 has a perpendicular component P1⊥, and
they are related as follows:

Pµ1⊥ = −z1q
µ
T = z1QT ĥ

µ . (2.37)

2.3.3 Hadron tensor

The hadron tensor Wµν can be expanded in terms of independent Lorentz structures which
leads to a parametrization in terms of structure functions Wi. Ignoring lepton polarization and
γ − Z interference, the most general decomposition consists of four structure functions which
in the leptonic center of mass frame (or rather the ”perpendicular basis”) are defined as:

Wµν = −gµν⊥ WT + ẑµẑνWL − ẑ{µx̂ν}W∆ − (x̂{µx̂ν} − x̂2gµν⊥ )W∆∆. (2.38)

such that Wµ
µ = −(2WT + WL). The notation used here is similar to the notation for Drell-Yan

process and more explanations can be found in references [65], [66], [67] and [68]. The structure
functions WT,L,∆,∆∆ are associated with specific polarizations of the photons [65]:

• WT = W 1,1,

• WL = W 0,0,

• W∆ = (W 0,1 +W (1,0))/
√

2,

• W∆∆ = W 1,−1,

where the first and the second superscripts denote the photon helicity in the amplitude and its
complex conjugate, respectively. Thus, WT and WL are the structure functions for transverse
and longitudinal virtual photons, W∆ is the single-spin flip structure function and W∆∆ is the
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Figure 2.7: Factorized diagram contributing to e+e− annihilation at leading order. The non-
perturbative information is encoded in the quark fragmentation correlation function ∆ (∆ for
antiquark). In these figure, q is the photon momentum, k and p are the momenta of the quark
and antiquark respectively, and P1,2 the hadron momentum.

double-spin flip one.
In terms of these structure functions the cross section for the e+e− → h1h2X process becomes:

dσ(e+e− → h1h2X)

dz1dz2dΩd2qT
=

3α2

4Q2
z2

1z
2
2 {WT (1 + cos2 θ∗) + (2.39)

+WL(1− cos2 θ∗) +W∆ sin 2θ∗ cosφ∗ +W∆∆ sin2 θ∗ cos 2φ∗.}

Here θ∗ and φ∗ indicate the polar and the azimuthal angles in the e+e− center of mass frame
(GJ frame, see Fig. 2.5).

2.3.4 Cross section

In this section we investigate the φ dependence that arises at leading order in αs and 1/Q in the
cross section of the process e+e− → h1h2X . The cross section involves products of fragmen-
tation functions, which unlike the ordinary collinear functions, include transverse momentum
dependence [19] . Non-trivial quark spin effects, which require non-zero partonic transverse
momenta, can arise at leading order, as it is the case for the Collins effect. Although we are
interested in the cross section differential in qT , we shall consider first the case of integration
over the transverse momentum of the virtual photon and then the unintegrated cross section.

Integration over transverse photon momentum

At tree level one needs to calculate the diagram shown in Fig. 2.7. It depicts the squared
amplitude of the process in which the photon produces a quark and an antiquark, which sub-
sequently fragment independently into the hadrons h1 and h2, respectively.
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As defined in reference [9], the quark fragmentation correlation function ∆(P1; k) is defined
as:

∆ij(Ph; k) =
∑
X

∫
d4x

(2π)4
eik·x < 0|ψi(x)|Ph;X >< Ph;X|ψj(0)|0 > (2.40)

where k is the quark momentum (the average over color indices is implicit). It is also under-
stood that appropriate path-ordered exponential should be included in order to obtain a color
gauge invariant quantity6.

The above matrix element as function of invariants is assumed to vanish sufficiently fast
above a characteristic hadronic scale (O(M)) which is smaller than Q (this means that k2, k ·
P1 � Q2). Now, making the following Sudakov decomposition for the quark momentum k:

k ≡ z1Q

z
√

2
n− +

z(k2 + k2
T )

z1Q
√

2
n+ + kT ≈

1

z
P1 + kT , (2.41)

the Dirac structure of the quark correlation function can be expanded in a number of ampli-
tudes constrained by hermiticity and parity. These amplitudes are functions of invariants built
up from the quark and hadron momenta.

In the calculation of the cross section integrated over the transverse momentum of the pho-
ton, at leading twist we have only one possible Dirac structure [69]7:

D1(z) ≡ 1

4z

∫
dk+d2kTTr(∆γ−)

∣∣∣∣
k−=P−1 /z

(2.42)

where D1(z) is the ordinary unpolarized fragmentation function, which depends only on the
light-cone momentum fraction z = P−1 /k

−. The fragmentation of an antiquark, denoted with
∆ij(P2; p), is similar to the quark fragmentation. The main difference is the role of + and −
direction which is reversed.
The four-momentum conservation δ-function at the photon vertex is written as:

δ4(q − k − p) = δ(q+ − p+) δ(q− − k−) δ2(pT + kT − qT ), (2.43)

fixing P+
2 /z = p+ = q+ = P+

2 /z2 and P−1 /z = k− = q− = P−1 /z1.
The hadron tensor as function of qT is given by

Wµν = 3

∫
dp−dk+d2pTd

2kT δ
2(pT + kT − qT ) Tr(∆(p)γµ∆(k)γν), (2.44)

where the factor 3 originates from the color summation. In the formula (2.44) we have omitted
the flavor summation and the contribution from diagrams with reversed fermion flow, which
results from the above expression by replacing µ↔ ν and q → −q.

6We choose the gauge A− = 0, see Appendix B
7The generalized parton FFs are obtained as traces of the quark-quark correlation function with the Direc ma-

trices Γ, as shown in Appendix B
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After integration over the transverse photon momentum (or equivalently over the perpendic-
ular momentum of hadron 1: P1⊥ = −z1qT ), the integration over kT and pT in the equation
(2.44) results in: ∫

d2qTW
µν = − 12

z1z2

∑
a,a

e2
ag
µν
⊥ D1D1, (2.45)

where, now, the summation over flavor indices is included and ea is the quark charge. The
fragmentation fractions are flavor dependent and depend only on the longitudinal momentum
fractions, i.e. Da

1(z1)D
a
1(z2).

From this hadron tensor one arrives at the following expression for the cross section at leading
order in αs and 1/Q:

dσ(e+e− → h1h2X)

dz1dz2dΩ
=

3α2

Q2
A(y)

∑
a,a

e2
aD1D1. (2.46)

Unintegrated cross section

Now we turn to the cross section differential in the transverse momentum. In this case we
consider the correlation function ∆ integrated only over k+. It can be parametrized in terms of
transverse momentum dependent (TMD) fragmentation functions([21, 64, 70]):

∆(z,kT ) ≡ 1

4z

∫
dk+∆(P1; k)

∣∣∣k−=P−1 /z,kT
= (2.47)

=
M1

4P−1

{
D1(z,k2

T )
/P 1

M1
+H⊥1 (z,k2

T )
σµνk

µ
TP

ν
1

M2
1

}
where we report only the fragmentation functions relevant for unpolarized hadron produc-
tion, whose contributions to the cross section are of leading order in 1/Q. Note that after
integration over kT the term with H⊥1 drops and the first term reduces to the expression in
Eqn. (2.42). Strictly speaking, the TMD fragmentation functions depend on z and on k′2T ,
where k′T = −zkT is the transverse momentum of the hadron in a frame where the quark has
no transverse momentum. In order to switch from quark to hadron transverse momentum a
Lorentz transformation leaving k− and P−1 unchanged needs to be performed ([9],[71]).
The Collins function H⊥1 implies a correlation between the transverse polarization direction of
the quark and the transverse momentum direction of the unpolarized hadron it fragments into
[9].
The Collins effect correlates the azimuthal angle of the transverse spin of a fragmenting quark
with that of the transverse momentum of the produced hadron, both taken around the quark
momentum, via a sin(φ′) distribution of their difference angle φ′ (see Fig. (2.8)). Therefore,
the distribution of the final state particles contains information about the spin direction of the
fragmenting quark.
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Figure 2.8: Collins effect: S and k are the spin and momentum of the fragmenting quark; P h⊥
is the transverse momentum of the hadron coming from the quark fragmentation.

The presence of the Dirac matrix anticommutator σµν shows that the Collins effect is a
chiral-odd state; an interference term between opposite chirality states of the fragmenting
quark. The functionH⊥1 is also often referred to as ”time-reversal odd” fragmentation function,
due its behavior under time reversal (it does not imply a violation of time reversal symmetry;
a detailed discussion is reported in Ref. [72] ).

The e+e− → h1h2X reactions involve the product of two Collins fragmentation functions
which introduce a cos(2φ) asymmetry, where the cosine modulation arises because we measure
the complementary angle of φ′. It is an azimuthal ”spin” asymmetry in the sense that the
asymmetry arises from the correlation of the transverse spin states of the quark-antiquark pair.
On average, the quark and antiquark will not be transversely polarized, but for each particular
event the spin can have a transverse component and these components will be correlated via
the photon polarization state, which in turn is determined by the beam direction. Due to the
Collins effect, the direction of the produced hadrons are correlated to the quark and antiquark
spin and hence, to the beam direction. This correlation does not average out after summing
over all quark polarization states and, as a transverse spin state is a helicity flip state, one
deduces that the asymmetry arises from the interference between the photon helicity ±1 states
(along the quark-antiquark axis) and hence contributes to W∆∆

8.
The Collins effect for unpolarized e+e− → h1h2X shows up at leading order in an az-

imuthal cos(2φ) asymmetry in the differential cross section [37, 64]:

dσ(e+e− → h1h2X)

dz1dz2dΩd2qT
=

3α2

Q2
z2

1z
2
2

{
A(y)F [D1D1]+ (2.48)

+ B(y) cos(2φ1)F

[
(2 ĥ · kT ĥ · pT − kT · pT )

H⊥1 H
⊥
1

M1M2

]}

where the angle φ1 is the azimuthal angle of ĥ = x̂ (see figure 2.5) and we use the convolution

8Such a helicity-flip contribution can also arise from quark mass terms, but those are power suppressed and do
not lead to an azimuthal dependence.



34 Fragmentation Functions in e+e− annihilation

notation

F [DD] ≡
∑
a,a

e2
a

∫
d2kT d

2pT δ
2(pT + kT − qT )Da(z1; z2

1k
2
T )D

a
(z2; z2

2p
2
T ) (2.49)

Comparing the previous equation with Eq. (2.39), we find that:

WT = F [D1D1] (2.50)

WL = W∆ = 0 (2.51)

W∆∆ = F

[
(2 ĥ · kT ĥ · pT − kT · pT )

H⊥1 H
⊥
1

M1M2

]
(2.52)

The convolutions in Eq. (2.48) are not the objects of interest, rather one wants to learn about
the FFs depending on z and kT . This may not be possible without further assumptions about
the type of the kT dependence; usually a Gaussian transverse momentum dependence is used.
As a way out, it has been suggested [37] to consider specific integrated weighted asymmetries
that probe the kT moments of the functions, instead the full transverse momentum depen-
dence. These so called transverse moments are defined as:

F (n)(z1) =

∫
d2k′T

(
k2
T

2M2
1

)n
F (z1,k

′2
T ) (2.53)

for a generic fragmentation function F . In particular, the first transverse moment of Collins
fragmentation function

H
⊥(1)
1 (z) = z2

∫
d2k′T

(
k2
T

2M2

)
H⊥1 (z1, z

2k′2T ) (2.54)

is the familiar kT -integrated FF.
As shown in [37], considering appropriate weights produces a product of kT moments of FFs,
in this case H⊥(1)

1 H
⊥(1)
1 in the Eq. (2.48).

Note that the k2
T -moment H⊥(1)

1 that arise in the above e+e− annihilation expression also ap-
pears in the QT -weighted sin(φh + φS) asymmetry in semi-inclusive lepton-hadron scattering,
in that case multiplied by the transversity distribution function [23].

2.3.5 Universality of the Collins effect

It has been shown in references [73, 74] that the T-odd distribution functions are process de-
pendent. This follows from their gauge invariant definition as matrix elements of operators
involving path-ordered exponentials that are non local off the light-cone. For T-odd fragmenta-
tion functions, such as the Collins fragmentation function, a similar conclusion was drawn [72].
However, for the particular case e+e− → h1h2X and semi-inclusive DIS, it has been argued us-
ing a model (and later also with more general arguments) that the Collins fragmentation func-
tions are identical [75, 76, 77]. This conclusion was also extended to the process pp → h jet X
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[78]. In this sense the Collins function is considered universal.
Assuming the universality of the Collins fragmentation function for the processes e+e− →
h1h2X and SIDIS, a simultaneous fit to the Collins effect asymmetry data has been performed,
as discussed in section 1.3.2.

2.3.6 Higher twist

For a more complete description, in this section we will introduce the terms that arise when
going beyond leading order in 1/Q. Insertion of the leading order parameterization of ∆

(Eqn. (2.47)) in the calculation of the diagram shown in Fig. (2.7) also produces 1/Q contri-
butions. Such 1/Q contribution can already be generated by simply transforming to a different
frame. This contribution is not electromagnetically gauge invariant and the full calculation at
order 1/Q [37] requires first of all, that the correlation function ∆ is parametrized further to
include higher twist fragmentation functions:

∆(z,kT ) =
M1

4P−1

{
D1(z,k2

T )
/P 1

M1
+H⊥1 (z,k2

T )
σµνk

µ
TP

ν
1

M2
1

+ E1 +D⊥
/kT
M1

+Hσµνn
µ
−n

ν
+

}
(2.55)

whereE, H andD⊥ are twist-3 FFs. In addition, up to order 1/Q, there are other four diagrams
shown in Fig. (2.9). These four diagrams involve one gluon which connects to one of the two
soft hadronic matrix elements.

Figure 2.9: Diagrams contributing to e+e− annihilation at order 1/Q, involving one gluon
which connects one of the two soft part.

Hence, up to order 1/Q, in addition to the quark-quark correlation function ∆(P1; k), described
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in Eq. (2.40), we have to account also for the quark-gluon correlation function:

∆α
Aij(P1; k, k1) =

∑
X

∫
d4x

(2π)4

d4y

(2π)4
ei k·y+i k1·(x−y) × (2.56)

× < 0|φi(x)gAαT (y)|P1;X >< P1;X|φj(0)|0 >

where k, k1 are the quark momenta and again inclusion of path-ordered exponentials and an
averaging over color indices are understood9.

In a calculation up to sub-leading order, we only encounter the partly integrated correlation
functions

∫
dk+∆(P1; k) and

∫
dk+d4k1∆α

A(P1; k, k1) . More explanations about the full hadron
tensor calculation (including higher twist fragmentation functions) are available in references
[37, 64].
In the GJ frame, the cross section at leading order in αs including twist-3 contributions becomes
[64]:

dσ(e+e− → h1h2X)
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=
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where the fragmenting functions indicated with a tilde differ from the corresponding twist-3
functions by a twist-2 part:

D⊥ = zD1 + D̃⊥, (2.58)

H = −
k2
T

M2
1

zH⊥1 + H̃. (2.59)

The results obtained in Eqn. (2.57) are the the same as Eqn. (2.48) plus an additional cos(φ1)

asymmetry of order M/Q. The function E only contributes in the case of polarized electrons at
1/Q and for unpolarized electrons at the 1/Q2 level.

2.3.7 Jet frame asymmetry

In an unpublished study [13] a transverse spin correlation similar to the cos(2φ) in back-to-back
jets was investigated using LEP’s DELPHI data.

9Note that the definition of ∆α
A includes one power of the strong coupling constant g.
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Although the transverse polarization of quark (antiquark) in Z0 decay is very small
(O(mq/MZ)), there is a non-trivial correlation between transverse polarization of quark and
antiquark, and the transverse spin correlation coefficient is given by

CqqTT =
v2
q − a2

q

v2
q + a2

q

(2.60)

with vq and aq the vector and axial vector couplings of quarks to the Z-boson, respectively.
The following angular dependence of the differential cross section for correlated hadron pro-
duction in opposite jets was studied:

dσ

d cos θdφdφ′
∝ 1 + cos2 θ + CqqTTS sin2 θ cos(φ+ φ′) (2.61)

In this equation, S is the analyzing power10 of the asymmetry to be determined, θ is the polar
angle of qq pair with respect to the electron beam direction in the Z0 (or e+e−) rest frame, and
φ, φ′ are the azimuthal angles around the qq axis of two produced hadrons from opposite jets
plane.

This cos(φ + φ′) asymmetry differs from the cos(2φ1) asymmetry discussed so far in that
now we need to know the two hadrons momenta and the jet axis, which is necessary for the
calculation of the two azimuthal angle φ and φ′.

The jet-axis is identified as the qq axis, then a measurement of the transverse momenta of
the leading particles in the two jets compared to the jet momentum is a determination of the
transverse momenta of the quarks compared to the leading hadrons they fragment into. One
can keep the cross section differential in the azimuthal angles of the transverse momentum of
the quarks, after which the qT integration can be safely done (as opposed to the case of the
cos(2φ) asymmetry) and it will not average to zero unless one integrates over the azimuthal
angles. In this way one will arrive at an expression involving the moments

F [n](zi) ≡
∫
d|kT |2

[
|kT |
Mi

]2

F (zi, |kT |2) (2.62)

for n = 0 and n = 1. The latter is often referred to as the half-momentum and also written as
F (1/2).

Making a transformation from the frame in which P1 and P2 are collinear into the lepton
pair center of mass frame where the qq axis define the ẑ axis, and contracting the hadron with
the lepton tensor written in this basis, we have the following differential cross section in case

10S is the ratio of spin dependent to spin-independent parts of the fragmentation function.
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of unpolarized final state hadrons11:

dσ(e+e− → h1h2X)

dz1dz2d cos(θjet)dφdφ′
=

∑
a a
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{
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1 (z1)D
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+ sin θ2
jet cos(φ+ φ′)H

⊥[0]a
1 (z1)H

⊥[0]a
1 (z2),

}
(2.63)

where θjet is the angle between the jet-axis and the beam axis. More details can be found in
Ref. [64].

11Unlike reference [13] we also included the photon contribution (the γ − Z interference was found to be very
small at

√
s ∼ 10 GeV [64]).



Chapter 3

The BABAR Experiment

BABAR is an High Energy Physics experiment installed at the Stanford Linear Accelerator Center
(SLAC), California. It was designed and build by a large international team of scientists and
engineers in the 90s, with a comprehensive physics program consisting of the systematic mea-
surement of CP violation in the B meson system, precision measurements of decays of bottom
and charm mesons, and of the τ lepton, and search for rare processes. The BABAR experiment
consists of a detector [79] built around the interaction reagion of the high luminosity e+e− col-
lider PEP-II [80]. BABAR started taking data in 1999 and finished in year 2008. In this chapter
the main features of the final design and performances of PEP-II and BABAR are described.

3.1 The PEP-II B Factory

The PEP-II B Factory is an asymmetric-energy e+e− collider designed to operate at a center-of-
mass energy of 10.58 GeV, correspondig to the mass of the Υ (4S) vector meson resonance (see
Fig. 3.1). The luminosity L of the machine depends on the careful tuning of several parameter.
This dependence is expressed as:

L =
nfN1N2

A
, (3.1)

where n is the number of bunches in a ring, f is the bunch crossing frequency, N1 and N2 are
the total number of particles in each bunch, and A is their overlap section (A = 4πσxσy). The
design peak luminosity was foreseen to be L= 3×1033 cm−2 s−1 and was reached in 2001, and
the record is 1.2× 1034 cm−2 s−1 achieved in 2006.

The effective cross section1 of the main physics processes in PEP-II are listed in
Tab. 3.1( [81]), and for the production of the Υ (4S) at

√
s = 10.58 GeV it is about 1.1 nb, where

the Υ (4S) decays almost exclusively into B0B0 and B+B− pairs.
As shown in Fig. 3.1, at the peak of Υ (4S) there is a non-negligible amount of e+e− → qq̄

(q = u, d, s, c) and e+e− → l+l− (l = e, µ, τ ) events. In addition, part of the data is collected
1This effective cross section is lower of about one third than the peak cross section (3.6 nb) due to the energy

spead (3-6 MeV) of the beams and to the initial state radiation.
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at the CM energy 40 MeV below the Υ (4S) peak, where BB production is not allowed. This
data sample corresponds to about 1/10 of the sample taken at the Υ (4S) peak and, in the
“conventional” BABAR analysis, is used to study non-BB background. In this analysis it is
included in the signal sample.

Figure 3.1: The first four S-wave Υ resonances shown with the hadronic cross section versus
center-of-mass energy/c2 in the Υ mass region. The Υ (4S) is the third radial excitation of the
ground state. Its larger width is a consequence of the fact that the Υ (4S) is just above threshold
for strongly decaying to B0B0 and B+B− pairs.

3.1.1 PEP-II Layout

In PEP-II, the electron beam of 9.0 GeV collides almost head-on2 with the positron beam of 3.1
GeV resulting in a boost for the CM system of βγ ≈ 0.56 in the LAB frame. This boost is crucial
to study the B-meson system: it allows to reconstruct the decay vertex of the two B mesons
and to determine their relative decay times, since the average separation between the two B
vertexes is βγcτ ≈ 250µm. One, can therefore measure the time-dependent decay rates and
CP-asymmetries.
The different beam energies require a two rings configuration, as shown in Fig. 3.2. The param-
eters of PEP-II rings are summarized in Tab. 3.2
Electron and positron are accelerated from the 3 km long SLAC linear accelerator (LINAC) and
accumulated into the two 2.2 km long storage rings, called HER (High-Energy-Ring) and LER

2The crossing angle is 20 mrad.
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e+e−→ Cross section (nb)

uu 1.39
dd 0.35
ss 0.35
cc 1.30
bb 1.10 (effective) - 3.6 (peak)

e+e− ∼53
µ+µ− 1.16
τ+τ− 0.94

Table 3.1: Cross section of the main physics processes at the Υ (4S). The cross section for e+e−

is referred to the volume of BABAR electromagnetic calorimeter, which is used to trigger these
events.

(Low-Energy Ring), respectively. A fraction of electrons instead of being delivered to the HER
is further accelerated to an energy of 30 GeV and sent to a target where positrons are produced.

Figure 3.2: The PEP-II asymmetric storage ring and the SLAC linear accelerator. The SLAC
LINAC is the injector for PEP-II. The interaction point of PEP-II is at IR-2, where BABAR is
suited.

In proximity of the interaction region, the beams are focused by a series of offset
quadrupoles (indicated with Q in Fig. 3.5 ) and bent by a pair of samarium-cobalt dipole mag-
net (B1), which allow the bunches to collide head-on. The B1 dipoles, located at ±21 cm on
each side of the interaction point (IP), and the Q1 quadrupoles, are permanent magnets which
operate inside the field of the BABAR superconducting solenoid, while Q2, Q4, and Q5, are lo-
cated outside or in the fringe field of the solenoid. This configuration is the best compromise
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Parameters Units Design Υ (4S) Typical

Energy (E) HER/LER GeV 9.0/3.1 9.0/3.1
Current (I) HER/LER A 0.75/2.15 0.9-1.9/1.3-2.6
# of bunches 1658 1732
σx µm 110 120
σy µm 3.3 4.1
σz µm 11 11-12
β∗y mm 15-25 9-10
β∗x cm 50 40-105
ξy HER/LER 0.03/0.03 0.062/0.047
ξx HER/LER 0.03/0.03 0.113/0.027
Bunch Spacing ns 4.2 4.2
Luminosity 1033cm−2s−1 3 4.4-10.4

Table 3.2: PEP-II beam parameters[82]. HER and LER refer to the high energy e− and low e+

ring respectively. σx, σy, and σz refer to the R.M.S. horizontal, vertical, and longitudinal bunch
size at the IP. β∗x,y is the horizontal and vertical envelope function at the collision point and
ξx,y the tune shift. The peak luminosity is proportional to EIξy/β∗y , assuming the product E · I
roughly equal for the two beams.

between physics and engineers requirements.
The interaction region is enclosed in a water-cooled beam pipe consisting of two thin layers

of beryllium (0.83 mm and 0.53 mm) with a 1.48 mm water channel in between.
To attenuate synchrotron radiation, the inner surface of the beam pipe is gold-plated (about 4
µm). Beam pipe, permanent magnets, and Silicon Vertex Tracker (SVT) are assembled, aligned,
and then enclosed in a 4.4 m long support tube, which is inserted into the BABAR detector.

3.1.2 PEP-II performances

PEP-II has delivered luminosity starting from May 1999 till April 2008, and since then BABAR

has recorded a total integrated lumonosity of 531 fb−1, mostly at the Υ (4S) resonance peak
(also called on-peak sample) plus small samples around Υ (2S) and Υ (3S) ones, as shown in
Fig. 3.3
Some off-peak luminosity has been collected 40 MeV below each resonance peak, and finally
an energy scan from Υ (4S) till 11.2 GeV with 5 MeV steps, for a total amount of 54 fb−1. Every
single run of data has been checked and some of them have been rejected because of poor qual-
ity due to technical problems with the detector or bad conditions for the machine background.
PEP-II has largely surpassed its design performance, with a record peak-luminosity of 1.2 ·1034

cm−2 s−1, and a monthly integrated luminosity of 20 fb−1, that is, respectively, about a factor
four and six with respect to the expectations. The progress in the instantaneous luminosity is
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Figure 3.3: Total luminosity delivered by PEP-II from October 1999 to April 2008. The lumi-
nosities integrated by BABAR at different resonances is also shown.

mainly due to the increase of the beam currents and improved focusing and beam orbits. A
significant improvement of the order of 50% of the integrated luminosity has been achieved at
the begin of year 2004 with the implementation of a novel mode of operation of PEP-II called
trickle injection (see Fig. 3.4). Until the end of 2003, PEP-II typically operated in a series of 40
minute fills during which the colliding beam coasted: at the end of each fill, it took about three
to five minutes to replenish the beams for the next fill, and during this period the BABAR data
acquisition system had to be turned off for the high background condition, affecting detector
safety and data acquisition dead-time. With the new technique, the BABAR detector could take
data uninterrupted while the LINAC continuously refilled the beams with small injection at
lower rate, replacing particles lost in collisions in the interaction region.
Trickle injection was introduced first in December 2003 in the low energy ring, and in March
2004 it was implemented in the high energy ring. The advantages of this novel mode of op-
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eration went beyond just the increase in luminosity. Continuos injection made the storage of
particles more stable, so that PEP-II rings were easier to operate and beam losses were far less
frequent than with the previous operational mode.

Figure 3.4: Comparison of the best 8-hour periods of data taking for three different mode of
operation of PEP-II: no trickle injection (top), trickle injection of the low energy ring (middle),
and trickle injection of both beams (bottom).

3.1.3 PEP-II background

Beam-generated background causes high single-counting rates, data acquisition dead time,
high currents and radiation damage of the BABAR detector and electronics. This results in low
data quality and can affect the lifetime of the apparatus. For this reason the background gen-
erated by PEP-II was studied in detail and the interaction region was carefully designed. The
primary sources of the machine-generated background are:

• synchrotron radiation in the proximity of the interaction region. A strong source of back-
ground is due to beam deflections in the interaction region.This component is limited by
channeling the radiation out of the BABAR acceptance with a proper design of the inter-
action region and beam orbits, and placing absorbing masks before the detector compo-
nents;
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• interaction between beam particles and residual gas in either rings, originated from
beam gas bremsstrahlung and Coulomb scattering. Both types of interaction cause an
escape of beam particles from their orbit. This background represents the primary source
of radiation damage for the inner vertex detector and the principal background source for
the other components. The intrinsic rate of these processes is proportional to the product
of the beam current and the residual pressure;

• Electromagnetic shower generated by beam-beam collision. These shower are due to
e+e− produced by radiative BhaBha scattering and hitting the beam pipe close to the
interaction point. This background is proportional to the machine luminosity and it is
always monitored.

3.2 Overview of the BABAR detector

System Polar angle Channels Layers Segmentation Performance
coverage (θ)

SVT [20.1,150.2]◦ 150K 5 50-100 µm r − φ σd0 = 55 µm
100-200 µm z σz0 = 65 µm

DCH [17.2,152.6]◦ 7,104 40 6-8 mm σφ = 1 mrad
drift distance σtan λ = 0.001

σpT /PT=0.47%
σ(dE/dx)=7.5%

DIRC [25.5,141.4]◦ 10,752 1 35 × 17 mm2 σθC = 2.5 mrad
(r∆φ × ∆r) per track
144 bars

EMC (C) [27.1,140.8]◦ 2 × 5760 1 47 × 47 mm2 σE/E=3.0%
5760 crystals σφ = 3.9 mrad

EMC (F) [15.8,27.1]◦ 2 × 820 820 crystals σθ = 3.9 mrad

IFR (C) [47,123]◦ 22K+2K 19+2 20-38 mm 90% µ± eff.
6-8% π± mis-id

IFR (F) [20,47]◦ 14.5K 18 28-38 mm (loose selection,
1.5-3.0 GeV/c)

IFR (B) [123,154]◦ 14.5K 18 28-38 mm

Table 3.3: Overview of the coverage, segmentation, and performance of the BABAR detector
system. The notation (C), (F), and (B) refers to the central barrel, forward and backward com-
ponents of the system, respectively. The detector coverage in the laboratory frame is specified
in terms of the polar angle θ. Performance numbers are quoted for 1 GeV/c particles, except
where noted.
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Figure 3.5: Layout of the BABAR detector projected along the beam axis (top) and projected in
the plane orthogonal to the beam axis (bottom).

The design of the BABARdetector has been optimized for CP violation studies, but it is also
well suitable for searches of rare decays of B, τ , and hadronic studies. To achieve the goal of
performing accurate event reconstruction there are many requirements:

• a large acceptance and uniform efficiency, in particular down to small polar angles rela-
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tive to the boost direction, to avoid particle losses;

• excellent detection efficiency for charged particles down to 60 MeV/c and for photons
down to 25 MeV;

• good momentum resolution to kinematically separate signal from background;

• excellent energy and angular resolution for the detection of photons from π0 and and η0

decays, and from radiative decays in the range from 25 MeV to 4 GeV;

• very good vertex resolution, both transverse and parallel to the beam;

• identification of electron and muon over a wide range of momentum, primarily for the
detection of semi-leptonic decays used to tag the B-meson flavor and for the study of
semi-leptonic and rare decays;

• identification of hadrons over a wide range of momentum;

• a highly efficient, selective trigger system with redundancy so as to avoid significant
signal losses and systematic uncertainties.

The BABAR detector (see Fig. 3.5), designed and fabricated by a collaboration of 600 physi-
cists of 75 institutions from 9 countries, meets all these requirements, as will be described in
the next sections on this chapter. To take into account the boost of PEP-II and maximize the
geometric acceptance, the whole detector is displaced in the forward direction (the direction of
the highest energy beam) with respect to the interaction point by 37 cm. An overview of the
polar angle (θ) coverage, the segmentation and the performance of the BABAR detector system
is summarized in Tab. 3.3.
The BABAR superconducting solenoid, which produces a 1.5 T axial magnetic field, contains a
set of nested detectors, which are - going from inside to outside -

- a five layers of silicon vertex detector (SVT),

- a central drift chamber (DCH) for charged particle detections and momentum measure-
ment,

- a ring-imaging Čerenkov radiation detector (DIRC) for charged particle identification,
and

- a CsI(Tl) crystal electromagnetic calorimeter (EMC) for the detection of photons and elec-
trons.

The calorimeter has a barrel and an end-cap which extends it into the forward direction (e−

beam direction), where many of the collision products emerge. All the detector located inside
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the magnet have full acceptance in azimuth (φ).
The instrumented flux return (IFR) outside the cryostat is composed of 18 layers of steel, which
increase in thickness outwards, with in-between 19 layers of planar resistive plate chambers
(RPC) or limited streamer tubes (LST) in the barrel and 18 in the end-caps. The IFR allows
the separation of muons and charged hadrons, and also detects penetrating neutral hadrons.
As indicated in Fig. 3.5, the right-handed coordinate system is anchored to the main tracking
system, the drift chamber, with the z-axis coinciding with its principal axis. This axis is offset
relative to the beam axis by about 20 mrad in the horizontal plane. The positive y-axis points
upward and the positive x-axis points away from the center of the PEP-II storage rings.
In the following section there is a detailed description of each sub-detector and their perfor-
mances.

3.3 The Silicon Vertex Tracker (SVT)

The SVT sub-detector provides a precise measurement of the decay vertices and of the charged
particle trajectories near the interaction region. The mean vertex resolution along the z-axis
must be better than 80 µm in order to avoid a significant impact on the time-dependent CP
asymmetry measurements, and a 100 µm resolution in the x - y transverse plane is necessary
in reconstructing decays of bottom and charm mesons, as well as τ leptons3.

The SVT also provides standalone tracking for particles with transverse momentum too low
to reach the outer tracker, like soft pions from D∗ decays and many charged particles produced
in multi-body B-meson decays. The choice of a vertex tracker made of five layers of double-
sided silicon strip sensors allows a complete track reconstruction even in the absence of drift
chamber information.

Finally, the SVT supplies PID information both for low and high momentum tracks. For
low momentum tracks the SVT dE/dx is the only PID information available, for high momen-
tum tracks the SVT provides the best measurement of the track angles, required to achieve the
designed resolution on the Čerenkov angle measured by the DIRC.

3.3.1 Detector layout

The Silicon Vertex Tracker is composed of five layers of 300 µm thick, double-sided micro-strip
detectors [83]. The total active silicon area is 0.96 m2 and the material traversed by particles at
normal incidence is 4% X0. The geometrical acceptance is about 90% of the solid angle in the
CM system.

3For example, in decays of the type B0 → D+D−, the separation of the two D vertices is important. The
distances between the two D’s in the x − y plane for this decay is typically ∼ 275 µm. Hence, the SVT needs to
provide resolution of about ∼ 100 µm in the plane perpendicular to the beam line.
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The silicon detectors and the associated readout electronics are assembled into mechanical
units called moduls. The inner three layers have six detector modules and are traditional barrel-
style structure. They are placed next to the interaction region, at radii 3.3, 4.0, and 5.9 cm from
the beam axis (see Fig. 3.6 and Fig.3.7), and provide an accurate measurement of the track
impact parameters along z and in the x - y plane.

Figure 3.6: Longitudinal section of the SVT detector.

Figure 3.7: Transverse section of the SVT detector.

The outer two layers, composed by 16 and 18 modules, have a peculiar arch structure to
reduce the incident angles of particles going in the forward and backward direction, and their
barrel parts are placed at radii between 12.7 and 14.6 cm from the beam axis. They permit an
accurate polar angle measurement and, along with the inner three layers, enable standalone
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tracking for particles with low transverse momentum. Full azimuthal coverage is obtained by
partially overlapping adjacent modules, which is also advantageous for alignment. The polar
angle coverage in the laboratory frame is 20.1◦ < θLAB < 150.2◦.

Each silicon detector consists of a high-resistivity n− bulk implanted with p+ strips on one
side and orthogonally-orientated n+ strips on the other side. The strips are AC-coupled to the
electronics via integrated decoupled capacitor, and the strip pitch varies from 50 to 210 µm
depending on the layer. The detector are operated in reverse mode at full depletion, with bias
voltage (Vbias) typically 10 V higher than the depletion voltage (Vdepl), which ranges between
25 - 35 V. The strips are biased through polysilicon resistors (4-20 MΩ) and the detector active
area is surrounded by an implanted guard ring that collects the edge currents and shapes the
electric field in the active region.

3.3.2 Detector performance

Hit efficiency and resolution

The SVT hit efficiency is determined by comparing the number of hits found by a half-module
and assigned to a reconstructed track to the number of tracks crossing the active area of the
module. Excluding the readout section which were defective, the combined hardware and
software efficiency is measured to be about 97%.

Fig. 3.8 shows the measured SVT spatial hit resolution in the z and r - φ for the five layers,
as a function of the track incident angle with respect to the silicon wafer plane. The spatial
resolution of SVT hits is determined by measuring the distance between the track trajectory and
the hit, using high-momentum tracks in two prong events. The uncertainties due to the track
trajectory is subtracted to obtain the hit resolution, which varies between 15 and 50 microns.

dE/dx resolution

Limited particle identification (PID) for low momentum particles that do not reach the drift
chamber and the Čerenkov detector is provided by the SVT through the measurement of the
specific ionization loss, dE/dx, as derived from the total charge deposited in each silicon layer.
It is computed as a truncated mean from the lowest 60% of the individual dE/dx measure-
ments for tracks with at least 4 associated SVT hits. The resulting SVT dE/dx distribution as a
function of momentum is shown in Fig. 3.9 [84]. The superimposed Bethe-Bloch curves for the
individual particle species have been determined using various particle control sample, and a
2σ separation between kaons and pions can be achieved up to momenta of 500 MeV/c.
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Figure 3.8: SVT hit resolution in the z (a) and φ (b) coordinate in microns, plotted as a function
of track incident angle in degrees. Each plot shows a different layer of the SVT. The plots in φ
coordinate for layers 1-3 are asymmetric around φ = 0 because of the ”pinwheel” design of the
inner layers. There are fewer point in the φ resolution plots for the outer layers as they subtend
smaller angles than the inner layers.

Figure 3.9: Energy loss per unit length (dE/dx) as measured in the SVT as a function of mo-
mentum. The enhancement of protons is due to beam-gas interactions. The vertical scale is
arbitrary.

3.4 The Drift CHamber (DCH)

The DCH sub-detectors is the main tracking device for charged particles with transverse mo-
menta pT above 120 MeV/c, providing the measurement of pT from the curvature of the particle
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trajectory inside the solenoid. The DCH also allows the reconstruction of secondary vertices
outside the SVT volume, such as those fromK0

S → π+π− decays. For this purpose, the chamber
should be able to measure not only the transverse momenta and position, but also the longi-
tudinal position of the tracks (z), with a resolution of ∼1 mm. Good z resolution also aids in
matching DCH and SVT tracks and in projecting tracks to the DIRC and the calorimeter.

For low momentum particles, the DCH provides PID by measurement of the dE/dx, thus
allowing the K/π separation up to ≈700 MeV/c. This capability is complementary to that of
the DIRC in the barrel region, while in the extreme backward and forward directions, the DCH
is the only device to discriminate between different particle hypotheses.

3.4.1 Detector layout

The design adopted for the DCH is illustrated in Fig. 3.10. It consists of a 280 cm long cylinder
located within the volume inside the DIRC and outside the PEP-II support tube [85]. The active
volume provides charged particle tracking over the polar angle range 17.2◦ < θLAB < 152.6◦.

Figure 3.10: Longitudinal section of the drift chamber. Lengths are in mm, angles in degrees.

The drift system consists of 7104 hexagonal cells, approximately 1.8 cm wide by 1.2 cm high,
arranged in 40 concentric layers. Each hexagonal cell consists of one sense wire surrounded
by six field-shaping wires, as shown in Fig. 3.11(b). In such configuration, an approximated
circular symmetry of equipotential contours is reached over a large portion of the cell. Table 3.4
reports the wire specifications. A positive high voltage is applied to the sense wires, while the
field wires are at ground potential.
The 40 concentric layers are grouped by 4 into super layers, as shown in Fig. 3.11(a) for the four
innermost super-layers. This arrangement enables local segment finding and left-right ambi-
guity resolution, even if one out of four signals is missing. For this reason two different wire
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Diameter Voltage Tension
Type Material (µm) (V) (g)

Sense W-Re 20 1960 30
Field Al 120 0 155

Guard Al 80 340 74
Clearing Al 120 825 155

Table 3.4: DCH wire specification. All wires are gold plated.

Parameter Values

Mixture He: C4H10 80:20
Radiation Length 807 m
Primary Ions 21.2/cm
Drift Velocity 22 µm/ns
Lorentz Angle 32◦

dE/dx Resolution 6.9%

Table 3.5: Proprieties of helium-isobutane gas mixture at atmospheric pressure and 20◦ C. The
drift velocity is given for operation without magnetic field, while the Lorentz angle is stated
for a 1.5T magnetic field.

types are used: the axial type wires (A), parallel to the z-axis, provide position measurements
in the x-y plane, while longitudinal position information is obtained with wires placed at small
angles with respect to the z-axis (stereo wires, U or V type). Sense and field wires have the same
orientation in each super-layer and are alternating following the scheme AUVAUVAUVA, as
shown in Fig. 3.11(a).

The 40 layers provide up to 40 spatial and ionization loss measurements for charged parti-
cles with pT greater than 180 MeV/c. In order to reduce the impact of multiple scattering on pT
resolution, material within the chamber volume has been minimized (0.2%X0) using low-mass
aluminum field-wires and a helium-isobutane gas mixture. The main proprieties of the gas are
listed in Tab. 3.5.

The inner cylindrical wall of the DCH is kept thin to facilitate the matching of the SVT
and DCH tracks, to improve the track resolution for high momentum tracks, and minimize
the background from photon conversion and interaction. In addition, the HV distribution and
all the readout electronics are mounted on the backward endplate of the chamber, in order
to minimize the material in the forward direction, so as not to degrade the DIRC and EMC
performances.



54 The BABAR Experiment

(a) DCH cell configuration in the first 16 layers (b) DCH cell structure with 100 ns isochrones.

Figure 3.11: BABAR DCH cell configuration. In the left plot (a), lines have been added between
field wires to aid in visualization of the cells, and the number on its right side give the stereo
angles (mrad) of sense wires in each layer. The 1 mm-thick beryllium inner cylinder is also
shown inside the first layer. In the right plot, is shown the cell structure. The plus sign, open
circles, filled circles, and crosses denote sense wire, field wires, guard wires and clearing wires,
respectively.

3.4.2 Detector performance

Tracking efficiency and resolution

The drift chamber reconstruction efficiency has been measured on data in selected samples of
multi-hadron events by exploiting the fact that the tracks can be reconstructed independently
in the SVT and in the DCH. The absolute DCH tracking efficiency is determined as the fraction
of all the tracks detected in the SVT which are also reconstructed by the DCH when they fall
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within its acceptance. In Fig. 3.12 [79] is shown its dependency on the transverse momentum
and polar angle. At the design voltage of 1960 V the DCH efficiency averages to 98 ± 1% for
tracks above 200 MeV/c and polar angle θ > 500 mrad (29◦). At the typical operating voltage
of 1930 V it decreases by about 2%.

c)

Figure 3.12: Track reconstruction efficiency in the DCH at operating voltages of 1900V and
1960V , as a function of (a) transverse momentum, and (b) polar angle. In plot c) the pT resolu-
tion determined from cosmic ray muons is shown.

The pT resolution, directly related to the curvature resolution, is measured as a function of
pT in cosmic ray studies (see Fig. 3.12c). The data are well represented by a linear function:

σpT
pT

= (0.13± 0.01)% · pT + (0.45± 0.03)% (3.2)

where pT is measured in GeV/c. The first contribution (dominating at high transverse mo-
mentum) comes from the curvature error due to the finite spatial measurement resolution. The
second term (dominating at low momenta) is due to multiple Coulomb scattering.
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dE/dx resolution

The specific energy loss, dE/dx, for charged particles traversing the DCH is derived from mea-
surement of the total charge deposited in each drift cell. It is computed as a truncated mean
from the lowest 80% of the individual dE/dx measurements. Various correction are applied to
remove sources of bias (as changes in the gas gain due to temperature and pressure variations,
differences in cell geometry,...) that would degrade the accuracy of the primary ionization mea-
surement.

The left plot (a) of Fig. 3.13 shows the distribution of the reconstructed and corrected dE/dx

from the DCH as a function of the track momenta. The superimposed Bethe-Bloch predic-
tion for different masses have been determined using various particle control samples. The
achieved resolution is typically 7.5% (as shown in the right plot (b) of Fig. 3.13 for e± from
BhaBha scattering), limited by the number of samples and Landau fluctuations. A 3σ separa-
tion between kaons and pions can be achieved up to momenta of about 700 MeV/c [86].

(a) (b)

Figure 3.13: (a) dE/dx as a function of track momentum. The data include large samples of
beam background triggers, as evident from the high rate of protons. The unit of the dE/dx
curve is arbitrary due to the corrections for the deposited charge in individual DCH cells. (b)
Difference between the measured and expected dE/dx for e± from Bhabha scattering. The
curve is the result of the fit to the data described in the text.

3.5 The Čerenkov light detector

The PID at low momenta exploits primarily the dE/dx measurements in the DCH and SVT.
For momenta above 700 MeV/c, the dE/dx information does not allow to separate pions and
kaons and, therefore, a dedicated PID sub-detector is needed.

The Detector of Internally Reflecting Čerenkov Radiation (DIRC), has been designed to
provideK/π separation of & 3σ, for all tracks with momenta from the pion Čerenkov threshold
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up to more than 4 GeV/c.

3.5.1 Detector layout

The DIRC [87] is a novel type of ring-imaging Čerenkov detector, based on the principle that
the magnitude of angles are maintained upon reflection from a flat surface.

Figure 3.14: Schematics of the DIRC mechanical support structure.

Figure 3.15: Schematics of the DIRC fused silica radiator bar and imaging region.
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Fig. 3.14 shows the schematic geometry of the DIRC, while Fig. 3.15 illustrates the principles
of light production, transport, and imaging.

The radiator material of the DIRC is synthetic fused silica in the form of long, thin bars with
rectangular cross section. The bars, which are 17 mm-thick, 35 mm-wide, and 4.9 m-long, are
placed into 12 hermetically sealed containers, called bar boxes, made of very thin aluminum-
hexcel panels. Each bar box contains 12 bars, for a total of 144 bars.

The solid angle subtended by the radiator bars corresponds to 94% of the azimuth and 83%
of the cosine of the polar angle in the CM system. The total thickness of the DIRC material (bars
and support structure) at normal incidence is only 8 cm, corresponding to 17% X0. Such a thin
Čerenkov detector allows a larger inner tracking volume, which is needed to achieve the de-
sired momentum resolution, and a compact outer electromagnetic calorimeter with improved
angular and energy resolution and limited costs.

The bars serve both as radiators and as light pipes for the portion of the light trapped in the
radiator by total internal reflection, where the internal reflection coefficient of the bar surfaces
is greater than 0.9992 per bounce.
A charged particles with velocity v > c/n, traversing the fused silica bar (refraction index
n = 1.473), generates a cone of Čerenkov photons of half-angle θc with respect to the particle
direction, where θc is the Čerenkov angle and cos θc = 1/βn (β = v/c, v is the velocity of
the particle). For particles with β ≈ 1, some photons will always lie within the total internal
reflection limit, and will be transported to either one or both ends of the bar, depending on the
particle incident angle. To avoid instrumenting both ends of the bars with photon detectors, a
mirror is placed at the forward end, perpendicular to the bar axis, to reflect incident photons to
the backward, instrumented end.

Once photons arrive at the instrumented end, most of them emerge into a water-filled ex-
pansion region, called standoff box, containing 6000 liters of purified water (n=1.346). A fused
silica wedge at the exit of the bar reflect photons at large angles relative to the bar axis, reduc-
ing the size of the required detection surface. The photons are detected by an array of densely
packed photon-multiplayer tubes (PMTs), each surrounded by reflecting ”light catcher“ cones
to capture light that would otherwise miss the active area of the PMT. The PMTs are placed at a
distance of about 1.2 m from the bar end. The expected Čerenkov light pattern at this surface is
essentially a conic section, where the opening angle is the Čerenkov production angle modified
by refraction at the exit from the fused silica window.

3.5.2 Detector performance

In the absence of correlated systematic errors, the resolution (σC,track) on the track Čerenkov
angle should scale as

σC,track =
σC,γ√
Nγ

, (3.3)
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where σC,γ is the single photon Čerenkov angle resolution, and Nγ is the number of detected
photons.

The single photon Čerenkov resolution has been measured in di-muon events to be 10.2
mrad (see Fig. 3.16(a) [79]). The main contributions to it come from the geometry of the detector
(the size of the bars, the diameter of the PMTs, and the distance between the bars and the PMTs
give a 7 mrad contribution) and from the spread of the photon production angle, dominated
by a 5.4 mrad chromatic term. The measured time resolution (Fig. 3.16(b)) is 1.7 ns, close to the
intrinsic 1.5 ns transit time spread of the PMTs.

Figure 3.16: The difference between the measured and expected values of the Čerenkov angle
for single photons, ∆θC,γ (a), and the measured and expected photon arrival time, for single
muons in µ+µ− events (b).

In Fig. 3.17 the number of detected photons is shown as a function of the polar angle. It
increases from a minimum of about 16 at the center of the barrel (θ ≈ 90◦) to well over 50 at
large polar angles (in the forward and backward direction), corresponding to the fact that the
path-lenght in the radiator is longer for tracks emitted at large dip angles (greater number of
Čerenkov photons produced in the bars) and the fraction of photons trapped by total internal
reflection rises. This feature is very useful in the BABAR environment, where the particles are
emitted preferentially in the forward direction as a consequence of the boost of the CM. The
bump at cos θ = 0 is a result of the fact that for tracks at small angles internal reflection of the
Čerenkov photons occurs in both the forward and backward direction. The small decrease of
the number of photons from the backward direction to the forward one is a consequence of the
photon absorption along the bar before reaching the stand-off box in the backward end.

The combination of the single photon Čerenkov angle resolution, the distribution of the
number of detected photons versus the polar angle, and the polar angle distribution of the
charged tracks yield a typical track Čerenkov angle resolution which is about 2.5 mrad for
muons in di-muon events.
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Figure 3.17: Number of detected photons versus track polar angle for reconstructed tracks in
di-muon events compared to the Monte Carlo simulation.

The efficiency for correctly identifying a charged kaons that traverses a radiator bar, and
the probability to wrongly identify a pion as a kaon, are determined using D∗± → D0π±(D0 →
K∓π±) decays reconstructed in data, where K∓/π± tracks are identified through the charge
correlation with the π± from the D∗± decay.

Figure 3.18: (a) The measured Čerenkov angle for pions (upper band) and kaons (lower band)
from D∗± → D0π±, D0 → K∓π± decays reconstructed in data. The curves show the expected
angle θC as a function of LAB momentum, for K and π mass hypothesis. (b) The average
difference between the expected value of θC for pions and kaons divided by the uncertainties
(|θKC − θπC |/σθC ), as a function of momentum.

The distribution of the Čerenkov angle for pions and kaons as a function of the momentum
is shown in Fig. 3.18(a), while Fig. 3.18(b) reports the separation between kaons and pions,
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which is about 4.3 standard deviations at 3 GeV/c.

The DIRC is intrinsically a three-dimensional imaging device, using position and arrival
time of the PMT signals. In order to associate the photon signals with the track traversing
a bar, the vector pointing from the center of the bar end to the center of each PMT is taken
as a measurement of the photon propagation angles (αx, αy, ;αz). As the track position and
angles are known from the tracking system, these three angles can be used to determine the two
Čerenkov angles (θC , φC). This constraint on θC and φC is particularly useful in suppressing
hits from beam-generated background and from other tracks in the same event and also in
resolving some ambiguities in the association between the PMT hits and the track (for instances,
the forward-backward ambiguity between photons that have or have not been reflected by the
mirror at the forward end of the bars).

The observable used to distinguish between signal and background photons is the differ-
ence between the measured and the expected photon time (∆tγ , shown in Fig. 3.16). The ex-
pected photon arrival time is calculated for each photon using the track time-of-flight assuming
it to be a charged pion, and the photon propagation time within the bar, the wedge, and the
water filled standoff box. The measured photon arrival time is obtained form the recorded time
of the candidate signal in the PMT, after calibration. The effect of applying the PMT time infor-
mation in a di-muon event [79] is shown in Fig. 3.19. The background hits, principally due to
the low energy photons from the accelerator, are reduced by about a factor 40.

Figure 3.19: Display of an e+e− → µ+µ− event reconstructed with two different time cuts. On
the left, all DIRC PMTs with signal within 300 ns of the trigger time window are shown. On the
right, only DIRC PMTs with signal within 8 ns of the expected Čerenkov photon arrival time
are displayed.
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3.6 The Electromagnetic Calorimeter

The BABAR electromagnetic calorimeter (EMC) is designed to measure electromagnetic showers
with high efficiency, and excellent energy and angular resolution over an energy range be-
tween 20 MeV (low photons from π0 mesons from B-meson decays) and 9 GeV (electrons from
BhaBha scattering). It is also the primary sub-detector providing electron-hadron separation.

Energy deposit clusters in the EMC with lateral shape consistent with the expected pattern
from an electromagnetic shower are identified as photons if they are not associated with any
charged tracks extrapolated from the tracking devices (DCH and SVT). Otherwise, they are
identified as electrons if they are matched to a charged track and the ratio between the energy
E measured in the EMC and the momentum p measured by the tracking system is E/p ≈ 1.

The measurement of extremely rare decays of B mesons containing π0s (e.g., B0 → π0π0)
pose the most stringent requirements on energy resolution, namely of order 1-2%. The π0 mass
resolution is dominated by the energy resolution for π0 of energy less than 2 GeV, and by the
angular resolution at higher energies. Therefore, the angular resolution is required to be a few
milliradians in order to maintain good m0

π resolution at all energies (σm0
π
≈6.5 MeV).

In addition, excellent photon identification at low energy (∼ 20 MeV) is required for efficient
reconstruction of decays containing multiple π0 and η. Similar precision is required for efficient
separation of electrons and hadrons, with purity required at the 0.1% level for momentum as
low as 500 MeV/c.

The need for high efficiency requires hermetic coverage of the acceptance region, while
excellent resolution is achieved by minimizing the material in front of, and between, the active
detector elements.

3.6.1 Detector layout

The BABAR EMC [88] contains a cylindrical barrel and a conical endcap containing a total of 6580
CSI crystals doped with thallium (Tl) at 1% level. The main proprieties of CsI(Tl) are summa-
rized in Tab. 3.6. The high light yield and the the small Molière radius give the excellent energy
and angular resolution required, while the short radiation length allows shower containment
at the BABAR energies with a relatively compact design. Furthermore, the high light yield and
the emission spectrum permit efficient use of silicon photodiodes readout. The transverse size
of the crystals is chosen to be comparable to the Moliére radius in order to achieve the required
angular resolution at low energies. This choice is the best compromise, since the electromag-
netic shower has a natural lateral spread of the Moliére radius and the energy resolution would
degrade if the transverse crystal size were chosen smaller than this radius, due to the summing
of the electronic noise from several crystals.

Each crystal is a truncated trapezoidal pyramid, whose length increases from 29.6 cm (16
X0) in the backward to 32.4 cm (17.5 X0) in the forward direction to limit the effects of shower
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Parameter Values

Radiation Length 1.85 cm
Molière Radius 3.8 cm
Density 4.53 g/cm3

Light Yield 50000 γ/MeV
Light Yield Temp. Coeff. 0.28%/◦C
Peak Emission λmax 565 nm
Refractive Index (λmax) 1.80
Signal Decay Time 680 ns (64%)

3.3 µs (36%)

Table 3.6: Proprieties of CsI(Tl).

leakage from increasingly higher energy particles (see Fig. 3.20a). To minimize the material in
front of the calorimeter, the support structure of the crystals (made in carbon fiber) and the
front-end electronic are located at the outer radius of the EMC. To recover the small fraction
of light that is not internally reflected, each crystal is wrapped with a white diffuse reflector
(TYVEK), 25 µm aluminum foil and 13 µm Mylar foil for insulation. The scintillation light
generated inside each crystal is detected by two independent silicon PIN diodes.

The barrel contains 5760 crystals arranged in 48 distinct rows containing 120 identical crys-
tals, with an inner radius of 90 cm, as shown in Fig. 3.20b. The forward end is closed by a
separable endcap holding nine additional rows (1080 crystals). This geometry provides full
azimuthal coverage, while the polar angle coverage is 15.8◦ < θLAB < 140.8◦.

(a) (b)

Figure 3.20: (a) Schematic view of one EMC crystal module. (b) Longitudinal cross section of
the EMC (only the top half is shown). The detector is axially symmetric around the z-axis. All
dimensions are given in mm.
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3.6.2 Detector performance

The reconstruction of energy deposits in the calorimeter, is based on the concept of EMC cluster:
it is defined as a contiguous array of crystals, all with energy above 0.5 MeV, whose total energy
exceeds the threshold of 20 MeV in order to suppress background processes.

Energy resolution

The energy resolution of a homogeneous calorimeter is determined by fluctuations in the elec-
tromagnetic shower propagation and, for the BABAR EMC detector, is empirically described as
a quadric sum of a stochastic term σ1 and a constant term σ2:

σE
E

=
σ1

4
√
E(GeV )

⊕ σ2 , (3.4)

where E and σE refer to the energy of a photon and to its rms error.
The stochastic term σ1E

− 1
4 , which is dominant at low energies, arises primarily from the fluc-

tuation in photon statistics, but it also depends on electron noise of the photon detector and
electronics. The constant term σ2 is dominant at higher energies (> 1 GeV). It arises from non
uniformity in light collection, leakage or absorption in the material between and in front of the
crystals, and uncertainties in the calibrations.

In BABAR, the energy resolution of the EMC is measured on data selected control samples,
including electrons and positrons from BhaBha scattering (energies between 3 and 9 GeV),
photons from π0 and η decays (energies below 2 GeV), and from the decay χc1 → Jφγ (E ≈
500 MeV). At low energies the resolution is determined through weekly calibrations performed
with a radioactive source (16O∗) of 6.13 MeV photons.
A fit to the resolution dependence on the energy with the empirical parametrization of Eq. (3.4),
shown in Fig. 3.21(a), yields:

σE
E

=
(2.32± 0.30)%

4
√
E(GeV )

⊕ (1.85± 0.12)%, (3.5)

which is in reasonable agreement with the Monte Carlo studies of the expected resolution.

Angular resolution

The angular resolution is determined by the transverse crystal size and the distance from the
interaction point, and improves as the transverse size of the crystal decreases.

The measurement of the angular resolution is based on the analysis of π0 and η decays to
two photons of approximately equal energy. The result is reported in Fig. 3.21. The resolution
varies between about 12 mrad at low energies and 3 mrad at high energies. The data fits the
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Figure 3.21: (a) Energy resolution for the EMC measured for photons and electrons from vari-
ous processes. The solid curve is a fit to Eqn. (3.4) and the shaded area denotes the one sigma
error of the fit. (b) EMC angular resolution measured using photon candidates from π0 decays.
The solid curve is a fit to Eqn. (3.6).

empirical parameterization:

σθ = σφ =

(
3.87± 0.07√
E(GeV )

+ (0.00± 0.04)

)
mrad. (3.6)

Electron-Hadron separation

Electrons are separated from charged hadrons primarily on the basis of the shower energy, lat-
eral shower moments, and track momentum. The most important variable for the discrimina-
tion of hadrons is the ratio of the shower energy to the track momentum (E/p). Fig. 3.22 shows
the efficiency for electron identification and the pion misidentification probability as a function
of the track momentum and polar angle. The electron efficiency is measured using electrons
from radiative BhaBha and e+e− → e+e−e+e− events. The pion misidentification probability is
measured using charged pions fromK0

S decays and three-prong τ decay. For momenta above 1
GeV/c the electron identification is about 91% with an average pion misidentification of 0.2%.

3.7 The Instrumented Flux Return

The Instrumented Flux Return (IFR) is designed to identify muons and detect neutral hadrons
(primarily K0

L) over a wide range of momenta and angles. The principal requirements for the
IFR are large solid angle coverage, good efficiency, and high background rejection for muons
down to momenta below 1 GeV/c. For neutral hadron, high efficiency and good angular reso-
lution are crucial.
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Figure 3.22: Electron efficiency and pion misidentification probability as a function of a) the
particle momentum and b) the polar angle, measured in the laboratory system.

3.7.1 Detector layout

The IFR uses the steel flux return of the magnet as a muon filter and hadron absorber. Single
gap Resistive Plate Chambers [89] (RPCs) with two-coordinate readout have been chosen as de-
tector. RPCs detect streamers from ionizing particles via capacitive readout strips. They offer
the advantage of simple, low cost construction and the possibility of covering odd shapes with
minimal dead space. Further benefits are large signals and fast response allowing for simple
and robust front end electronics and good time resolution, typically 1-2 ns. The position reso-
lution, of the order of few millimeters, depends primarily on the segmentation of the readout
strips. A cross section of an RPC is shown schematically in Fig. 3.23.

Figure 3.23: Cross section of a planar RPC with the schematics of the HV connection.

The planar RPC consists of two 2 mm-thick bakelite sheets, separated by a gap of 2 mm.
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The bulk resistivity of the bakelite sheets has been especially tuned to 1011−1012 Ωcm, and the
external surfaces are coated with graphite to achieve a surface resistivity of ∼100 kΩ/square.
The two graphite surface are connected to high voltage (∼8 kV) and protected by a insulating
mylar film. The bakelite surfaces facing the gap are treated with linseed oil.
The RPC detectors are operated in limited streamer mode and the signals are read out capac-
itively on both sides of the gap, by external electrodes made of aluminum strips on a mylar
substrate.

The RPCs are installed in the gaps of the finely segmented steel of the barrel and the two
end doors of the iron for the magnetic flux return [90], as illustrated in Fig. 3.24. The steel
is segmented into 18 plates, increasing in thickness from 2 cm of the inner 9 plates to 10 cm
of outermost plates, for a total of 65 cm (60 cm in the endcap), which corresponds to about 4
interaction lengths. In addition, two layers of RPCs are installed between the EMC and the
magnet cryostat to detect particles exiting the EMC. The configuration has been optimized
on the basis of Monte Carlo studies of muon penetration and charged and neutral hadron
interaction.

Figure 3.24: Overview of the IFR. On the left, is shown the barrel sectors and, on the right, the
forward and backward end doors. The shape of the RPC modules and their dimensions are
indicated.

Soon after the installation (Summer 1999), the efficiency of a large number of chambers (ini-
tially greater than 90%) has started to deteriorate at a rate of 0.5-1% per month. In order to
solve this loss of efficiency, an extensive improvement program has been developed with mul-
tiple solutions. The RPCs in the forward end-cap region have been replaced in Summer 2002
with new ones based on the same base concept but with improved fabrication technique. The
RPCs in the barrel region have been replaced with Limited Streamer Tube (LST) detectors [91].
The research and design phase started in 2002 with the first installation phase in Summer 2004
and the second phase in Autumn 2006. In particular, in the first installation phase, the RPCs
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from the inner 18 layers of the top and bottom sextant were removed. In 12 of these layers LSTs
were installed. In the remaining 6 layers of brass absorber were installed to increase the total
interaction length and to compensate the loss in absorption material due to the inaccessibility,
for mechanical reasons, of the last RPC layer. During the second installation phase (2006), the
remaining 4 sextants of RPCs were replaced.

The base detector for a limited streamer tube [92] consist of a 100 µm silver-plated wire,
located at the center of a squared cell filled with gas. For the BABAR LSTs, the cell configuration
is 17 mm wide, 15 mm high, and 3.8 m long. The anode wire is 100 µm diameter gold-plated
tungsten, and six wire holders are equally distributed over the length of a cell to prevent the
wire from sagging and touching the cell walls, and to provide electrostatic stability. Three sides
of the cell are painted with a water-based graphite paint and kept at ground potential.

A tube is made of a plastic extruded structure (see Fig. 3.25) consisting of 7 or 8 cells open on
the top side and covered with a plastic plane. On the bottom side of this plane conductive strips
are installed perpendicular to the wire direction. The extruded structure and the plane are
inserted in plastic tubes, called sleeves, of matching dimensions for gas containment. Between
the cell and the wire a high voltage is applied (a typical working point is 5.5 kV) and HV
connectors are hosted on one endcap.

Figure 3.25: Schematic view of a standard Limited Streamer Tube configuration.

If a charged particle passes through the cell, the gas is ionized and a streamer builds up,
which can be readout from the wire. Simultaneously, a signal will be induced on the strip
above. The charge on the wire is used for measuring the azimuthal coordinate (φ), and the
induced charge on the strip for the z coordinate, along the beam direction. Finally, the r coor-
dinate is taken from the layer position in the segmented steel, allowing a 3D information of the
hit.

More than one year of studies have been done before choosing the final LST design. In par-
ticular, several critical issues have taken in consideration like selection of safe gas mixture, rate
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capability, wire surface quality and uniformity. Final results led to the configuration detailed
above and a ternary gas mixture of Ar/C4H10/CO2 (3/8/89)% was chosen.

3.7.2 Detector performance

Muon efficiency

The efficiency of RPCs and LSTs is evaluated using di-muon events collected both in normal
condition data (e+e−→µ+µ−) and monthly dedicated cosmic ray runs. The efficiency is found
by counting the number of times a hit is found in a certain chamber when a charged tracks
is expected to traverse it, based on information from the other tracking system. The absolute
efficiency at the nominal working voltage (typically 7.6 kV for RPC and 5.5 for LST) is stored
in the BABAR condition database for use in the event reconstruction software.

As previously said, soon after the installation, a progressive efficiency deterioration has
been observed in a significant fraction of the RPC chambers, as shown in Fig. 3.26. Several tests
were performed in order to understand the causes of the loss of efficiency, and it was found
that a number of prototype RPCs developed similar efficiency problems after being operated
above a temperature of 36◦C for a period of two weeks4. In some of these modules evidence
was found that the linseed oil had accumulated at various spots under the influence of the
electric field[93].

Figure 3.26: The average RPC efficiency in the barrel (red circles), forward end cap (blue tri-
angles), and backward end cap (black squares) are shown as a function of time until summer
2002. The efficiency is evaluated using µ+µ− pairs from collision data.

After the installation of the LST detector, a stable muon efficiency was recovered, as shown
in Fig. 3.27. The overall average efficiency at the end of the BABAR data-taking was about 88%,

4Similar temperature had been reached inside the iron during the first summer of operation due to the temper-
ature in the experimental hall and the absence of water cooling system.
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slightly below the designed efficiency. Beside the geometrical effect, the main sources of in-
efficiency are broken strips and wires which have been disconnected or kept to a lower voltage.

Figure 3.27: Time evolution of the average sextant detection efficiency of the LST detector. The
inefficiency is localized in particular in the two innermost layers; for this reason it didn’t affect
the muon identification quality.

Muon identification

While muon identification relies entirely on the IFR, other detector systems provide comple-
mentary information. Charged particle are reconstructed in the SVT and DCH and muon can-
didates are required to meet the criteria for minimum ionizing particles in the EMC. Charged
tracks that are reconstructed in the tracking system are extrapolated to the IFR taking into ac-
count the non-uniform magnetic field, multiple scattering, and the average energy loss. The
projected intersections of a track with the RPC and LST planes are computed and, for each
readout plane, all clusters (groups of adjacent hits) detected within a predefined distance from
the predicted intersection are associated with the track. Quantities used for π/µ discrimination,
in addition to the penetration depth in the iron of the track, are the average number and r.m.s.
of the distribution of the RPC and LST hits per layer. The hits multiplicity per layer is expected
to be larger for pions, producing an hadronic interaction, than for muons.
The performance of muon identification has been tested on samples of muons from µµee and
µµγ final state and pions from three-prong τ decays and KS → π+π− decays. The typical
muon identification efficiency and the pion mis-identification probability as a function of the
track momentum and polar angle are shown in Fig. 3.28, while Fig. 3.29 displays the per-
formances of a muon selector based on a neural network in the forward and barrel region,
for different years of data taking. Due to the problems and replacement described above, the
efficiency of the IFR detector shows large fluctuation through the years.
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Figure 3.28: Muon efficiency (left scale) and pion misidentification probability (right scale) as
a function of a) the laboratory track momentum, and b) the polar angle (for 1.5 << 3.0 GeV/c
momentum).

Figure 3.29: Pion mis-identification vs. muon efficiency rate of neural network algorithm for
different period of BABAR data taking.

Neutral Hadron Detection

Neutral hadrons interacting in the steel of the IFR are identified as clusters that are not as-
sociated with a charged track. Since a significant fraction of neutral hadrons interact before
reaching the IFR, information from the EMC and the IFR is combined: neutral showers in the
EMC are associated with the neutral hadrons detected in the IFR if their production angles,
taken from the first interaction point in the detector, are consistent with each other. The K0

L de-
tection efficiency and angular resolution are measured on a control sample of K0

L produced in
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e+e− → φγ → K0
LK

0
Sγ processes, where the K0

L direction is inferred from the missing momen-
tum calculated from the particles that are reconstructed in the final state (γ and K0

S). The K0
L

reconstruction efficiency increases roughly linearly with momentum between 20% at 1 GeV/c
and 40% at 4 GeV/c (EMC and IFR combined), and the angular resolution is of the order of 50
mrad.

3.8 The BABAR Trigger

The BABAR trigger is designed to select a large variety of physics processes rejecting background
events and keeping a total event rate around 300 Hz so as do not overload the downstream
processing. The trigger must select the physics events of interest with very high and/or well
understood efficiency, depending on the particular mode.

The trigger system is implemented as two-level hierarchy, an hardware based Level 1 (L1)
followed by a software based Level 3 (L3)5. The goal of the L1 hardware trigger is to reduce
the rate to a level acceptable for the L3 software trigger, which runs on a farm of commercial
processors. The L1 trigger is optimized for simplicity and speed, and is designed to provide an
output trigger rate of the order of 2 kHz or less. The L1 trigger selection is based on charged
tracks in the DCH, showers in the EMC, and tracks detected in the IFR. Its maximum response
latency for a given collision is 11 µs.

Based on both the complete event and L1 trigger information, the L3 software algorithms
select events of interest allowing them to be transferred to mass storage for further analysis.
Dedicated L1 trigger processors receive data which are continuously clocked in from the DCH,
EMC, and IFR detector subsystem. The L1 trigger processor produces a 30 MHz clocked out-
put to the Fast Control and Timing System (FCTS) that can optimally mask or prescale input
triggers. Tab. 3.7 summarizes the cross section, production rates and L1 trigger rates for the
main physical processes at the Υ (4S) resonance for the design luminosity L =3 · 1033 cm−2s−1.

The L3 trigger is implemented as a software that makes use of the complete event informa-
tion for taking its decision, including the output of the L1 trigger processors and of the FCTS.
The selection decision is primarily taken by two set of orthogonal filters, one exclusively based
on the DCH information, the other based on the EMC data only. The DCH filters select events
containing at least one high pT track (pT >600 MeV/c) or two low pT tracks, originating from
the interaction point. The all-neutral trigger for L3 is based on information from the EMC. The
EMC filter identifies energy clusters with a sensitivity sufficient for finding minimum ioniz-
ing particles. To filter out noise, individual crystal signals below an energy threshold 20 MeV
or which lie outside a 1.3 µs time window around the event are rejected. Cluster with a total
energy above 100 MeV are retained, and the energy weighted centroid and average time, the

5An intermediate Level 2 (L2) software trigger was originally foreseen in the very early step of BABAR design,
but it was soon merged in the L3 trigger.
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Event type Cross section Production Rate L1 Trigger Rate
nb Hz Hz

bb 1.1 3.2 3.2
other qq 3.4 10.2 10.1
e+e− ∼53 159 156
µ+µ− 1.2 3.5 3.1
τ+τ− 0.9 2.8 2.4

Table 3.7: Effective cross section, production rates, and trigger rates for the principal physics
processes at the Υ (4S) for a luminosity of L =3 · 1033 cm−2s−1.

L3 trigger εbb̄ εB→π0π0 εB→τν εcc̄ εuds εττ

1 track filter 89.9 69.9 85.5 89.2 88.2 94.1
2 track filter 98.9 84.1 94.5 96.1 93.2 87.6
Combined DCH filters 99.4 89.1 96.6 97.1 95.4 95.5

2 cluster filter 25.8 91.2 14.2 39.2 48.7 34.3
4 cluster filter 93.5 95.2 62.3 87.4 85.5 37.8
Combined EMC filters 93.5 95.7 62.3 87.4 85.6 46.3

Combined DCH+EMC filters >99.9 99.3 98.1 99.0 97.6 97.3

Combined L1+L3 >99.9 99.1 97.8 98.9 95.8 92.0

Table 3.8: L3 trigger efficiency (%) for various physics processes, derived from Monte Carlo
simulation.

number of crystals, and a lateral moment describing the shower shape for the particle identifi-
cation are calculated. The L3 trigger efficiency for MonteCarlo simulated events are shown in
Tab. 3.8 for events that passed L1.





Chapter 4

Collins Asymmetry: analysis strategy

As reported in chapter 2, the Collins fragmentation function describes the production of a
hadron with transverse momentum Ph⊥ from a transversely polarized quark with spin Sq and
momentum k.
Following the Trento convention [94], the number densities for finding an hadron h produced
from a transversely polarized quark q is defined as:

Dh,q↑ = Dq
1(z, P 2

h⊥) +H⊥q1 (z, P 2
h⊥)

(k̂×Ph⊥) · Sq
zMh

. (4.1)

The first term in Eq.(4.1) is the unpolarized fragmentation function, where z = 2Eh/Q is the
fractional energy of the hadron in the e+e− CM frame. The second term contains the Collins
fragmentation function H⊥q1 (z, P 2

h⊥) and the spin orientation of the quark. It changes sign
when the quark spin is flipped, and thus generates a single spin asymmetry. The triple product
introduces a cosφ modulation, where φ is the azimuthal angle spanned by the hadron trans-
verse momentum and the plane normal to the quark spin along the quark momentum1. In
e+e− annihilation with unpolarized beams, the quark polarization is unknown, therefore the
Collins asymmetries in single jets will yield a zero result as the modulation will average to
zero in large event samples. The Collins spin effect can instead be observed in the produc-
tion of two hadrons detected in opposite jets, produced by the fragmentation of a correlated
quark-antiquark pair. This correlation results in a cosine modulation of the distribution of the
azimuthal angles of the two hadrons.
In this analysis we therefore consider the process e+e− → h1h2X , where h1 and h2 are pi-
ons, performing the measurement of Collins Asymmetry in two different reference frames: the
thrust reference frame (called RF12) and the second-hadron momentum frame (RF0), which
correspond to the jet reference frame and Gottfried-Jackson frame introduced in Chapter 2. The
description of the azimuthal angles in the two reference frames are reported in Fig. 4.1.

1Note that we have a cosine modulation instead a sine modulation as shown in Fig. 2.8, because there is a π/2
difference in the azimuthal angle definition.
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Figure 4.1: Definition of the azimuthal angles φ1, φ2 in the thrust reference frame (RF12), and
φ0 in the second hadron momentum frame (RF0).

4.1 Thrust Reference Frame: RF12

The thrust reference frame is shown in Fig. 4.1(a). The azimuthal angles φ1 and φ2 are the
angles between the scattering plane and the transverse hadron momenta pti around the thrust
axis2. The θ = θth angle is defined as the angle between the beam axis and the thrust axis. In
this reference frame the azimuthal angles are defined as:

φ1,2 = sign[n̂ · {(ẑ× n̂)× (n̂× P̂h1,h2)}] × arccos

(
ẑ× n̂

|ẑ× n̂|
·
n̂×Ph1,2

|n̂×Ph1,2|

)
; (4.2)

where ẑ is the unitary vector defined by the e+e− direction. In order to extract the Collins
function, we need to consider the process e+e− → qq̄ and the initial momentum of the quark-
antiquark pair. The quark directions are, however, not accessible to a direct measurement and
are thus approximated by the thrust axis of the event, indicated by the unitary vector n̂. It is
the vector along which the following expression is maximized:

thrust = max
∣∣∣∑N

i=1|(n̂ ·Pi)|∑N
i=1 |Pi|

∣∣∣ ; (4.3)

where N is the number of particles used in the calculation and Pi is the 3-momentum of the
particle i. The value of the event thrust is therefore a measurement of the alignment of the

2Note that in this reference frame, assuming that the thrust axis is the same as the qq axis, pti coincide with Pi⊥
defined in Sec. 2.3
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particles within an event along a common axis, and falls in the range (0.5, 1). The lower is the
thrust, the more spherical the event is; the higher the thrust, the more jet-like the event.

The Collins asymmetries can be extracted in this reference frame by measuring a cos(φ1+φ2)

modulation of hadron pairs distribution on top of the flat distribution due to the unpolarized
part of the fragmentation function. The normalized distribution is defined as:

R12 =
N(φ1 + φ2)

< N12 >
, (4.4)

with N(φ1 + φ2) the di-hadron yield, and < N12 > the average bin content. The corresponding
differential cross section depends on fractional energies z1, z2 of the two hadrons, and on the
sum of the previously defined azimuthal angles, φ1 + φ2, and can be written as:

dσ(e+e− → h1h2X)

dz1dz2d(φ1 + φ2)d cos(θ)
=

∑
q,q

3α2

Q2

e2
q

4
z2

1z
2
2 {(1 + cos2 θ)D

q,[0]
1 (z1)D

q,[0]
1 (z2) + (4.5)

+ sin2 θ cos(φ1 + φ2)H
q,[1]
1 (z1)H

q,[1]
1 (z2)} ;

where the summation runs over all quark flavors accessible at the center of mass energy and
the antiquark fragmentation is denoted by a bar. Note that the fragmentation functions do not
appear in the cross section directly but as the zeroth and first moments in the absolute value of
the corresponding transverse momenta [64]:

F [n](z) =

∫
d|k2

T |
(
|kT |
M

)n
F (z,k2

T ) . (4.6)

In this equation, the transverse hadron momentum has been rewritten in terms of the intrinsic
transverse momentum of the process: Ph⊥ = zkT and the mass M is the mass of the detected
hadron (in this analysis the pion mass).

4.2 Second-hadron momentum Reference Frame: RF0

The RF0 frame is shown in Fig. 4.1(b). The azimuthal angle φ0 is defined as the angle between
the plane spanned by the beam axis and the second hadron P2, and the transverse momentum
pt0 (pt0 ≡ pt1) of the first hadron around the second hadron direction3. The angle θ = θ2 is
defined in this case as the angle between the beam axis and the momentum P2 of the second
hadron. The azimuthal angle is calculated as:

φ0 = sign[Ph2 · {(ẑ×Ph2)× (Ph2 ×Ph1)}]× arccos

(
ẑ×Ph2

|ẑ×Ph2|
· Ph2 ×Ph1

|Ph2 ×Ph1|

)
, (4.7)

3Note that in this reference frame, pt0 does not coincide with P1⊥, but they can be kinematically related, as
shown for example in Ref. [16].
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and the corresponding normalized distribution R0 is :

R0 =
N(2φ0)

< N0 >
. (4.8)

At leading order in αs and 1/Q2, the differential cross section is given by [37]:

dσ(e+e− → h1h2X)

dz1dz2d2qTd cos(θ)dφ0
=

3α2

Q2
z2

1z
2
2

{
A(y) F(D1(z1)D2(z2))+ (4.9)

+ B(y) cos(2φ0)F

[
(2ĥ · kT ĥ · pT − kT · pT )

H⊥1 (z1)H
⊥
2 (z2)

M1M2

]}
,

where Qt = |qT | is the transverse momentum of the virtual photon from e+e− annihilation in
the center of mass of the two hadrons. The convolution integral over the transverse momenta
kT = z1Ph1⊥ and pT = z2Ph2⊥ is:

F(X) =
∑
a,ā

e2
a

∫
d2kTd

2pT δ
2(pT + kT − qT )X ; (4.10)

the kinematic factors A(y) and B(y) are described in the theoretical section 2.3, and ĥ is a
unit vector in the direction of the transverse momentum of the first hadron relative to the axis
defined by the second hadron.

Note that the cross sections given in Eq.(4.5) and Eq.(4.9) are related. Integrating Eq.(4.5)
over the azimuthal angles (φ1, φ2) and Eq.(4.9) over the azimuthal angle and the transverse
photon momentum (φ0, qT ), the same unpolarized cross section is obtained.
Similarly, the Collins contributions can be related to each other; however, due to the additional
convolutions of transverse momenta, it is necessary to know the intrinsic transverse momen-
tum dependence of the Collins function. The majority of authors assume that the Collins func-
tion is a Gaussian in kT , as for the unpolarized FF, but with different width than the unpolarized
case. More details can be found, for example, in Refs. [21, 95, 96].

In the following sections, after a brief discussion of the particle reconstruction and identifi-
cation at BABAR, the selection criteria and the methods for the extraction of the asymmetry are
described.

4.3 Analysis strategy and selection criteria

We focus on the measurement of the Collins effect in light quark fragmentation where it is
expected to be dominant, as helicity is conserved only for nearly massless quarks, while for
heavier quarks the correlation between the quark and the antiquark side may be lost. The
process to be studied is e+e− → ππX , with the two charged pions detected in two opposite
hemispheres, and the asymmetries is measured in bins of fractional energy and of transverse
pion momentum.
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The analysis is performed using an integrated luminosity of 424 fb−1 of data collected at
10.58 GeV CM energy, which corresponds to the mass of Υ (4S) resonance, and a luminosity of
44 fb−1 collected 40 MeV below the Υ (4S). In addition a number of physics processes have been
simulated with the Monte Carlo (MC) technique. Systematic effects in the analysis method,
event selection and event reconstruction, and the contribution of possible background sources
are studied using specifically selected data control samples and MC simulations. All used
data samples are summarized in Tab. 4.1. The simulation of hadronic events in non-resonant
e+e− annihilation, is performed using the Jetset [57] generator. Separate MC samples are
generated for light quarks, e+e− → qq, (q = u, d, s), that we call generic uds MC, and heavy
quarks, e+e− → cc. The EvtGen [97] generator has been used to simulate BB events with
generic B decays. Finally, e+e− → τ+τ−, and e+e− → µ+µ− event samples are produced with
the KK2F [98] generator, and the decay of the τ leptons are simulated with the TAUOLA [99]
generator.

MC uds Lequiv. = 937.8/fb
Full data sample L = 468/fb
MC cc̄ Lequiv = 468/fb
MC B+B− Lequiv = 234/fb

MC B0B
0 Lequiv = 234/fb

MC τ+τ− L = 468/fb
D∗ enhanced: MC cc̄ Lequiv = 468/fb
D∗ enhanced: MC B+B− Lequiv = 234/fb

D∗ enhanced: MC B0B
0 Lequiv = 234/fb

D∗ enhanced: full data sample L = 468/fb
µ+µ− data L = 44.8/fb

Table 4.1: Data and MC samples used in the analysis. For MC production it is reported the
equivalent luminosity Lequiv = N/σ, where N is the number of generated events, and the cross
section σ are taken from Tab. 3.1.

4.3.1 Charged particle reconstruction

Charged particle tracks are reconstructed by processing the information from both the SVT and
the DCH. The track finding and the fitting procedures use the Kalman fitter algorithm [100] that
takes into account the detailed description of the material in the detector and the full magnetic
field map. Using a sequence of modules to refine the fitting procedure, the final result is the
creation of the track-candidate list used in the analysis (the basic list is charged tracks). Further
requirements are applied to obtain a list of tracks coming from the interaction region (called
Good Tracks Loose) and for tracks within the detector acceptance region, called Good Tracks Acc
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Loose, which satisfy the following selection criteria:

- tracks with a polar angle in the laboratory system between 0.410 < θ < 2.54;

- minimum transverse momentum of 0.1 GeV/c with respect to the beam axis, and maxi-
mum momentum of 10 GeV/c;

- minimum number of hits in the DCH of 12;

- maximum distance of closest approach (DOCA) to the beam spot4 in the x − y plane of
1.5 cm, and z DOCA between -10 cm and 10 cm;

4.3.2 Particle identification

All BABAR detectors contribute in a complementary way to particle identification (PID): the SVT
and DCH provide dE/dx and momentum measurements for charged particles; the DIRC is a
Čerenkov ring-imaging device, the electromagnetic calorimeter discriminates electrons from
muons and charged hadrons according to energy deposit and shower shape; finally, the IFR
characterizes muons and hadrons according to their different transverse and longitudinal in-
teraction pattern in the segmented iron.
A good identification is obtained using advanced technique methods (likelihood ratio, neural
network,...) that combine all the information coming from each sub-detector. A series of se-
lectors for different particle hypothesis are built upon these informations and optimized for
different physics analysis.
A selector is a category related to a selection method with certain parameters and criteria.
In general, for each method four or more nested selectors are defined, with different perfor-
mances:

• looser selection: higher efficiency but also higher mis-identification rate;

• tighter selection: lower efficiency but also lower mis-identification rate.

Each track satisfies or not a specific selector if it respects its criteria.

Charged hadrons identification

Separation among different charged hadrons (π, K, and p) is provided mainly by the tracking
system and by the DIRC.

• For each track intersecting the DIRC, from the reconstructed image and the track crossing
angle, the corresponding Čerenkov angle and its error are determined, and a confidence

4The beam spot is the size of luminosity region, which is calculated run-by-run. It can be approximated by a
ellipsoid with a Gaussian distribution along the three axes, with σz '1 cm, σx '100 µm, and σy '5 µm.
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level for each mass hypothesis (e, µ, π, K, and p) is calculated. A charged track is identi-
fied by the hypothesis with the highest confidence level.

• The SVT and DCH detectors provide PID information combining the measurement of
dE/dx and track momentum as explained in sections 3.3.2 and 3.4.2 . A likelihood and
significance level for a given mass hypothesis are obtained independently for each detec-
tor.

• All the informations coming for each sub-detector are combined together in order to pro-
duce the PID selectors, which are used to accept or reject a given track.

Electron identification

Electrons are discriminated from charged hadrons by taking into account the ratio of the en-
ergy E deposited in the EMC to the track momentum p measured in the DCH. This quantity
(E/p) should be compatible with unity for electrons, since all their energy is deposited in the
calorimeter. The other charged tracks should appear as minimum ionizing particles, unless
they have hadronic interactions in the calorimeter crystals. Muons and charged hadrons there-
fore have values of E/p significantly lower than unity.
To further separate electrons from hadrons a variable describing the shape of the energy deposit
in the EMC is used (LAT), since the lateral energy distribution of hadronic showers differs
significantly from those of electromagnetic showers. The LAT variable is defined as:

LAT =

∑N
i=3Eir

2
i∑N

i=3Eir
2
i + E1r2

0 + E2r2
0

(4.11)

where r0 is the average distance between two crystals, N is the number of crystals associated
with the shower, Ei is the energy deposit in the i-th crystal, and ri is the radial distance from
the shower center. Electrons deposit most of their energy in two or three crystals, so that the
value of LAT is small for electromagnetic showers.
In addition, the measured specific ionization in the DCH and Čerenkov angle in the DIRC
are required to be consistent with the values expected for an electron. This offers a good e/π

separation in a wide momentum range.

Muon identification and µ/π discrimination in the IFR

Charged particles that are reconstructed in the tracking system and meet criteria for minimum
ionization in the EMC are potential muon candidates. Their trajectories are extrapolated to the
IFR taking into account the non-uniform magnetic field, the multiple scattering, and the aver-
age energy loss. The discrimination between muons and charged hadrons is obtained combin-
ing in a likelihood function or in a neural network the following information:
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• the number of IFR layers associated with the track;

• the total number of interaction lengths traversed from the IP to the last RPC or LST layer
with an associated cluster;

• the transverse size of the cluster, which identifies the showering hadrons;

• the number and position of detector layers with no hits associated with the track
(“missed” planes), which may be caused by neutral particles coming from the hadronic
shower.

Photon and π0 reconstruction

Photons are identified as well reconstructed clusters in the EMC, not associated to any track ex-
trapolated from the tracking volume to the inner surface of the EMC. Two particles with small
angular separation create energy deposits that overlap. To resolve this situation, regions of lo-
cal maxima in the energy deposit of a cluster are located and referred to as bumps. Therefore,
a bump represents the energy deposit of a single particle and contains one and only one local
maximum.

The lateral distribution of energy (LAT variable of Eq. 4.11) within a cluster depends heavily
on the nature of the incident particle. Electromagnetic particles deliver a regular and symmetric
shape in the lateral distribution, with the fall-off in energy from the center being exponential.
In contrast, hadronic particles produce irregular and less predictable energy deposits, often
resulting in more than one cluster for incident hadron.

Decays of π0s into two photons fall into two categories:

• for π0 energies below 1 GeV, the two photons are sufficiently far apart to produce two
well-separated clusters, and the π0 is reconstructed from the two photon 4-momenta;

• for π0 energies beyond 1.5 GeV, the two photons have decreasing separation, and they
are no longer distinguishable as separate clusters. In these cases the two bumps have to
be identified.

4.3.3 Analysis strategy

The analysis strategy consists of the following main points:

1. Event preselection:

• We use the standard list for charged particles GoodTracksAccLoose.
Neutral particles are used in this analysis only for the calculation of the event thrust.
In particular we select neutral candidates with 0.410 < θlab < 2.54 rad., lateral mo-
ment smaller than 1.1, and an energy greater than 0.030 GeV.
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• We select multi-hadrons events using the TagBGFMultiHadron background filter
flags: it requires more than two charged tracks in the event and a value of the second
Fox-Wolfram momentum [101], calculated from charged tracks only, R′2 < 0.98. This
variable is a measure of event sphericity ranging between 0 and 1, with more spheric
events, as Υ (4S) decays, having a small R′2 value. On the contrary, lepton pairs
events haveR′2 close to 1, and would produce a huge spike in the distribution shown
in Fig. 4.2(a) if no cut off by the multi-hadron selection.

Figure 4.3 compares the distribution of the number of tracks in the data sample
(Fig. 4.3(a)), with respect to the number of tracks in the uds MC sample (Fig. 4.3(b)),
for selected multi-hadron events. The two distributions differ by a peak at number
of tracks equal to four in the data sample, which is due to the ττ events (in Fig. 4.3(c)
the MC simulation is reported). The τ contribution to the asymmetries will be
estimated in section 5.2.

• We require the visible energy of the event (Evis) to be higher than 7 GeV, in order
to suppress some background sources as e+e− → τ+τ−, γγ processes, and events
characterized by hard Initial State Radiation. Figure 4.2(b) shows the distribution of
the visible energy in the LAB frame. The shoulder at low value of energy is due to
γγ events.

(a) R′2 distribution (b) Total energy ( GeV) in the LAB frame

Figure 4.2: (a) TheR′2 distribution for multi-hadrons events (charged tracks≥ 2 andR′2 < 0.98).
(b) The visible energy for multi-hadrons events in the LAB frame. In this analysis we require a
total energy higher than 7 GeV, as indicated by the blue arrow.

2. Since the correlation between the qq pair is lost in case of emission of energetic gluons,
we look for a two-jet topology, and suppress e+e− → qqg events requiring a value of
the event thrust greater than 0.8, with the thrust calculated using all charged tracks and
neutral particles. As seen, in fact, in Fig. 4.4(a) most of the light qq production appears in



84 Collins Asymmetry: analysis strategy

nTracks
0 2 4 6 8 10 12 14 16

no
rm

al
iz

ed
 r

at
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(a) Data: nTracks

nTracks
0 2 4 6 8 10 12 14 16

no
rm

al
iz

ed
 r

at
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(b) MC: nTracks

nTracks
0 2 4 6 8 10 12 14 16

no
rm

al
iz

ed
 r

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6

(c) MCττ : nTracks

Figure 4.3: Number of tracks in the (a) data sample, (b) MC sample, and (c) ττ MC sample. All
the distributions are normalized to the number of events.
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(b) Thrust distribution in the On-Peak sample.

Figure 4.4: Left: thrust distribution for simulated events at
√
s = 10.54 GeV: e+e− → cc

(blue), e+e− → qq, q = uds (yellow) and e+e− → ττ (magenta) processes. In the lower plot
is reported the thrust distribution for a small Off-Peak sample, as comparison. Right plots:
(top) thrust distribution at

√
s = 10.58 GeV with in addition the e+e− → BB (red) channel.

The lower plot shows the corresponding distribution obtained for a small sample of On-Peak
data (L ∼ 148 pb−1). The difference at high thrust values between data and MC are due to
e+e− → µ+µ− and Bhabha events, not included in the simulation. The vertical black line is the
cut applied in this analysis (thrust > 0.8).

a two-jet topology and is characterized by high thrust values, with the long tail at lower
values due to hard gluon emission. The requirement thrust > 0.8 has been chosen also
because for low thrust values the assignment of tracks to the right jet is more difficult,
and because it will remove the majority of the more spheric BB events (see Fig. 4.4(b)).
Events with charm quarks have, instead, a shape similar to the light quarks. The charm
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contribution to the asymmetry must be carefully evaluated and eventually subtracted.
Events from e+e− → τ+τ− reaction populate the region at high thrust values, and their
contribution to the asymmetry must be subtracted, too.
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Figure 4.5: Total visible energy of the events as a function of the thrust value for the on-
resonance data sample. The events at high thrust value and low total energy are due to the
e+e− → τ+τ− process. The black line is the cut applied in the analysis in order to remove this
background. The peak at Etot ∼ 12 GeV and high thrust values, is due to radiative BhaBha and
µ+µ−(γ) events, and it is removed applying a veto on electrons and muons.

3. We select tracks consistent to be produced at the primary vertex, which is calculated on
event-by-event basis fitting all reconstructed tracks. In particular, the distance of closest
approach of the track to the primary vertex in the transverse plane must be dxy < 2 mm

and that along the beam axis dz < 1.5 cm. In addition, tracks are identified as pions if
they satisfy the tight criteria of the pion KM selector [102].

4. The range of applicability for fragmentation function as discussed in this thesis is limited
to medium-to-large values of hadrons’ fractional energies z1,2 =

2Eh1,2
Q [26]. For small z

values the mass correction terms proportional to Mh/(zQ
2) becomes important.

Previous studies, including the preliminary results that we showed at the Transver-
sity2011 workshop [103, 104], limit the measurement of the Collins asymmetries to tracks
with z > 0.2. However, it may be of interest to extend the study to lower z values, in or-
der to assess when the mass correction terms start to play a significant role. On the other
hand, low momentum tracks pose severe experimental difficulties, as described below, so
that reliable measurements of the asymmetries in the present analysis could be obtained
only for z > 0.15.

5. One of the most important contributions to the Collins asymmetry originates from low
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Figure 4.6: (a) Qt vs Whemi distribution for pion pairs with z > 0.2. (b) The same distribution
as in (a) for pion pairs with z < 0.2. All the pairs with lower fractional energy are distributed
for Whemi < −1 and higher values of Qt, which corresponds to an higher probability of hemi-
spheres mis-identification. (c) Angle between pions and thrust axis in radians. The red his-
togram refers to pions with z < 0.2, and the highlighted region indicates the cut applied. (d),
(e) Opening angle in radians between the thrust and pion in the first and second hemispheres
respectively. The dotted black lines indicate the cuts applied in the analysis.
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energetic gluon radiation e+e− → qqg which does not manifest itself in a third jet but
introduces additional azimuthal modulation. As shown in Ref. [64, 67], the angular dis-
tribution of the gluon radiation process e+e− → qqg → h1h2X is given by:

dN

dΩ
∝ Q2

t

Q2 +Q2
t

sin θCS cos(2φCS), (4.12)

where the subscript CS refers to the Collins-Soper frame described in Fig. 2.6. In addition,
all the formalism used so far is valid in the region where the transverse momentum Qt is
small compared to the hard scale Q (Q2

t � Q2) [64]. For these reasons, a safe choice is to
require Qt < 3.5 GeV/c.

6. Figure 4.5, which reports the total visible energy for the on-peak data sample versus the
thrust value for events having at least one good hadron pair, shows that the bulk of the
signal uds events is clearly separated by two background sources. The peak at about 12
GeV of energy and high thrust values is in fact due to radiative Bhabha and µ+µ−(γ)

events, while the small accumulation visible at lower energies and T > 0.94 (correspond-
ing to the peak visible at T ' 0.96 in Fig. 4.4(a)) is due to τ+τ− events. The first kind of
background is suppressed removing from the final sample tracks identified as electrons
or muons. The majority of the τ+τ− events are instead removed applying a cut around
the τ+τ− peak region, as shown in Fig. 4.5; the dilution of the measured asymmetry due
to the remaining τ+τ− background is discussed in Sec.5.2.

7. We assume the thrust axis (n̂) as the qq̄ direction, we separate charged pions in opposite
hemispheres according to that axis, and we pair those pions that satisfy the condition:

Whemi = (P1 · n̂) (P2 · n̂) < 0 , (4.13)

where P1,2 are the momenta of selected pions. For pairs with values of Whemi near to
zero there is a higher probability that one of the two tracks has been assigned to the
wrong hemisphere. Most of these pairs are effectively removed by the requirement Qt <
3.5 GeV/c, as can be deduced by looking at the two top plots of Fig. 4.6, where Qt is
plotted versus Whemi, for pion pairs with both pions having z > 0.2 on the left plot, and
for pairs with both pions having 0.1 < z < 0.2 on the right. It is clearly evident that the
two distributions are very different from each other, and that when both pions have very
low momentum Whemi is close to zero also for low Qt.

The problem with assigning the correct hemisphere to low momentum tracks is better
understood from Fig. 4.6(c), which reports the opening angle between the track and the
thrust axis. The black histogram is the distribution for all tracks, while the filled red his-
togram refers only to tracks with 0.1 < z < 0.2. It is seen that the region around θ = π/2,
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(b) RF0 z > 0.1: pt0 distributions
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(c) RF12 pt1(pt2) distributions for different z cuts
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Figure 4.7: (a,b) transverse momentum distribution for pions with z > 0.1 within (red lines)
and out (blu lines) the cone of 45◦ with respect to the thrust axis. (c,d) transverse momentum
distribution for pions with z > 0.2 (red lines) and with 0.1 < z < 0.2 (blu lines). The black
histogram is the full distribution.

where the imaginary plane that divides the two hemispheres is located, is populated al-
most exclusively by tracks with low z. The requirement that the pions are emitted within
a cone of 45◦ around the thrust axis removes these ambiguous tracks, which account for
about 14% of selected pions with 0.1 < z < 0.2, and for only 0.4% of pions with z > 0.2.
(see also Fig. 4.6(d) and Fig. 4.6(e), which show the pion fractional energy as a function
of the pion-thrust opening angle).

We remove also a very small fraction of tracks flying within a cone with opening angle
of 2◦ around the thrust axis, because of the large uncertainty in the determination of the
azimuthal angles for these tracks. For pions with higher fractional energy, for which
the thrust axis is very close to the 3-momentum vector, this effect dilutes the measured
asymmetries.

It is interesting also to study the transverse momentum distributions for different cuts
on the pions fractional energy and opening angle. Figures 4.7(a) and 4.7(b), for example,
report the pt distribution for pions with z > 0.1 and for the two reference frames. The
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(a) RF12 z > 0.15: pt1(pt2) distributions
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(b) RF0 z > 0.15: pt0 distributions
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(c) RF12 pt1(pt2) distributions for different z cuts
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Figure 4.8: (a,b) transverse momentum distribution for pion with z > 0.15 within (red lines)
and out (blu lines) the cone of 45◦ with respect to the thrust axis. (c,d) transverse momentum
distribution for pions with z > 0.2 (red lines) and with 0.15 < z < 0.2 (blu lines). The black
histogram is the full distribution.

black histograms give the full distribution, while the red and blue histograms refer to
pions within and outside the cone of 45◦ around the thrust axis, respectively. Both the
black and blue histograms show a peak, much more evident for pt0, at about 0.5 GeV/c,
while the pions with small opening angle present a smooth distribution (red histogram).
We can deduce that the peak is due to particles with the lowest energy (z ' 0.1) and
emitted at about 90◦ with respect to the thrust axis.

The bottom plots in the same figure, showing the pt distributions for pions with z > 0.2

(red line) and 0.1 < z < 0.2 (blue line), confirm that the peak is due to very low energy
pions. Figure 4.8 shows the analogous pt distributions for pions with a minimum frac-
tional energy of z = 0.15. The peaks are present also in this case, even if they are less
evident and shifted to pt ' 0.8 GeV/c, which is the minimum value for pions perpendic-
ular to the thrust axis. We note also that the fraction of particles with large opening angle
is significantly lower than in Fig. 4.7.

These distributions show therefore that the cut on the pion-thrust axis opening angle is
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necessary in order to have smooth distributions when tracks with small z are used.

Finally, the approximation of the qq direction with the thrust axis brings to a significant
dilution of the asymmetry, in particular for the thrust reference frame, as explained later
in section 5.3.

8. We then calculate the azimuthal angles φi of the selected pion pairs according to Eq.(4.2)
in RF12, and (4.7) in RF0, and fit the asymmetries taking care of the detector acceptances.

Phi1
-3 -2 -1 0 1 2 3

E
nt

ri
es

0

2000

4000

6000

8000

10000

12000

(a) RF12: φ1 MC distribution

Phi2
-3 -2 -1 0 1 2 3

E
nt

ri
es

0

2000

4000

6000

8000

10000

12000

(b) RF12: φ2 MC distribution

Phi0
-3 -2 -1 0 1 2 3

E
nt

ri
es

0

2000

4000

6000

8000

10000

12000

(c) RF0: φ0 MC distribution

Phi1
-3 -2 -1 0 1 2 3

E
nt

ri
es

0

2000

4000

6000

8000

10000

(d) RF12: φ1 gen. distribution

Phi2
-3 -2 -1 0 1 2 3

E
nt

ri
es

0

2000

4000

6000

8000

10000

12000

(e) RF12: φ2 gen. distribution

Phi0
-3 -2 -1 0 1 2 3

E
nt

ri
es

0

2000

4000

6000

8000

10000

12000

(f) RF0: φ0 gen. distribution

Figure 4.9: Azimuthal angle distributions of reconstructed MC sample for (a) φ1 and (b) φ2 in
the thrust reference frame (RF12), and (c) φ0 in the second hadron momentum frame (RF0).
The angles are calculated following Eq. (4.2) in RF12, and Eq. (4.7) in RF0. The hole at φ = 0
and at larger φ values are due to detector effects. For comparison, the plots (d,e,f) show the
corresponding azimuthal angles for generated events. In particular, φ1 and φ2 are calculated
with respect to the real qq axis.

The azimuthal angles in the two reference frames are shown in Figs. 4.9(a,b,c) and com-
pared with the respective generated distributions (d,e,f). The holes at φ = 0 and higher
|φ| values, visible only for reconstructed sample, are due to acceptance effects.
The φ1 +φ2 and the 2φ0 distribution, which are sensitive to the Collins effects, are plotted
in Figs. 4.10(a) and 4.10(b) (see Eq. (4.5) for RF12 and Eq. (4.9) for RF0). The dotted red his-
togram refers to the distributions for generated particles associated to the reconstructed
ones, for which the azimuthal angles are calculated with respect to the qq axis instead of
the thrust axis of the event. The generated and reconstructed distributions are different in
RF12, because of the discrepancy between the qq and thrust axis direction. The influence
on the measurement of the azimuthal asymmetries due to the thrust axis reconstruction
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Figure 4.10: (a) φ1 + φ2 azimuthal distribution in the RF12 frame and (b) 2φ0 distribution in
the RF0 frame. The red dotted histogram refers to the generate associated angles, which are
calculated with respect to the qq axis. (c, d) For comparison, the same azimuthal distributions
for generated pion pairs for which no detector effects are included.

are discussed in section 5.3. In the RF0 frame, instead, the two distributions are very simi-
lar and the only differences are due to the track resolution and particle identification. The
true azimuthal distributions, which do not contain resolution or acceptance effects, can
be obtained looking at generated events before the detector response is simulated. These
distribution are shown in Figs. 4.10(c) and 4.10(d).

Table 4.2 summarizes all the cuts applied in this analysis.

4.4 Raw Asymmetries

The possibility to select pion pairs with same charge or opposite charge, allows to be sensitive
to favored and disfavored fragmentation functions. Favored FF describe the fragmentation of
a quark of flavor q into an hadron with a valence quark of the same flavor: i.e. u→ π+ and d→
π−. Instead, we refer to u→ π− and d→ π+ as disfavored fragmentation processes. Consider,
for example, the production of unlike-sign charged pions from a uu pair : e+e− → uū →



92 Collins Asymmetry: analysis strategy

Track acceptance cut 0.410 < θlab < 2.54 rad.

Multi-hadron events
number of charged tracks > 2

R′2 < 0.98

Visible energy of the event Evis > 7 GeV

Thrust thrust > 0.8

Pion selector tight KM selector

Electrons and very tight BDT selector
muons veto very tight KM selector

Pion fractional energy z > 0.15

Pion-thrust opening angle θthrust−π < 45◦

Pion-reference axis opening angle θaxis−π > 2◦

Pion pairs in opposite hemispheres Whemi < 0

Qt transverse momentum Qt < 3.5 GeV/c

Table 4.2: Summary of the cuts used in this analysis

π±π∓X . The pion pair can be either created through two favored fragmentation processes
(π+π−X) or through two disfavored fragmentation processes (π−π+X).
Introducing the favored FF Dfav

1 ≡ Dfav(z1) = Dπ+

u (z1) and Dfav
2 ≡ Dfav(z2) = Dπ−

ū (z2) as
well as the disfavored FF Ddis

1 = Ddis(z1) = Dπ−
u (z1) and Ddis

2 = Ddis(z2) = Dπ+

ū (z2), the cross
section for charged pion pair production can be written as:

NU (φ) =
dσ(e+e− → π±π∓X)

dΩdz1dz2
≈
∑
q

e2
q

[
(1 + cos2 θ)(Dfav

1 D
fav
2 +Ddis

1 D
dis
2 ) (4.14)

+ sin2(θ) cos(φ)(Hfav
1 H

fav
2 +Hdis

1 H
dis
2 ))

]
NL(φ) =

dσ(e+e− → π±π±X)

dΩdz1dz2
≈
∑
q

e2
q

[
(1 + cos2 θ)(Dfav

1 D
dis
2 +Ddis

1 D
fav
2 )

+ sin2(θ) cos(φ)(Hfav
1 H

dis
2 +Hdis

1 H
fav
2 )

]
NC(φ) =

dσ(e+e− → ππX)

dΩdz1dz2
≈
∑
q

e2
q

[
(1 + cos2 θ)(Dfav

1 +Ddis
1 )(D

fav
2 +D

dis
2 )

+ sin2(θ) cos(φ)(Hfav
1 +Hdis

1 )(H
fav
2 +H

dis
2 )
]

where π stands for a pion of any charge, φ is the azimuthal angle φ1 + φ2 in RF12 or φ0 in RF0,
andN i is the di-hadron yield, for Unlike, Like, and Charged pion pairs, respectively. TheN i(φ)
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are normalized to the average yield per bin< N i >, which is due to the unpolarized part of the
fragmentation function, in order to obtain the normalized distributions Riα defined in Eq.(4.4)
and (4.8). Following Eq.(4.5) and (4.9), the normalized yields can be parametrized as:

Riα = bα + aα cos(βα), (α = 0, 12; i = U ,L, C). (4.15)

Here β is the azimuthal angles combination φ1 + φ2 or 2φ0, according to the used reference
frame. The parameter bα should be consistent with unity, while aα gives the amplitude of the
raw asymmetry. The parameters aα are found to be large as shown in Fig. 4.11 for unlike-sign
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Figure 4.11: Raw asymmetry parameters a12,0 for like-sign pion pairs (upper plots) and for
unlike-sign pion pairs (lower plots) as a function of the transverse virtual photon momentum
Qt. The green points refer to the generated events, the magenta and blue triangles to the recon-
structed MC and data pion pairs, respectively.

and like-sign distributions as a function ofQt. In particular, the figure compares the asymmetry
for data with respect to the asymmetry for Monte Carlo and generated pion pairs. The raw
asymmetries for generated MC events are almost consistent with zero for low Qt values and
increase for higher values due to radiative effects included in the simulation. A large difference
between the asymmetries calculated from generated events and those obtained from MC events
after GEANT simulation of the detector response and track reconstruction is clearly evident.
This discrepancy is due to the large acceptance effects.

Figure 4.12 reports the azimuthal distributions for MC and off-peak data sample. Since the
polarized FF are not included at the generation level, we expect to see a flat distribution in the
MC azimuthal angles. Instead, we observe a modulation which is due essentially to the detec-
tor acceptance effects, more or less the same shape for both MC and data sample. In principle,
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Figure 4.12: Raw asymmetries: in red is reported the distribution for like-sign pion pairs and
in blue the distribution for unlike-sign pion pairs. The upper plots refer to MC sample and
the lower plots to data sample for the two reference frames described in the text (left plots for
RF12, and right plots for RF0).

we can try to estimate these effects in the MC sample and correct consequently the measured
asymmetries in the data sample. However, this procedure introduces large uncertainties, and
the problem on how well MC describes data. We can move around these problems by noting
that the RL and RU distributions are almost coincident in the case of MC sample, while a clear
difference is observed in the data (which it is the azimuthal asymmetry produced by the Collins
FFs). This observation suggests the possibility to perform suitable double ratios of asymme-
tries, as explained in the next section, in order to obtain a MC independent measurement.

4.5 Double Ratios

Given the difficulties to separate the true Collins effects from asymmetries produced by detec-
tor acceptances and radiative effects, we exploit the fact that instrumental effects cancel making
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ratios of asymmetries, as, for example, the ratio of unlike-sign over like-sign asymmetries:

RU12

RL12

=
1 + sin2 θ

1+cos2 θ
cos(φ1 + φ2)GU

1 + sin2 θ
1+cos2 θ

cos(φ1 + φ2)GL

' 1 +
sin2 θ

1 + cos2 θ
cos(φ1 + φ2)

{
GU −GL

}
,

(4.16)

where the approximation above is true only for small asymmetries values, and

GU =

∑
q e

2
qF(Hfav

1 H
fav
2 +Hdis

1 H
dis
2 )∑

q e
2
q(D

fav
1 D

fav
2 +Ddis

1 D
dis
2 )

,

GL =

∑
q e

2
qF(Hfav
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dis
2 +Hdis

1 H
fav
2 )∑

q e
2
q(D

fav
1 D

dis
2 +Ddis

1 D
fav
2 )

.

(4.17)

It should be noted that the asymmetries generated by QCD radiative events and acceptance
effects do not depend on the charge combination of the pion pairs, as will be shown in the
section of systematic studies, so that the new asymmetry amplitudes, resulting from the ratio,
depend only on a different combination of favored and disfavored FFs.
Similarly, the double ratio of unlike sign and any charged (C) (i.e ++, +- and charge-conjugate
combinations) pion pairs is given by:

RU12

RC12

' 1 +
sin2 θ

1 + cos2 θ
cos(φ1 + φ2)×

{
GU −GC

}
, (4.18)

with

GC =

∑
q e

2
qF [(Hfav

1 +Hdis
1 ) · (Hfav

2 +H
dis
2 )]∑

q e
2
q [(D

fav
1 +Ddis

1 ) · (Dfav
2 +D

dis
2 )]

. (4.19)

This double ratio contains different combination of favored and disfavored fragmentation func-
tions thanks to which we can derive information about their relative sign [96]. Analogous ex-
pressions can be obtained in the RF0 reference frame, with the modulation of cos(2φ0) instead
of cos(φ1 + φ2).
The double ratios are still parametrized by a cosine function:

Riα

Rjα
= Bij

α +Aijα · cos(βα) , (4.20)

where i, j = U,L,C; α represent the used reference frame (RF12 or RF0); B and A are free
parameters.
The constant term B should be consistent with unity and the A parameter contains only the
Collins effect and higher-order radiative effects. Figure 4.13 shows the double ratio of unlike
over like sign pion pairs for MC (upper plots) and data (lower plots) samples. As mentioned
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(c) RF12: Data Double Ratio: RU/RL
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(d) RF0: Data Double Ratio: RU/RL

Figure 4.13: RU/RL: (a,b) double ratio asymmetries from Monte Carlo simulation for both the
reference frame. The measured asymmetry is of the order of 0.2 − 0.3%. (c,d) double ratio
results for the off-peak data sample. In this case, the asymmetry is of the order of 1.5− 2%.

in the previous section, we expect to observe no cosine modulation in simulation. However,
a slight deviation from zero asymmetry is observed. The origin and the effect of this possible
bias on the measured asymmetry will be studied in detail in section 5.1.
Thanks to the large amount of data (about 109 events) we can study the dependence of the
asymmetry as a function of fractional energies and of transverse momenta of the selected pions
(z1 and z2, pt1 and pt2, and pt0). Table 4.3 reports the chosen z-bin subdivision (36 independent
(z1, z2) bins or 21 symmetric bins) in the two reference frames. In particular, we choose the
following z intervals: [0.15−0.2], [0.2−0.3], [0.3−0.4], [0.4−0.5], [0.5−0.7], [0.7−1]. Note that
we keep in a separate bin the tracks with z < 0.2. In this way, our results can be easily combined
with the SIDIS and Belle data, which start from z > 0.2, for the extraction of transversity and
Collins FF with a global analysis, as done by the author of Ref. [16, 17]. Similarly, Table 4.4
reports the (pt1, pt2) bins: 16 bins or 10 symmetric bins used in the RF12 frame. For RF0, where
the transverse momentum of only one pion is meaningful, we choose the following four pt0
bins: [0− 0.25], [0.25− 0.5], [0.5− 0.75], and [> 0.75].
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z2

1
6 11 15 18 20 21

0.7
5 10 14 17 19 20

0.5
4 9 13 16 17 18

0.4
3 8 12 13 14 15

0.3
2 7 8 9 10 11

0.2
1 2 3 4 5 6

0.15
0.15 0.2 0.3 0.4 0.5 0.7 1 z1

Table 4.3: z-bin subdivision: in this analysis we divide the asymmetry results in 6x6 bins of z1

and z2 as summarized above, or in 21 symmetric z-bins.

pt2
3

4 7 9 10
0.75

3 6 8 9
0.5

2 5 6 7
0.25

1 2 3 4
0.

0. 0.25 0.5 0.75 3 pt1

Table 4.4: pt-bin subdivision: in this analysis we divide the asymmetry results in 4x4 bins of
pt1 and pt2 (or in 10 symmetric pt-bins) in the RF12 frame. We used only 4 pt0-bins in the RF0
frame.

Following these z and pt bin subdivisions, the asymmetries for data and MC samples (U/L
and U/C double ratio) are compared in Fig. 4.14 for (z1, z2)-bin subdivision, in Fig. 4.15 for
(pt1, pt2)-bin, and in Fig 4.16 for pt0 bin. In particular, the blue triangles refer to the data asym-
metry calculated in the RF12 and RF0 frames, and the green squares to the MC asymmetry.
Note that the MC bias plays a marginal role and this contribution will be studied in the next
section.
The data report only the statistical errors and are not yet corrected for the background contri-
bution, such as charm, tau, and bottom decays.
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Figure 4.14: Comparison of asymmetries as a function of 6×6 (z1, z2)-bin subdivision calculated
in data (blue triangles) and MC samples (green squares). The upper two plots show the U/L
double ratio, and the last two plots show the U/C double ratio.
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Figure 4.15: RF12: comparison of asymmetries as a function of 4 × 4 (pt1, pt2)-bin subdivision
calculated in data (blue triangles) and MC samples (green squares). The plot on the left shows
the U/L double ratio, and the plot on the right shows the U/C double ratio.



4.5 Double Ratios 99

 (GeV/c) 
0

pt
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0,ULdata A

0,ULMC A

(a) Pt Data/MC comaprison RU0 /RL0

 (GeV/c)
0

pt
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.005

0

0.005

0.01

0.015

0.02

0,UCdata A

0,UCMC A

(b) Pt Data/MC comaprison RU0 /RC0

Figure 4.16: RF0: comparison of asymmetries as a function of four pt0-bin calculated in data
(blue triangles) and MC samples (green squares). The plot on the left shows the U/L double
ratio, and the plot on the right shows the U/C double ratio.





Chapter 5

Study of systematic effects

5.1 Asymmetries in the uds Monte Carlo

An important test of the analysis method is the extraction of double ratio from MC. The MC
generator describes the radiative gluon effects, but does not contain any polarized function
needed for the generation of azimuthal asymmetries, such as the asymmetries based on the
Collins effect. Therefore, we expect that the cosine parameter of the fitting function (see
Eq.(4.20)) will be consistent with zero when the fit is performed on a sample of simulated
e+e− → qq (q = u, d, s) events. The MC generated events undergo a detailed simulation of
the BABAR detector based on the GEANT [105] simulation package, which takes into account
the conditions of the detector and the level of machine background in the different data taking
periods. We classify six main data taking periods, referring to them as Run1 to Run6, from the
older to the newer.

Off-Peak sample On-Peak sample
# events (·103) Lequiv. (fb−1) # events (·103) Lequiv. (fb−1)

Run1 12400 5.93 Run1 85000 40.76
Run2 31800 15.21 Run2 256200 122.67
Run3 11800 5.64 Run3 134800 64.59
Run4 34200 16.36 Run4 416200 199.23
Run5 59800 28.61 Run5 553200 264.78
Run6 33000 15.79 Run6 327400 157.74

total Lequiv. ∼ (2 · 468.9) fb−1

Table 5.1: Number of events and equivalent luminosity (L = N/σ) for each uds MC run. In the
left side of the table are summarized the values for the off-peak sample, and in the right side
the on-peak values.

In order to have a simulation as consistent with data as possible, in all studies reported in this
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dissertation unless otherwise specified, we use an admixture of MC samples from different
Runs, where every Run contributes with a number of events equivalent to twice the corre-
sponding integrated luminosity, as reported in Tab. 5.1.
The simulated events are then reconstructed and analysed as the experimental data. The results
of the fits to the asymmetry for the uds MC are reported in Fig. 5.1 and in Tab. 5.2. In these
plots, we coupled two adjacent bins of fractional energy to improve the measurements, since
the asymmetry results are consistent for near z-bins (see also Fig. 4.14, where the uds MC are
compared to the data sample in all the 36 bins of fractional energy). The enlarged (z1, z2)

bin subdivision is the following: [0.15 − 0.3], [0.3 − 0.5], and [0.5 − 0.1]. The top three plots
(Fig. 5.1(a)) show the asymmetry parameters obtained in this enlarged (z1, z2) intervals, for the
U/L and U/C ratios in the thrust reference frame. The bottom three plots (Fig. 5.1(b)) show the
same quantities for the second hadron momentum frame. Values of the asymmetries slightly
different from zero are seen in various bins, especially for the U/L ratio at high z values, where
they almost reach the 1% level.
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(a) RF12: thrust reference frame
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Figure 5.1: Double ratio asymmetries measured on MC sample in different (z1, z2) bins in the
RF12 frame (a) and in the RF0 frame (b). The blue and green squares refer to the U/L and U/C
double ratios, respectively.

We also studied the asymmetry as a function of pt-bins. The result of the fits to the double
ratios in the 16 (pt1, pt2) bins and in the 4 pt0 bins are shown in Fig. 5.2, where the blue and
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Figure 5.2: MC double ratio study as a function of 16 bins of (pt1, pt2)(a), and as a function of
4 pt0 bins (b). The blue squares refer to the U/L ratio, and the green squares to the U/C ratio.
The asymmetry increase for higher pt values.

green squares refer to the U/L and U/C ratios, and summarized in Tab. 5.3.
Also in these cases non zero asymmetries are seen, and it seems that they are due to pions

with transverse momentum pt > 0.5 GeV/c. To cross check this hypothesis, we separate the
reconstructed pions in two MC samples requiring their transverse momentum with respect to
the thrust axis to be either pti < 0.5 GeV/c or pti > 0.5 GeV/c, and fit again the double ratio
in the two samples. The results are shown in Figs. 5.3 and 5.4 for the RF12 and RF0 frames,
respectively. In both cases the cosine modulation of the azimuthal distributions for the higher
transverse momenta are clear (red fit in figures). On the contrary, the distributions for lower
pt show negligible asymmetries and can be the fitted also with a flat function (blue fits in the
same figures).

In order to understand if the observed bias is related to the detector response, we varied the
selection criteria and repeated the analysis after each variation. In particular, we performed the
analysis:

• using different selectors for pions and/or electron and muon vetos;

• removing sequentially most of the cuts;

• changing the requirement on the minimum number of charged tracks (nTracks > 3, 4,...);
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(e) pt1,2 <0.5 GeV/c: (z1; z2)=(0.5-1. ; 0.3-0.5)
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Figure 5.3: RF12: comparison of distribution obtained selecting pions with pt1,2 <0.5 GeV/c
(plots on the left, blue fits) and distribution for pions with pt1,2 >0.5 GeV/c (plots on the right,
red fits). For pions with higher transverse momentum it is clearly evident the cosine modula-
tion, not observed in the low pt distribution, which is the origin of the bias.
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(c) pt1,2 <0.5 GeV/c: (z1; z2)=(0.3-0.5 ; 0.3-0.5)
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(d) pt1,2 >0.5 GeV/c: (z1; z2)=(0.3-0.5 ; 0.3-0.5)
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(e) pt1,2 <0.5 GeV/c: (z1; z2)=(0.5-1. ; 0.3-0.5)
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(f) pt1,2 >0.5 GeV/c: (z1; z2)=(0.5-1. ; 0.3-0.5)

Figure 5.4: RF0: comparison of distribution obtained selecting pions with pt1,2 <0.5 GeV/c
(plots on the left, blue fits) and distribution for pions with pt1,2 >0.5 GeV/c (plots on the right,
red fits). For pions with higher transverse momentum it is clearly evident the cosine modula-
tion, not observed in the low pt distribution, which is the origin of the bias.
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• dividing the MC sample in different sub-samples, by data taking period;

• varying the z-bins range;

• selecting events well contained in the detector, with the requirement of a polar angle of
the thrust axis higher than 70◦.

None of them turn out to be an evident source of the observed bias.
We can remove the effect of particle reconstruction and identification measuring the azimuthal
asymmetries at generator level, that is using the particles’ true momenta, as produced by the
generator before the GEANT simulation is performed.
We perform two different studies: for the first we consider all charged pions coming directly
from the fragmenting qq pair, while for the second study we used only the true pions match-
ing the reconstructed tracks. In addition, to calculate the ”true” azimuthal angles in the RF12
reference frame, we used the qq axis instead of the thrust axis.
The results of these studies in terms of fitted asymmetry parameters for the usual (z1/z2),
(pt1pt2) and pt0 bins, are reported in Figs.5.5 and 5.6.
The asymmetries resulting from the sample of all generated pions (shown on the left of the
figures) are consistent with zero in every bin, with few exceptions, and no particular path of the
deviations from zero is observed. That is compatible with the assumption that only minimal, if
not negligible effects are expected in pure MC due to gluon radiative corrections implemented
in the generator model.
Looking at the asymmetries obtained from the sample of generated pions which are associated
to effectively reconstructed tracks (shown on the right side of the 5.5 and 5.6) a different be-
havior is seen in the two reference frames. In fact, the measured asymmetries are essentially
consistent with zero in each bin for RF12, but they show values very similar to those obtained
fitting the reconstructed pions (see Figs.5.1(b) and 5.2(b)) for RF0.
From these observations we conclude that the small biases seen measuring the Collins asymme-
tries in the uds MC samples are real and origin from the experimental method used, different
for the two reference frames.
In RF12, the bias is mainly due to the fact that the true reference axis, that is the qq direction,
cannot be experimentally accessed, and it is therefore approximated by the thrust axis. In
RF0, instead, the main effect is the loss of particles outside the detector acceptance, not fully
compensated in the ratio of the azimuthal distributions. In both cases pions with higher z and
pt are more affected by these experimental limitations.

In conclusion, we decide to correct the asymmetries measured in the data for the bias ob-
tained fitting the double ratio in the fully reconstructed uds MC sample. The correction is
applied on a bin-by-bin basis and, because track resolution and track and PID efficiencies are
not perfectly reproduced by the detector simulation, we conservatively assign to the applied
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(b) RF12: generated associated pions vs (z1, z2)
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(c) RF0: generated pions vs (z1, z2)
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(d) RF0: generated associated pions vs (z1, z2)

Figure 5.5: Distribution as a function of (z1, z2)for generate associated pions (a) and (c), and
distribution and for generated pions (b) and (d). Blue and green squares refer to the U/L and
U/C double ratio, respectively.



108 Study of systematic effects

 (GeV/c)
2

pt
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

12,ULA

12,UCA

=[0.-0.25] (GeV/c)
1

pt

 (GeV/c)
2

pt
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

12,ULA

12,UCA

=[0.25-0.5] (GeV/c)
1

pt

 (GeV/c)
2

pt
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

12,ULA

12,UCA

=[0.5-0.75] (GeV/c)
1

pt

 (GeV/c)
2

pt
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

12,ULA

12,UCA

=[>0.75] (GeV/c)
1

pt

(a) (pt1, pt2): generated pions

 (GeV/c)
2

pt
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

12,ULA

12,UCA

=[0.-0.25] (GeV/c)
1

pt

 (GeV/c)
2

pt
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

12,ULA

12,UCA

=[0.25-0.5] (GeV/c)
1

pt

 (GeV/c)
2

pt
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

12,ULA

12,UCA

=[0.5-0.75] (GeV/c)
1

pt

 (GeV/c)
2

pt
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

12,ULA

12,UCA

=[>0.75] (GeV/c)
1

pt

(b) (pt1, pt2): generated associated pions

 (GeV/c)
0

pt
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0,ULA

0,UCA

(c) pt0: generated pions

 (GeV/c)
0

pt
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0,ULA

0,UCA

(d) pt0: generated associated pions

Figure 5.6: Distribution as a function of (pt1, pt2) for generate pions (a) and (c), and distribution
for generated associated pions (b) and (d). Blue and green squares refer to the U/L and U/C
double ratio, respectively.

corrections the result of the combination in quadrature of the statistical error and the bias mea-
sured in each bin as systematic error.
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Bins (z1, z2) AUL
12 AUL

0 AUC
12 AUC

0

1 [0.15-0.2][0.15-0.2] 0.0014±0.0002 0.0008±0.0002 0.0007±0.0002 0.0004±0.0002
2 [0.15-0.2][0.2-0.3] 0.0014±0.0002 0.0008±0.0002 0.0007±0.0002 0.0004±0.0002
3 [0.15-0.2][0.3-0.4] 0.0019±0.0003 0.0020±0.0003 0.0009±0.0003 0.0009±0.0003
4 [0.15-0.2][0.4-0.5] 0.0019±0.0003 0.0020±0.0003 0.0009±0.0003 0.0009±0.0003
5 [0.15-0.2][0.5-0.7] 0.0034±0.0006 0.0019±0.0006 0.0015±0.0004 0.0008±0.0004
6 [0.15-0.2][0.7-1.0] 0.0034±0.0006 0.0019±0.0006 0.0015±0.0004 0.0008±0.0004

7 [0.2-0.3][0.15-0.2] 0.0014±0.0002 0.0008±0.0002 0.0007±0.0002 0.0004±0.0002
8 [0.2-0.3][0.2-0.3] 0.0014±0.0002 0.0008±0.0002 0.0007±0.0002 0.0004±0.0002
9 [0.2-0.3][0.3-0.4] 0.0019±0.0003 0.0020±0.0003 0.0009±0.0003 0.0009±0.0003
10 [0.2-0.3][0.4-0.5] 0.0019±0.0003 0.0020±0.0003 0.0009±0.0003 0.0009±0.0003
11 [0.2-0.3][0.5-0.7] 0.0034±0.0006 0.0019±0.0006 0.0015±0.0004 0.0008±0.0004
12 [0.2-0.3][0.7-1.0] 0.0034±0.0006 0.0019±0.0006 0.0015±0.0004 0.0008±0.0004

13 [0.3-0.4][0.15-0.2] 0.0014±0.0003 0.0019±0.0003 0.0006±0.0003 0.0009±0.0003
14 [0.3-0.4][0.2-0.3] 0.0014±0.0003 0.0019±0.0003 0.0006±0.0003 0.0009±0.0003
15 [0.3-0.4][0.3-0.4] 0.0019±0.0004 0.0036±0.0004 0.0008±0.0004 0.0016±0.0003
16 [0.3-0.4][0.4-0.5] 0.0019±0.0004 0.0036±0.0004 0.0008±0.0004 0.0016±0.0003
17 [0.3-0.4][0.5-0.7] 0.0058±0.0008 0.0054±0.0007 0.0024±0.0006 0.0023±0.0006
18 [0.3-0.4][0.7-1.0] 0.0058±0.0008 0.0054±0.0007 0.0024±0.0006 0.0023±0.0006

19 [0.4-0.5][0.15-0.2] 0.0014±0.0003 0.0019±0.0003 0.0006±0.0003 0.0009±0.0003
20 [0.4-0.5][0.2-0.3] 0.0014±0.0003 0.0019±0.0003 0.0006±0.0003 0.0009±0.0003
21 [0.4-0.5][0.3-0.4] 0.0019±0.0004 0.0036±0.0004 0.0008±0.0004 0.0016±0.0003
22 [0.4-0.5][0.4-0.5] 0.0019±0.0004 0.0036±0.0004 0.0008±0.0004 0.0016±0.0003
23 [0.4-0.5][0.5-0.7] 0.0058±0.0008 0.0054±0.0007 0.0024±0.0006 0.0023±0.0006
24 [0.4-0.5][0.7-1.0] 0.0058±0.0008 0.0054±0.0007 0.0024±0.0006 0.0023±0.0006

25 [0.5-0.7][0.15-0.2] 0.0035±0.0003 0.0018±0.0005 0.0016±0.0004 0.0008±0.0008
26 [0.5-0.7][0.2-0.3] 0.0035±0.0003 0.0018±0.0005 0.0016±0.0004 0.0008±0.0008
27 [0.5-0.7][0.3-0.4] 0.0066±0.0004 0.0047±0.0007 0.0028±0.0006 0.0020±0.0020
28 [0.5-0.7][0.4-0.5] 0.0066±0.0004 0.0047±0.0007 0.0028±0.0006 0.0020±0.0020
29 [0.5-0.7][0.5-0.7] 0.0078±0.0008 0.0031±0.0013 0.0030±0.0011 0.0012±0.0012
30 [0.5-0.7][0.7-1.0] 0.0078±0.0008 0.0031±0.0013 0.0030±0.0011 0.0012±0.0012

31 [0.7-1.0][0.15-0.2] 0.0035±0.0003 0.0018±0.0005 0.0016±0.0004 0.0008±0.0008
32 [0.7-1.0][0.2-0.3] 0.0035±0.0003 0.0018±0.0005 0.0016±0.0004 0.0008±0.0008
33 [0.7-1.0][0.3-0.4] 0.0066±0.0004 0.0047±0.0007 0.0028±0.0006 0.0020±0.0020
34 [0.7-1.0][0.4-0.5] 0.0066±0.0004 0.0047±0.0007 0.0028±0.0006 0.0020±0.0020
35 [0.7-1.0][0.5-0.7] 0.0078±0.0008 0.0031±0.0013 0.0030±0.0011 0.0012±0.0012
36 [0.7-1.0][0.7-1.0] 0.0078±0.0008 0.0031±0.0013 0.0030±0.0011 0.0012±0.0012

Table 5.2: Fit results of uds MC asymmetries as a function of 36 (z1, z2), calculated used the
larger z-bins subdivision.
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Bins (pt1, pt2) AUL12 AUC12

1 [0.-0.25][0.-0.25] -0.0005±0.0005 -0.0002±0.0004
2 [0.-0.25][0.25-0.5] 0.0004±0.0003 0.0002±0.0003
3 [0.-0.25][0.5-0.75] 0.0009±0.0005 0.0004±0.0004
4 [0.-0.25][>0.75] 0.0012±0.0010 0.0006±0.0008

5 [0.25-0.5][0.-0.25] 0.0005±0.0003 0.0002±0.0003
6 [0.25-0.5][0.25-0.5] 0.0007±0.0002 0.0003±0.0002
7 [0.25-0.5][0.5-0.75] 0.0022±0.0004 0.0009±0.0003
8 [0.25-0.5][>0.75] 0.0041±0.0008 0.0019±0.0006

9 [0.5-0.75][0.-0.25] 0.0007±0.0005 0.0003±0.0004
10 [0.5-0.75][0.25-0.5] 0.0015±0.0004 0.0007±0.0003
11 [0.5-0.75][0.5-0.75] 0.0042±0.0006 0.0019±0.0005
12 [0.5-0.75][>0.75] 0.0075±0.0013 0.0034±0.0010

13 [>0.75][0.-0.25] 0.0027±0.0010 0.0012±0.0008
14 [>0.75][0.25-0.5] 0.0023±0.0008 0.0010±0.0006
15 [>0.75][0.5-0.75] 0.0079±0.0013 0.0035±0.0010
16 [>0.75][>0.75] 0.0147±0.0027 0.0064±0.0022

pt0 AUL0 AUC0

1 [0.-0.25] 0.0001±0.0003 0.0000±0.0002
2 [0.25-0.5] 0.0007±0.0002 0.0003±0.0002
3 [0.5-0.75] 0.0034±0.0002 0.0016±0.0002
4 [>0.75] 0.0070±0.0003 0.0032±0.0002

Table 5.3: Fit results of udsMC asymmetries as a function of 16 (pt1, pt2) in the first part of table,
and as a function of 4 pt0 bins in the second part.
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5.2 Contribution of cc, BB, and τ+τ− events to the asymmetries

The presence of background processes produces a dilution of the azimuthal asymmetry
Aα, α = 12, 0, so that the measured asymmetry Ameasα results from the combination of the
azimuthal distributions produced by the different physics processes contributing to the final
sample, and can be written as:

Ameasα =

(
1−

∑
i

Fi

)
·Aα +

∑
i

Fi ·Aiα (5.1)

whereAiα and Fi are the asymmetry and the fraction of pion pairs in the selected sample due to
the ith background component, which must be estimated in order to extract the Collins asym-
metries for light quark fragmentation. The background processes giving a significant contribu-
tion are e+e− → τ+τ−, e+e− → cc, and e+e− → Υ (4S) → BB events surviving the selection
procedure. We refer to them as the τ , charm and bottom background, respectively. In the for-
mer process azimuthal asymmetries can arise from the weak decay of heavy leptons, while for
the charm processes also the Collins effects may contribute, even if suppressed because of the
heavy mass of the fragmenting quarks (the Collins effect for the b-quark is suppressed even
more).
The study of the azimuthal asymmetries for this kind of processes would therefore be interest-
ing by its own, but larger statistics and an optimized analysis would be necessary to perform
precise measurements.
The asymmetries and the fraction Fi are determined using both MC and data control sample
specific to each background process.

Charm and bottom contribution to the asymmetries

The contribution of e+e− → cc to the total hadronic cross section is about 40% (∼ 30% at the
peak of the Υ (4S), see Tab.3.1).

Because of the cut on the event thrust value and the requirements on the track selection,
the fraction of pion pairs coming from BB decays amounts at most to 2.5% at small fractional
energies, and is negligible for zi > 0.5. For this reason, we can safely consider the very small
contribution of bottom background together with the charm correction, assuming null bottom-
quark asymmetries: ABα = 0.

We use the generic cc and BB (B+B− plus B0B0) MC simulation for determining the rela-
tive contribution D, and B in the data sample:

D =
Ncc

Nmeas
, B =

Nbb

Nmeas
, (5.2)

where Ncc (Nbb) are the number of pion pairs in the cc (bb) MC sample scaled to match the
luminosity of the data sample, and Nmeas are the number of pion pairs in the full data sample.
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In addition, we select a charm-enhanced data sample requiring at least one D∗ from the decay
D∗± → D0π±, with the D0 (MPDG

D0 ' 1864.8 MeV/c2 [51]) reconstructed in four decay channels:

• mode 1: D0 → K−π+ (B = 3.89%),

• mode 2: D0 → K−π+π−π+ (B = 8.1%),

• mode 3: D0 → K−π+π0 (B = 13.9%),

• mode 4: D0 → K0
Sπ

+π− (B = 2.99%).

The D0’s are reconstructed starting from the following lists of composite particles for the four
D0 decay modes:

mode 1 D0 → K−π+ : we use the D0ToKPiDefault list, which requires:

– pion list: GoodTracksVeryLoose,

– kaon list: GoodTracksVeryLoose,

– D0 mass selection: (MPDG
D0 − 0.040 : MPDG

D0 + 0.040) MeV/c2;

mode 2 D0 → K−π+π−π+: we use the D0ToK3PiDefault list:

– pion list: GoodTracksVeryLoose,

– kaon list: KLHNotPion. It is a PID selector list that satisfy LK/(LK + Lπ) > 0.20 or
Lp/(Lp+Lπ) > 0.20, whereLK,π,p is the Likelihood for the corresponding hypothesis
mass.

– fitting algorithm: Add4 (this is the normal four-vector addition),

– D0 mass selection: (MPDG
D0 − 0.040 : MPDG

D0 + 0.040) MeV/c2;

mode 3 : D0 → K−π+π0 we construct our list as follow:

– pion list: GoodTracksVeryLoose,

– kaon list: KLHNotPion,

– π0 list (π0 → γγ): pi0LooseMass, with the mass of the two photons constrained to the
π0 mass (mPDG

π0 ' 135.0 MeV/c2), and with energy in the laboratory frame higher
than 0.2 GeV. Add4 fitting algorithm is used to constrain mass, momentum, and
primary vertex;

– fitting algorithm: Add4,

– D0 mass selection: (MPDG
D0 − 0.090 : MPDG

D0 + 0.090) MeV/c2;

mode 4 : D0 → K0
Sπ

+π− we construct our list as follow:
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– pion list: GoodTracksVeryLoose,

– K0
S list (K0

S → ππ): KsDefaultMass, with the mass of the two pions constrained to the
K0
S mass (mPDG

K0
S
' 497.6 MeV/c2). The fitting algorithm used to constrain mass, mo-

mentum, and primary vertex is the TreeFitter algorithm, which consider the global
decay chain based on a Kalman filter;

– fitting algorithm: Add4,

– D0 mass selection: (MPDG
D0 − 0.090 : MPDG

D0 + 0.090) MeV/c2.

Figure 5.7 and Fig. 5.9(a) show the mass distribution of the D0 reconstructed in the four decay
modes, in the MC sample and in the off-peak data sample, respectively. The fits use the sum of
a narrow Gaussian, plus a wider one, plus a second order polynomial background. Table 5.4
summarized the fit parameters.

D∗± are then reconstructed by adding one charged pion with momentum less than 0.6
GeV/c to the four-momentum of the D0 candidate coming from the merged list as before.
Figure 5.8 shows the ∆M distributions calculated in the cc and bb MC samples, where ∆M =

(MD∗ − MD0) (∆M = 145.421 ± 0.010 MeV [51]). Also in this case, the fit functions are a
sum of a narrow Gaussian, plus a wider one, plus the typical background shape function for
D∗ − D0 mass difference. Figure 5.9(b) shows the same distribution obtained in the off-peak
data sample. The fit parameters for the 4 decay modes are summarized in Tab. 5.5.
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Figure 5.7: D0 mass for the decay mode D0 → Kπ (mode 1), D0 → K3π (mode 2), D0 → Kππ0

(mode 3), and D0 → Ksππ (mode 4). The D0 mass is fitted with a double gaussian and the
dashed red line is the background parameterization.

Finally, for the selection of the enhanced D∗ sample, we apply the following cuts:
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(a) MC cc
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Figure 5.8: Monte Carlo distributions of ∆M reconstructed in the cc (a) and BB (b) samples,
where ∆M = (MD∗ −MD0) and ∆Mpdg = 145.421± 0.010 MeV. The fit functions are a sum of
a narrow Gaussian, plus a wider one, plus an exponential function for the background param-
eterization (dashed red line).

• mode 1

– χ2-probability for fitting the D∗ vertex >0.001

– 1.835 < MD0 < 1.90 GeV/c2

– 0.1425 < ∆M < 0.149 GeV/c2

• mode 2

– χ2-probability for fitting the D∗ vertex >0.001

– 1.83 < MD0 < 1.90 GeV/c2

– 0.1425 < ∆M < 0.148 GeV/c2

• mode 3

– χ2-probability for fitting the D∗ vertex >0.001

– 1.83 < MD0 < 1.90 GeV/c2

– 0.1425 < ∆M < 0.149 GeV/c2

– 0.120 < Mπ0 < 0.150 GeV/c2

• mode 4
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– χ2-probability for fitting the D∗ vertex >0.001

– 1.835 < MD0 < 1.895 GeV/c2

– 0.1425 < ∆M < 0.149 GeV/c2

– 0.492 < MK0
S
< 0.502 GeV/c2
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(a) Data sample: D0 mass
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(b) Data sample: ∆M

Figure 5.9: Distributions of (a) MD0 and (b) ∆M reconstructed in the off-peak data sample.

Similarly as for the full data sample, we calculate the cc and bb contribution to this enhanced
sample:

d =
Ncc(D∗)

ND∗
, b =

Nbb(D∗)

ND∗
. (5.3)

In this case, Ncc(D∗) (Nbb(D∗)) and ND∗ are the number of pion pairs in the enhanced MC and
data sample, respectively.
Measuring the double ratio asymmetries Ameas and AD∗ respectively in the full and in the D∗

enhanced data sample, and assuming that the charm asymmetry is the same in both samples
and zero for bottom quark, we can write the following two equations:

Ameas = (1−D −B) ·Auds +D ·Acharm (5.4)

AD∗ = d ·Acharm + (1− d− b) ·Auds

The relative contributions D, d, B, and b for the various z- and pt-bins are summarized in
Tab. 5.6 and in Tab. 5.7, respectively.
Note that the two equations (5.4) are not yet complete. We need also to take into account the
contribution coming from the τ background, described in the next paragraph.
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MD0 : MC cc sample

mode num. MD0( MeV/c2) σgn( MeV/c2) σgw( MeV/c2) fn fw
1 1864.39± 0.03 6.20± 0.11 10.47± 0.44 0.241± 0.019 0.176± 0.017
2 1864.36± 0.03 4.44± 0.11 9.03± 0.50 0.116± 0.009 0.086± 0.007
3 1861.93± 0.08 7.93± 0.39 15.42± 0.80 0.081± 0.011 0.079± 0.014
4 1864.39± 0.08 4.72± 0.11 4.72± 0.11 0.068± 0.002 0.166± 0.054

MD0 : off-peak data sample

mode num. MD0( MeV/c2) σgn( MeV/c2) σgw( MeV/c2) fn fw
1 1863.79± 0.03 6.09± 0.31 9.78± 0.80 0.241± 0.019 0.176± 0.017
2 1863.68± 0.02 4.88± 0.09 9.89± 0.50 0.116± 0.009 0.086± 0.007
3 1862.84± 0.07 8.09± 0.48 16.70± 2.501 0.081± 0.011 0.079± 0.014
4 1864.29± 0.08 4.53± 0.11 7.77± 0.21 0.035± 0.001 0.164± 0.004

Table 5.4: MD0 fit parameters for cc MC and for the off-peak data sample, which is used as
example. The function used is a sum of a narrow Gaussian, with mean MD0 and width σgn,
plus a wider one, with the same mean and width σgw. The fn and fw parameters are the signal
fractions for the relative Gaussian. The background fit parameters are not reported in the table.

∆M(MD∗ −MD0): MC cc sample

mode num. ∆M( MeV/c2) σgn( MeV/c2) σgw( MeV/c2) fn fw
1 145.434± 0.001 0.357± 0.004 0.792± 0.011 0.321± 0.007 0.227± 0.007
2 145.426± 0.001 0.431± 0.001 2.301± 0.022 0.268± 0.001 0.112± 0.001
3 145.439± 0.001 0.489± 0.002 2.241± 0.011 0.154± 0.001 0.165± 0.001
4 145.431± 0.003 0.473± 0.004 − 0.127± 0.001 −

∆M(MD∗ −MD0): MC bb sample

mode num. ∆M( MeV/c2) σgn( MeV/c2) σgw( MeV/c2) fn fw
1 145.443± 0.005 0.284± 0.019 0.728± 0.019 0.077± 0.010 0.219± 0.010
2 145.441± 0.007 0.473± 0.009 2.241± 0.059 0.069± 0.002 0.068± 0.002
3 145.451± 0.007 0.500± 0.010 2.213± 0.028 0.065± 0.002 0.140± 0.002
4 145.447± 0.018 0.526± 0.021 − 0.032± 0.001 −

∆M(MD∗ −MD0): off-peak data sample

mode num. ∆M( MeV/c2) σgn( MeV/c2) σgw( MeV/c2) fn fw
1 145.413± 0.001 0.632± 0.004 0.763± 0.008 0.174± 0.005 0.206± 0.005
2 145.411± 0.001 0.477± 0.001 2.03± 0.022 0.188± 0.001 0.081± 0.001
3 145.430± 0.001 0.546± 0.002 1.997± 0.006 0.114± 0.001 0.127± 0.001
4 145.410± 0.003 0.495± 0.003 − 0.072± 0.001 −

Table 5.5: ∆M fit parameters for cc, bb MC, and for the off-peak data sample, which is used as
example. The function used is a sum of a narrow Gaussian, with mean ∆M and width σgn, plus
a wider one, with the same mean and width σgw for the first three modes, and a single Gaussian
for the last. The fn and fw parameters are the signal fractions for the relative Gaussian. The
background fit parameters are not shown in the table.

e+e− → τ+τ− contribution to the asymmetries

Since weak decays are well described in MC, we can use the τ+τ− MC to evaluate possible
effects due to τ decays. The asymmetries measured in the τ MC sample have a very small
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central value and are consistent with zero within about two standard deviations:

• AτMC
12,UL = (0.0027± 0.0010), AτMC

12,UC = (0.0014± 0.0008) ;

• AτMC
0,UL = (0.0028± 0.0010), AτMC

0,UC = (0.0014± 0.0008) .

We check for possible effects also in data, performing the analysis on the sample of events
sitting in the lower-right side of theEtot vs Thrust distribution of Fig. 4.5. This region, which is
rejected by the event selction because of the high background from e+e− → τ+τ− (in particular
by the cut shown in the same picture as the black line), provides a natural τ -enhanced data
sample. Figure 5.10 shows the event thrust distribution of the τ -enhanced data sample (black
histogram). Using the τ -MC sample, shown as the dashed histogram we estimate a purity of
the selected τ sample of about 80%.
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Figure 5.10: Event thrust distribution for the τ -enhanced data sample (black) described in the
text. The dashed red histogram is the distribution for pure τ+τ− events obtained from the
τ MC sample normalized to the data integrated luminosity, and the dotted blue line is their
difference, thus representing the light quarks contamination of the τ -enhanced sample.

The asymmetries measured in this enhanced sample areAτ12,UL = (−0.0030±0.0015),Aτ12,UC =

(−0.0015 ± 0.0012), Aτ0,UL = (−0.0022 ± 0.0015), Aτ0,UC = (−0.0011 ± 0.0012), and in Fig. 5.11
are shown, as example, the results for the UL ratio in the two frames.

Following the same procedure described in the previous section, we calculate the fraction
of pion pairs in the whole selected data sample from τ+τ− events:

T =
Nτ+τ−

Nmeas
, (5.5)

where Nτ+τ− are the number of pion pairs in the τ MC sample scaled to the data integrated
luminosity. We found T ∼ 2% on average, with the value in the various z and pt bins ranging
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Figure 5.11: U/L double ratio asymmetries for (a) RF12 and (b) RF0 calculated in the τ MC
samples.

from about 1% at low zi to more than 15% at high zi, and being more or less indipendent from
the pt values, as can be seen in Tab. 5.6 and in Tab. 5.7, respectively.

Considering that the asymmetries measured in both MC and τ -enhanced samples are con-
sistent with zero or give only very small deviations from zero, and that the contamination from
τ+τ− events is significant only at large zi, where the Collins effect is much larger as seen in
Fig. 4.14, the contribution of the τ asymmetry Aτα to Eq.(5.1) is negligible, and we can safely
assume Aτα = 0.

Corrections to the measured asymmetries

Taking into account also this contribution, the Eqs.(5.4) become:

Ameas = (1−D −B − T ) ·Auds +D ·Acharm (5.6)

AD∗ = d ·Acharm + (1− d− b) ·Auds,

where Aτ = Abottom = 0. From these two equations we can extract the true Collins asymmetry
Auds and the charm contribution Acharm:

Auds =
d ·Ameas −D ·AD∗

d−D − dB − dT +Db
(5.7)

Acharm =
(1−D −B − T ) ·AD∗ − (1− d− b) ·Ameas

d−D − dB − dT +Db
.

The relative contributions to the full data sample of the cc (D), BB (B), τ+τ− (T ), and light
quark (UDS) events, where UDS = 1 − D − B − T are reported in Tab. 5.6, in columns 2
to 5, respectively. The analogous quantities obtained in the D∗-enhanced data sample are in
columns 6 to 8. We note that in this latter sample, the τ+τ− events do not contribute.
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Figure 5.12: Comparison between the number of pion pairs in the data sample (black dots) and
the relative contribution due to τ+τ− events (blue histogram), plus BB (yellow histogram),
plus cc (red histogram), plus uds (green histogram). Similar plots are obtained for the D∗

enhanced sample. The difference between data and MC are assigned to the charm and tau
fractions as systematic errors.

A significant source of systematic error in this procedure can arise from the fractions Fi,
which are estimated from MC simulation. The cross sections of e+e− → qq processes are known
at few percent level, and only a fraction of all charmed-hadrons andB-meson decays have been
measured and included in the MC generators used by the BABAR simulation. Also τ decays with
many hadrons in the final state are known with significant uncertainties. In order to understand
how large could be the effect of these uncertainties, we compare bin-by-bin in Fig. 5.12 the
number of pion pairs selected in the data with those selected in the uds, τ , charm, and bottom
MC samples, summed according to the nominal production cross sections. The observed data-
MC differences are at most at few percent level. Since the number of BB events is negligible
if compared to the cc and τ+τ− events, we assign errors to the charm (D, and d) and tau (T )
fractions equal to the observed data-MC differences, and propagate them together with the
statistical errors through Eq.(5.7). This conservative choice has a very little effect on the final
result.
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Figures 5.13 and 5.14 show the Collins asymmetries for light quarks after the background
corrections (following Eq. (5.7)) as a function of the z bins and the pt bins, respectively. The
blue triangles refer to the U/L double ratio, and the green triangles refer to the U/C double
ratio. All these results are summarized in Tables 5.8 - 5.13.

The charm asymmetries (see also Eq. (5.7)) as a function of z bins are shown in Fig. 5.15.
Since the asymmetry does not change significantly for near bins of fractional energy, we decide
to evaluate the double ratio in the D∗ enhanced sample coupling two adjacent z bins in order
to reduce the statistical uncertainties. Note that the statistical error of the control sample is
the largest source of uncertainties in these measurements. Finally, Fig. 5.16 shows the charm
asymmetries as a function of pt. Also in these cases, blue and green triangles refers to U/L and
U/C double ratio, respectively. The results as a function of z bins are summarized again in
Tables 5.8 - 5.13.
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(b) RF0: Auds Collins asymmetries

Figure 5.13: Light quark asymmetries as a function of fractional energies, after the correction
of charm, bottom and tau contributions (Eq. (5.7)): (a) in the thrust reference frame and (b) in
the second momentum hadron frame. The blue triangles refer to the U/L double ratio, and the
green triangles refer to the U/C double ratio.
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Figure 5.14: Light quark asymmetries as a function of pt, after the correction of charm, bottom
and tau contributions (Eq. (5.7)): (a) in the thrust reference frame and (b) in the second momen-
tum hadron frame. The blue triangles refer to the U/L double ratio, and the green triangles
refer to the U/C double ratio.
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(b) RF0: Acharm asymmetries

Figure 5.15: Charm asymmetries as a function of fractional energies, calculated following
Eq. (5.7): (a) in the thrust reference frame and (b) in the second momentum hadron frame.
The blue and green triangles refer to the U/L and U/C double ratio, respectively.
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Figure 5.16: Charm asymmetries as a function of pt, calculated following Eq. (5.7): (a) in the
thrust reference frame and (b) in the second momentum hadron frame. The blue and green
triangles refer to the U/L and U/C double ratio, respectively.
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(z1, z2) Full data sample D∗-enhanced data sample
D B T UDS d b uds

1 34.513 ± 3.006 2.242 ± 0.002 0.770 ± 0.068 62.476 ± 3.007 87.841 ± 1.800 3.307 ± 0.022 8.853 ± 1.800
2 32.722 ± 1.659 2.058 ± 0.002 1.079 ± 0.056 64.141 ± 1.660 90.369 ± 1.432 3.295 ± 0.021 6.337 ± 1.432
3 29.054 ± 0.110 2.542 ± 0.003 1.532 ± 0.008 66.872 ± 0.110 88.609 ± 3.254 4.571 ± 0.036 6.820 ± 3.254
4 24.738 ± 0.637 2.449 ± 0.005 1.962 ± 0.054 70.850 ± 0.640 87.510 ± 1.511 3.682 ± 0.048 8.808 ± 1.512
5 16.864 ± 0.179 0.015 ± 0.000 2.641 ± 0.032 80.481 ± 0.182 86.162 ± 3.706 0.010 ± 0.003 13.829 ± 3.706
6 3.691 ± 0.120 0.000 ± 0.000 6.525 ± 0.205 89.783 ± 0.237 62.822 ± 13.888 0.000 ± 0.000 37.178 ± 13.888
7 32.696 ± 1.665 2.051 ± 0.002 1.080 ± 0.056 64.173 ± 1.666 90.017 ± 1.077 3.269 ± 0.021 6.714 ± 1.077
8 31.815 ± 0.186 1.880 ± 0.002 1.512 ± 0.010 64.793 ± 0.187 94.536 ± 5.778 3.242 ± 0.020 2.223 ± 5.778
9 28.385 ± 1.598 2.180 ± 0.003 2.154 ± 0.123 67.281 ± 1.602 93.773 ± 8.400 4.341 ± 0.033 1.886 ± 8.400

10 24.084 ± 2.062 2.090 ± 0.004 2.724 ± 0.236 71.102 ± 2.075 93.195 ± 6.970 3.453 ± 0.044 3.352 ± 6.970
11 16.396 ± 1.223 0.012 ± 0.000 3.587 ± 0.271 80.005 ± 1.253 91.653 ± 3.012 0.009 ± 0.003 8.339 ± 3.012
12 3.777 ± 0.214 0.000 ± 0.000 8.586 ± 0.475 87.637 ± 0.521 70.470 ± 7.531 0.000 ± 0.000 29.530 ± 7.531
13 29.065 ± 0.094 2.541 ± 0.003 1.543 ± 0.007 66.851 ± 0.094 88.771 ± 3.539 4.687 ± 0.037 6.542 ± 3.539
14 28.363 ± 1.596 2.179 ± 0.003 2.158 ± 0.123 67.300 ± 1.601 93.430 ± 8.159 4.379 ± 0.034 2.191 ± 8.159
15 25.281 ± 2.728 1.975 ± 0.004 3.067 ± 0.334 69.677 ± 2.748 92.702 ± 10.546 4.979 ± 0.053 2.319 ± 10.546
16 21.184 ± 2.901 1.747 ± 0.006 3.880 ± 0.536 73.189 ± 2.950 91.240 ± 8.237 3.567 ± 0.066 5.193 ± 8.237
17 14.169 ± 1.849 0.020 ± 0.001 5.036 ± 0.662 80.776 ± 1.964 90.344 ± 5.565 0.023 ± 0.007 9.633 ± 5.565
18 3.275 ± 0.408 0.000 ± 0.000 12.077 ± 1.473 84.648 ± 1.528 73.370 ± 4.309 0.031 ± 0.031 26.599 ± 4.309
19 24.716 ± 0.630 2.429 ± 0.005 1.976 ± 0.053 70.878 ± 0.632 88.206 ± 1.875 3.566 ± 0.048 8.228 ± 1.875
20 24.047 ± 2.060 2.096 ± 0.004 2.739 ± 0.238 71.118 ± 2.074 92.506 ± 6.451 3.432 ± 0.044 4.061 ± 6.451
21 21.228 ± 2.925 1.741 ± 0.006 3.897 ± 0.542 73.134 ± 2.975 92.048 ± 8.830 3.547 ± 0.066 4.406 ± 8.830
22 17.548 ± 2.982 1.213 ± 0.007 4.975 ± 0.852 76.263 ± 3.101 89.583 ± 6.149 2.401 ± 0.081 8.016 ± 6.150
23 11.304 ± 1.834 0.061 ± 0.002 6.341 ± 1.033 82.294 ± 2.105 88.146 ± 4.390 0.059 ± 0.017 11.795 ± 4.390
24 2.561 ± 0.420 0.000 ± 0.000 15.127 ± 2.402 82.312 ± 2.438 77.753 ± 9.677 0.000 ± 0.000 22.247 ± 9.677
25 16.838 ± 0.188 0.015 ± 0.000 2.645 ± 0.033 80.502 ± 0.191 86.474 ± 3.208 0.007 ± 0.003 13.519 ± 3.208
26 16.365 ± 1.225 0.012 ± 0.000 3.594 ± 0.272 80.029 ± 1.254 92.101 ± 3.639 0.010 ± 0.003 7.888 ± 3.639
27 14.117 ± 1.836 0.019 ± 0.001 5.042 ± 0.660 80.822 ± 1.951 89.667 ± 5.122 0.013 ± 0.005 10.321 ± 5.122
28 11.370 ± 1.849 0.059 ± 0.002 6.318 ± 1.032 82.253 ± 2.117 87.093 ± 3.441 0.078 ± 0.019 12.830 ± 3.441
29 7.170 ± 1.111 0.002 ± 0.000 7.832 ± 1.213 84.996 ± 1.645 84.491 ± 1.244 0.000 ± 0.000 15.509 ± 1.244
30 1.670 ± 0.257 0.000 ± 0.000 17.267 ± 2.509 81.063 ± 2.522 65.056 ± 8.684 0.000 ± 0.000 34.944 ± 8.684
31 3.698 ± 0.121 0.000 ± 0.000 6.596 ± 0.208 89.706 ± 0.241 62.165 ± 14.860 0.000 ± 0.000 37.835 ± 14.860
32 3.745 ± 0.219 0.000 ± 0.000 8.650 ± 0.495 87.605 ± 0.542 73.481 ± 4.469 0.000 ± 0.000 26.519 ± 4.469
33 3.231 ± 0.405 0.001 ± 0.000 12.188 ± 1.494 84.581 ± 1.548 65.635 ± 5.655 0.000 ± 0.000 34.365 ± 5.655
34 2.549 ± 0.422 0.000 ± 0.000 15.268 ± 2.444 82.183 ± 2.480 68.442 ± 4.734 0.000 ± 0.000 31.558 ± 4.734
35 1.653 ± 0.257 0.000 ± 0.000 17.344 ± 2.544 81.003 ± 2.557 68.090 ± 5.339 0.000 ± 0.000 31.910 ± 5.339
36 0.468 ± 0.038 0.000 ± 0.000 18.932 ± 0.841 80.600 ± 0.842 48.387 ± 22.468 0.000 ± 0.000 51.613 ± 22.468

Table 5.6: Fraction of pion pairs in the data sample as a function of (z1, z2) bins (36 bins):
D: relative contribution due to the cc events, B: relative contribution due to the bb events, T:
relative contribution due to the τ+τ− events, and UDS: relative contribution due to the light
quarks. In the last three columns are summarized the relative contribution in the D∗ enhanced
data sample coming from cc (d), bb (b), and light quarks (uds). In the errors of D, T, and d is
included the difference between data and MC, as shown in Fig. 5.12.
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(pt2, pt1) Full data sample D∗-enhanced data sample
D B T UDS d b uds

1 28.534 ± 0.040 1.572 ± 0.002 2.182 ± 0.005 67.712 ± 0.040 90.069 ± 4.966 3.235 ± 0.030 6.696 ± 4.966
2 27.643 ± 0.172 1.656 ± 0.002 2.411 ± 0.016 68.290 ± 0.173 89.078 ± 3.355 3.330 ± 0.022 7.592 ± 3.356
3 29.971 ± 1.403 2.002 ± 0.003 1.591 ± 0.076 66.436 ± 1.405 93.837 ± 6.777 3.488 ± 0.031 2.674 ± 6.777
4 27.063 ± 0.252 2.032 ± 0.006 0.829 ± 0.011 70.076 ± 0.252 95.156 ± 4.957 2.715 ± 0.046 2.129 ± 4.957
5 27.662 ± 0.198 1.655 ± 0.002 2.397 ± 0.019 68.286 ± 0.198 88.966 ± 3.226 3.336 ± 0.022 7.698 ± 3.226
6 26.250 ± 0.181 1.711 ± 0.001 2.792 ± 0.020 69.247 ± 0.182 87.242 ± 1.250 3.356 ± 0.016 9.402 ± 1.250
7 28.063 ± 1.341 2.035 ± 0.002 1.938 ± 0.094 67.965 ± 1.344 91.949 ± 4.616 3.552 ± 0.024 4.499 ± 4.616
8 24.973 ± 0.198 2.052 ± 0.005 0.951 ± 0.010 72.025 ± 0.198 92.081 ± 1.761 2.794 ± 0.038 5.125 ± 1.761
9 30.016 ± 1.411 2.008 ± 0.003 1.589 ± 0.077 66.388 ± 1.413 93.962 ± 6.881 3.528 ± 0.031 2.510 ± 6.881

10 28.047 ± 1.352 2.036 ± 0.002 1.931 ± 0.095 67.987 ± 1.356 91.954 ± 4.617 3.540 ± 0.024 4.506 ± 4.617
11 30.007 ± 3.183 2.439 ± 0.004 1.521 ± 0.164 66.033 ± 3.188 95.528 ± 6.947 3.589 ± 0.036 0.883 ± 6.948
12 26.571 ± 1.791 2.667 ± 0.009 0.919 ± 0.066 69.844 ± 1.792 92.819 ± 2.120 3.264 ± 0.062 3.917 ± 2.121
13 27.077 ± 0.270 2.044 ± 0.006 0.824 ± 0.011 70.055 ± 0.270 94.838 ± 4.620 2.831 ± 0.047 2.331 ± 4.621
14 24.947 ± 0.221 2.056 ± 0.005 0.947 ± 0.011 72.050 ± 0.221 92.291 ± 2.031 2.874 ± 0.038 4.835 ± 2.031
15 26.581 ± 1.821 2.676 ± 0.009 0.923 ± 0.067 69.819 ± 1.822 93.251 ± 2.371 3.191 ± 0.062 3.558 ± 2.372
16 23.654 ± 0.818 3.358 ± 0.022 0.888 ± 0.039 72.100 ± 0.819 92.732 ± 1.314 3.353 ± 0.122 3.915 ± 1.319

(pt2, pt1) Full data sample D∗-enhanced data sample
D B T UDS d b uds

1 27.787 ± 0.095 1.795 ± 0.002 2.186 ± 0.009 68.237 ± 0.095 89.673 ± 3.262 3.349 ± 0.019 6.978 ± 3.262
2 28.191 ± 0.149 1.845 ± 0.001 2.100 ± 0.012 67.783 ± 0.149 90.157 ± 3.218 3.371 ± 0.012 6.472 ± 3.218
3 28.657 ± 0.747 1.942 ± 0.001 2.029 ± 0.054 67.219 ± 0.749 91.756 ± 4.463 3.451 ± 0.014 4.793 ± 4.463
4 24.123 ± 1.056 1.669 ± 0.001 2.622 ± 0.116 72.026 ± 1.063 91.096 ± 3.886 3.165 ± 0.016 5.739 ± 3.886

Table 5.7: Fraction of pion pairs in the data sample as a function of (pt1, pt2) bins (16 bins) and
pt0 bins (4 bins): D: relative contribution due to the cc events, B: relative contribution due to the
bb events, T: relative contribution due to the τ+τ− events, and UDS: relative contribution due
to the light quarks. In the last three columns are summarized the relative contribution in the
D∗ enhanced data sample coming from cc (d), bb (b), and light quarks (uds). In the errors of D,
T, and d is included the difference between data and MC, as shown in Fig. 5.12
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AUL12

(z1, z2) Ameas ± δAmeas AD∗ ± δAD∗ Auds ± δAuds Acharm ± δAcharm
1 0.0132 ± 0.0005 0.0067 ± 0.0016 0.0180 ± 0.0015 0.0058 ± 0.0020
2 0.0160 ± 0.0004 0.0067 ± 0.0016 0.0219 ± 0.0012 0.0059 ± 0.0019
3 0.0167 ± 0.0006 0.0096 ± 0.0027 0.0210 ± 0.0017 0.0092 ± 0.0032
4 0.0188 ± 0.0009 0.0096 ± 0.0027 0.0235 ± 0.0017 0.0086 ± 0.0032
5 0.0238 ± 0.0011 0.0063 ± 0.0062 0.0289 ± 0.0021 0.0027 ± 0.0076
6 0.0276 ± 0.0024 0.0063 ± 0.0062 0.0310 ± 0.0028 -0.0083 ± 0.0136
7 0.0160 ± 0.0004 0.0067 ± 0.0016 0.0219 ± 0.0012 0.0058 ± 0.0019
8 0.0182 ± 0.0004 0.0067 ± 0.0016 0.0250 ± 0.0012 0.0065 ± 0.0021
9 0.0207 ± 0.0006 0.0096 ± 0.0027 0.0267 ± 0.0017 0.0097 ± 0.0033

10 0.0231 ± 0.0008 0.0096 ± 0.0027 0.0294 ± 0.0017 0.0092 ± 0.0033
11 0.0290 ± 0.0010 0.0063 ± 0.0062 0.0355 ± 0.0019 0.0037 ± 0.0070
12 0.0351 ± 0.0022 0.0063 ± 0.0062 0.0404 ± 0.0026 -0.0079 ± 0.0105
13 0.0166 ± 0.0006 0.0158 ± 0.0027 0.0176 ± 0.0017 0.0164 ± 0.0031
14 0.0197 ± 0.0006 0.0158 ± 0.0027 0.0223 ± 0.0015 0.0163 ± 0.0030
15 0.0237 ± 0.0008 0.0102 ± 0.0047 0.0302 ± 0.0024 0.0102 ± 0.0056
16 0.0218 ± 0.0012 0.0102 ± 0.0047 0.0271 ± 0.0023 0.0096 ± 0.0054
17 0.0309 ± 0.0014 -0.0032 ± 0.0111 0.0396 ± 0.0030 -0.0078 ± 0.0129
18 0.0385 ± 0.0031 -0.0032 ± 0.0111 0.0463 ± 0.0038 -0.0212 ± 0.0159
19 0.0186 ± 0.0009 0.0158 ± 0.0027 0.0207 ± 0.0017 0.0159 ± 0.0032
20 0.0218 ± 0.0008 0.0158 ± 0.0027 0.0252 ± 0.0016 0.0159 ± 0.0030
21 0.0224 ± 0.0012 0.0102 ± 0.0047 0.0279 ± 0.0023 0.0097 ± 0.0054
22 0.0248 ± 0.0018 0.0102 ± 0.0047 0.0306 ± 0.0027 0.0086 ± 0.0055
23 0.0339 ± 0.0021 -0.0032 ± 0.0111 0.0424 ± 0.0032 -0.0093 ± 0.0131
24 0.0459 ± 0.0044 -0.0032 ± 0.0111 0.0564 ± 0.0056 -0.0203 ± 0.0174
25 0.0231 ± 0.0011 0.0072 ± 0.0062 0.0279 ± 0.0021 0.0039 ± 0.0075
26 0.0273 ± 0.0010 0.0072 ± 0.0062 0.0331 ± 0.0019 0.0049 ± 0.0069
27 0.0312 ± 0.0014 -0.0041 ± 0.0110 0.0402 ± 0.0030 -0.0092 ± 0.0129
28 0.0388 ± 0.0021 -0.0041 ± 0.0110 0.0488 ± 0.0032 -0.0119 ± 0.0132
29 0.0554 ± 0.0024 0.0093 ± 0.0260 0.0652 ± 0.0039 -0.0010 ± 0.0313
30 0.0852 ± 0.0050 0.0093 ± 0.0260 0.1060 ± 0.0069 -0.0427 ± 0.0452
31 0.0274 ± 0.0024 0.0072 ± 0.0062 0.0309 ± 0.0028 -0.0073 ± 0.0140
32 0.0346 ± 0.0022 0.0072 ± 0.0062 0.0397 ± 0.0025 -0.0046 ± 0.0090
33 0.0408 ± 0.0031 -0.0041 ± 0.0110 0.0494 ± 0.0038 -0.0321 ± 0.0187
34 0.0485 ± 0.0044 -0.0041 ± 0.0110 0.0600 ± 0.0056 -0.0336 ± 0.0178
35 0.0880 ± 0.0049 0.0093 ± 0.0260 0.1094 ± 0.0069 -0.0376 ± 0.0404
36 0.1965 ± 0.0097 0.0093 ± 0.0260 0.2452 ± 0.0125 -0.2424 ± 0.2345

Table 5.8: Thrust reference frame (RF12): double ratio of U/L pion pairs as a function of (z1, z2)-
bins. In the second and third columns are reported the measured asymmetries in the full data
sample (Ameas) and in the D∗ enhanced sample (AD∗). Since the asymmetry does not change
significantly for adjacent bins of fractional energy, we evaluated the double ratio in the D∗

sample coupling two adjacent z-bins, in order to reduce the statistical uncertainties. In the
last two columns are reported the light quark and the charm asymmetries obtained following
Eq. (5.7).
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AUL0

(z1, z2) Ameas ± δAmeas AD∗ ± δAD∗ Auds ± δAuds Acharm ± δAcharm
1 0.0075 ± 0.0005 0.0005 ± 0.0016 0.0123 ± 0.0015 -0.0007 ± 0.0020
2 0.0093 ± 0.0004 0.0005 ± 0.0016 0.0148 ± 0.0012 -0.0005 ± 0.0019
3 0.0098 ± 0.0006 0.0008 ± 0.0027 0.0147 ± 0.0017 -0.0002 ± 0.0032
4 0.0110 ± 0.0009 0.0008 ± 0.0027 0.0157 ± 0.0017 -0.0007 ± 0.0032
5 0.0146 ± 0.0010 0.0011 ± 0.0061 0.0185 ± 0.0020 -0.0017 ± 0.0074
6 0.0227 ± 0.0022 0.0011 ± 0.0061 0.0258 ± 0.0025 -0.0135 ± 0.0134
7 0.0086 ± 0.0004 0.0005 ± 0.0016 0.0136 ± 0.0012 -0.0005 ± 0.0019
8 0.0107 ± 0.0004 0.0005 ± 0.0016 0.0165 ± 0.0011 0.0002 ± 0.0020
9 0.0141 ± 0.0006 0.0008 ± 0.0027 0.0207 ± 0.0017 0.0004 ± 0.0034

10 0.0144 ± 0.0008 0.0008 ± 0.0027 0.0202 ± 0.0017 0.0001 ± 0.0033
11 0.0203 ± 0.0010 0.0011 ± 0.0061 0.0256 ± 0.0019 -0.0011 ± 0.0068
12 0.0282 ± 0.0020 0.0011 ± 0.0061 0.0326 ± 0.0023 -0.0121 ± 0.0101
13 0.0095 ± 0.0006 0.0011 ± 0.0027 0.0142 ± 0.0017 0.0002 ± 0.0032
14 0.0114 ± 0.0006 0.0011 ± 0.0027 0.0166 ± 0.0016 0.0008 ± 0.0032
15 0.0150 ± 0.0008 -0.0113 ± 0.0046 0.0262 ± 0.0030 -0.0128 ± 0.0067
16 0.0143 ± 0.0012 -0.0113 ± 0.0046 0.0236 ± 0.0028 -0.0137 ± 0.0061
17 0.0219 ± 0.0014 -0.0281 ± 0.0108 0.0332 ± 0.0031 -0.0347 ± 0.0129
18 0.0387 ± 0.0028 -0.0281 ± 0.0108 0.0479 ± 0.0035 -0.0557 ± 0.0161
19 0.0083 ± 0.0009 0.0011 ± 0.0027 0.0117 ± 0.0017 0.0001 ± 0.0032
20 0.0140 ± 0.0008 0.0011 ± 0.0027 0.0195 ± 0.0017 0.0003 ± 0.0032
21 0.0147 ± 0.0012 -0.0113 ± 0.0046 0.0239 ± 0.0028 -0.0134 ± 0.0062
22 0.0155 ± 0.0017 -0.0113 ± 0.0046 0.0238 ± 0.0029 -0.0147 ± 0.0059
23 0.0284 ± 0.0020 -0.0281 ± 0.0108 0.0396 ± 0.0033 -0.0372 ± 0.0130
24 0.0455 ± 0.0040 -0.0281 ± 0.0108 0.0569 ± 0.0051 -0.0524 ± 0.0196
25 0.0134 ± 0.0010 0.0020 ± 0.0061 0.0167 ± 0.0020 -0.0003 ± 0.0073
26 0.0193 ± 0.0010 0.0020 ± 0.0061 0.0241 ± 0.0019 0.0001 ± 0.0068
27 0.0224 ± 0.0014 -0.0285 ± 0.0107 0.0340 ± 0.0031 -0.0357 ± 0.0128
28 0.0256 ± 0.0020 -0.0285 ± 0.0107 0.0364 ± 0.0033 -0.0381 ± 0.0129
29 0.0401 ± 0.0023 -0.0119 ± 0.0242 0.0491 ± 0.0037 -0.0231 ± 0.0292
30 0.0661 ± 0.0044 -0.0119 ± 0.0242 0.0828 ± 0.0060 -0.0628 ± 0.0426
31 0.0210 ± 0.0022 0.0020 ± 0.0061 0.0239 ± 0.0025 -0.0113 ± 0.0133
32 0.0290 ± 0.0020 0.0020 ± 0.0061 0.0335 ± 0.0023 -0.0093 ± 0.0088
33 0.0349 ± 0.0028 -0.0285 ± 0.0107 0.0438 ± 0.0035 -0.0664 ± 0.0193
34 0.0500 ± 0.0040 -0.0285 ± 0.0107 0.0630 ± 0.0051 -0.0708 ± 0.0185
35 0.0663 ± 0.0044 -0.0119 ± 0.0242 0.0830 ± 0.0060 -0.0564 ± 0.0377
36 0.1314 ± 0.0079 -0.0119 ± 0.0242 0.1642 ± 0.0101 -0.1998 ± 0.1777

Table 5.9: Second hadron momentum frame (RF0): double ratio of U/L pion pairs as a function
of (z1, z2)-bins. In the second and third columns are reported the measured asymmetries in the
full data sample (Ameas) and in the D∗ enhanced sample (AD∗). Since the asymmetry does not
change significantly for adjacent bins of fractional energy, we evaluated the double ratio in the
D∗ sample coupling two adjacent z-bins, in order to reduce the statistical uncertainties. In the
last two columns are reported the light quark and the charm asymmetries obtained following
Eq. (5.7).
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AUC12

(z1, z2) Ameas ± δAmeas AD∗ ± δAD∗ Auds ± δAuds Acharm ± δAcharm
1 0.0062 ± 0.0004 0.0031 ± 0.0014 0.0084 ± 0.0012 0.0027 ± 0.0016
2 0.0074 ± 0.0004 0.0031 ± 0.0014 0.0102 ± 0.0010 0.0027 ± 0.0016
3 0.0077 ± 0.0005 0.0042 ± 0.0022 0.0097 ± 0.0014 0.0040 ± 0.0026
4 0.0085 ± 0.0007 0.0042 ± 0.0022 0.0106 ± 0.0014 0.0037 ± 0.0027
5 0.0106 ± 0.0009 0.0027 ± 0.0051 0.0130 ± 0.0017 0.0011 ± 0.0061
6 0.0117 ± 0.0019 0.0027 ± 0.0051 0.0132 ± 0.0022 -0.0034 ± 0.0092
7 0.0074 ± 0.0004 0.0031 ± 0.0014 0.0102 ± 0.0010 0.0027 ± 0.0016
8 0.0084 ± 0.0003 0.0031 ± 0.0014 0.0114 ± 0.0009 0.0030 ± 0.0015
9 0.0093 ± 0.0005 0.0042 ± 0.0022 0.0120 ± 0.0013 0.0042 ± 0.0025

10 0.0102 ± 0.0007 0.0042 ± 0.0022 0.0130 ± 0.0013 0.0040 ± 0.0025
11 0.0126 ± 0.0008 0.0027 ± 0.0051 0.0154 ± 0.0016 0.0016 ± 0.0056
12 0.0143 ± 0.0018 0.0027 ± 0.0051 0.0165 ± 0.0021 -0.0030 ± 0.0077
13 0.0076 ± 0.0005 0.0069 ± 0.0022 0.0082 ± 0.0014 0.0072 ± 0.0026
14 0.0088 ± 0.0005 0.0069 ± 0.0022 0.0101 ± 0.0012 0.0072 ± 0.0024
15 0.0103 ± 0.0007 0.0038 ± 0.0037 0.0134 ± 0.0018 0.0037 ± 0.0041
16 0.0092 ± 0.0010 0.0038 ± 0.0037 0.0116 ± 0.0018 0.0034 ± 0.0041
17 0.0128 ± 0.0012 -0.0005 ± 0.0085 0.0163 ± 0.0023 -0.0023 ± 0.0096
18 0.0148 ± 0.0025 -0.0005 ± 0.0085 0.0178 ± 0.0030 -0.0071 ± 0.0118
19 0.0084 ± 0.0007 0.0069 ± 0.0022 0.0094 ± 0.0014 0.0070 ± 0.0026
20 0.0096 ± 0.0007 0.0069 ± 0.0022 0.0111 ± 0.0013 0.0070 ± 0.0025
21 0.0095 ± 0.0010 0.0038 ± 0.0037 0.0119 ± 0.0018 0.0035 ± 0.0041
22 0.0102 ± 0.0014 0.0038 ± 0.0037 0.0126 ± 0.0021 0.0031 ± 0.0042
23 0.0135 ± 0.0017 -0.0005 ± 0.0085 0.0168 ± 0.0025 -0.0028 ± 0.0098
24 0.0169 ± 0.0034 -0.0005 ± 0.0085 0.0207 ± 0.0042 -0.0066 ± 0.0116
25 0.0103 ± 0.0009 0.0029 ± 0.0051 0.0126 ± 0.0017 0.0013 ± 0.0061
26 0.0119 ± 0.0008 0.0029 ± 0.0051 0.0144 ± 0.0015 0.0019 ± 0.0056
27 0.0130 ± 0.0012 -0.0011 ± 0.0084 0.0166 ± 0.0022 -0.0031 ± 0.0096
28 0.0155 ± 0.0017 -0.0011 ± 0.0084 0.0194 ± 0.0025 -0.0041 ± 0.0099
29 0.0212 ± 0.0019 0.0012 ± 0.0193 0.0252 ± 0.0030 -0.0032 ± 0.0232
30 0.0297 ± 0.0037 0.0012 ± 0.0193 0.0370 ± 0.0048 -0.0180 ± 0.0310
31 0.0116 ± 0.0019 0.0029 ± 0.0051 0.0131 ± 0.0022 -0.0033 ± 0.0094
32 0.0141 ± 0.0017 0.0029 ± 0.0051 0.0162 ± 0.0020 -0.0019 ± 0.0071
33 0.0157 ± 0.0024 -0.0011 ± 0.0084 0.0190 ± 0.0030 -0.0116 ± 0.0134
34 0.0179 ± 0.0034 -0.0011 ± 0.0084 0.0221 ± 0.0043 -0.0118 ± 0.0128
35 0.0307 ± 0.0037 0.0012 ± 0.0193 0.0383 ± 0.0048 -0.0162 ± 0.0290
36 0.0580 ± 0.0066 0.0012 ± 0.0193 0.0724 ± 0.0083 -0.0747 ± 0.0801

Table 5.10: Thrust reference frame (RF12): double ratio of U/C pion pairs as a function of
(z1, z2)-bins. The same caption as Tab. 5.8.
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AUC0

(z1, z2) Ameas ± δAmeas AD∗ ± δAD∗ Auds ± δAuds Acharm ± δAcharm
1 0.0035 ± 0.0004 0.0003 ± 0.0014 0.0058 ± 0.0012 -0.0003 ± 0.0016
2 0.0043 ± 0.0003 0.0003 ± 0.0014 0.0069 ± 0.0010 -0.0002 ± 0.0016
3 0.0045 ± 0.0005 0.0004 ± 0.0022 0.0067 ± 0.0014 -0.0001 ± 0.0026
4 0.0050 ± 0.0007 0.0004 ± 0.0022 0.0071 ± 0.0014 -0.0003 ± 0.0026
5 0.0066 ± 0.0009 0.0006 ± 0.0049 0.0083 ± 0.0017 -0.0006 ± 0.0059
6 0.0096 ± 0.0018 0.0006 ± 0.0049 0.0109 ± 0.0020 -0.0054 ± 0.0089
7 0.0040 ± 0.0003 0.0003 ± 0.0014 0.0063 ± 0.0010 -0.0002 ± 0.0016
8 0.0049 ± 0.0003 0.0003 ± 0.0014 0.0075 ± 0.0009 0.0001 ± 0.0015
9 0.0063 ± 0.0005 0.0004 ± 0.0022 0.0093 ± 0.0013 0.0002 ± 0.0025

10 0.0063 ± 0.0007 0.0004 ± 0.0022 0.0089 ± 0.0013 0.0001 ± 0.0025
11 0.0088 ± 0.0008 0.0006 ± 0.0049 0.0111 ± 0.0015 -0.0003 ± 0.0055
12 0.0114 ± 0.0016 0.0006 ± 0.0049 0.0132 ± 0.0019 -0.0046 ± 0.0074
13 0.0044 ± 0.0005 0.0004 ± 0.0022 0.0065 ± 0.0014 0.0000 ± 0.0026
14 0.0051 ± 0.0005 0.0004 ± 0.0022 0.0074 ± 0.0013 0.0003 ± 0.0025
15 0.0065 ± 0.0007 -0.0044 ± 0.0036 0.0111 ± 0.0019 -0.0050 ± 0.0043
16 0.0061 ± 0.0010 -0.0044 ± 0.0036 0.0098 ± 0.0019 -0.0053 ± 0.0043
17 0.0091 ± 0.0011 -0.0102 ± 0.0083 0.0135 ± 0.0022 -0.0128 ± 0.0095
18 0.0149 ± 0.0022 -0.0102 ± 0.0083 0.0184 ± 0.0027 -0.0206 ± 0.0117
19 0.0038 ± 0.0007 0.0004 ± 0.0022 0.0053 ± 0.0014 0.0000 ± 0.0026
20 0.0061 ± 0.0007 0.0004 ± 0.0022 0.0086 ± 0.0013 0.0001 ± 0.0025
21 0.0062 ± 0.0010 -0.0044 ± 0.0036 0.0100 ± 0.0019 -0.0052 ± 0.0042
22 0.0064 ± 0.0014 -0.0044 ± 0.0036 0.0097 ± 0.0021 -0.0057 ± 0.0043
23 0.0113 ± 0.0016 -0.0102 ± 0.0083 0.0156 ± 0.0024 -0.0137 ± 0.0097
24 0.0166 ± 0.0031 -0.0102 ± 0.0083 0.0208 ± 0.0038 -0.0191 ± 0.0119
25 0.0060 ± 0.0009 0.0011 ± 0.0050 0.0074 ± 0.0017 0.0001 ± 0.0059
26 0.0084 ± 0.0008 0.0011 ± 0.0050 0.0104 ± 0.0015 0.0003 ± 0.0055
27 0.0093 ± 0.0011 -0.0092 ± 0.0082 0.0136 ± 0.0022 -0.0119 ± 0.0094
28 0.0102 ± 0.0016 -0.0092 ± 0.0082 0.0142 ± 0.0024 -0.0127 ± 0.0097
29 0.0153 ± 0.0018 -0.0031 ± 0.0185 0.0186 ± 0.0029 -0.0070 ± 0.0222
30 0.0227 ± 0.0033 -0.0031 ± 0.0185 0.0284 ± 0.0043 -0.0200 ± 0.0296
31 0.0088 ± 0.0018 0.0011 ± 0.0050 0.0100 ± 0.0020 -0.0044 ± 0.0090
32 0.0118 ± 0.0016 0.0011 ± 0.0050 0.0136 ± 0.0019 -0.0034 ± 0.0070
33 0.0134 ± 0.0022 -0.0092 ± 0.0082 0.0167 ± 0.0027 -0.0228 ± 0.0133
34 0.0182 ± 0.0031 -0.0092 ± 0.0082 0.0229 ± 0.0039 -0.0241 ± 0.0127
35 0.0228 ± 0.0033 -0.0031 ± 0.0185 0.0286 ± 0.0043 -0.0179 ± 0.0277
36 0.0282 ± 0.0049 -0.0031 ± 0.0185 0.0352 ± 0.0061 -0.0439 ± 0.0538

Table 5.11: Thrust reference frame (RF12): double ratio of U/C pion pairs as a function of
(z1, z2)-bins. The same caption as Tab. 5.9.



5.2 Background study: cc, BB, and τ+τ− 131

AUL12

(pt1, pt2) Ameas ± δAmeas AD∗ ± δAD∗ Auds ± δAuds Acharm ± δAcharm
1 0.0069 ± 0.0005 0.0014 ± 0.0047 0.0099 ± 0.0024 0.0008 ± 0.0054
2 0.0120 ± 0.0004 0.0079 ± 0.0033 0.0145 ± 0.0017 0.0076 ± 0.0038
3 0.0139 ± 0.0006 0.0039 ± 0.0047 0.0192 ± 0.0025 0.0036 ± 0.0052
4 0.0178 ± 0.0012 -0.0063 ± 0.0080 0.0281 ± 0.0037 -0.0073 ± 0.0086
5 0.0118 ± 0.0004 -0.0046 ± 0.0033 0.0201 ± 0.0017 -0.0069 ± 0.0040
6 0.0210 ± 0.0003 0.0026 ± 0.0025 0.0304 ± 0.0012 -0.0003 ± 0.0030
7 0.0234 ± 0.0005 0.0112 ± 0.0036 0.0300 ± 0.0019 0.0107 ± 0.0041
8 0.0313 ± 0.0009 -0.0043 ± 0.0065 0.0459 ± 0.0028 -0.0072 ± 0.0072
9 0.0127 ± 0.0006 0.0066 ± 0.0046 0.0162 ± 0.0025 0.0066 ± 0.0051

10 0.0220 ± 0.0005 0.0063 ± 0.0036 0.0301 ± 0.0019 0.0054 ± 0.0042
11 0.0236 ± 0.0008 -0.0109 ± 0.0055 0.0411 ± 0.0042 -0.0117 ± 0.0070
12 0.0347 ± 0.0016 -0.0051 ± 0.0103 0.0526 ± 0.0051 -0.0078 ± 0.0113
13 0.0165 ± 0.0012 -0.0066 ± 0.0079 0.0265 ± 0.0037 -0.0076 ± 0.0086
14 0.0306 ± 0.0009 0.0129 ± 0.0064 0.0383 ± 0.0028 0.0120 ± 0.0071
15 0.0325 ± 0.0016 -0.0107 ± 0.0102 0.0517 ± 0.0052 -0.0135 ± 0.0113
16 0.0558 ± 0.0034 0.0435 ± 0.0208 0.0628 ± 0.0089 0.0442 ± 0.0228

AUL0

(pt1, pt2) Ameas ± δAmeas AD∗ ± δAD∗ Auds ± δAuds Acharm ± δAcharm
1 0.0024 ± 0.0004 0.0022 ± 0.0029 0.0026 ± 0.0015 0.0022 ± 0.0034
2 0.0102 ± 0.0002 0.0009 ± 0.0019 0.0150 ± 0.0010 -0.0000 ± 0.0022
3 0.0164 ± 0.0003 -0.0002 ± 0.0021 0.0250 ± 0.0012 -0.0016 ± 0.0027
4 0.0229 ± 0.0003 0.0018 ± 0.0025 0.0320 ± 0.0012 -0.0000 ± 0.0032

Table 5.12: In the first part of the table are reported the double ratio of U/L pion pairs as
a function of (pt1, pt2) bins obtained in the RF12 frame. In the second part, are summarized
the results for the same double ratio in the RF0 frame, as a function of pt0. In particular, are
compared the asymmetries measured (Ameas) in the full data, the asymmetries measured in the
D∗ enhanced sample (AD∗), the light quark (Auds) and charm (Acharm) asymmetries. The last
two are obtained following Eq. 5.7.
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AUC12

(pt1, pt2) Ameas ± δAmeas AD∗ ± δAD∗ Auds ± δAuds Acharm ± δAcharm
1 0.0032 ± 0.0004 0.0007 ± 0.0040 0.0045 ± 0.0020 0.0004 ± 0.0045
2 0.0055 ± 0.0003 0.0036 ± 0.0028 0.0066 ± 0.0014 0.0035 ± 0.0032
3 0.0063 ± 0.0005 0.0017 ± 0.0039 0.0087 ± 0.0020 0.0016 ± 0.0042
4 0.0078 ± 0.0010 -0.0021 ± 0.0064 0.0122 ± 0.0030 -0.0025 ± 0.0069
5 0.0054 ± 0.0003 -0.0022 ± 0.0028 0.0092 ± 0.0014 -0.0032 ± 0.0033
6 0.0095 ± 0.0002 0.0012 ± 0.0021 0.0138 ± 0.0010 -0.0001 ± 0.0025
7 0.0105 ± 0.0004 0.0049 ± 0.0030 0.0135 ± 0.0015 0.0047 ± 0.0034
8 0.0136 ± 0.0008 -0.0018 ± 0.0052 0.0200 ± 0.0023 -0.0031 ± 0.0057
9 0.0058 ± 0.0005 0.0030 ± 0.0039 0.0073 ± 0.0020 0.0030 ± 0.0042

10 0.0098 ± 0.0004 0.0027 ± 0.0030 0.0135 ± 0.0015 0.0023 ± 0.0034
11 0.0103 ± 0.0006 -0.0045 ± 0.0044 0.0178 ± 0.0026 -0.0048 ± 0.0049
12 0.0145 ± 0.0013 -0.0029 ± 0.0077 0.0224 ± 0.0038 -0.0041 ± 0.0085
13 0.0073 ± 0.0010 -0.0027 ± 0.0064 0.0116 ± 0.0030 -0.0032 ± 0.0069
14 0.0133 ± 0.0008 0.0051 ± 0.0052 0.0169 ± 0.0023 0.0047 ± 0.0057
15 0.0136 ± 0.0013 -0.0041 ± 0.0078 0.0215 ± 0.0038 -0.0052 ± 0.0085
16 0.0217 ± 0.0027 0.0107 ± 0.0145 0.0267 ± 0.0064 0.0104 ± 0.0158

AUC0

(pt1, pt2) Ameas ± δAmeas AD∗ ± δAD∗ Auds ± δAuds Acharm ± δAcharm
1 0.0011 ± 0.0003 0.0010 ± 0.0024 0.0012 ± 0.0012 0.0010 ± 0.0028
2 0.0046 ± 0.0002 0.0004 ± 0.0016 0.0068 ± 0.0008 0.0000 ± 0.0018
3 0.0074 ± 0.0002 -0.0001 ± 0.0018 0.0113 ± 0.0009 -0.0007 ± 0.0020
4 0.0101 ± 0.0003 0.0007 ± 0.0020 0.0142 ± 0.0009 -0.0001 ± 0.0024

Table 5.13: In the first part of the table are reported the double ratio of U/C pion pairs as
a function of (pt1, pt2) bins obtained in the RF12 frame. In the second part, are summarized
the results for the same double ratio in the RF0 frame, as a function of pt0. In particular, are
compared the asymmetries measured (Ameas) in the full data, the asymmetries measured in the
D∗ enhanced sample (AD∗), the light quark (Auds) and charm (Acharm) asymmetries. The last
two are obtained following Eq. 5.7.
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5.3 Monte Carlo Re-weighted sample

As already pointed out, the experimental method used assumes that the event thrust axis co-
incides with the true qq axis, but this is only a rough approximation. In fact, as can be seen in
Fig. 5.17, the distribution of the opening angle between the two axis shows a peak at approxi-
mately 0.1 rad and a long tail at higher values.
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Figure 5.17: Opening angle ∆(θ) between the thrust axis and the real qq axis. The peak is at
about 0.1 rad with an r.m.s. of about 0.05 rad.

Figure 5.18(a) shows the scatter plot of the φ1,reco + φ2,reco combinations for reconstructed
pions, with the angles calculated with respect to the thrust axis, and the true values, that is the
φ1,gen + φ2,gen combinations obtained from the generated momentum of the pions and the qq
axis. If the assumption that the thrust axis coincides with the qq axis is correct, the data should
be distributed along the diagonal of the 2D-plot, while we observe a large smearing effect.
Much better agreement between reconstructed and true azimuthal angles is observed for the
RF0 reference frame, because 2φ0 is calculated with respect to the plane constructed with the
beam axis and the second pion momentum, instead of the plane containing the thrust axis as
for the RF12. For this reason, the thrust axis mis-reconstruction does not influence the measure-
ment in the RF0 frame, and only small smearing effects related to PID and tracking resolution
remain.

The above illustrated smearing effects produce a dilution of the asymmetries which has
to be estimated and corrected for. The MC generator does not include spin effects, as it would
have been needed in order to perform detailed studies. We overcome this limitation simulating
the azimuthal asymmetries with a proper re-weighting of the generated angular distributions.
The applied wieghts are defined as:

wi = 1 + ai · cos(φα,gen) (5.8)

with i = U, L, C, and α = 12, 0. Note that the angles φα,gen are the azimuthal angles for
generated particles calculated with respect to the true qq axis. Analyzing the double ratios,
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Figure 5.18: Distributions of the reconstructed φ1 + φ2 (a) and 2φ0 (b) combination, versus the
corresponding values for the generated tracks. The reconstructed azimuthal angles φ1 and φ2

are calculated with respect to the plane containing the beam axis and the thrust axis, instead the
real qq axis is used in the generated azimuthal distributions. In the RF0 frame, the reconstructed
(generated) 2φ0 angle is calculated with respect to the plane determined by the beam axis and
the second reconstructed (generated) pion momentum.

for example, with generated weights wU = 1% and wL = −1% the reconstructed U/L double
ratios should ideally return a 2% asymmetry.
We perform this study using the uds MC sample, and evaluate the correction factors, indicated
with ζ, dividing the sample according to the following zi intervals: [0.15 − 0.2], [0.2 − 0.3],
[0.3− 0.5], [0.5− 1.0]; and pti intervals: [0.1− 0.25], [0.25− 0.5], [0.5− 0.75], [0.75− 5.0] GeV/c.
In particular, since the kinematic distributions are very different for pion pairs with very low
fractional energy (zi < 0.2, as shown in Fig. 4.6(a), and in Fig. 4.6(b)), we evaluate separately
the correction factor for the z-bin [0.15 − 0.2]. For the same reasons, all correction factors as a
function of pt are obtained selecting pions with z > 0.2, assuming that the inclusion of pion
pairs with lower z does not influence significantly the determination of ζ.
We introduce the following weights:

• wi = ±0.01, which corresponds to an asymmetry of 2%,

• wi = ±0.02, which corresponds to an asymmetry of 4%,

• wi = ±0.03, which corresponds to an asymmetry of 6%, and

• wi = ±0.05, which corresponds to an asymmetry of 10%,

and fit the reconstructed double ratio distributions for each weight. Taking into account the
small MC bias described in Sec.5.1, the fraction of the original asymmetry returned by the fit is
given by:

Wα =
Aαw

Aintr. +Abias
, (5.9)
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where α = UL, UC, Aw is the fitted asymmetry, Aintr. is the asymmetry introduced with the
weight in the simulation (2%, 4%, 6% or 10%), and Abias is the bias measured in the uds MC
sample.
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Figure 5.19: Average fraction (%) of asymmetries results, in the RF12 (a) and RF0 (b) frames,
as a function of (z1, z2) subdivision for the reconstructed light quark MC events, re-weighted
as described in the text. Blue and green squares refers to the U/L and U/C double ratios,
respectively.
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Figure 5.20: Average fraction (%) of asymmetries results, in the RF12 (a) and RF0 (b) frames,
as a function of pt bins subdivision for the reconstructed light quark MC events, re-weighed
as described in the text. Blue and green squares refers to the U/L and U/C double ratios,
respectively.
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The results for different applied weights are consistent with each other, we therefore calcu-
late the average fractions < W > and get the corrections ζ = 1/ < W >. The average fractions
are reported in Figs. 5.19 and 5.20. As expected, we observe essentially no effect in the RF0
frame, where the fitted asymmetries are consistent with the generated ones in every zi or pti
intervals, and therefore no corrections are applied to the asymmetries measured in the data
sample. On the contrary, the average fractions of the asymmetries measured in the RF12 frame
are significantly lower than unity, and show also a pattern as a function of z and pt. In fact they
seem to decrease smoothly from about 70% to 50% with increasing values of z, and seems to
increase from about 40 to 75% with increasing pt values. The results for all measured W ’s and
correction ζ’s are reported in Tables 5.14 - 5.16

RF12

Bins (z1, z2) AUL : % Corr. ζUL
12 AUC : % Corr. ζUC

12

1 [0.15,0.2][0.15,0.2] 70.37 ± 0.46 1.421 ± 0.009 70.34 ± 0.40 1.422 ± 0.008
2 [0.15,0.2][0.2,0.3] 66.97 ± 0.43 1.493 ± 0.010 67.83 ± 0.37 1.474 ± 0.008
3 [0.15,0.2][0.3,0.5] 63.03 ± 0.47 1.586 ± 0.012 62.42 ± 0.40 1.602 ± 0.010
4 [0.15,0.2][0.5,1.] 52.69 ± 0.80 1.898 ± 0.029 50.92 ± 0.68 1.964 ± 0.026
5 [0.2,0.3][0.15,0.2] 68.37 ± 0.43 1.463 ± 0.009 68.56 ± 0.37 1.459 ± 0.008
6 [0.2,0.3][0.2,0.3] 66.40 ± 0.41 1.506 ± 0.009 67.00 ± 0.35 1.493 ± 0.008
7 [0.2,0.3][0.3,0.5] 62.24 ± 0.44 1.607 ± 0.011 62.06 ± 0.38 1.611 ± 0.010
8 [0.2,0.3][0.5,1.] 53.48 ± 0.74 1.870 ± 0.026 51.41 ± 0.63 1.945 ± 0.024
9 [0.3,0.5][0.15,0.2] 63.71 ± 0.47 1.570 ± 0.012 62.83 ± 0.40 1.592 ± 0.010

10 [0.3,0.5][0.2,0.3] 62.20 ± 0.44 1.608 ± 0.011 62.10 ± 0.38 1.610 ± 0.010
11 [0.3,0.5][0.3,0.5] 59.58 ± 0.49 1.678 ± 0.014 58.67 ± 0.41 1.704 ± 0.012
12 [0.3,0.5][0.5,1.] 55.00 ± 0.80 1.818 ± 0.027 51.91 ± 0.68 1.927 ± 0.025
13 [0.5,1.][0.15,0.2] 53.89 ± 0.80 1.856 ± 0.028 51.59 ± 0.68 1.938 ± 0.026
14 [0.5,1.][0.2,0.3] 53.29 ± 0.74 1.877 ± 0.026 51.43 ± 0.63 1.944 ± 0.024
15 [0.5,1.][0.3,0.5] 54.69 ± 0.81 1.828 ± 0.027 51.79 ± 0.69 1.931 ± 0.026
16 [0.5,1.][0.5,1.] 54.20 ± 1.37 1.845 ± 0.047 49.65 ± 1.15 2.014 ± 0.047

Table 5.14: Thrust reference frame (RF12): estimated average fractions of the asymmetry mea-
sured fitting the double ratios U/L and U/C as a function of (z1, z2) and corresponding cor-
rection factors ζ.
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RF0

Bins (z1, z2) AUL : % Corr. ζUL
0 AUC : % Corr. ζUC

0

1 [0.15,0.2][0.15,0.2] 98.47 ± 0.48 1.016 ± 0.005 99.21 ± 0.41 1.008 ± 0.004
2 [0.15,0.2][0.2,0.3] 99.01 ± 0.47 1.010 ± 0.005 100.05 ± 0.40 1.000 ± 0.004
3 [0.15,0.2][0.3,0.5] 100.09 ± 0.53 0.999 ± 0.005 100.09 ± 0.45 0.999 ± 0.004
4 [0.15,0.2][0.5,1.] 100.48 ± 0.91 0.995 ± 0.009 100.04 ± 0.76 1.000 ± 0.008
5 [0.2,0.3][0.15,0.2] 99.84 ± 0.47 1.002 ± 0.005 100.46 ± 0.40 0.995 ± 0.004
6 [0.2,0.3][0.2,0.3] 99.39 ± 0.48 1.006 ± 0.005 100.97 ± 0.41 0.990 ± 0.004
7 [0.2,0.3][0.3,0.5] 99.47 ± 0.53 1.005 ± 0.005 100.52 ± 0.45 0.995 ± 0.004
8 [0.2,0.3][0.5,1.] 99.79 ± 0.91 1.002 ± 0.009 99.69 ± 0.77 1.003 ± 0.008
9 [0.3,0.5][0.15,0.2] 99.86 ± 0.52 1.001 ± 0.005 100.01 ± 0.44 1.000 ± 0.004

10 [0.3,0.5][0.2,0.3] 99.43 ± 0.52 1.006 ± 0.005 100.51 ± 0.45 0.995 ± 0.004
11 [0.3,0.5][0.3,0.5] 99.54 ± 0.57 1.005 ± 0.006 99.92 ± 0.49 1.001 ± 0.005
12 [0.3,0.5][0.5,1.] 99.76 ± 0.98 1.002 ± 0.010 99.78 ± 0.83 1.002 ± 0.008
13 [0.5,1.][0.15,0.2] 101.22 ± 0.93 0.988 ± 0.009 100.35 ± 0.76 0.997 ± 0.008
14 [0.5,1.][0.2,0.3] 99.84 ± 0.89 1.002 ± 0.009 99.70 ± 0.76 1.003 ± 0.008
15 [0.5,1.][0.3,0.5] 99.81 ± 0.97 1.002 ± 0.010 99.79 ± 0.83 1.002 ± 0.008
16 [0.5,1.][0.5,1.] 99.68 ± 1.70 1.003 ± 0.017 99.76 ± 1.39 1.002 ± 0.014

Table 5.15: Second pion momentum frame (RF0): estimated average fractions of the asymmetry
measured fitting the double ratios U/L and U/C as a function of (z1, z2) and corresponding
correction factors ζ.
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RF12
Bins (z1, z2) AUL : % Corr. ζUL

12 AUC : % Corr. ζUC
12

1 [0,0.25][0,0.25] 36.71 ± 0.76 2.724 ± 0.056 36.47 ± 0.64 2.742 ± 0.048
2 [0,0.25][0.25,0.5] 48.11 ± 0.55 2.079 ± 0.024 47.58 ± 0.46 2.102 ± 0.020
3 [0,0.25][0.5,0.75] 50.16 ± 0.72 1.994 ± 0.029 48.67 ± 0.62 2.055 ± 0.026
4 [0,0.25][> 0.75] 44.70 ± 1.20 2.237 ± 0.061 43.66 ± 1.11 2.290 ± 0.058
5 [0.25,0.5][0,0.25] 48.43 ± 0.54 2.065 ± 0.023 47.62 ± 0.46 2.100 ± 0.020
6 [0.25,0.5][0.25,0.5] 66.89 ± 0.42 1.495 ± 0.009 67.02 ± 0.35 1.492 ± 0.008
7 [0.25,0.5][0.5,0.75] 70.81 ± 0.57 1.412 ± 0.011 69.56 ± 0.49 1.438 ± 0.010
8 [0.25,0.5][> 0.75] 68.75 ± 0.85 1.455 ± 0.018 66.57 ± 0.89 1.502 ± 0.020
9 [0.5,0.75][0,0.25] 49.47 ± 0.73 2.022 ± 0.030 48.31 ± 0.62 2.070 ± 0.026

10 [0.5,0.75][0.25,0.5] 70.93 ± 0.58 1.410 ± 0.011 69.76 ± 0.49 1.434 ± 0.010
11 [0.5,0.75][0.5,0.75] 77.39 ± 0.84 1.292 ± 0.014 76.01 ± 0.73 1.316 ± 0.013
12 [0.5,0.75][> 0.75] 75.10 ± 1.27 1.332 ± 0.022 74.32 ± 1.38 1.346 ± 0.025
13 [> 0.75][0,0.25] 46.19 ± 1.28 2.165 ± 0.060 44.52 ± 1.10 2.246 ± 0.055
14 [> 0.75][0.25,0.5] 68.13 ± 1.06 1.468 ± 0.023 66.71 ± 0.91 1.499 ± 0.020
15 [> 0.75][0.7,0.75] 76.86 ± 1.56 1.301 ± 0.026 75.17 ± 1.38 1.330 ± 0.024
16 [> 0.75][> 0.75] 76.09 ± 2.26 1.314 ± 0.039 75.06 ± 2.61 1.332 ± 0.046

RF0

Bins pt0 AUL : % Corr. ζUL
0 AUC : % Corr. ζUC

0

1 [0,0.25] 98.83 ± 0.64 1.012 ± 0.007 98.87 ± 0.53 1.011 ± 0.005
2 [0.25,0.5] 101.23 ± 0.40 0.988 ± 0.004 100.45 ± 0.34 0.996 ± 0.003
3 [0.5,0.75] 100.93 ± 0.39 0.991 ± 0.004 100.89 ± 0.34 0.991 ± 0.003
4 [> 0.75] 100.04 ± 0.39 1.000 ± 0.004 101.51 ± 0.35 0.985 ± 0.003

Table 5.16: Estimated average fractions of the asymmetry measured fitting the double ratios
U/L and U/C as a function of (pt1, pt2) (RF12) in the first part of the table, and as a function
of pt0 (RF0) in the second part of the table. It is also summarized the corresponding correction
factors ζ.
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5.4 Particle Identification

As introduced in section 4.3.2, a series of selectors for different particle hypothesis are built in
order to provide particle identification (PID). In this analysis, we select pions that satisfied the
KM-selector, which offer six tightness levels of discrimination. In order to check if the measured
asymmetries are sensitive to some of the cuts applied for the PID, we compare the results
obtained with our standard selection which use the tight (T) selector, with those obtained using
a PID selector based on looser (L) criteria. We find good agreement among these selectors for
all z and pt bins, and we assign the absolute value of the differences, shown in Fig. 5.21 as
systematic errors.
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Figure 5.21: Absolute values of the difference between the asymmetries calculated using tight
pions selection (selection chosen in this analysis) and the asymmetries calculated using looser
selection. Plots (a) and (b) show these difference as a function of z bins, where two adjacent
bins of fractional energy are grouped together in order to reduce the statistical fluctuations.
Plots (c) and (d) show the difference as a function of pt bins. Blue circles and green circles refer
to the U/L and U/C double ratio, respectively.

The average differences between the two selectors criteria are:

• AU/L12 : PID systematic uncertainty = 0.00053 (relative contribution=2.7%),

• AU/L0 : PID systematic uncertainty = 0.00003 (relative contribution=0.2%),
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• AU/C12 : PID systematic uncertainty = 0.00026 (relative contribution=2.7%),

• AU/C0 : PID systematic uncertainty = 0.000001 (relative contribution=0.15%).

As mentioned in Sec.4.3.3, we also apply a veto on electrons and muons because we find a
contamination from these sources which affects significantly the measurement at higher z bins,
as shown in Fig. 5.22.
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Figure 5.22: Comparison of z-binned asymmetries measured with (blue circles) or without
(red circles) veto on muons and electrons. The leptons contamination affects higher value of
fractional energy.

5.5 Bin size

The extraction of asymmetry may depend on the choice of the bin size. In order to study this
effect we consider three different subdivisions in the azimuthal angles (φ12 = φ1 +φ2 and 2φ0):
10,40, and 100 bins; the latter being the default bin size.
The difference between 100 and 10 bins subdivisions (which is the largest one) is hown in
Fig. 5.23 and is taken as systematic error, and the average value for each double ratio and
reference frame is:

• AU/L12 : systematic binning uncertainty = 0.0003 (relative contribution=1.5%),

• AU/L0 : systematic binning uncertainty = 0.0002 (relative contribution=1.5%),

• AU/C12 : systematic binning uncertainty = 0.000014 (relative contribution=1.5%),
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• AU/C0 : PID systematic uncertainty = 0.00001 (relative contribution=1.4%).
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Figure 5.23: Absolute values of the difference between the asymmetries calculated for 100 bins
subdivision of the azimuthal angles (φ12 and 2φ0), and 10 bins subdivision. Plots (a) and (b)
show the difference as a function of z bins for the φ12 and 2φ0 azimuthal distribution respec-
tively. Two adjacent bins of fractional energy are grouped together in order to reduce the sta-
tistical fluctuation. Plots (c) and (d) show the difference as a function of pt bins. Blue and green
circles refer to the U/L and U/C double ratio respectively.

5.6 Higher harmonic contributions

In order to test the robustness of the fit, we perform different fits including additional sine
and cosine modulation of twice the argument as free parameters. The asymmetry results as a
function of (z1, z2) are reported in Tab. 5.18, while in Tab. 5.19 are summarized the results as a
function of pt. The function f(x) = Bij

α + Aijα · cos(βα) is the function used to fit the azimuthal
distribution in this analysis (see Eq. 4.20). No significant changes are observed and, therefore,
no systematic uncertainty is assigned.
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5.7 π+π+/π−π− Double Ratio test

Another possible source of systematic errors could be a charge dependence of the detector re-
sponse, which may manifest itself in azimuthal asymmetries. We can test this effect by probing
the double ratio of positively charged pion pairs over negatively charged pion pairs. In fact, the
Collins effect and the radiative effects do not depend on the electric charge, so we expect this
double ratio to be consistent with one. We performed this test using the off-peak data sample,
and the results are shown in Fig. 5.24. No modulation is observed, and therefore no systematic
error will be considered.
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Figure 5.24: π+π+/π−π− double ratio test

5.8 Subtraction and Double Ratio methods

The method of building the double ratio (raw asymmetry for Unlike sign over raw asymmetry
for Like or Charged sign pion paris) cancels possible acceptance effects as well as radiative
effects to leading order. However, higher orders in the expansion of radiative terms might still
remain and could affect the results if they are large.

We can use a second method that we call Subtraction Method (Sub) in which, instead of the
ratio, we take the difference between the U sign pion pairs and the L sign pion pairs. In this case
the radiative effects cancel to all orders but not necessarily the acceptance effects. Subtracting
the normalized yields as following:

Subijα =
NU
α (βα)

< NU
α (βα) >

− N
L(C)
α (βα)

< N
L(C)
α (βα) >

, (5.10)

one is sensitive only to the Collins asymmetry and possible acceptance effects. Again, these
yields are fitted with a cosine function:

Subijα = P ij0,α − P
ij
1,α · cos(βα), (5.11)
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with i, j = U, L, C, α = 12, 0, and the constant parameters now should be consistent with
zero.
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Figure 5.25: Difference between the asymmetry measured using the DR method and the Sub
method, in the RF12 (upper plots) and RF0 (lower plots) frames. In (a) are summarized the
results as a function of (z1, z2), and in (b) as a function of pt. The blue and green circles refer to
the U/L and U/C pion pair combination.

Figure 5.25 shows the differences between the azimuthal asymmetry parameters obtained us-
ing the DR method and the asymmetry parameters obtained with the Sub method, evaluated
for each bins of fractional energy and pion transverse momentum. Excluding the last z bin in
the RF12 frame, these differences are very tiny and consistent with zero for all bins, and they
can be neglected.

5.9 Beam Polarization studies

Another important study is the polarization of the electron and positron beams. Thus far we
have assumed that no beam polarization is present. However, it is well known that charged
particles circulating in a magnetic field become polarized transversely to the beam direction
due to the emission of spin-flipping synchrotron radiation: the Sokolov-Ternov effect [106].
This effect can be significant for electrons and positrons due to their small mass. The trans-
verse polarization for particles circulating in a uniform magnetic field would build up in time
according to:

P (t) =
8
√

3

15

(
1− exp

5
√

3
8

e2~γ5

m2c2ρ3

)
(5.12)

where γ = E/m is the Lorentz factor of the particle and ρ is the bending radius of the orbit. The
polarization has a strong dependence on the mass in the exponent: the lighter the particle, the
faster it becomes polarized. The beam polarization can affect the angular distribution of pro-
duced hadrons in e+e− → hX introducing a cos(2φ) asymmetry, where φ is the angle defined
with respect to the beam and the beam spin direction. This asymmetry has in common with
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the Collins asymmetry that both are transverse single spin asymmetries: the former concerning
lepton spins, the latter quark spins. The Collins effect does not contribute to the angular distri-
bution of produced hadron in e+e− → hX , but the transverse beam polarization may affect the
angular distribution in e+e− → h1h2X .

We can measure the beam polarization through the study of the reaction e+e− → µ+µ−,
whose cross section can be written as [107, 108]:

dσ(e+e− → µ+µ−)

dΩ
∝ (1 + cos2(θ) + P 2 sin2(θ) cos(2φ)) (5.13)

where P is the degree of transverse polarization of beams, and θ and φ are the polar and az-
imuthal angles of the produced muons in the e+e− center of mass system. We analyze the
cos(θ) and φ distributions of the muon pairs. In particular, the cos(θ) distribution is fitted with
the function: a(1 + b · x2(θ)), and the φ distribution with the function: c(1 + d · cos(2φ)). For
unpolarized beams, we expect the d parameter of the latter fit, which contains the polarization
information, to be consistent with zero, and the angular distribution in θ to be consistent with
1 + cos2(θ). For the event selection we used a skim of data (see Tab. 4.1), described in the BABAR

note [109], for which the main cuts are the following:

1. muon background filter:

• P1 > 4 GeV/c and P2 > 2 GeV/c, where P1 ans P2 correspond to the highest and
second highest momentum charged tracks

• 2.8 > θ1 + θ2 > 3.5 rad.

• E1 + E2 < 2 GeV, where E1 and E2 correspond to the highest and second highest
energy neutral clusters.

2. cos(θ1,CM ) < 0.7485 and cos(θ2,CM ) < 0.7485;

3. Acolinearity in the center of mass frame < 0.17;

4. Invariant mass of the muon pair > 7.5 GeV/c2;

5. 0 < (EMClabp1, EMClabp2) < 1 GeV.

The cut on cos(θ) at 0.7485 in center of mass ensures that all tracks fall into the SVT coverage.
The cut on acolinearity rejects cosmic rays, while the cut on the invariant mass rejects the τ
pairs. Finally, BhaBha events are rejected by requiring that the energy associated with the track
be less than 1 GeV, measured in the laboratory frame.

Fig. 5.26 shows, as example, the cos(θ) and φ distributions for the run 6, and in Tab. 5.17
are summarized the fit results for all runs. The φ moments are consistent with zero in all runs
which means that no polarization buildup is observed. Therefore, we can conclude that no
significant beam polarization exists in this data sample and no systematic error is assigned.
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Figure 5.26: Angular distribution for cos(θ) (a) and φ (b) for muon pairs in the center of mass
frame. In the case of cos(θ) distribution, the fit is performed only in the range [−0.65, 0.65]
since at large angles acceptance effects dominate. The φ distribution is sensitive to the beam
polarization. Any visible modulation in φ is an index of polarization.

cos(θ) φ φ
Fit function a · (1 + b · x2) c · (1 + d · cos(2x)) constant function b

Run1
b = 1.07± 0.01 d = −0.002± 0.001 0.9994± 0.0006
χ2/ndf = 102/90 χ2/ndf = 91/98 χ2/ndf = 97/99

Run2
b = 1.06± 0.01 d = 0.002± 0.001 0.9994± 0.0004
χ2/ndf = 125/90 χ2/ndf = 108/98 χ2/ndf = 120/99

Run3
b = 1.06± 0.01 d = 0.001± 0.001 0.9994± 0.0006
χ2/ndf = 109/90 χ2/ndf = 97/98 χ2/ndf = 99/99

Run4
b = 1.06± 0.01 d = −0.001± 0.001 0.9994± 0.0003
χ2/ndf = 122/90 χ2/ndf = 111/98 χ2/ndf = 119/99

Run5
b = 1.06± 0.01 d = −0.002± 0.001 0.9994± 0.0003
χ2/ndf = 128/90 χ2/ndf = 166/98 χ2/ndf = 180/99

Run6
b = 1.06± 0.01 d = −0.0006± 0.001 0.9994± 0.0004
χ2/ndf = 105/90 χ2/ndf = 90/98 χ2/ndf = 91/99

Table 5.17: Beam polarization study: fit results for the cos(θ) and φ distributions for the process
e+e− → µ+µ−

5.10 Toy MC

A certain level of correlation among the entries of the double ratio distributions is expected
because the same pion can be used to form different pion pairs, so that the statistical error
returned by the fits could be underestimated. In order to check for effects of this kind and
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to validate the fit procedure, a study based on the method of toy MC is performed. Toy MC
studies test the self consistency of the fit model and how sensitive the fit parameters are with
respect to the statistical fluctuations in the data sample. A toy MC consists of a series of pseudo-
experiments, generating for each experiment, according to the fit model under consideration, a
statistic sample equal to that selected by the analysis procedure. We generate a set of 30000 toy
experiments. As an example, the results for the UL asymmetry measured in the RF12 frame are
shown in Fig. 5.27.
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Figure 5.27: Toy MC results for the UL averaged asymmetry measured in the RF12 frame:
(a) distribution of the asymmetry parameter returned by the fit (bfitted); (b) pull distribution
calculated following Eq. 5.14. Similar results are obtained in the RF0 frame and for the UC
asymmetries.

For a simple comparison of generated and fitted parameter, a pull is calculated as:

bpull =
bfit − bgenerated

σb,fit
, (5.14)

where bgenerated is the value of the asymmetry parameter that is used to generate the data set,
bfit is the value of the same parameter returned by the fit, shown also in Fig. 5.27(a), and σb,fit
is the error on that parameter returned by the fit.
If the fit model is unbiased, the pull follows a Gaussian distribution with mean zero and a
unit variance, as shown in Fig. 5.27(b). This is the case for all tests performed, in particular
the standard deviations of all pull distributions result consistent with unity or slightly less, as
in the case shown in Fig. 5.27(b). Therefore, we conclude that the asymmetries are correctly
described and that the statistical errors of the fit to the data samples are not underestimated.

5.11 Asymmetries versus thrust

In this section we study the Collins asymmetry as a function of the thrust variable, and the raw
asymmetries behavior in different intervals of θth, where θth is the angle between the thrust
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axis and the beam axis. The purpose of these studies is to identify possible effects due to the
detector acceptances.
Using the same event selection with the exclusion of the thrust cut only for the off-resonance
data sample, we calculated the asymmetries in different bins of the thrust value and for dif-
ferent thrust cuts, for both reference frames. Since τ events are characterized by thrust values
higher than 0.9, the asymmetry in the last two bins is visibly diluted, and for this reason we
need to correct the measurements for the τ contribution as follows:

A =
Ameasured

1− T
, (5.15)

where T is the fraction of pion pairs from τ+τ− defined in Eq. 5.5. The results of the Collins
asymmetry for the thrust studies are shown in Fig. 5.28.
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Figure 5.28: Study of the asymmetries for different thrust bins (a) and (c), and for different
thrust cuts (b) and (d). The upper blue triangles represent the U/L double ratio, while the
green down triangles the U/C ratio. The dashed line in each plot indicates the cuts applied in
the analysis (thrust > 0.8).

In particular, Fig.s 5.28(a) and 5.28(c) report the asymmetries as a function of six bins of the
thrust value ([0.5− 0.75], [0.75− 0.8], [0.8− 0.85], [0.85− 0.9], [0.9− 0.95], and [0.95− 1]) for the
two reference frames and double ratios. We see that the asymmetry calculated for lower thrust
value is consistent with zero, and increase with it. This behavior may be due to two combined
effects: first, for low thrust values, the assignment of the tracks to the right jet is more difficult,
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and second, gluon emission spoils the qq correlation. In both cases, we lost the correlation
between the pions and the fragmenting qq pair, and a dilution of the asymmetry is expected.
The same conclusions can be reached from Fig. 5.28(b) and 5.28(d), which show the asymme-
tries as a function of cuts of the thrust value (thrust > 0.5, > 0.75, > 0.8, > 0.85, > 0.9, > 0.95).
Also in this case, we expect a dilution of the asymmetry for lower thrust. However, in order to
select the jet topology and eliminate the bottom background, we integrated the asymmetry in
the range thrust ≥ 0.8.
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Figure 5.29: Raw asymmetries for different cos(θth) bins measured in the RF0 frame, as exam-
ple, for unlike (a) and like (b) sign pion pairs. Color legend: black (0.8,0.9), yellow (0.7,0.8),
green (0.5,0.7), red (0.3,0.5), blue (0.,0.3).

In order to check the effects of the detector acceptances, we studied the behavior of the like
and unlike raw asymmetry for different bins of cos(θth). As mentioned in section 4.4, the raw
asymmetries are strongly influenced by the acceptance effects; this is clearly visible in Fig. 5.29,
where are shown, as example, the like and unlike raw asymmetries in the RF0 frame and for
which the color legend is as follow:

• black: 0.8 < cos(θth) < 0.9,

• yellow: 0.7 < cos(θth) < 0.8,

• green: 0.5 < cos(θth) < 0.7,

• red: 0.3 < cos(θth) < 0.5,

• blue: 0. < cos(θth) < 0.3.

The effect is very strong for high cos(θth), becoming almost negligible at large angles. In fact,
a small θth angle means that the thrust axis is close to the beam axis, and in this region the
acceptance effects are large since some tracks may fall out of the detector coverage introducing
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modulations that do not compensate. However, the distortion of the azimuthal asymmetries is
the same for unlike (Fig. 5.29(a)) and like (Fig. 5.29(b)) pion pairs. This consideration makes us
confident that the double ratio (DR) effectively eliminates the detector influence.

5.12 Asymmetries measured in different data taking periods
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Figure 5.30: Comparison of UL double ratio parameters as a function of pt measured for each
data taking period (Run1 to Run6) in RF12 (a) and RF0 (b). The same behavior is observed for
the UC double ratio, and for the the asymmetries as a function of (z1, z2).

Since the BABAR data taking covers a period of about nine years, it is important to keep
under control possible effects due to the changes of the experimental conditions, which can in-
troduce a bias in the measurement of the asymmetries. As described in Chapter 3, a number of
improvements has been made through the years, such as the implementation of trickle injection
and the replacement of the RPCs of the muon detector with LSTs. In addition, also the efficien-
cies in the particle identification and the reconstruction technique differ for different Runs.
We perform the analysis separately for each Run, and compare the results. As an example,
Fig. 5.30 shows the asymmetries obtained for each Run fitting the UL double ratio as a func-
tion of the pion transverse momentum pt, in both reference frames. No significant differences
among the Runs are observed in any of the momentum ranges explored, assessing the stability
of the measurements with time and with respect to the experimental conditions.

5.13 Handling of systematic errors

All the sizeable systematic errors which affect the measurement of Collins asymmetries are
summarized in Tabs. 5.20 to 5.22. Each systematic uncertainty is evaluated for every bin of frac-
tional energy z and pion transverse momentum pt. In particular, the tables report the absolute
contributions due to the particle identification (PID), different bin subdivision in the azimuthal
angle (BIN), and the uncertainties on the correction factors for the dilution of the asymmetry
due to the approximation of the qq axis with the thrust axis (WEI). These three uncertainties
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are calculated starting from their relative errors and multiplying them by the final values of the
asymmetry. The small asymmetry observed analyzing the signal MC sample, instead is an off-
set, and the corresponding uncertainties (indicated with MC) do not scale with the value of the
asymmetry. All these contributions are added in the quadrature, and the results summarized
in the last column (TOT) of Tabs. 5.20 to 5.22.
The errors from the cc, BB, and τ+τ− background events, and the difference between MC and
data in the determination of the relative fraction F are propagated together with the statistical
error of the measurements and included in it, as described Sec. 5.2.
The final Collins asymmetry results, with the statistical and systematic contributions calculated
as summarized above, are reported and discussed in the next section.
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AUL12 (%) AUL0 (%)
(z1, z2) f(x) f(x) + c cos(2x) f(x) + c sin(2x) f(x) f(x) + c cos(2x) f(x) + c sin(2x)

1 1.323± 0.045 1.323± 0.045 1.323± 0.045 0.747± 0.045 0.745± 0.045 0.747± 0.045
2 1.598± 0.042 1.599± 0.042 1.598± 0.042 0.934± 0.041 0.935± 0.041 0.934± 0.041
3 1.672± 0.060 1.672± 0.060 1.672± 0.060 0.978± 0.060 0.977± 0.060 0.978± 0.060
4 1.875± 0.088 1.876± 0.088 1.875± 0.088 1.098± 0.087 1.097± 0.087 1.098± 0.087
5 2.375± 0.106 2.372± 0.106 2.375± 0.106 1.464± 0.103 1.465± 0.104 1.464± 0.103
6 2.755± 0.238 2.744± 0.238 2.755± 0.238 2.268± 0.216 2.277± 0.216 2.267± 0.216
7 1.596± 0.042 1.597± 0.042 1.596± 0.042 0.860± 0.041 0.860± 0.041 0.860± 0.041
8 1.825± 0.038 1.825± 0.038 1.825± 0.038 1.071± 0.038 1.073± 0.038 1.071± 0.038
9 2.072± 0.056 2.073± 0.056 2.072± 0.056 1.405± 0.055 1.403± 0.055 1.405± 0.055
10 2.315± 0.082 2.314± 0.082 2.315± 0.082 1.438± 0.080 1.440± 0.080 1.438± 0.080
11 2.900± 0.098 2.899± 0.098 2.900± 0.098 2.031± 0.095 2.037± 0.095 2.031± 0.095
12 3.508± 0.218 3.505± 0.218 3.509± 0.218 2.815± 0.198 2.841± 0.199 2.816± 0.198
13 1.657± 0.061 1.657± 0.061 1.657± 0.061 0.951± 0.060 0.954± 0.060 0.951± 0.060
14 1.966± 0.056 1.965± 0.056 1.966± 0.056 1.136± 0.055 1.136± 0.055 1.136± 0.055
15 2.365± 0.082 2.364± 0.082 2.365± 0.082 1.499± 0.081 1.501± 0.081 1.499± 0.081
16 2.184± 0.120 2.182± 0.120 2.184± 0.120 1.434± 0.117 1.439± 0.117 1.434± 0.117
17 3.087± 0.143 3.086± 0.143 3.087± 0.143 2.192± 0.139 2.198± 0.139 2.193± 0.139
18 3.850± 0.311 3.851± 0.311 3.851± 0.311 3.874± 0.283 3.877± 0.284 3.874± 0.283
19 1.860± 0.088 1.860± 0.088 1.860± 0.088 0.834± 0.087 0.839± 0.087 0.834± 0.087
20 2.177± 0.082 2.177± 0.082 2.177± 0.082 1.395± 0.080 1.397± 0.080 1.396± 0.080
21 2.244± 0.119 2.245± 0.119 2.244± 0.119 1.466± 0.117 1.467± 0.117 1.466± 0.117
22 2.483± 0.175 2.481± 0.175 2.483± 0.175 1.554± 0.171 1.555± 0.171 1.554± 0.171
23 3.386± 0.207 3.386± 0.207 3.386± 0.207 2.836± 0.200 2.843± 0.200 2.835± 0.200
24 4.588± 0.440 4.586± 0.440 4.588± 0.440 4.553± 0.399 4.555± 0.400 4.552± 0.399
25 2.312± 0.107 2.312± 0.107 2.312± 0.107 1.339± 0.104 1.337± 0.104 1.339± 0.104
26 2.726± 0.098 2.727± 0.098 2.726± 0.098 1.932± 0.095 1.934± 0.096 1.932± 0.095
27 3.123± 0.142 3.123± 0.142 3.122± 0.142 2.243± 0.139 2.249± 0.139 2.244± 0.139
28 3.882± 0.207 3.884± 0.207 3.883± 0.207 2.562± 0.201 2.572± 0.201 2.564± 0.201
29 5.535± 0.239 5.533± 0.239 5.535± 0.239 4.007± 0.231 4.015± 0.231 4.006± 0.231
30 8.523± 0.495 8.583± 0.496 8.520± 0.495 6.607± 0.444 6.644± 0.446 6.606± 0.445
31 2.745± 0.237 2.745± 0.237 2.743± 0.237 2.100± 0.216 2.100± 0.217 2.100± 0.216
32 3.457± 0.217 3.456± 0.217 3.456± 0.217 2.903± 0.198 2.912± 0.198 2.903± 0.198
33 4.075± 0.311 4.076± 0.311 4.076± 0.311 3.487± 0.283 3.502± 0.284 3.487± 0.283
34 4.846± 0.442 4.863± 0.442 4.851± 0.442 4.996± 0.401 5.026± 0.402 4.997± 0.401
35 8.802± 0.491 8.789± 0.491 8.801± 0.491 6.627± 0.441 6.557± 0.443 6.623± 0.441
36 19.652± 0.973 20.391± 0.992 19.651± 0.973 13.143± 0.793 12.991± 0.802 13.137± 0.794

AUC12 (%) AUC0 (%)
(z1, z2) f(x) f(x) + c cos(2x) f(x) + c sin(2x) f(x) f(x) + c cos(2x) f(x) + c sin(2x)

1 0.620± 0.038 0.621± 0.038 0.620± 0.038 0.350± 0.038 0.349± 0.038 0.350± 0.038
2 0.743± 0.035 0.744± 0.035 0.743± 0.035 0.434± 0.035 0.434± 0.035 0.434± 0.035
3 0.765± 0.051 0.766± 0.051 0.765± 0.051 0.448± 0.050 0.447± 0.050 0.448± 0.050
4 0.846± 0.074 0.847± 0.074 0.846± 0.074 0.496± 0.072 0.495± 0.072 0.496± 0.072
5 1.064± 0.089 1.060± 0.089 1.064± 0.089 0.655± 0.086 0.655± 0.086 0.655± 0.086
6 1.169± 0.194 1.160± 0.194 1.169± 0.194 0.956± 0.176 0.958± 0.176 0.955± 0.176
7 0.741± 0.035 0.742± 0.035 0.741± 0.035 0.399± 0.035 0.399± 0.035 0.399± 0.035
8 0.837± 0.032 0.838± 0.032 0.837± 0.032 0.491± 0.032 0.492± 0.032 0.491± 0.032
9 0.929± 0.047 0.930± 0.047 0.929± 0.047 0.630± 0.046 0.629± 0.046 0.630± 0.046
10 1.019± 0.068 1.018± 0.068 1.019± 0.068 0.633± 0.066 0.634± 0.066 0.633± 0.066
11 1.261± 0.081 1.260± 0.081 1.261± 0.081 0.882± 0.079 0.884± 0.079 0.882± 0.079
12 1.434± 0.176 1.429± 0.176 1.434± 0.176 1.140± 0.159 1.145± 0.159 1.140± 0.159
13 0.758± 0.051 0.758± 0.051 0.758± 0.051 0.435± 0.050 0.436± 0.050 0.435± 0.050
14 0.881± 0.047 0.881± 0.047 0.881± 0.047 0.509± 0.046 0.509± 0.046 0.509± 0.046
15 1.027± 0.067 1.025± 0.067 1.027± 0.067 0.650± 0.066 0.650± 0.066 0.650± 0.066
16 0.923± 0.098 0.921± 0.098 0.923± 0.098 0.606± 0.096 0.607± 0.096 0.606± 0.096
17 1.283± 0.116 1.281± 0.116 1.283± 0.116 0.909± 0.112 0.910± 0.113 0.909± 0.112
18 1.480± 0.246 1.480± 0.246 1.480± 0.246 1.486± 0.222 1.486± 0.222 1.486± 0.222
19 0.841± 0.074 0.842± 0.074 0.841± 0.074 0.377± 0.073 0.379± 0.073 0.377± 0.073
20 0.959± 0.068 0.959± 0.068 0.959± 0.068 0.614± 0.066 0.615± 0.066 0.614± 0.066
21 0.946± 0.098 0.947± 0.098 0.946± 0.098 0.619± 0.096 0.619± 0.096 0.619± 0.096
22 1.017± 0.141 1.015± 0.141 1.017± 0.141 0.637± 0.138 0.638± 0.138 0.637± 0.138
23 1.353± 0.165 1.351± 0.165 1.353± 0.165 1.132± 0.160 1.133± 0.160 1.132± 0.160
24 1.689± 0.342 1.691± 0.342 1.689± 0.342 1.662± 0.308 1.661± 0.308 1.662± 0.308
25 1.035± 0.089 1.035± 0.089 1.035± 0.089 0.598± 0.087 0.598± 0.087 0.598± 0.087
26 1.186± 0.081 1.187± 0.081 1.186± 0.081 0.840± 0.079 0.840± 0.079 0.840± 0.079
27 1.297± 0.116 1.298± 0.116 1.297± 0.116 0.933± 0.112 0.933± 0.112 0.933± 0.112
28 1.551± 0.165 1.547± 0.165 1.551± 0.165 1.025± 0.160 1.026± 0.160 1.025± 0.160
29 2.115± 0.188 2.117± 0.188 2.115± 0.188 1.529± 0.181 1.529± 0.181 1.529± 0.181
30 2.973± 0.374 2.968± 0.374 2.973± 0.374 2.271± 0.334 2.274± 0.334 2.271± 0.334
31 1.160± 0.194 1.160± 0.194 1.160± 0.194 0.883± 0.176 0.882± 0.176 0.882± 0.176
32 1.410± 0.175 1.409± 0.175 1.410± 0.175 1.177± 0.159 1.179± 0.159 1.177± 0.159
33 1.571± 0.245 1.565± 0.245 1.571± 0.245 1.337± 0.222 1.339± 0.222 1.337± 0.222
34 1.789± 0.341 1.781± 0.341 1.789± 0.341 1.823± 0.308 1.826± 0.308 1.823± 0.308
35 3.072± 0.373 3.075± 0.373 3.072± 0.373 2.284± 0.334 2.278± 0.334 2.284± 0.334
36 5.801± 0.662 5.754± 0.663 5.801± 0.662 2.818± 0.488 2.820± 0.488 2.818± 0.488

Table 5.18: Asymmetry fit results for different fit function for the double ratio U/L (upper part)
and U/C (lower part) in the two frames used in this analysis. The function f(x) = Bij

α +

Aijα · cos(βα) is the function used to fit the Collins asymmetry. In particular, in this table is
compared the the asymmetry parameter Aijα obtained including additional cosine (third and
sixth column) and sine (fourth and seventh column) modulation of twice the argument. No
systematic uncertainty has been assumed.
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AUL12 (%) AUC12 (%)
(pt1, pt2) f(x) f(x) + c cos(2x) f(x) + c sin(2x) f(x) f(x) + c cos(2x) f(x) + c sin(2x)

1 0.690 ± 0.053 0.690 ± 0.053 0.690 ± 0.053 0.690 ± 0.053 0.690 ± 0.053 0.690 ± 0.053
2 1.199 ± 0.038 1.199 ± 0.038 1.199 ± 0.038 1.199 ± 0.038 1.199 ± 0.038 1.199 ± 0.038
3 1.387 ± 0.059 1.388 ± 0.059 1.387 ± 0.059 1.387 ± 0.059 1.388 ± 0.059 1.387 ± 0.059
4 1.776 ± 0.115 1.776 ± 0.115 1.776 ± 0.115 1.776 ± 0.115 1.776 ± 0.115 1.776 ± 0.115
5 1.184 ± 0.038 1.184 ± 0.038 1.184 ± 0.038 1.184 ± 0.038 1.184 ± 0.038 1.184 ± 0.038
6 2.096 ± 0.029 2.097 ± 0.029 2.096 ± 0.029 2.096 ± 0.029 2.097 ± 0.029 2.096 ± 0.029
7 2.340 ± 0.046 2.342 ± 0.046 2.340 ± 0.046 2.340 ± 0.046 2.342 ± 0.046 2.340 ± 0.046
8 3.127 ± 0.093 3.128 ± 0.094 3.127 ± 0.093 3.127 ± 0.093 3.128 ± 0.094 3.127 ± 0.093
9 1.271 ± 0.059 1.271 ± 0.059 1.271 ± 0.059 1.271 ± 0.059 1.271 ± 0.059 1.271 ± 0.059
10 2.197 ± 0.046 2.199 ± 0.046 2.197 ± 0.046 2.197 ± 0.046 2.199 ± 0.046 2.197 ± 0.046
11 2.364 ± 0.076 2.353 ± 0.076 2.364 ± 0.076 2.364 ± 0.076 2.353 ± 0.076 2.364 ± 0.076
12 3.465 ± 0.159 3.446 ± 0.159 3.465 ± 0.159 3.465 ± 0.159 3.446 ± 0.159 3.465 ± 0.159
13 1.648 ± 0.115 1.650 ± 0.115 1.649 ± 0.115 1.648 ± 0.115 1.650 ± 0.115 1.649 ± 0.115
14 3.061 ± 0.094 3.058 ± 0.094 3.061 ± 0.094 3.061 ± 0.094 3.058 ± 0.094 3.061 ± 0.094
15 3.251 ± 0.159 3.237 ± 0.160 3.251 ± 0.159 3.251 ± 0.117 3.237 ± 0.154 3.251 ± 0.159
16 5.576 ± 0.337 5.553 ± 0.339 5.574 ± 0.337 5.576 ± 0.337 5.553 ± 0.339 5.574 ± 0.337

AUL0 (%) AUC0 (%)
pt0 f(x) f(x) + c cos(2x) f(x) + c sin(2x) f(x) f(x) + c cos(2x) f(x) + c sin(2x)

1 0.241 ± 0.035 0.241 ± 0.035 0.241 ± 0.035 0.241 ± 0.035 0.241 ± 0.035 0.241 ± 0.035
2 1.019 ± 0.023 1.018 ± 0.023 1.019 ± 0.023 1.019 ± 0.023 1.018 ± 0.023 1.019 ± 0.023
3 1.642 ± 0.026 1.646 ± 0.026 1.642 ± 0.026 1.642 ± 0.026 1.646 ± 0.026 1.642 ± 0.026
4 2.293 ± 0.031 2.304 ± 0.031 2.293 ± 0.031 2.293 ± 0.031 2.304 ± 0.031 2.293 ± 0.031

Table 5.19: Asymmetry fit results for different fit function for the double ratio U/L (left
columns) and U/C (right columns) in the two frames used in this analysis. The function
f(x) = Bij

α + Aijα · cos(βα) is the function used to fit the Collins asymmetry. In particular,
in this table is compared the asymmetry parameter Aijα obtained including additional cosine
(third and sixth column) and sine (fourth and seventh column) modulation of twice the argu-
ment. No significant changes are observed and, therefore, no systematic uncertainty has been
assumed.
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Chapter 6

Results

6.1 Collins asymmetries vs (z1, z2), (pt1,pt2), and pt0 bins

The measurement of Collins asymmetries is obtained using the full BABAR data sample, which
corresponds to an integrated luminosity L = 468 fb−1, and it is performed in two different
frames: the thrust reference frame (RF12), and the second hadron momentum frame (RF0).
We measure the asymmetry taking the double ratio of raw distributions (U/L and U/C) as a
function of the two pions fraction energies z, and transverse momentum pt, following the bin
subdivisions described in section 4.5.
Systematic effects which can influence the measurement of the asymmetry are discussed in
chapter 5. These effects are, whenever possible, evaluated indipendently for each bin of frac-
tional energy and pion transverse momentum.
In particular, we correct the asymmetries for a small bias observed when testing the procedure
on simulated events. We then estimate the background contributions from cc, BB, and τ+τ−

event, and correct the measured asymmetry as described in section 5.2.
Because of the dilution due to the approximation of the qq axis with the thrut axis, dicussed
in Sec. 5.3, we rescale the asymmetries measured in the RF12 frame by the factors obtained
weighting the uds MC sample. No correction factors are needed for the asymmetries in RF0.
Tables 5.20 - 5.22 summarize all the sizable systematic effects as a function of z and pt bins,
evaluated for each frame and for each double ratio. All systematic uncertainties are added in
quadrature.

The Collins asymmetries as a function of (z1, z2)bins, corrected for the background contribu-
tions summarized above, and including all systematic effects, are shown in Fig. 6.1(for each
plot z1 is fixed and z2 runs between 0.15 and 1, following the binning described in section 4.5).
The up blue triangles refer to the U/L ratio, while the down green triangles to the U/C
ratio. The blue and green dotted bands indicate the corresponding systematic errors. These
results are summarized in Tab. 6.1 and 6.2, where we also report the mean values of z1, z2,
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Figure 6.1: Collins asymmetries for light quarks as a function of z2 for 6 z1 bins. The UL data
are represented by upper blue triangles and the systematic errors by the dotted blue band
superimposed under the points. The UC data are described by the down green triangles, and
their systematic uncertainties by the dotted green line. The upper plots (a) refer to the RF12
frame, while (b) to the RF0 frame.
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sin2 θth
1+cos2 θth

, and sin2 θ2
1+cos2 θ2

, that are needed in the global analysis fits in order to extract the Collins
fragmentation function and transversity [16, 17].
We can clearly see the rising of the asymmetry in each plot as a function of the fractional
energy, in agreement with theoretical predictions [35, 36, 110] and results from the Belle
experiment [14, 15]. The UC asymmetries are significantly smaller than the UL asymmetries.
Looking at Eqs. (4.18) and (4.19), one can observe that the U/C ratio introduces different
combinations of favored and disfavored fragmentation functions. In particular, the smaller but
not negligible value of the UC asymmetry suggests a large disfavored Collins fragmentation
function with opposite sign of the favored one [96].
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Figure 6.2: Comparison between our results (blue triangles) obtained using the full BABAR statis-
tics, the BABAR preliminary off-resonance data (green circles, only for the UL double ratio), and
the Belle results (red squares). In order to make the comparison, we averaged the results shown
in Tab. 6.1 and 6.2 falling in symmetric (z1, z2) bins, as defined in the text. The same proce-
dure is applied to the published Belle data [15]. The first four points are obtained by setting
0.2 < z1 < 0.3 and ranging z2 between 0.2-1; the next three points by setting 0.3 < z1 < 0.5 and
ranging z2 between 0.3-1; the next two points by setting 0.5 < z1 < 0.7 and ranging z2 between
0.5-1; the last point is the bin with 0.7 < z1, z2 < 1. All bins are summarized in the text.

Figures 6.2(a) and 6.2(b) show the asymmetry results obtained in this analysis (blue trian-
gles), the preliminary BABAR off-resonance data (green circles), and the Belle results [15] (red
squares), for the RF12 and RF0 frame, respectively. For this comparison we used the same
z-bin subdivisions as for the preliminary study, which consists of 10 symmetric bins of pion
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fractional energy defined as follow:

1. z1 = [0.2− 0.3] z2 = [0.2− 0.3],

2. z1 = [0.2− 0.3] z2 = [0.3− 0.5] and z1 = [0.3− 0.5] z2 = [0.2− 0.3],

3. z1 = [0.2− 0.3] z2 = [0.5− 0.7] and z1 = [0.5− 0.7] z2 = [0.2− 0.3],

4. z1 = [0.2− 0.3] z2 = [0.7− 1] and z1 = [0.7− 0.1] z2 = [0.2− 0.3],

5. z1 = [0.3− 0.5] z2 = [0.3− 0.5],

6. z1 = [0.3− 0.5] z2 = [0.5− 0.7] and z1 = [0.5− 0.7] z2 = [0.3− 0.5],

7. z1 = [0.3− 0.5] z2 = [0.7− 1] and z1 = [0.7− 1] z2 = [0.3− 0.5],

8. z1 = [0.5− 0.7] z2 = [0.5− 0.7],

9. z1 = [0.5− 0.7] z2 = [0.7− 1] and z1 = [0.7− 1] z2 = [0.5− 0.7],

10. z1 = [0.7− 1] z2 = [0.7− 1],

and we take the average of the results which fall in the same symmetrized (z1, z2) bin (note that
the lower bin (z < 0.2) is excluded). We note that the AUL asymmetries measured in the RF0
frame are in reasonable agreement each other (Fig. 6.2(b)), while a large difference is observed
in the thrust reference frame for the last two bins of fractional energy (Fig. 6.2(a)). Part of this

bin
)

2
,z

1
(z

1 2 3 4 5 6 7 8 9 10

12U
L

A

0

0.05

0.1

0.15

0.2

0.25
0 deg
1 deg
2 deg
3 deg

Figure 6.3: AUL asymmetry in the RF12 frame calculated for different cuts on the opening angle
between the pion momentum and the thrust axis: no cut (blue squares), 1 degree (open black
circles), 2 degree (full red circles, which corresponds to the cut used in this analysis), and 3
degree (green triangles). The asymmetry is significantly diluted in the last two z-bins (higher
values of fractional energy), since the momenta of both pions are very close to the thrust axis,
and the uncertainties in the azimuthal angles become large.

discrepancy, up to 20%, is due to the correction factors which are estimated bin-by-bin (see
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Fig. 5.19 and Tab. 5.14), instead of using the mean value as done in the BABAR preliminary and
Belle results. However, the largest effect is due to the additional cut that removes those pions
with an opening angle smaller than 2◦ around the thrust axis, not applied in the analysis for
the preliminary results. The determination of the azimuthal angles for tracks very close to the
thrust axis is affected by large uncertainties, with the effect that the azimuthal asymmetry in
this kinematic conditions is strongly diluted. The fraction of tracks very close to the thrust
axis is very small, but, by definition of the thrust axis, they are also the most energetic tracks
in the event, and this explains why this effect is visible only in the bins with the highest z
values, while the z-integrated asymmetries are almost unaffected. The dilution effect is clearly
visible in Fig. 6.3, where the measured AUL12 asymmetries, not corrected for the background
contributions, is reported for different cuts on the opening angle between the thrust axis and the
pion momenta. The red circles correspond to the asymmetries measured requiring a minimum
opening angle of 2◦, chosen for this analysis, and can be compared with the blue squares, for
which the cut is not applied. It is clearly visible the dilution of the asymmetries for high z

values, the last two bins, while for an opening angle of 3◦ the measured asymmetry seems to
have stabilized. The same effect does not influence the pt distributions since the dependence
on z is integrated over.
Figures 6.2(c) and 6.2(d) compare our results for the UC double ratio (blue triangles) with the
Belle asymmetry (red squares) as a function of the symmetric z-bins previously described. Also
in this case the results in the RF0 frame are in good agreement, while our data is systematically
above Belle data in the RF12 frame. The largest discrepancies for high fractional energy can be
explained as above, while the the deviation observed at smaller z has not yet been understood.

The asymmetries as a function of (pt1, pt2)-bins (a) and pt0 (b) are shown Fig. 6.4. The UL
results are represented by the upper blue triangles, and the UC by the down green one. Sys-
tematic errors are shown by the dotted blue and green bands superimposed to the respective
points.
This is the first measurement ever of the Collins asymmetry dependence on the pion transverse
momenta in e+e− annihilation. Data show a rising of the asymmetry as a function of pt, with
the UC asymmetry parameters smaller than UL, confirming an opposite sign of the favored
and disfavored fragmentation functions. This new result is particularly important from a the-
oretical point of view since it allows to understand the behavior of the Collins fragmentation
function, and its evolution.

6.2 Collins asymmetries vs polar angle sin2 θ/(1 + cos2 θ)

The transverse quark polarization of the original qq pair created in e+e− annihilation, should
lead to a sin2 θ/(1 + cos2 θ) dependence of the Collins asymmetry.
Experimentally, we cannot access the polar angle emission of the qq, but a similar dependence
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(a) RF12: Collins asymmetries vs (pt1, pt2)-bins
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Figure 6.4: Light quark (uds) Collins asymmetries as a function of pt2 for 4 pt1 bins (a), and
as a function of 4 pt0 bins (b). The UL data are represented by upper blue triangles and the
systematic errors by the dotted blue band superimposed under the points. The UC data are
described by the down green triangles, and their systematic uncertainties by the dotted green
line.

is obtained assuming as θ respectively the polar angle of the thrust axis (θth), and the polar
angle of the reference hadron (θ2) in the two reference frames:

RU12

RL12

∝ 1 +
sin2 θth

1 + cos2 θth
cos(φ1 + φ2){GU −GL}

RU0
RL0
∝ 1 +

sin2 θ2

1 + cos2 θ2
cos(2φ0){GU −GL}

(6.1)

where GU and GL are described in the Eq. (4.17). The same dependence is true for the UC
double ratio, with the only difference that GC contains different combinations of favored and
disfavored fragmentation functions, as shown in Eq. (4.19). The behavior of the asymmetries
A12 andA0 as a function of sin2 θ/(1+cos2 θ), with the proper polar angle, are shown in Fig. 6.5.
For each bins, we corrected the asymmetries for the background contributions of cc, BB, and
τ+τ− events following the same procedure described in section 5.2. The A12 asymmetries are
not rescaled by the correction factor ζ12, since we found that it is the same for all bins (ζ12 =

1.559 ± 0.003), and thus changes only the slope of the distributions, but not the intercept with
the vertical axis. As systematic uncertainties we assigned the average values of the significant
contributions studied in Chapter 5, added in quadrature in Fig. 6.5 (dotted blue and green error
bands).
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The dotted lines in Fig. 6.5(a), which represent the results of linear fit to the two sets of point of
RF12, approximatively intersect the origin consistently with the expectations. On the contrary,
the fits clearly favor a non zero constant terms for AUL0 and A0

UC (Fig. 6.5(b)). This behavior is
not completely unexpected given that θ2 is much less correlated to the original qq direction with
respect to the thrust axis, which is in some way an average of the momenta of the fragmenting
products.
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Figure 6.5: Light quark asymmetry parameters calculated in the RF12 frame (a) and in the RF0
frame (b), as a function of sin2 θ/(1 + cos2 θ), where θ ≡ θth in plot (a) and θ ≡ θ2 in plot (b).
The upper blue triangles refer to the UL asymmetry, while the down green triangles to the UC
asymmetry. Systematic contributions are showed by dotted blue and green bars, respectively.
The linear fits (p0 +p1 ·x) is also displayed by a dashed lines for each double ratio, following the
same color legend as described before. The fit results are: A12,UL → p0 = (−0.005± 0.002) and
p1 = (0.043 ± 0.003); A12,UC → p0 = (−0.002 ± 0.002) and p1 = (0.019 ± 0.002); A0,UL → p0 =
(0.014±0.002) and p1 = (0.009±0.003); A0,UC → p0 = (0.006±0.001) and p1 = (0.004±0.002).
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z1 < z1 > z2 < z2 >
sin2 θth

1+cos2 θth

sin2 θ2
1+cos2 θ2

AUL12 AUL0

[0.15, 0.2] 0.174 [0.15, 0.2] 0.174 0.716 0.687 0.0235 ± 0.0021 ± 0.0016 0.0115 ± 0.0015 ± 0.0008
[0.15, 0.2] 0.174 [0.2, 0.3] 0.244 0.715 0.683 0.0306 ± 0.0019 ± 0.0017 0.0140 ± 0.0012 ± 0.0008
[0.15, 0.2] 0.174 [0.3, 0.4] 0.344 0.711 0.676 0.0303 ± 0.0027 ± 0.0022 0.0127 ± 0.0016 ± 0.0020
[0.15, 0.2] 0.174 [0.4, 0.5] 0.443 0.706 0.670 0.0342 ± 0.0027 ± 0.0023 0.0137 ± 0.0017 ± 0.0020
[0.15, 0.2] 0.174 [0.5, 0.7] 0.576 0.698 0.662 0.0485 ± 0.0040 ± 0.0036 0.0166 ± 0.0020 ± 0.0019
[0.15, 0.2] 0.174 [0.7, 1] 0.772 0.679 0.646 0.0525 ± 0.0053 ± 0.0036 0.0239 ± 0.0025 ± 0.0019
[0.2, 0.3] 0.244 [0.15, 0.2] 0.174 0.715 0.685 0.0300 ± 0.0018 ± 0.0017 0.0128 ± 0.0012 ± 0.0008
[0.2, 0.3] 0.244 [0.2, 0.3] 0.244 0.714 0.682 0.0355 ± 0.0018 ± 0.0018 0.0157 ± 0.0011 ± 0.0008
[0.2, 0.3] 0.244 [0.3, 0.4] 0.344 0.710 0.676 0.0399 ± 0.0027 ± 0.0024 0.0187 ± 0.0017 ± 0.0020
[0.2, 0.3] 0.244 [0.4, 0.5] 0.444 0.706 0.671 0.0443 ± 0.0027 ± 0.0025 0.0182 ± 0.0017 ± 0.0020
[0.2, 0.3] 0.244 [0.5, 0.7] 0.576 0.698 0.664 0.0600 ± 0.0036 ± 0.0036 0.0237 ± 0.0019 ± 0.0019
[0.2, 0.3] 0.244 [0.7, 1] 0.773 0.681 0.650 0.0692 ± 0.0048 ± 0.0037 0.0307 ± 0.0024 ± 0.0020
[0.3, 0.4] 0.344 [0.15, 0.2] 0.174 0.711 0.682 0.0255 ± 0.0026 ± 0.0019 0.0123 ± 0.0017 ± 0.0019
[0.3, 0.4] 0.344 [0.2, 0.3] 0.244 0.710 0.680 0.0336 ± 0.0024 ± 0.0021 0.0147 ± 0.0016 ± 0.0019
[0.3, 0.4] 0.344 [0.3, 0.4] 0.344 0.706 0.674 0.0476 ± 0.0041 ± 0.0027 0.0226 ± 0.0030 ± 0.0036
[0.3, 0.4] 0.344 [0.4, 0.5] 0.444 0.703 0.670 0.0422 ± 0.0039 ± 0.0025 0.0200 ± 0.0027 ± 0.0036
[0.3, 0.4] 0.344 [0.5, 0.7] 0.577 0.696 0.664 0.0615 ± 0.0054 ± 0.0063 0.0278 ± 0.0031 ± 0.0055
[0.3, 0.4] 0.344 [0.7, 1] 0.774 0.681 0.653 0.0737 ± 0.0069 ± 0.0066 0.0425 ± 0.0035 ± 0.0056
[0.4, 0.5] 0.443 [0.15, 0.2] 0.174 0.706 0.680 0.0303 ± 0.0027 ± 0.0020 0.0098 ± 0.0017 ± 0.0019
[0.4, 0.5] 0.444 [0.2, 0.3] 0.244 0.706 0.678 0.0383 ± 0.0025 ± 0.0023 0.0176 ± 0.0017 ± 0.0019
[0.4, 0.5] 0.444 [0.3, 0.4] 0.344 0.703 0.673 0.0436 ± 0.0039 ± 0.0026 0.0203 ± 0.0028 ± 0.0036
[0.4, 0.5] 0.444 [0.4, 0.5] 0.444 0.699 0.669 0.0481 ± 0.0046 ± 0.0027 0.0202 ± 0.0029 ± 0.0036
[0.4, 0.5] 0.444 [0.5, 0.7] 0.577 0.693 0.664 0.0666 ± 0.0058 ± 0.0064 0.0342 ± 0.0033 ± 0.0056
[0.4, 0.5] 0.445 [0.7, 1] 0.776 0.679 0.653 0.0920 ± 0.0101 ± 0.0070 0.0515 ± 0.0051 ± 0.0058
[0.5, 0.7] 0.576 [0.15, 0.2] 0.174 0.698 0.677 0.0453 ± 0.0039 ± 0.0038 0.0149 ± 0.0020 ± 0.0018
[0.5, 0.7] 0.577 [0.2, 0.3] 0.244 0.698 0.676 0.0555 ± 0.0036 ± 0.0040 0.0223 ± 0.0019 ± 0.0019
[0.5, 0.7] 0.577 [0.3, 0.4] 0.344 0.696 0.671 0.0616 ± 0.0055 ± 0.0068 0.0293 ± 0.0031 ± 0.0048
[0.5, 0.7] 0.577 [0.4, 0.5] 0.444 0.693 0.668 0.0773 ± 0.0059 ± 0.0069 0.0317 ± 0.0033 ± 0.0048
[0.5, 0.7] 0.578 [0.5, 0.7] 0.578 0.688 0.662 0.1061 ± 0.0072 ± 0.0087 0.0460 ± 0.0037 ± 0.0034
[0.5, 0.7] 0.580 [0.7, 1] 0.779 0.674 0.652 0.1816 ± 0.0127 ± 0.0102 0.0797 ± 0.0060 ± 0.0040
[0.7, 1] 0.772 [0.15, 0.2] 0.174 0.679 0.672 0.0509 ± 0.0051 ± 0.0039 0.0221 ± 0.0025 ± 0.0019
[0.7, 1] 0.773 [0.2, 0.3] 0.244 0.682 0.672 0.0679 ± 0.0048 ± 0.0042 0.0317 ± 0.0023 ± 0.0020
[0.7, 1] 0.775 [0.3, 0.4] 0.344 0.682 0.668 0.0783 ± 0.0070 ± 0.0069 0.0391 ± 0.0035 ± 0.0048
[0.7, 1] 0.777 [0.4, 0.5] 0.444 0.679 0.665 0.0977 ± 0.0103 ± 0.0071 0.0583 ± 0.0051 ± 0.0050
[0.7, 1] 0.779 [0.5, 0.7] 0.580 0.674 0.660 0.1879 ± 0.0127 ± 0.0104 0.0799 ± 0.0060 ± 0.0040
[0.7, 1] 0.788 [0.7, 1] 0.787 0.661 0.649 0.4390 ± 0.0230 ± 0.0178 0.1611 ± 0.0101 ± 0.0060

Table 6.1: Light quark (uds) Collins asymmetries obtained fitting the UL double ratio as a func-
tion of (z1, z2). In the first two columns, are reported the z bins and the respective mean value
for the pions in one hemisphere; in the following two columns, are shown the same variables
for the second pion; in the middle columns are summarized the mean value of sin2 θ/(1+cos2 θ)
calculated in the RF12 and RF0 frames, respectively; finally, in the last two columns are sum-
marized the asymmetry results. The errors shown are statistical and systematic.
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z1 < z1 > z2 < z2 >
sin2 θth

1+cos2 θth

sin2 θ2
1+cos2 θ2

AUC12 AUC0

[0.15, 0.2] 0.174 [0.15, 0.2] 0.174 0.716 0.687 0.0110 ± 0.0016 ± 0.0008 0.0054 ± 0.0011 ± 0.0004
[0.15, 0.2] 0.174 [0.2, 0.3] 0.244 0.715 0.683 0.0140 ± 0.0015 ± 0.0008 0.0065 ± 0.0010 ± 0.0004
[0.15, 0.2] 0.174 [0.3, 0.4] 0.344 0.711 0.676 0.0141 ± 0.0022 ± 0.0010 0.0058 ± 0.0014 ± 0.0009
[0.15, 0.2] 0.174 [0.4, 0.5] 0.443 0.706 0.670 0.0156 ± 0.0023 ± 0.0010 0.0062 ± 0.0014 ± 0.0009
[0.15, 0.2] 0.174 [0.5, 0.7] 0.576 0.698 0.662 0.0226 ± 0.0034 ± 0.0016 0.0075 ± 0.0017 ± 0.0008
[0.15, 0.2] 0.174 [0.7, 1] 0.772 0.679 0.646 0.0229 ± 0.0044 ± 0.0016 0.0101 ± 0.0020 ± 0.0008
[0.2, 0.3] 0.244 [0.15, 0.2] 0.174 0.715 0.685 0.0138 ± 0.0015 ± 0.0008 0.0059 ± 0.0010 ± 0.0004
[0.2, 0.3] 0.244 [0.2, 0.3] 0.244 0.714 0.682 0.0160 ± 0.0014 ± 0.0008 0.0071 ± 0.0009 ± 0.0004
[0.2, 0.3] 0.244 [0.3, 0.4] 0.344 0.710 0.676 0.0179 ± 0.0021 ± 0.0011 0.0084 ± 0.0013 ± 0.0009
[0.2, 0.3] 0.244 [0.4, 0.5] 0.444 0.706 0.671 0.0194 ± 0.0021 ± 0.0011 0.0080 ± 0.0013 ± 0.0009
[0.2, 0.3] 0.244 [0.5, 0.7] 0.576 0.698 0.664 0.0271 ± 0.0030 ± 0.0016 0.0103 ± 0.0015 ± 0.0008
[0.2, 0.3] 0.244 [0.7, 1] 0.773 0.681 0.650 0.0292 ± 0.0040 ± 0.0016 0.0124 ± 0.0019 ± 0.0008
[0.3, 0.4] 0.344 [0.15, 0.2] 0.174 0.711 0.682 0.0121 ± 0.0022 ± 0.0008 0.0056 ± 0.0014 ± 0.0009
[0.3, 0.4] 0.344 [0.2, 0.3] 0.244 0.710 0.680 0.0153 ± 0.0020 ± 0.0009 0.0065 ± 0.0013 ± 0.0009
[0.3, 0.4] 0.344 [0.3, 0.4] 0.344 0.706 0.674 0.0215 ± 0.0031 ± 0.0010 0.0095 ± 0.0019 ± 0.0016
[0.3, 0.4] 0.344 [0.4, 0.5] 0.444 0.703 0.670 0.0184 ± 0.0031 ± 0.0010 0.0082 ± 0.0019 ± 0.0016
[0.3, 0.4] 0.344 [0.5, 0.7] 0.577 0.696 0.664 0.0267 ± 0.0043 ± 0.0026 0.0112 ± 0.0022 ± 0.0023
[0.3, 0.4] 0.344 [0.7, 1] 0.774 0.681 0.653 0.0296 ± 0.0058 ± 0.0026 0.0161 ± 0.0027 ± 0.0024
[0.4, 0.5] 0.344 [0.15, 0.2] 0.774 0.681 0.653 0.0141 ± 0.0023 ± 0.0008 0.0044 ± 0.0014 ± 0.0009
[0.4, 0.5] 0.344 [0.2, 0.3] 0.774 0.681 0.653 0.0169 ± 0.0021 ± 0.0009 0.0077 ± 0.0013 ± 0.0009
[0.4, 0.5] 0.344 [0.3, 0.4] 0.774 0.681 0.653 0.0189 ± 0.0031 ± 0.0010 0.0084 ± 0.0019 ± 0.0016
[0.4, 0.5] 0.344 [0.4, 0.5] 0.774 0.681 0.653 0.0202 ± 0.0036 ± 0.0010 0.0081 ± 0.0022 ± 0.0016
[0.4, 0.5] 0.344 [0.5, 0.7] 0.774 0.681 0.653 0.0278 ± 0.0047 ± 0.0026 0.0133 ± 0.0024 ± 0.0023
[0.4, 0.5] 0.344 [0.7, 1] 0.774 0.681 0.653 0.0353 ± 0.0082 ± 0.0027 0.0185 ± 0.0038 ± 0.0024
[0.5, 0.7] 0.443 [0.15, 0.2] 0.174 0.706 0.680 0.0213 ± 0.0033 ± 0.0017 0.0066 ± 0.0017 ± 0.0008
[0.5, 0.7] 0.444 [0.2, 0.3] 0.244 0.706 0.678 0.0250 ± 0.0030 ± 0.0018 0.0096 ± 0.0015 ± 0.0008
[0.5, 0.7] 0.444 [0.3, 0.4] 0.344 0.703 0.673 0.0266 ± 0.0043 ± 0.0029 0.0116 ± 0.0022 ± 0.0020
[0.5, 0.7] 0.444 [0.4, 0.5] 0.444 0.699 0.669 0.0321 ± 0.0048 ± 0.0029 0.0122 ± 0.0024 ± 0.0020
[0.5, 0.7] 0.444 [0.5, 0.7] 0.577 0.693 0.664 0.0446 ± 0.0060 ± 0.0034 0.0174 ± 0.0029 ± 0.0013
[0.5, 0.7] 0.445 [0.7, 1] 0.776 0.679 0.653 0.0686 ± 0.0097 ± 0.0038 0.0272 ± 0.0043 ± 0.0014
[0.7, 1] 0.576 [0.15, 0.2] 0.174 0.698 0.677 0.0222 ± 0.0044 ± 0.0017 0.0092 ± 0.0021 ± 0.0008
[0.7, 1] 0.577 [0.2, 0.3] 0.244 0.698 0.676 0.0284 ± 0.0040 ± 0.0018 0.0128 ± 0.0019 ± 0.0008
[0.7, 1] 0.577 [0.3, 0.4] 0.344 0.696 0.671 0.0313 ± 0.0058 ± 0.0029 0.0147 ± 0.0027 ± 0.0020
[0.7, 1] 0.577 [0.4, 0.5] 0.444 0.693 0.668 0.0373 ± 0.0082 ± 0.0029 0.0209 ± 0.0039 ± 0.0021
[0.7, 1] 0.578 [0.5, 0.7] 0.578 0.688 0.662 0.0710 ± 0.0097 ± 0.0039 0.0274 ± 0.0043 ± 0.0014
[0.7, 1] 0.580 [0.7, 1] 0.779 0.674 0.652 0.1398 ± 0.0167 ± 0.0057 0.0340 ± 0.0061 ± 0.0016

Table 6.2: Light quark (uds) Collins asymmetries obtained fitting the UC double ratio as a func-
tion of (z1, z2). In the first two columns, are reported the z bins and the respective mean value
for the pions in one hemisphere; in the following two columns, are shown the same variables
for the second pion; in the middle columns are summarized the mean value of sin2 θ/(1+cos2 θ)
calculated in the RF12 and RF0 frames, respectively; finally, in the last two columns are sum-
marized the asymmetry results. The errors shown are statistical and systematic.
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pt1 < pt1 > < z1 > pt2 < pt2 > < z2 >
sin2 θth

1+cos2 θth
AUL12 AUC12

[0., 0.25] 0.171 0.250 [0., 0.25] 0.171 0.249 0.691 0.0255 ± 0.0065 ± 0.0010 0.0118 ± 0.0056 ± 0.0004
[0., 0.25] 0.170 0.251 [0.25, 0.5] 0.370 0.263 0.700 0.0292 ± 0.0034 ± 0.0008 0.0135 ± 0.0029 ± 0.0003
[0., 0.25] 0.169 0.252 [0.5, 0.75] 0.596 0.309 0.708 0.0366 ± 0.0050 ± 0.0013 0.0171 ± 0.0042 ± 0.0005
[0., 0.25] 0.169 0.253 [> 0.75] 0.894 0.412 0.709 0.0606 ± 0.0084 ± 0.0025 0.0265 ± 0.0068 ± 0.0011
[0.25, 0.5] 0.370 0.263 [0., 0.25] 0.171 0.251 0.700 0.0405 ± 0.0036 ± 0.0019 0.0190 ± 0.0030 ± 0.0008
[0.25, 0.5] 0.367 0.271 [0.25, 0.5] 0.366 0.271 0.711 0.0444 ± 0.0018 ± 0.0012 0.0201 ± 0.0015 ± 0.0005
[0.25, 0.5] 0.365 0.275 [0.5, 0.75] 0.596 0.323 0.720 0.0393 ± 0.0027 ± 0.0024 0.0181 ± 0.0022 ± 0.0010
[0.25, 0.5] 0.363 0.279 [> 0.75] 0.890 0.424 0.720 0.0613 ± 0.0042 ± 0.0044 0.0271 ± 0.0034 ± 0.0020
[0.5, 0.75] 0.596 0.308 [0., 0.25] 0.169 0.252 0.708 0.0312 ± 0.0050 ± 0.0016 0.0146 ± 0.0042 ± 0.0006
[0.5, 0.75] 0.596 0.322 [0.25, 0.5] 0.365 0.276 0.720 0.0403 ± 0.0027 ± 0.0019 0.0184 ± 0.0022 ± 0.0008
[0.5, 0.75] 0.595 0.325 [0.5, 0.75] 0.595 0.326 0.731 0.0477 ± 0.0054 ± 0.0044 0.0209 ± 0.0035 ± 0.0020
[0.5, 0.75] 0.595 0.330 [> 0.75] 0.885 0.423 0.735 0.0601 ± 0.0068 ± 0.0081 0.0255 ± 0.0051 ± 0.0038
[> 0.75] 0.894 0.412 [0., 0.25] 0.169 0.253 0.709 0.0514 ± 0.0081 ± 0.0032 0.0234 ± 0.0067 ± 0.0014
[> 0.75] 0.890 0.423 [0.25, 0.5] 0.363 0.279 0.721 0.0529 ± 0.0041 ± 0.0026 0.0238 ± 0.0034 ± 0.0011
[> 0.75] 0.885 0.422 [0.5, 0.75] 0.595 0.332 0.735 0.0570 ± 0.0067 ± 0.0080 0.0240 ± 0.0051 ± 0.0036
[> 0.75] 0.882 0.427 [> 0.75] 0.882 0.428 0.742 0.0634 ± 0.0117 ± 0.0148 0.0271 ± 0.0086 ± 0.0065

pt0 < pt0 > < z1 > < z2 >
sin2 θ2

1+cos2 θ2
AUL0 AUC0

[0., 0.25] 0.171 0.227 0.299 0.683 0.0025 ± 0.0015 ± 0.0001 0.0010 ± 0.0012 ± 0.0002
[0.25, 0.5] 0.380 0.237 0.293 0.679 0.0143 ± 0.0010 ± 0.0007 0.0065 ± 0.0008 ± 0.0003
[0.5, 0.75] 0.607 0.276 0.280 0.677 0.0216 ± 0.0013 ± 0.0034 0.0097 ± 0.0009 ± 0.0016
[> 0.75] 1.054 0.424 0.261 0.677 0.0250 ± 0.0012 ± 0.0070 0.0110 ± 0.0009 ± 0.0032

Table 6.3: Light quark (uds) Collins asymmetries obtained fitting the UL and UC double ratios
as a function of pt. In particular, the first part of the table summarizes the results in the RF12
frame (as a function of (pt1, pt2) bins), while in the lower part are shown the results obtained
in the RF0 frame (as a function of pt0). In the first three columns, are reported the quantities
which refer to the first pion, followed by the same variables for the second pion. In the seventh
column are summarized the mean value of sin2 θ/(1 + cos2 θ), with θ ≡ θth in RF12 and θ ≡ θ2

in RF0. Finally, in the last two columns are reported the asymmetry results. The errors shown
are statistical and systematic.



Conclusions and outlook

In this thesis we presented the measurement of the Collins asymmetries in inclusive production
of pion pairs with the BABAR experiment data. The results obtained in these studies can be
compared with the Belle asymmetries [15], which first performed the extraction of the Collins
asymmetry with high precision in e+e− annihilation. Our results are competitive with Belle
measurement, and, in addition, we also studied the behavior of the asymmetries not only as a
function of fractional pion energy z, but also as a function of transverse momentum pt, which
had never been done so far in e+e− annihilation.

This analysis is based on a data sample of 468 fb−1 collected by the BABAR detector at the
PEP-II storage ring from 1999 to 2008. Despite the BABAR experiment was initially designed for
studying CP violation in B mesons, it has been demonstrated to be one of the most suitable
environment for inclusive hadrons analysis. The tracking system and the excellent particle
identification of BABAR allow to measure these small asymmetries with high precision and small
systematic uncertainties.

In particular, the measurement of Collins asymmetries is performed in two reference
frames: the RF12 frame (or thrust RF), and the RF0 frame (or second hadron momentum RF).
Detector acceptance and higher order radiative effects are removed performing the double ra-
tio of raw asymmetries, for example the raw asymmetry of unlike (U) sign pion pairs over that
for like (L) sign pion pairs. In addition to these double ratios (UL), we performed the ratio of
unlike over any charged (C) pion pairs, called also UC double ratio. In this way, we can access
the information of the sign and relative amplitude of the favored and disfavored fragmentation
processes [96].

Figures 6.1 and 6.4 show the results as a function of (z1, z2), (pt1, pt2), and pt0 bins, respec-
tively. The UL double ratio results as a function of (z1, z2) are summarized in Tab. 6.1, while
Tab. 6.2 reports the results of the UC double ratio. Finally, the pt dependence of the Collins
asymmetries for the UL and UC ratio are shown in Tab. 6.3. The measured asymmetries are
corrected by the charm, bottom and tau background contributions, and all the sizable system-
atic effects are included.

We also studied the Collins asymmetry in different bins of sin2 θ/(1 + cos2 θ), where θ ≡ θth
in the RF12 frame, and θ ≡ θ2 in the RF0 frame. Also in these case the final asymmetry is
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corrected by the background contributions (charm, bottom, and tau as before), and all the sys-
tematic effects are evaluated. Figure 6.5 shows the behavior as a function of sin2 θ/(1 + cos2 θ).

We also compare the measured asymmetry as a function of the fractional energies with
our preliminary results [111] and Belle results [15]. Because of the different binning in the
three analysis, we combine opportunely the various bins in order to have the asymmetries
evaluated in 10 symmetrized bins of fractional energies, as described in Sec. 6.1. We find a
good agreement of the asymmetry measured in the RF0 frame, for both UL and UC double
ratio. Nevertheless, significant discrepancies are clearly visible for the asymmetries measured
in the thrust reference frame. For the UL double ratio, shown in Fig. 6.2(a), the discrepancies
are observable in the last two z-bins (pion pairs with higher fractional energy), and are due to
the additional cut which discarded tracks with an opening angle with respect to the thrust axis
less than 2◦. This requirement, that was not used in the previous analysis, is indeed necessary
because the measurement of the azimuthal angles for the rejected tracks is unreliable, with a
result of a dilution of the measured asymmetries, in particular for high z values. Instead, the
discrepancy observed for the UC double ratio is not yet understood.

The measurement of the Collins asymmetries in the pions system is completed and a jour-
nal paper summarizing the results is in preparation. These data can be used for the extraction
of the transversity PDF, as just done by the authors of Ref. [16, 17], and will be helpful to in-
crease the precision of the present fits. The same analysis procedure can be used to study the
asymmetries in the kaons system, for which no data in e+e− annihilation are still present. In
this case, the pions contamination is the most significant background source, and a very accu-
rate description of it is needed in order to perform the measurement. These results are eagerly
awaited, since they bring information about the role of the strange quark. However, a lot of
other measurements will be performed, as measuring the asymmetries for different combina-
tions of hadron pairs or the measurement of Interference FF. In this scenario, the measurement
of Collins asymmetries for pion pairs is only the first step of an entirely new and reach program
of measurements that can be performed with the high quality BABAR data.



Appendix A

Light-Cone Quantization

In this appendix, we reported a review of some basic features of Light-Cone (LC) quantiza-
tion [20, 112, 113, 114], since the discussion of hard processes is particularly simple in this
context. We use the following component notation

aµ = [a+, a−,a⊥] (A.1)

for any four vector aµ, with the light-cone components a± = (a0 ± a3)/
√

2 and the two-
dimensional transverse part a⊥ = (a1, a2).
With the non-diagonal metric tensor (µ, ν = +,−, 1, 2)

gµν =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 (A.2)

the scalar product of two four-vectors is given as

a · b = aµ · bµ = gµνaµbν = a+b− + a−b+ − a⊥ · b⊥. (A.3)

Notice that the non-zero off-diagonal entries in the metric tensor make the conversion of con-
travariant and covariant vectors somewhat confusing, resulting for instance in a± = a∓, and
∂± ≡ ∂/∂z± = ∂/∂z∓. Frequently, in the formalism used in this report, we used the two
light-like unit vectors n±

n+ ≡ [1, 0,0⊥] n− ≡ [0, 1,0⊥] (A.4)

satisfying n2
+ = n2

− = 0 and n+ · n− = 1. With the help of n± LC components can be projected
out by

a+ = n− · a a− = n+ · a. (A.5)

What are the motivations for defining such coordinates, which evidently depend on a par-
ticular choice of the z axis? One is that these coordinates transform very simply under boost
along the z-axis. Another is that when a vector is highly boosted along the z-axis, LC coordi-
nates show what are the large and small components of momentum.
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Longitudinal and Transverse boost

A Lorentz transformation which boost coordinates from the rest frame of a particle to a frame
where the particle moves with velocity v along the z−axis, changes the ordinary components
according to

x̃0 =
x0 + vx3

√
1− v2

, x̃3 =
x3 + vx0

√
1− v2

, x̃1 = x1, x̃2 = x2. (A.6)

The same relation written in LC components take the form

x̃+ = x+eψ, x̃− = x−e−ψ, x̃⊥ = x⊥ (A.7)

where the hyperbolic angle ψ is ln((1 + v)/(1− v))/2, so that v = tanhψ [115]. The momentum
of a particle with mass m obtained by a boost with ψ from the rest frame is

p̃µ =

[
p+,

m2

2p+
,0⊥

]
=

[
m√

2
eψ,

m√
2
e−ψ,0⊥

]
(A.8)

A particularly useful Lorentz transformation is a transverse boost which leave the plus (or
minus) component of any momentum vector a unchanged, and which involves a parameter b+

and transverse vector b⊥:

aµ = [a+, a−,a⊥] (A.9)

→ ãµ =

[
a+, a− − a⊥ · b⊥

b+
+
a+b2

⊥
2(b+)2

, a⊥ −
a+

b+
b⊥

]
(A.10)

with ã2 = 2a+a− − a2
⊥ = a2.

Note the distinction of a transverse boost from a rotation. There is always a rotation in coordi-
nate space which as the same effect on the transverse momentum components. But a rotation
leaves the energy component unchanged and thus changes the plus (minus) LC component.
Rotations and transverse boosts in general do not commute.

Equations of motion

It turns out useful to define projectors

P± =
1

2
γ∓γ± (A.11)

with
P+ + P− = 1 P+P− = P−P+ = 0 P 2

± = P±. (A.12)

The LC projections of the Dirac field, ψ+ ≡ P+ψ and ψ− ≡ P−ψ are known as the good and
bad LC component of ψ respectively. To save on subscripts we shall replace ψ± as follow:

ψ+ ⇒ φ ψ− ⇒ χ
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The importance of P±, and the following different role of good and bad components of the
quark fields, becomes clear when they are used to project the Dirac equation of motion down
to the two-component equations,

iγ+D−φ = i~γ⊥ ·D⊥χ+mχ (A.13)

iγ−D+χ = i~γ⊥ ·D⊥φ+mφ, (A.14)

where D± = ∂/∂z∓ + igA±. In the LC gauge A+ = 0, for example, z+ is the evolution (’time’)
parameter. The equation (A.14) only involves ∂/∂z− (the LC-time z+ does not occur at all),
so it appears that χ is not an independent dynamical field. Instead the Dirac equation con-
strains χ in terms of φ and A⊥ at fixed z+, which therefore should be regarded as composite
χ = F [φ,A⊥].
Although the complete quantization of QCD requires much more work, the implication of the
Dirac field is already clear: the good components should be regarded as independent prop-
agating degrees of freedom; the bad components are dependent field (actually quark-gluon
composites).

General bilocal quark field operator

We want to find a general form for a bilocal quark field operator with an arbitrary 4× 4 matrix
A, such as ψ(z1)Aψ(z2) = ψ†(z1)γ0Aψ(z2). In the chiral representation (Weyl representation)
defined by

γ0 =

(
0 1

1 0

)
; ~γ =

(
0 −~σ
~σ 0

)
; γ5 =

(
1 0
0 −1

)
(A.15)

where σ are the usual Pauli matrices, the projectors to good and bad components take the explicit
form form

P+ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , P− =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , (A.16)

such that

P+


a
b
c
d

 =


a
0
0
d

 , P−


a
b
c
d

 =


0
b
c
0

 , (A.17)

i.e., the 1st and 4th components of a four-spinor in the Weyl representation represent the good
components of the fields, whereas the 2nd and 3rd represent the bad ones.

The chiral structure of the operator can easily be included by defining chiral projectors

PR,L =
1

2
(1± γ5) (A.18)
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which, in the Weyl representation, have the simple form

PR =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , PL =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , (A.19)

such that

PR


a
b
c
d

 =


a
b
0
0

 , PL


a
b
c
d

 =


0
0
c
d

 . (A.20)

In other words the upper two components of a four-spinor represent the right-handed part
of the field, whereas the lower components represent the left-handed one. Combining equa-
tions (A.17) and (A.20) a four-spinor in Weyl representation can be written generically

ψ =


φR
χR
χL
φL

 (A.21)

and a matrix has the general structure
φ†RφR χ†RφR χ†LφR φ†LφR
φ†RχR χ†RχR χ†LχR φ†LχR
φ†RχL χ†RχL χ†LχL φ†LχL
φ†RφL χ†RφL χ†LφL φ†LφL

 (A.22)

where the generic notation indicates that a matrix element labelled for instance by φ†LχR relates
a left-handed good component of a quark field with a right-handed bad one, and so on.

Equipped with these tools one can read off the proprieties of the operator combination
ψ†(z1)(γ0A)ψ(z2) from its explicit form in Weyl representation. For instance, with A = γ+ a
comparison of

γ0γ+ =
√

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 (A.23)

with (A.22) results in the observation that ψ(z1)γ+ψ(z2) counts the sum of right and left left-
habded good quarks components:

ψ(z1)γ+ψ(z2) =
√

2(φ†R(z1)φR(z2) + φ†L(z1)φL(z2)). (A.24)

In Appendix C is reported a list of appropriate 4 × 4 matrices Mi (i = 1, . . . , 16) in Weyl
representation which by simple comparison with the generic pattern given in (A.22) revels its
chiral structure in terms of good and bad quark field components.



Appendix B

Transverse momenta in (semi-)inclusive
reactions

B.1 The concept of Parton Distribution Function (PDF) and Parton
Fragmentation Function (PFF)

The deep inelastic scattering of leptons on nucleons (DIS) has lead to the discovery of partons,
and is certainly the archetype of all hard reactions involving the concept of parton distribution
functions.

When a high-energetic lepton beam is scattered on a nucleon target, the electroweak inter-
action is mediated by the exchange of a highly virtual gauge boson: a photon, Z or W -boson.
The kinematics of the reaction is characterized by a Lorentz invariants which can be build from
the momenta of the lepton before and after the scattering, l and l′, and from the momentum of
the nucleon P . Conventionally one chooses as independent invariants the square of the centre
mass energy

s = (P + l)2, (B.1)

the virtuality of the gauge boson

q2 = (l′ − l)2 ≡ −Q2 (B.2)

and

ν =
P · q
M

(B.3)

where M is the nucleon mass. In the rest frame of the nucleon, ν has the interpretation of
transfered energy.

Two crucial steps have led to the discovery of partons and the formulation of parton model:
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1. The observation of the Bjorken scaling and its interpretation. At very large Q2, the differ-
ential cross section for elastic scattering processes is

dσ

dΩdE′
=

4αCME
′2

Q4

{
2 sin2 Θ

2
W1(ν,Q2) + cos2 Θ

2
W2(ν,Q2)

}
, (B.4)

where E′ is the energy, Ω the solid angle of the outgoing lepton, and Θ the scattering
angle in the nucleon rest frame. In the limit of Q2 → ∞, the so called Bjorken limit, the
structure functions F1 and F2, defined fromW1 andW2, depend to a good approximation
only on a certain combination of Q2 and ν

xBj =
Q2

2P · q
=

Q2

2Mν
(B.5)

and not on both invariants independently:

2MW1(ν,Q2) = F1(ν,Q2)→ F1(xBj), (B.6)

νW2(ν,Q2) = F2(ν,Q2)→ F2(xBj).

The fact that the dimensionless structure functions F1 and F2 depend on the dimension-
less combination of invariants indicates that the elastic scattering takes place on point-like
particles (otherwise dimensional form factors would show up).

2. A natural interpretation of the phenomenon arises in Feynmans parton model the basic idea
of which can be summarized in two simple rules:

• a rapidly moving hadron is trated as a jet of quasi-free partons moving almost
collinear;

• the cross section of the hadronic process is calculated as a convolution of partonic
cross section and parton distribution functions (PDFs) summed incoherently over
all partons.

The contribution to the cross section of DIS is given by the famous ’handbag’ diagram
shown in Fig. B.1, where also the factorization in soft and hard parts is indicated. The non-
perturbative information is encoded as quark-quark correlation function which in a light-cone
gauge takes the form [69]

Φij(p, P, S) =

∫
d4ξ

(2π)4
e−ip·ξ < P,S|ψj(ξ)ψi(0)|P, S > (B.7)

depending on the quark momentum p, the target nucleon momentum P , and possibility on
the spin of the nucleon (S). The link operator normally needed to render the definition gauge-
invariant does not appear because we choose the gauge A+ = 0 (it is in this picture that field
theory has the closest connection with the parton model [113, 116]), and in this gauge G = 1,
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Figure B.1: DIS: the ”handbag” diagram leading to the dominant contribution to the cross
section.

where G is a path-ordered exponential of the gluon field that appear in the definition of the
parton model.
In the totally inclusive DIS process the quark-quark correlation function (B.7) occurs traced
with certain Dirac matrices, and integrated over three of the four quark momentum compo-
nents:

Φ[Γ](x) =
1

2

∫
dp−d2pTTr(ΦΓ)

∣∣
p+=xP+ (B.8)

where Γ is a 4× 4 Dirac matrix (see Appendix C), and x is the light-cone momentum fraction.

Whenever hadrons in the final state are observed in a hard (semi-)inclusive process, an-
other bit of non-perturbetive information is needed to describe the reaction: the hadronisation
process of a parton. The most simple process involving hadronisation is the e+e− annihilation
into hadrons: e+e− → hX . The dominant contribution to the differential cross section of this
process involves the annihilation of electron and positron into a highly virtual photon (or Z
boson), and the creation of a quark-antiquark pair, as reported in Fig. B.2. The hadronisa-
tion of one member of the pair, say the final state hadron is observed in the quark jet, is of
non-perturbative nature and described by another quark-quark correlation function defined as
Fourier transformation of a hadronix matrix element of a bilocal quark field operator:

∆ij(k, Ph, Sh) =
∑
X′

1

(2π)4

∫
d4ξeik·ξ· < 0|ψi(ξ)|Ph, Sh;X ′ >< Ph, Sh;X ′|ψj(0)|0 > (B.9)

depending on the momentum k of the fragmenting quark, the momentum of the observed
hadron Ph, and possibly its spin Sh. In this definition, X ′ denotes all other hadrons produced.

Again, the link operator normally needed to render the definition gauge-invariant is not
shown adopting a light-cone gauge (A− = 0) and a suitable choice of the integration path.
The PFF are defined from ∆ by tracing the quark-quark correlation function with certain Dirac
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Figure B.2: Dominant contribution to the differential cross section of e+e− annihilation with
one observed hadron in the final state.

matrices, and integrating over three of the four momentum components of the fragmenting
quark:

∆[Γ](z) ≡ 1

4z

∫
dk+d2kTTr(∆Γ)

∣∣∣k−=P−h /z
(B.10)

where z is the fraction of the momentum in the minus direction carried by the hadron h

originating from the fragmentation of the quark. Note that we assume initial state hadrons to
move from left to right with a large plus component, and hadrons in the final state moving
from right to left with a large minus component.

PDFs and PFFs occur together in the description of SIDIS (lH → l′hX), and the product of
two PFFs in the process e+e− → h1h2X (described in this analysis).

The sensitivity to the quark transverse momenta arises, in general, for any hard process
involving two or more soft hadronic matrix elements like two hadron inclusive e+e− annihila-
tion, the Drell-Yan precess, or SIDIS. For the description of totally inclusive DIS, for example,
one can always choose a reference frame where the target momentum P and the photon mo-
menta q are collinear. If one hadron in the final state is measured, there is no frame where all
the relevant four vectors are collinear; one of them will unavoidably have transverse momen-
tum components. Observable which are unintegrated in this external transverse momentum
component will have a sensitivity to the transverse momentum components which quarks can
have relative to their parents momenta (this sensitivity is due to the momentum conservation).
In Fig. B.3 is illustrated how the transverse momentum dependent PDFs and PFFs are related
to the integrated ones, where f1(x) andD1(z) are the spin-independent PDF and PFF occurring
at leading order respectively.
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Figure B.3: Illustration of transverse momentum components quarks can have relative to their
parent hadron momenta, and transverse momentum dependent PDFs and PFFs. P and p are
defined in Fig. B.1; k in Fig. B.2.

B.2 PFFs

Starting from equation (B.9), two constraints arising from the hermiticity proprieties of the field
and invariance under parity:

∆†(k, Ph, Sh) = γ0∆(k, Ph, Sh)γ0 [Hermiticity] (B.11)

∆(k, Ph, Sh) = γ0∆(k, P h,−Sh)γ0 [Parity] (B.12)

with the shorthand notation P ≡ (P 0,−P i) for four vectors with reversed sign in their spatial
components. Recalling that ∆ij is a 4× 4 matrix in Dirac space, the most general expression for
∆ consistent with the constraints from hermiticity and parity is:

∆(k, P, S) = MA1 +A2 /P +A3/k + (A4/M)σµνPµkν + iA5(k · S)γ5 (B.13)

+ MA6/Sγ5 + (A7/M)(k · S)/Pγ5 + (A8/M)(k · S)/kγ5 +

+ iA9σ
µνγ5§µPν + iA10σ

µνγ5Sµkν + i(A11/M
2)(k · S)σµνγ5kµPν

+ (A12/M)εµνρσγ
µP νkρSσ

where we use the shorthand notation P = Ph, S = Sh, and the amplitude Ai = Ai(σh, τh)

depend on the invariants σ ≡ 2k · Ph and τh ≡ k2.
Hermiticity requires all amplitude Ai to be real. The corresponding expression for spin-0
hadrons (or for the description of hadrons with averaged polarization) is obtained by keep-
ing the terms with amplitude A1, A2, A3, and A4, and discarding the spin dependent ones.
Note that the constraint for time reversal invariance (needed for the PDFs) would require the
amplitudes A4, A5, and A12 to be purely imaginary and hence to vanish, since it is in contradic-
tion with the requirements from hermiticity. For the PFFs this constraint is not applicable and
those terms are conventionally, albeit quite misleading, called (naive) time-reversal odd.
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Choosing the gauge A− = 0, in hard processes one encounters the quantities:

∆[Γ](z) ≡ 1

4z

∫
dk+d2kTTr(∆Γ)

∣∣∣k−=P−h /z
=

∫
[dσhdτhθ()]

Tr(∆Γ)

8zP−h
, (B.14)

with the short hand notation

[dσhdτhθ()] = dσhdτhθ

(
σh
z
−
M2
h

z2
− τh

)
(B.15)

A convenient parameterization of the momentum of the produced hadron, with mass Mh,
in the hadron frame1 is:

Ph =
M2
h

2P−h
n+ + P−h n− =

M2
h

zhQ
√

2
n+ +

zhQ√
2
n−. (B.16)

A Sudakov decomposition of the quark momentum and the spin vector can be written as

k =
z(k2 + k2

T )

zhQ
√

2
n+ +

zhQ

z
√

2
n− + kT , (B.17)

Sh = − λhMh

zhQ
√

2
n+ +

λhzhQ

Mh

√
2
n− + ShT (B.18)

where z is the fraction of the momentum in the minus direction carried by the hadron originat-
ing from the fragmentation of the quark. The spin vector satisfied Ph · Sh = 0 and for a pure
state λ2

h + S2
hT = 1.

The projections of ∆ on different Dirac structures define PFF2. The projections

∆[γ−](z) = D1(z) (B.19)

∆[γ−γ5](z) = λhG1(z) (B.20)

∆[iσi−γ5](z) = SihTH1(z) (B.21)

are leading in 1/Q and the probabilistic interpretation is shown in Fig. B.4
The following projections occur with a pre-factor Mh/P

−
h , which signals the subleading (or

1The hadron frame is the frame in which the hadron momentum P has no transverse components:
(P+, P−,0T ).

2A complete list of independent 4 × 4 Dirac matrices together with their explicit form in the chiral (Weyl)
representation is given in Appendix C.
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D1(z) =

D1(z,kT
2) =

D⊥
1T(z,kT

2) =

G1(z) =

G1L(z,kT
2) =

G1T(z,kT
2) =

H1T(z,kT
2) =

H⊥
1L(z,kT

2) =

H⊥
1T(z,kT

2) =

H⊥
1(z,kT

2) =

H1(z) =

Figure B.4: Probability interpretation of leading order integrated PFFs in the first columns
and Transverse Momentum Dependent PFFs in the second column. The quark is assumed to
move from left to right, which defines the longitudinal direction. Green arrows symbolize the
hadron spin, blue arrows the spin state of the quark. For the transverse momentum dependent
PFFs, there are two additional time-reversal odd functions (D⊥1T and H⊥1 , indicated with the
blue shaded hadrons), and three additional function (G1T , H⊥1L, H⊥1T , indicated with the green
shaded hadrons) which correlated quark and hadron spin orientation in different directions.

higher twist) nature of the corresponding fragmentation functions:

∆[1](z) =
Mh

P−h
E(z), (B.22)

∆[iγ5](z) =
Mh

P−h
λhEL(z), (B.23)

∆[γi](z) =
Mh

P−h
εijT ShTjDT (z), (B.24)

∆[γiγ5](z) =
Mh

P−h
SihTGT (z), (B.25)

∆[iσijγ5](z) =
Mh

P−h
εijTH(z), (B.26)

∆[iσ+−γ5](z) =
Mh

P−h
λhHL(z). (B.27)

Each factor Mh/P
−
h leads to a suppression with a power of Mh/Q in the cross section and we
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will refer to the function multiplying a power (Mh/P
−
h )t−2 as ’twist’ t.

In observable differential in transverse momenta there occur also the associated uninte-
grated quantities:

∆[Γ](z,kT ) =
1

4z

∫
dk+Tr(∆Γ)

∣∣∣k−=P−h /z,kT
=

∫
[dσhdτhδ()]

Tr(∆Γ)

8zP−h
, (B.28)

with the shorthand notation

[dσhdτhδ()] = dσhdτhδ(τh −
σh
z

+
M2
h

z2
+ k2

T ), (B.29)

which lead to the definition of Transverse Momentum Dependent PFFs (also called TMD). The
projections

∆[γ−](z,kT ) = D1(z,k′
2
T ) +

εijT kT iShTj
Mh

D⊥1T (z,k′
2
T ), (B.30)

∆[γ−γ5](z,kT ) = λhG1L(z,k′
2
T ) +

kT · ShT
Mh

G⊥1T (z,k′
2
T ), (B.31)

∆[iσi−γ5](z,kT ) = SihTH1T (z,k′
2
T ) +

εijT kTj
Mh

H⊥1 (z,k′
2
T ) +

+
kiT
Mh

(
λhH

⊥
1L(z,k′

2
T ) +

kT · ShT
Mh

H⊥1T (z,k′
2
T )

)
(B.32)

are leading order in 1/Q and their partonic interpretation is depicted in Fig. B.4.
The choice of the arguments z and k′T in the fragmentation function is worth a comment. In the
expansion of k in Eq. (B.17) the quantities 1/z and kT appear in a natural way. However, one
wants to express the fragmentation functions in terms of the hadron momentum. In order to
switch from quark to hadron transverse momentum, a Lorentz transformation that leaves the
minus components (and hence the definition of z = P−h /k

−) unchanged needs to be performed,
and one find that k′T ≡ −zkT is the transverse component of the hadron in a frame where the
quark has no transverse momentum.

The function D⊥1T and H⊥1 are example of what are generally called time-reversal odd func-
tions. This terminology refers to the behavior of the functions under the so-called naive time-
reversal operation TN , which acts as follows on the correlation function:

∆(Ph, Sh; k)
TN−→ (γ5C∆(P h, Sh; k)C†γ5)∗ (B.33)

where k = (k0,−k), etc. If TN invariance would apply, the FF would be purely imaginary.
On the other hand, hermiticity requires the functions to be real, so these functions should then
vanish.

The operation TN differs from the usual time-reversal operation T in that the former does
not transform in into out-state, and vice versa. Due to the final state interaction, the out-state
|Ph, Sh;X > in the correlation matrix is not a plane wave state and thus, is not simply related
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to an in-state. Therefore, one has TN 6= T and since T itself does not pose any constraints on
the functions, they need not vanish.

In the analogous case of distribution functions, which are derived from matrix elements
with plane wave states, TN = T and therefore it was generally believed there are no ’time-
reversal odd’ distribution functions [37].
The following projections occur with a pre-factor Mh/P

−
h :

∆[1](z,kT ) =
Mh

P−h
E(z,k′2T ), (B.34)

∆[γi](z,kT ) =
kiT
P−h

D⊥(z,k′2T ) + λh
εijT kTj

P−h
D⊥L (z,k′2T ) +

+
Mh

P−h
εijT ShTjDT (z,k′2T ), (B.35)

∆[iγ5](z,kT ) =
Mh

P−h

(
λhEL(z,k′2T ) +

kT · ShT
Mh

ET (z,k′2T )

)
, (B.36)

∆[γiγ5](z,kT ) =
Mh

P−h
SihTG

′
T (z,k′2T ) +

+
kiT
Mh

(
λhG

⊥
L (z,k′2T ) +

kT · ShT
Mh

G⊥T (z,k′2T )

)
(B.37)

∆[iσijγ5](z,kT ) =
Mh

P−h

SihTk
j
T − S

j
hTk

i
T

Mh
H⊥T (z,k′2T ) +

Mh

P−h
εijH(z,k′2T ), (B.38)

∆[iσ+−γ5](z,kT ) =
Mh

P−h

(
λhHL(z,k′2T ) +

kT · ShT
Mh

HT (z,k′2T )

)
(B.39)

where GT = G′T + (k2
T /2M

2
h)G⊥T .

The naming scheme

At first glance, the names of PFFs (or PDFs) look complicated with all their sub and super-
scripts, but they publicly announce the physical situation to be considered, in which these
quantities can be accessed.
The naming scheme can be summarized with the following set of five rules:

1. The Dirac projection of the correlation function, i.e. the matrix Γ, determines the letter of
the resulting PFFs (PDFs):

Dirac projection with Γ PFF PDF

vector γ+, γi, γ− D f
axial vector γ+γ5, γ

iγ5, γ
−γ5 G g

tensor σ+iγ5, σ
ijγ5, σ

−iγ5 H h
(pseudo) scalar 1, γ5 E e
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2. The first subscript indicate the effective twist of the function:

effective twist first subscript

twist 2 1
twist 3 2 (or none)
twist 4 3

3. The second subscript indicate the polarization of the hadron:

hadron polarization second subscript

unpolarized none
longitudinal L
transverse 4 T

4. non-contracted transverse index of a quark momentum→ superscript ⊥;

5. higher k2
T -moments→ superscript (n).



Appendix C

Dirac matrices in chiral (Weyl)
representation

Dirac matrices (Weyl or chiral representation): One writes the representation of Dirac matrices
compactly in the bispinor notation [20]. If (σ1, σ2, σ3) and (ρ1, ρ2, ρ3) are two copies of the stan-
dard 2× 2 Pauli matrices, any 4× 4 Dirac matrices can be represented as ρi ⊗ σj .
The chiral (Weyl) representation is defined by

γ0 = ρ1 ⊗ 1 =

(
0 1

1 0

)
~γ = −iρ2 ⊗ ~σ =

(
0 −~σ
~σ 0

)
γ5 = ρ3 ⊗ 1 = iγ0γ1γ2γ3 =

(
1 0
0 −1

)
(C.1)

A commonly used basis for the space of all 4× 4 matrices are the 16 independent matrices

1, γ5, γ
µ, γµγ5, σ

µν

in terms of which any matrix M can be decomposed as 1

M =
Tr[M1]

4
1 +

Tr[Mγ5]

4
γ5 +

Tr[Mγµ]

4
γµ −

− Tr[Mγ5γ
µ]

4
γ5γ

µ +
Tr[Mσµν ]

2 ∗ 4
σµν (C.2)

Instead one can use the alternative basis

γ+, γ+γ5, iσ
i+γ5,

1, γi, iγ5, γ
iγ5, iσ

ijγ5, iσ
+−γ5,

γ−, γ−γ5, iσ
i−γ5 (C.3)

1note the minus sign of the 4th term and the extra factor 1/2 in the last term to avoid double counting in the
summation over µ and ν.
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where i, j are purely transverse indices (i, j ∈ {1, 2}), and γ± = 1/
√

2(γ0 ± γ3). In this basis,
any matrix can be decomposed as

M =
Tr[Mγ+]

4
γ− − Tr[Mγ+γ5]

4
γ−γ5 +

Tr[Miσi+γ5]

4
iσi−γ5 +

+
Tr[M1]

4
1− Tr[Mγi]

4
γi − Tr[Miγ5]

4
iγ5 +

Tr[Mγiγ5]

4
γiγ5 −

− Tr[Miσijγ5]

2 · 4
iσijγ5 −

Tr[Miσ+−γ5]

4
iσ−+γ5 +

+
Tr[Mγ−]

4
γ+ − Tr[Mγ−γ5]

4
γ+γ5 +

Tr[Miσi−γ5]

4
iσi+γ5 (C.4)

Below I list all matrices of the basis (C.3) multiplied from the left by γ0, since this is the form
relevant for a classification of bilocal quark field operators ψ(z1)Aψ(z2). The effective twist and
chirality of ψ̄(z1)Aψ(z2) with A ∈ basis (C.3) is indicated, as well.

Effective twist 2:

(γ0γ+) =
√

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 φ†RφR + φ†LφL (chiral even) (C.5)

(γ0γ+γ5) =
√

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 φ†RφR − φ
†
LφL (chiral even) (C.6)

(γ0iσ1+γ5) =
√

2


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 φ†LφR + φ†RφL (chiral odd) (C.7)

(γ0iσ2+γ5) = i
√

2


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 − φ†LφR + φ†RφL (chiral odd) (C.8)
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Effective twist 3:

(γ0
1) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 χ†LφR + φ†LχR + φ†RχL + χ†RφL (chiral odd) (C.9)

(γ0γ1) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 χ†RφR + φ†RχR − φ
†
LχL − χ

†
LφL (chiral even) (C.10)

(γ0γ2) = i


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 − χ†RφR + φ†RχR + φ†LχL − χ
†
LφL (chiral even) (C.11)

(γ0iγ5) = i


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 − χ†LφR − φ
†
LχR + φ†RχL + χ†RφL (chiral odd) (C.12)

(γ0γ1γ5) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 χ†RφR + φ†RχR + φ†LχL + χ†LφL (chiral even) (C.13)

(γ0γ2γ5) = i


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 − χ†RφR + φ†RχR + φ†LχL + χ†LφL (chiral even) (C.14)

(γ0iσ12γ5) = i


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 − χ†LφR + φ†LχR + φ†RχL − χ
†
RφL (chiral odd) (C.15)

(γ0iσ+−γ5) =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 χ†LφR − φ
†
LχR + φ†RχL − χ

†
RφL (chiral odd) (C.16)
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Effective twist 4:

(γ0γ−) =
√

2


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 χ†RχR + χ†LχL (chiral even) (C.17)

(γ0γ−γ5) =
√

2


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 χ†RχR − χ
†
LχL (chiral even) (C.18)

(γ0iσ1−γ5) =
√

2


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 χ†LχR + χ†RχL (chiral odd) (C.19)

(γ0iσ2−γ5) = i
√

2


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 χ†LχR − χ
†
RχL (chiral odd) (C.20)
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