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Genealogical inferences based on comparison of modern and ancient DNA

ABSTRACT

The study of genetic variation within and between populations can help us understand
aspects of human demographic history over the past thousands of years, i.e. well beyond the time-
scales of historical evidence. Demographic and evolutionary dynamics influence the distribution of
the observed genetic diversity, and so one can retrospectively reconstruct episodes in population
history on the basis of genetic diversity data. One way to do this is to make extensive use of
simulations, considering evolution as a stochastic process in which the genetic data are modeled
as random variables. The simulation of genetic data under various scenarios allows one to explore
how demographic and evolutionary parameters can affect genetic variation, also making it
possible to approximately estimate the historical parameters that produced the observed data. To
this aim, many statistical approaches have been developed, but, when models are complex or
datasets are large, they often become computationally expensive, or analytically intractable.
Approximate Bayesian Computation (ABC) methods overcome these problems allowing, for the
first time, to analyze large datasets and to interpret them in the light of realistic (i.e. complex)
models, thus enabling the probabilistic comparison among different models of evolution, the
simultaneous estimation of demographic and evolutionary parameters, and the quantitative
evaluation of the results credibility. In this context, we analyzed datasets of modern and ancient
genetic variation in order to understand the demographic histories of these populations, to
highlight traces of past genetic variation in modern populations, and to evaluate whether, and to
what extent, ancient and modern populations that have lived in the same place in different period
of times can be considered genealogically related. We tried to address three anthropological
questions, namely the interaction of anatomically modern humans with archaic forms (i.e.
Neandertals in Europe), evidence for genealogical continuity in Sardinia since the Bronze-age, and
the origins and evolution of the Etruscan population. Within the ABC framework, in each of the
three studies, we explicitly compared several models, differing for the demographic processes and
the genealogical relationship among population, to identify the model best accounting for the
observed variation, and to estimate its demographic and evolutionary parameters. This way, it has
been possible to shed light on past population history and to address questions about the nature
and the extent of genealogical links between modern and ancient populations, clarifying aspects
of human history that have long been controversial in population genetics and evolutionary

biology.
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Inferenze genealogiche basate sul confronto di DNA antico e moderno

ABSTRACT

Lo studio della variabilita genetica delle popolazioni pud aiutarci a comprendere aspetti
della storia demografica umana ai quali non possiamo risalire tramite evidenze storiche, o perché
si tratta di eventi troppo antichi, o perché non esistono documentazioni attendibili. Le dinamiche
evolutive e demografiche delle popolazioni influenzano la distribuzione della diversita genetica
osservata; e quindi potenzialmente possibile, partendo dall’analisi di questa variabilita, ricostruire
a posteriori quali siano stati i processi demografici ed evolutivi che possono averla generata. Un
approccio ampiamente utilizzato in questo contesto riguarda l'uso di simulazioni: considerando
I’evoluzione come un processo stocastico ed utilizzando un modello probabilistico adeguato,
vengono simulati dati di variabilita genetica secondo diversi modelli di evoluzione delle
popolazioni in esame, permettendo di testare in modo esplicito come diversi parametri evolutivi e
demografici possano influenzare i livelli di variabilita genetica interna e tra le popolazioni.
Confrontando la variabilita genetica che si ottiene dalle simulazioni con la variabilita genetica
osservata, e possibile scegliere fra tanti quale modello evolutivo possa aver generato i livelli di
variabilita osservati, e quali siano i cambiamenti demografici che hanno influenzato in misura
maggiore tale variabilita. Negli ultimi anni sono stati sviluppati diversi approcci statistici allo scopo
di stimare, tramite le modalita appena descritte, i parametri storici delle popolazioni. Purtroppo
pero, quando i dati da analizzare sono molti, o i modelli da simulare sono complessi e ricchi di
parametri, il costo computazionale diventa molto elevato, tale da rendere I'analisi impraticabile.
Recentemente, lo sviluppo dei metodi bayesiani approssimati (ABC) ha permesso di superare
guesto limite, rendendo possibile I'analisi di dataset sempre piu ricchi, in linea con il recente
sviluppo delle tecniche di sequenziamento su larga scala (Next Generation Sequencing), e di
interpretarli alla luce di modelli sempre piu complessi, e quindi realistici. Questa metodologia ha
reso possibile molti confronti probabilistici tra diversi modelli di evoluzione, consentendo di
stimare i valori dei parametri che meglio descrivono i dati. Abbiamo applicato questa metodologia
a tre dataset di popolazioni antiche e moderne, allo scopo di determinare quale possa essere stata
la loro storia demografica ed evolutiva, e al fine di evidenziare eventuali relazioni genealogiche tra
popolazioni che hanno abitato le stesse localita geografiche in diversi periodi temporali. Il primo
studio riguarda la storia evolutiva dell'uomo moderno e la sua interazione con forme umane
arcaiche preesistenti (nello specifico il Neandertal in Europa), il secondo & uno studio delle

relazioni genealogiche fra popolazioni sarde antiche (le popolazioni nuragiche dell’eta del Bronzo)
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e moderne, e il terzo riguarda la storia della popolazione etrusca, le sue origini e le sue relazioni
genetiche con i toscani moderni. Per ognuno di questi studi & stato scelto un modello genealogico
piu verosimile e si sono stimati i parametri demografici che si adattano meglio alla variabilita
osservata. Questo ha permesso di far luce su aspetti della nostra specie prima sconosciuti, sia in
termini evolutivi, sia demografici. Inoltre, & stato possibile testare per la prima volta in modo
esplicito la continuita genealogica fra popolazioni antiche e moderne provenienti dalla stessa area
geografica, evidenziando che anche popolazioni molto vicine geograficamente, possono avere una

storia genealogica molto diversa.
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1. Introduction

The goal of population genetics is to understand the forces that produce and
maintain genetic variation within species. These forces include mutation, recombination,
gene flow (or its absence), natural selection, and the random transmission of genetic

material from parents to offspring.

Even since its onset, theoretical population genetics has had strong statistical bases
(Provine 1971). From a methodological perspective, the focus of this field was to develop
models describing the behavior of random processes to depict the evolution of allele
frequencies over time. A model can be viewed as a relatively simple mathematical
formulation of the biological process producing the observed data which can incorporate
parameters of interest in population genetics. Traditionally, these models (which are
stochastic, since there is no predetermined outcome) have allowed researchers to predict
how patterns of genetic variation would be affected by forces such as genetic drift,

mutation, migration and selection (see Introduction, section 1.1).

One of the most useful stochastic models in population genetics is the coalescent
(Kingman 1982; Wakeley 2009). In brief, the coalescent provides a theoretical description of
the ancestral relationships existing in a sample of DNA sequences taken from a population,
depending on the specific combination of demographic and evolutionary features of the
population. A detailed description of this model is reported in Introduction, section 1.2. In
simple cases, the intensity of selection, or the combination of population size (determining
the impact of drift) and migration rates can be approximately inferred from the data.
However, as a rule, this exercise turns out to be exceedingly complicated and to require
untestable assumptions. The modern approach to understand the evolutionary and
demographic forces behind the patterns of population genetic variation is then to make
intensive use of simulation methods. Simulating genetic data according to the coalescent
theory allows one to explore how the data can vary changing population genetics
parameters such as the effective population size or the mutation rate. A limitation of the

coalescent is that it can become highly computationally intensive; however, with the rapid
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growth in computational power, the evolutionary models that can be simulated have grown

more complex, and have therefore become more realistic.

There are two different, but related, use of the word “simulation” in this context. The
first indicates the simulation of the data under a specific demographic model, thus
producing datasets that are representative of the evolutionary process and that differ from
each other just by chance. For example, this approach might be used to examine the degree
of variability that may be found in the data that have been produced under a proposed
model of evolution (Slatkin & Hudson 1991), or to test if a specific model of evolution (with a
specific parameters combination) can faithfully reproduce the observed variation (Belle et al.
2009; Guimaraes et al. 2009). The second sense in which we use simulations refers to the
use of simulation-based methods of statistical inference exploiting the coalescent to
estimate parameters, from a particular kind of process that is described by the model. Here
we start with an observed data set and we use simulations of data under a variety of
parameter values, in an attempt to infer the probability of the data under a particular model,
as a function of its parameters. The aim here is to find the combination of parameters value
that maximize this probability, i.e. the combination of parameters able to generate datasets
close to those observed. To this aim, Bayesian inference as applied to population genetics,
represents a powerful tool for addressing a number of longstanding questions in
evolutionary biology (see Introduction, section 1.3). Combining the intuition that is provided
by complex stochastic models with the use of simulations methods for inference it is

possible to address and clarify important aspects of past population history.
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1.1 Processes shaping genetic variation

As just said, one of the aims of population genetics is to understand the forces that
shape patterns of genetic variation. This variation has been shaped by various demographic
and evolutionary factors, and hence contains information on past population changes and
on the history of human adaptation to changing environment. Thus, studying how genetic
variation is distributed within and between populations around the world can provide insight
into (i) the place and the time of origin of our species, (ii) the degree of admixture with
archaic Homo forms, (iii) migration of modern humans around the world, and about (iv)
genealogical links between modern and ancient populations after these migratory events.
Furthermore, this ability to infer past population dynamics has substantially improved with

the development of methods for the typing of DNA from ancient specimens.

The genetic variation might be analyzed through two main classes of different
approaches. The first one involves a description of the distribution of observed diversity,
which allows the evaluation of the degree of variation within populations, the comparison of
genetic diversity and its apportionment between populations. To this aim, relevant statistics
should be calculated from the data, quantifying both the degree of internal variation
(number of haplotypes, gene diversity, number of polymorphic sites), and the genetic
distance between populations (Fst and allele sharing, see Methods, section 3.1). The second
approach involves testing of hypotheses about how modern genetic diversity evolved, and
this requires to develop explicit or implicit models of the evolutionary processes, allowing to
make predictions about origins, movements and demography of populations, including their
consequences at the DNA level (see Methods, section 3.2). Usually, studies of human genetic
diversity are limited to modern populations, which severely limit our ability to investigate
past processes. Prehistorical and historical processes, in this case, can only be inferred from
modern diversity. However, for some years now, it has been possible to also include in the
analysis samples coming from ancient specimens (ancient DNA, aDNA, see Introduction,
section 1.4). The genetic information they yield is mainly from a single marker, the
mitochondrial DNA (mtDNA), (Caramelli et al. 2008; Green et al. 2008), but with the
development of the techniques of high throughput sequencing, it is now possible to obtain

data on nuclear diversity as well (Green et al. 2006), and even sequencing entire ancient
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genomes (Green et al. 2010; Reich et al. 2010). Considering the ancient genetic data allows
one not only to increase the power in estimating the historical demographic processes, but
also to test hypotheses about the genealogical links between modern and ancient

populations living in the same place at different periods of time.

It is worth noting that there is not a single and simple way to analyze the data and to
answer to complex questions of population genetics. A combination of several analytical
approaches, starting from a description of the variation observed in the data, up to the use
of inferential methods to estimate evolutionary and demographic parameters, might help to

answer the question: “How did a particular pattern of genetic diversity arise?”

1.1.1 Hardy-Weinberg equilibrium

The first challenge of population genetics was to explain how allele frequencies in
one generation could be used to calculate genotype proportions in the next generation of an
infinitely large, randomly mating, population. If we consider a diploid organism, such as
humans, with two allele A and a, with frequency p and q respectively, three different
genotypes are possible: AA, Aa and aa. If we know the p and q values in an idealized
population, we can predict the proportion of genotypes in the succeeding generation by
combining gametes (containing single alleles) at random. This is known as the Hardy-

Weinberg principle (Hardy 1908). The proportion of each genotype in the next generation is:

AA = p?
Aa = 2pq
aa=q’

If the genotype proportion in the succeeding generation are calculated in this
manner, and any variation is found from the parental generation, the population is said to
be at Hardy-Weinberg equilibrium. To be in Hardy-Weinberg equilibrium, the idealized
population must have some additional properties other than infinite population size, such
as no mutation, no migration and no selection; in other words, any factor that might change

allele frequencies has to be absent. If the calculated genotype proportions are not in Hardy-
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Weinberg equilibrium, we might conclude that evolution is occurring, and that one or more

of the above factors are acting on the population shaping the observed variation.
1.1.2 Genetic Drift

No population is infinitely large, as assumed by the Hardy-Weinberg theorem,
because each generation represents a finite sample of the previous one. This stochastic
process of sampling from one generation to another determines a random variation in allele
frequencies over time and is called random genetic drift (Wright 1931). Genetic drift may
cause allelic variants to disappear completely or to be fixed (reaching frequency of 1), and
therefore reduces the population genetic variation. In 1931, Wright demonstrated the
extent of genetic drift in an idealized population (i.e. random mating, constant size, with
nonoverlapping generations) introducing the concept of effective population size (Ne). The
effective population size is the size of an idealized population that experiences the same
amount of genetic drift of the population under study. It is not easy to relate this effective
population size (Ne) to the census population size (N), but substantially the Ne is almost
always smaller than the actual population size N. This concept is fundamental since it was
demonstrated that the magnitude of the effects of genetic drift is correlated with the
effective size of the population: the smaller the effective population size, the greater the

drift effects.

The concept of effective population size allows one to calculate the probability and
the rate of fixation for a new allele in a population, in the absence of mutation and selection.
Fixation is a rare event, and this probability in the absence of selection is equal to the
frequency of the new allele in the population, that is 1/2N' From this equation it is clear that
the smaller is the population, the greater chance a new mutant has of becoming fixed.
Moreover, from the effective population size it is also possible to calculate the expected
time (in generations) since the fixation of a new allele (i.e. equal to 4N generations). This
equation demonstrates that a new allele in a smaller population will not only have a higher
probability of becoming fixed, but it will also be fixed more rapidly than it would in a larger

population.
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The extant variation at neutral loci depends on past effective population sizes. In
particular, the long-term effective population size has been shown to be approximately
equal to the harmonic mean of the population sizes over time (Wright 1938; Crow & Kimura
1970), and this means that this measure is highly affected by phases in which the population
size became smaller. In demographic processes involving a reduced ancestral population
size, the amount of the present variation is largely determined by this smaller ancestral
population size and the extent of genetic drift will be greater than expected based on
current census figures. Two examples of processes reducing the effective population size are
the bottleneck and the founder effect, largely documented in human populations. The first
refers to the reduction in size of a single, previously larger, population, and the latter to the
process of colonization and the genetic separation of a subset of the diversity present within

the source population, both resulting in a loss of genetic diversity.
1.1.3 Mutation

Mutation is the sole process generating new alleles. It provides the material on
which evolution can act by means of selection or other forces. In absence of these forces, an
allele will decrease in frequency as new mutations arise and generate other alleles; by
knowing the mutation rate for the whole gene, the initial allele frequency (py), and assuming
no back mutation and multiple substitutions at the same site, is it possible to calculate the

frequency of the same allele after t generations as:

Dy = Po X e ™Mt

This is known as mutation pressure. Mutation is a weak force (around 0.2 mutational
events per million year per nucleotide for the human mitochondrial DNA (Henn et al. 2009)
and around 0.001 mutational events per million year per nucleotide for a human noncoding
region of autosomal DNA (Fagundes et al. 2007), hence can have an appreciable impact upon

genetic diversity only over long time periods.

As said above, when we consider a gene, or in general a DNA sequence, in which
every mutation creates a new allele, we discount the possibility of back mutations (T->C; C-

>T), and recurrent mutations (same mutation at the same site in different individuals). This
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model is known as the infinite alleles model (Kimura & Crow 1964). Another model typically
used is the infinite sites model (Kimura 1969), which assumes that every mutation occurs at
a different site in the DNA sequence and therefore, under this model, there is no need to
consider multiple hits, i.e. multiple mutations at the same site. Considering that the total
number of sites in each gene is so large and the mutation rate per site is so small, at first
sight these models seem to be a reasonable approximation of the reality for the evolution of

DNA sequences.

If we are interested in aspects of sequence evolution that require us to suppose that
multiple changes might have occurred at the same site, we need more complex models of
mutation. For example, these models are useful when long time scales are considered (i.e.
calculating the distance between two DNA sequences separated long time ago), and not
accounting for back mutation or multiple hits may result in underestimation of the real
sequence divergence. In the simplest of these models, the Jukes and Cantor model (JC69;
Jukes & Cantor 1969), all the substitutions occur at the same rate, meaning that every
nucleotide in the sequence has the same probability of changing into any other nucleotide.
Kimura (1980) proposed a model that accounts for transitions (A<->G; T<->C) occurring at
higher rates than transversion (A,G<->T,C) (K2P), and Hasegawa, Kishino and Yano (1985)
allow this model to account also for the differences in base frequency (HKY). The most
complex model of nucleotide substitution is the general time reversible (GTR) model (Tavaré
1986) that considers six different substitution rates instead of two (i.e. transition and
transversion rate). Moreover, models have been developed that can accommodate rate
variation among sites, assuming that the mutation rate may vary along the sequence. When
the rates vary, some sites (mutational hotspots) may accumulate many changes, while other
sites (conserved sites) remain unchanged. One can accommodate this variation assuming
that the rate of substitution for any site is a random variable drawn from a statistical
distribution. The most commonly used distribution is the gamma, defined by the shape
parameter a, that is inversely related to the extent of rate variation at sites: if a -> o the
distribution degenerates into a model of a single rate for all sites; if a<1 the distribution has
a highly skewed L-shape, meaning that most sites have a very low rates of substitutions, and

there are some substitution hotspots.
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1.1.4 Migration

Migration is the movement of individuals from an occupied area to another, and
differs from colonization since the latter regards a movement into a previously unoccupied
territory. Gene flow is the outcome of the process of migration, when a migrant contributes
to the next generation in the new location, and depends on the reproductive success of the
migrants in the new area. Estimates of gene flow have, therefore, relied upon indirect
methods linking measures of population subdivision to gene flow via a model for population
structure. To describe migration processes, one has to envisage a general population
subdivided in population units or demes. Alternatively, one can speak of several populations
connected by gene flow into a large meta-population. From the practical standpoint, the two

terminologies are equivalent; in what follows | shall use the latter.

The simplest model of gene flow is the island model, devised by Sewall Wright
(1931), in which a meta-population is subdivided into islands of equal size N, exchanging
genes at the same rate m per generation. The assumptions of this model include that all
islands are equivalent, without substructure other than the division into islands; no selection
is present; each population has reached an equilibrium between mutation and drift; the
migrant are a random sample from the source island population; each population persists
indefinitely. Under these assumptions it was demonstrated that the rate of migrants
exchanged determines the level of population subdivision (as measured by Wright’s Fst) by

the equation:

The island model does not take into account the fact that levels of migration are
generally affected by the geographic distance between populations. A model considering
some effect of geography is the stepping stone (Kimura & Weiss 1964). This model allows
the exchange of genes only between adjacent discrete subpopulations. Similarly to the island

model, the stepping stone assumes an equal rate of migration between populations.

A further step toward realistic modelization of migrational relationships is

represented by the possibility to actually incorporate a measure of geographic distance

8
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between potential mating partners. Migration can be modeled within a continuous
population considering that mating choices are limited by distance and that these distances
are typically less that the overall range of the population. This is the basis for the isolation by
distance model (Wright 1943). Under this model, genetic similarity between neighborhoods
is a function of the dispersal distance. These can be viewed either as difference between
birthplaces of parent and offspring, or marital distance. Several mathematical functions have
been used to relate the decline in frequency of the dispersal over geographical distance;
after reaching equilibrium between genetic drift and gene flow, is it possible to predict the

rate of decline of genetic similarity at increasing geographical distances.

A more realistic model of migration has been developed in 1991 by Slatkin and Voelm
(Slatkin & Voelm 1991). They called this model hierarchical island model. The rationale
behind this model is that the finite or infinite island model would not be appropriate if some
of the sampled populations share some recent ancestry, if some sampled populations
contribute to different migrant pools, or if there is a hierarchical population structure. In a
hierarchical island model the meta-population is assumed to be made up of n
neighborhoods, each of which contains d demes of effective size N. The model assume that a
randomly chosen gamete after a migration event has a probability 1-m;-m, of being
nonimmigrant, a probability of m; of being an immigrant from a different randomly chosen
deme in the same neighborhood and a probability m, of being an immigrant from a
randomly chosen deme in a different neighborhood; moreover, m; is assumed to be greater

than m;.

The migration models are mathematically tractable and can be generalized to many
species. When the populations under study are human populations, we might have detailed
information about the migratory processes, such as the migration rates, the marital
distances and the migration distance. All this information can be incorporated in the
migration model, which can then account for different migration rates and asymmetric

migration between subpopulations.
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1.1.5 Selection

Natural selection, as defined by Charles Darwin and elaborated by Ronald Fisher, is
the consequence of differential ability of reproduction of genotypes through generations.
Individuals exhibit differential capacities to survive and reproduce in different environments
and evolution occurs by natural selection when these differences in reproductive success
among organisms are correlated with their genetic differences. The individual’s expected
reproductive success is measured by her/his fitness, w (0 < w < 1), and the relative fitness of
an individual’s genotype is obtained from a comparison of this genotype with all other
genotype competing for the same resources. Usually this relative fitness is measured by a
selection coefficient (s) representing the loss in fitness with respect to the fittest genotype in
the population. Since the relative fitness is equal to 1- s, a selection coefficient of 0.1
represents a 10% decrease in fitness compared to the fittest genotype, which means a

relative fitness of 0.9 (90%).

Natural selection can act in a population only if mutation has generated heritable
polymorphism among individuals, i.e. only if any difference in fitness can be transmitted
from one generation to another. That is why the genetic variance is used as a measure of the
opportunity of selection in a population or species. For the purpose of this paragraph,
mutation can be mainly classified into two categories: neutral (not having any effect on the
fitness, usually located in non-coding regions), and non-neutral, having effect on the fitness,
and which can be broadly categorized as advantageous (that is, adaptive) or deleterious.
Variants that increase the fitness of an individual in its environment might increase in
frequency as a result of positive selection, whereas moderately to severely deleterious gene
variants tend to be eliminated by purifying selection, force that probably acts on all genes,

to preserve their function.

Natural selection affects the shape of the genealogy of alleles, usually summarized in
evolutionary trees whose parameters can be can be estimated through the coalescent theory
(see Introduction, section 1.2). Positive selection, which drives an adaptive variant towards
fixation, lead to an excess of low frequency variants, distorting the genealogy to create a

star-like pattern (Hudson & Kaplan 1988). The genealogy of an allele under positive selection
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usually presents long terminal branches connected to a common ancestor by shorter
branches. This genealogy is expected to have a more recent coalescence than a genealogy of
neutral alleles, since positive selection accelerates the process of allelic fixation (see Fig

1.1B).

When selection acts to remove damaging mutations, it also eliminates
polymorphisms linked to the deleterious alleles, reducing the overall level of variation. The
process of elimination of a deleterious mutation and the consequent reduction in variation
at neutral linked polymorphisms is called background selection. Under the influence of
background selection, an allele can be rapidly led to fixation, and, as for positive selection,
this leads to an excess of polymorphisms at low frequencies. The genealogy of an allele that
is driven to fixation by means of background selection has a more recent coalescent time
than expected under a neutral model; this because the linked deleterious mutation caused
the extinction of one lineage (the "negative selected") more quickly than would be predicted

for neutral variants, hence by a simple genetic drift model (Fig 1.1C).

Natural selection does not always increase or decrease the frequency of a single
allele at a locus. Sometimes, selection tends to maintain the polymorphism, preserving two
or more alleles at a locus in a population. This type of selection is called balancing selection.
We can found signatures of balancing selection, for example, in case of rare-allele
advantage, which involves negative frequency-dependent selection and especially when
there is generalized overdominance. In the first case, the fitness of an allele decreases as it
become more common; in generalized overdominance, heterozygous individuals have a
selective advantage, and this leads to an equilibrium in which two or more alleles have
nonzero frequencies. This latter case is thought to be the mechanism that allows
maintaining the high levels of allelic variation observed at the MHC locus (Grimsley, Mather
& Ober 1998). Balancing selection tends to favor intermediate-frequency alleles, resulting in
an excess of intermediate-frequency variants, and in a higher level of sequence diversity
compared with neutral loci (Charlesworth, Nordborg & Charlesworth 1997; Schierup,
Vekemans & Charlesworth 2000). This is reflected in genealogies with short terminal
branches and longer internal branches, and having an older coalescence time respect to the

genealogy expected for a neutral locus (Fig 1.1D).
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Over the past few years, the interest has grown in characterizing the patterns of
genetic variation in order to highlight signature of natural selection in human populations
(Sabeti et al. 2006; Hernandez et al. 2011). Even so, it has been shown that most human
genetic variation is neutral and that polymorphisms are fixed or eliminated in a population
as a consequence of the genetic drift, reflecting the populations’ historical dynamics
(Balaresque, Ballereau & Jobling 2007). Demographic processes, like changes in population
size or migration, are known to affect the entire genome in the same way, whereas natural
selection affects specific functionally important sites in the genome. However, similar
patterns of genetic variation can be produced both by events in demographic history or by
specific selection regimes (for example a rapid expansion in population size or positive
selection can produce a similar excess of low-frequency variants (Harpending 1994;
Braverman et al. 1995). One way to disentangle the confounding effect of population
history from the effect of selection is a comparison of the pattern of variation at a candidate
locus with the genome-wide pattern estimated from a set of neutral markers that have been

typed in the same individual or population (Bamshad et al. 2002).
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1.2 The Coalescent: population genetic inference using genealogies

The genetic relationships among a sample of individuals can be described by their
genealogy. Genealogies are family trees which depict ancestors and descendants of
individuals. In the same way that we can construct genealogies of individuals, we can
construct genealogies of genes, considering that transmission of every independent gene is a
single realization of a stochastic process in which one of two alleles is passed on to the
offspring. Therefore, for every independent gene, there is a potentially different genealogy.
Every genealogy has exactly n external branches, one for each gene sampled in an individual.
Proceeding backwards in time, pairs of branches have a common ancestor and the number
of lineages is reduced by one. This event is called a coalescence event. In a genealogy there
are n-1 coalescence events, until the most recent common ancestor (MRCA) is reached of all
the gene copies in the sample (Fig 1.2). Genealogies contain information about historical
demography and about the processes that have acted to shape diversity of populations. In
fact, we can imagine two samples of genes, one from random people coming from a large
city, and the other from random people from a small town. Intuitively, we can imagine that
most pairs of people from the small town will have a common ancestor only few generations
ago, whereas for two people from the big city the common ancestor would be located many
generations back in the past. Moreover, this way we would realize that the number of
generations separating the two individuals from the common ancestor also depends on the
number of people immigrating to and emigrating from the city or the small town; migration
tends to push backwards the average estimates of the time since common ancestry. Again, if
we know that what is now a small town had been a metropolis for a long time, we would not
be so confident that two individual from this sample have a recent common ancestor. These
examples show that a number of factors determine the time of the common ancestor: the
size of the population, the migration rate and the changes in population size. These
examples capture the importance of reconstructing the genealogy of a sample to make
inferences about historical population processes and demographies. In 1982, John Kingman
described this process formally in mathematical terms and called it the coalescent (Kingman

1982). From its development, the coalescent has been the basic stochastic model in the

13



Genealogical inferences based on comparison of modern and ancient DNA

analysis of genetic variation, allowing, via simulation, to explore the effect that changing

parameters has on the data that might be observed.
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Fig 1.2. A genealogy of a sample of n individuals.

1.2.1 Kingman’s Coalescent

In its simplest statement, the coalescent includes a Wright-Fisher population model
(Fisher 1930; Wright 1931). In this model, a panmictic haploid population has N individuals,
and its size remains constant over time. Generations are discrete (non-overlapping), so that
at each generation only the offspring of the preceding generation survives; no selecting
forces are acting on the population, and all individuals have an equal chance of producing
offspring. If we sample n individuals from this population (with n larger than 2 but smaller
than N), the history of this sample comprises n-1 coalescence events (Fig 1.2), each event
decreasing the number of lineages by one. This takes the sample from the present day when
there are n lineages through a series of step in which the number of lineages decreases from
n to n-1, then from n-1 to n-2 and so on, and finally from two to one. This last coalescent

event is called the time of the most recent common ancestor, and the single lineage
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remaining after this event represents the most recent common ancestor of the entire
sample. At each coalescent event, two of the lineages merge into one common ancestral
lineage, resulting in a bifurcating tree as shown in Fig 1.2; the time Ti on the figure is the
time in which exactly i lineages remain. Because of the last assumption of the Wright-Fisher
population model, individual are equally likely to reproduce, and therefore all lineages must
be equally likely to coalesce; the probability that two individual will share a common
ancestor in the preceding generation is 1/N . The probability that a pair of individuals will

share a common ancestor two generations ago is the probability that they will not share an

ancestor in the preceding generation (1 — %), multiplied by the probability that their

respective parents will share a common ancestor two generations ago 1/N' We can

generalize this formulation and calculate the probability that any pair of the n individuals will

have their common ancestor k generations ago:

P(tk) = (%) 1- %)k-l

In our sample of n individuals there are n(n— 1)/2 possible pairs of individuals in the

present generation that may share a common ancestor in the preceding generation. Each of

n(

these T\t 1)/2 possible pairs has a 1/N chance of having the same parent, so the

probability that there will be one common ancestor in the preceding generation is:

nn—1)

P(tl) = N

and the probability that the first MRCA of any of the possible pairs in the sample will
be at tK (i.e. k generations ago) is:

n-1) nn—1)

P(t) = (—o)(1 = o)k

Kingman (1982) showed that as N goes to infinity, with n much smaller than N, we
can move from time in discrete generation to continuous time, so that the previous equation

becomes:
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P(tk) = (%)exmw

, that is the density function of the exponential distribution, usually indicated as:
ooy (1 —(i)ti
fTi(ti) = (2) e \2

where i =2, ..., n, with time rescaled so that one unit of scaled time corresponds to

N generations.

Because they are exponentially distributed, the mean and the variance of the

coalescence times are:

2
Var[Ti] = (m)2

From these equations it is clear that coalescence times are expected to increase as
one proceeds backwards in time. Accordingly, the most ancient coalescence time, namely
the one in which the remaining two lineages coalesce into the MRCA of the entire sample, is
expected to be the longest. Especially in a large sample, many (mutually independent)
coalescence events will occur over a very short period of time in the recent history of the
sample. The fact that every pair of lineages is equally likely to be the pair that coalesces
means that every possible genealogical tree structure is equally likely. All of the remarkable
results of the standard coalescent model follow directly from these properties: the random-
bifurcating nature of the coalescent trees and the independent, exponential coalescent

times.
1.2.2 Demographic history

Real populations change in size over time. From the equations above it is clear that
the effective size of a population correlates with the expected interval between coalescence

events; changes in population sizes will result in changes to the distributions of these times.
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Imagine a population that evolves according to the Wright-Fisher model, but with a different
size at each generation, for example an exponentially growing population. If we sample a
set of genes from this population now, hence when it has large population size (NO), we
expect to find that the time to the first coalescent event will be large. After the first
coalescent event, some generations in the past, the population will be smaller than NO, and
the lineages will coalesce at a faster rate, proportional to the sample size at generation t
(Nt). The effect of this process on the genealogy is to produce a tree with long terminal
branches and shorter internal branches compared with a constant-size population tree (Fig
1.3, left panel), reflecting the fact that coalescences are more likely to have taken place
when the population was small. This genealogy is said to be “star-like”. Similarly, in a
declining population, the effective population size at present (NO) is small relative to
population sizes in the past. In this case, the first coalescence events occur rapidly, but, as
one moves backwards, population sizes increase, and so on average coalescence intervals

get longer (Fig 1.3, right panel).

Up to this point, the coalescent process has been described for panmictic
populations. However, real populations are often spatially structured, and it is obviously
important to be able to incorporate this in the model. The coalescent can be modified for a
number of geographical structures, considering for example an island model (see
Introduction section 1.1.4), in which the population is subdivided in demes with a certain
rate of migration between them, or a stepping-stone model of migration (see Introduction
section 1.1.4), where demes are arranged linearly or in a two dimensional grid, and
migration can only take place between neighboring demes. In these models, the distribution
of times to ancestry depends on the rate of migration between demes and on the effective
population size within demes. Since two lineages can coalesce only if belonging to the same
deme, if demes have small population size and low migration rate we expect that lineages
within demes will coalesce relatively quickly, leaving a single ancestral lineage in each deme.
Conversely, these ancestral lineages will take long time to coalesce, since this requires a rare
migration event to another deme. In case of structured coalescent, the expression for the
distribution of coalescence times keep in consideration the proportion of migrating
individuals per generation scaled by the total number of individuals (i.e. M = Nm, with 0 < m
<1).
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Fig 1.3. Genealogies under population
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1.2.3 The serial coalescent

One of the recent extensions of the coalescent involves the possibility of considering
genetic samples obtained at different times. Rodrigo and Felsenstein (1999) developed the
serial coalescent, to describe the distributions of coalescence intervals on a genealogy of
samples obtained serially in time. Respect to the classical Kingman algorithm, there are two
differences that arise as a consequence of sampling sequences over time. The first is the
possibility to obtain a direct estimate of mutation rate simply by estimating the expected
number of substitutions that accumulate over each sampling interval, and dividing by the
amount of time between samples. The second difference is that in the serial coalescent,
going backward in time, the number of lineages can increase. This can influence the extent
to which we are able to make statements about historical population dynamics. In fact, with
a standard coalescent, the number of lineages decreases steadily as one move back in time,
reducing the certainty about the lengths of the coalescence intervals and so increasing the
variance in the estimates of evolutionary parameters. This is particularly important when

there have been changes in the population dynamics over time. On the contrary, with serial

18



Genealogical inferences based on comparison of modern and ancient DNA

coalescent, our ability to add sequences moving back along the genealogy means that we
can increase the efficiency in estimating the time-to-ancestry. This in turns means that we

have more power to detect changes in the dynamics of a population, thus rendering the

analysis more informative.
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1.3 The Bayesian revolution in genetics

Considerable progress in the field of population genetics has been made during the
past decade, following parallel increases in computer processing speed and in the available
DNA sequence data. To date, most current methods are based on the coalescent theory, the
stochastic process describing how population genetic processes can shape the genealogy of
the data (see Introduction, section 1.2). Coalescent-based inference methods enable
population genetic parameters to be estimated directly from gene sequence data under a
variety of scenarios, including variable population size (Drummond et al. 2002; Drummond
et al. 2005), recombination (Kuhner, Yamato & Felsenstein 2000), and population subdivision
(Beerli & Felsenstein 2001). The inference of demographic histories require a “demographic
model”, which is simply a mathematical function used to describe the changes in effective
population size, and/or migration rate, through time. The model reflects how the data were
generated, and the behavior of the model is determined by the values of a set of
parameters. We use the results that have been obtained by simulation of genetic data under
the tested model to estimate how populations evolved over time, i.e. to estimate population
parameters defining the model under study. The traditional approach to do this is the
Maximum Likelihood Estimation (MLE) method. The idea behind maximum likelihood
parameter estimation is to determine the parameters that maximize the probability
(likelihood) of the sample data. From a statistical point of view, the method of maximum
likelihood is considered to be robust and yields estimators with good statistical properties
(Huelsenbeck 1995). However, although the methodology for MLE is simple, the
implementation is mathematically intense and often unfeasible. The Bayesian inference is a

convenient way to deal with these sorts of problems.
1.3.1 Principles of Bayesian Inference

In Bayesian and classical statistics we want to make inferences about a fixed, but
unknown, parameter value; the difference is in how we approach this goal and in the

interpretation of the results.

Bayesian statistics allows scientists to incorporate prior knowledge about model

parameters into their data analysis, and the essence of Bayesian statistics is that there is no
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logical distinction between the data and the model parameters, since they are both random
variables. Being a random quantities, they have a joint probability distribution, specified by a
probabilistic model in which the data are the observed variables and the parameters are
unobserved variables. This joint distribution is a product of the likelihood and the prior. The
likelihood measures the probability of the data given a particular set of parameter values,
and is based on a model of the underlying process; the prior represents the probability
distribution of the parameter values before observing the data. Together, these two
functions combine all available information about the parameters. The main goal of Bayesian
statistics is to manipulate this joint distribution in various ways to make inferences about the
parameters; this is done by calculating the posterior distribution of the parameters, i.e. the
conditional distribution of the parameters given the data. The first mathematical
formulation of the Bayesian approach is attributed to Thomas Bayes, a British
mathematician and Presbyterian minister. He realized that the probability of a particular

value p, given some observed data D, can be calculated using the probability function:

P(p) X P(D|p)

P(p|D) = 70))

also known as Bayes’ theorem. The function P(p/D) is the posterior probability
distribution, that is obtained, as said above, from the product of the prior (P(p)) and the
likelihood (P(D[p)). P(D) is the marginal likelihood of the data, the unconditional probability
of obtaining the outcome D taking all passible values of p into account. This value is a
normalizing constant, and simply ensures that the posterior probability distribution

integrates to 1. These basic features of Bayesian inference are outlined in Fig 1.4.
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Fig 1.4. Key features of the Bayesian inference. We imagine that the data D can assume any
value along the x-axis; similarly, the parameter value p can take any value along the y-axis.
Bayesian inference considers the joint distribution of the parameters and the data (P(p,D)),
represented by the contour intervals in the figure. This distribution can be obtained by the
product of the prior (P(p)) and the likelihood (P(D/p)); the former is an assumed distribution
of the parameters based on the background knowledge, the latter will arise from a statistical
model in which it is necessary to consider how the data can be explained by the parameters.
The arrows in the figure show that marginal distributions can be obtained by integrating the
joint distribution over the data, recovering the prior, or over the parameter values,
recovering the marginal likelihood P(D). Conditional distributions are indicated by the dotted
lines in the figure, and represent taking a “slice” through the joint distribution and rescaling
the distribution so that the integral of possible values is equal to one. The scaling factor is
given by the marginal distribution. Hence, any conditional distribution is simply the joint
distribution divided by a marginal distribution. The key quantity of the Bayesian inference,
the posterior distribution of the parameter given the data (P(p/D)), is in fact the joint
distribution divided by the marginal likelihood. Modified from Beaumont and Rannala

(2004).
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1.3.2 Application to Phylogenetics and Population Genetics

The main purpose of phylogenetics is to make inferences about the relationships
between different taxa estimating tree’s parameters like topology, branch lengths and the
nucleotide substitution model. By contrast population genetics is mainly interested in
demographic and evolutionary parameters shaping genetic variation. For both disciplines,
Bayesian methods represent an attractive development, allowing one to test complex, and

so realistic, evolutionary hypotheses.

Bayesian approaches to phylogenetics generated a great deal of enthusiasm. This can
be attributed to a number of factors, including that these methods enable the relatively
straightforward implementation of extremely complex evolutionary models, producing both
a tree estimate and a measure of uncertainty for the groups on the tree (Hughes et al. 1993;
Fleming et al. 2003). Schematically, in a maximum likelihood (ML) phylogenetic analysis a
hypothesis is judged by how well it predicts the observed data, and the tree that has the
highest probability of producing the observed sequences is preferred; in a Bayesian
phylogenetic analysis the optimal tree is the one maximizing the posterior probability, that is
proportional to the likelihood multiplied by the prior probability of a phylogeny. The
posterior probability of a tree can be interpreted as the probability that the tree is correct.
Prior probabilities of different hypotheses (i.e. different phylogenies) convey the scientist’s
belief before having seen the data. In the absence of background information, a simple
solution would be to use prior probability distributions largely uninformative, so that most of
the differences in the posterior probability of hypotheses are attributable to differences in
the likelihood. One way of doing this is to specify a uniform (or “flat”) prior, in which every
possible value of a parameter is given the same a priori probability. Thus, usually all trees are
considered a priori equally probable, and the likelihood is calculated under one of a number
of standard Markov models of character evolution. In principle, Bayes’ rule is used to obtain
the posterior probability distribution, and this probability, although easy to formulate,
involves a summation over all trees and, for each tree, integration over all possible
combination of branch lengths and substitution model parameter values. An important
property of the Bayesian inference is that there is no sharp distinction between different

types of model parameters. Once the posterior probability distribution is obtained, we can
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derive any marginal distribution of interest, integrating out (marginalizing) the model
parameters to which we are not interested. This is the main difference between ML and
Bayesian approaches. Under the ML approach, a joint estimation of the parameters is
performed, finding the highest point in the “parameter landscape”. A Bayesian analysis
measures the volume under a posterior probability surface rather than its maximum height.
Moreover, often these parameters are nuisance parameters, not of direct interest, but must
be dealt with because they are found in the likelihood equations. When complex models are
used, many parameters are involved in the analysis; marginalizing becomes increasing

helpful as the number of parameters increases relative to the amount of data.

In addition to phylogenetic inference, a number of Bayesian software packages have
been developed for coalescent-based estimation of demographic parameters from genetic
data (Rannala & Yang 2003; Kuhner 2006; Drummond & Rambaut 2007). Much like in
phylogenetic analysis, they also require a gene tree in the underlying model, although, in this
setting, the sequences represent different individual from the same species, rather than
from different species. The development of the coalescent theory has strongly influenced
many areas of population genetics, forming the basis for likelihood calculation in
genealogical models (Felsenstein 1992), and allowing the use of Bayesian approaches to
infer demographic history from genetic data (Atkinson, Gray & Drummond 2009; Gronau et
al. 2011). In addition, Bayesian methods might be used to assign individuals to their
population of origin (Pritchard, Stephens & Donnelly 2000; Tishkoff et al. 2009) and to detect
selection acting on genes (Nielsen & Yang 1998; Foll & Gaggiotti 2008; Riebler, Held &
Stephan 2008).

Together with progress in phylogenetic and coalescent-based population genetics,
Bayesian methods have been the main factor of success in addressing many evolutionary
guestions. There are many practical reasons to use Bayesian inference: if a probability model
includes many interdependent variables that are constrained to a particular range of values
(as is often the case of genetics), maximum likelihood inference requires that a constrained
multidimensional maximization be carried out to find the combined set of parameter values
that maximize the likelihood function. This often entails a difficult numerical analysis

problem and may require enormous computational efforts. In addition, some
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approximations are required to calculate confidence intervals, approximations that are most
accurate for large sample size. On the other hand, in Bayesian inference, in which the priors
automatically impose the parameter constraints, inferences about parameter values on the
basis of the posterior distribution require integration rather than maximization, and no other
approximations are involved. Moreover, the development of numerical methods to study
properties of complex probability distributions (i.e. Markov Chain Monte Carlo, see below)
have greatly facilitated the evaluation of Bayesian posterior probabilities, making the

calculations tractable even for complicated genetic model.

1.3.3 Markov Chain Monte Carlo Sampling

In most cases it is impossible to derive the posterior probability distribution
analytically. The reason is that most of the posterior probability is likely to be concentrated
in a small part of a vast parameter space. Even with a massing sampling effort, it is highly
unlikely that we would obtain enough samples from the interesting region of the posterior
distribution. Fortunately, a number of numerical methods allow one to approximate the
posterior probability, the most useful of which is Markov chain Monte Carlo (MCMC) (Gilks,
Richardson & Spiegelhalter 1996). MCMC has revolutionized Bayesian inference, with
applications to Bayesian pylogenetic (Brown & Yang 2010) and population genetics (Choi &
Hey 2011) inference. Markov chains have the property that they converge toward an
equilibrium state regardless of their starting point, so we just need to set up a Markov chain
that converges onto the posterior probability distribution. This can be achieved using
different methods, the most flexible of which is known as the Metropolis algorithm
(Metropolis 1953). In 1970 Hastings (Hastings 1970) introduced an important extension, and
so the sampler is referred as Metropolis-Hastings method. The basic idea is to construct a
Markov chain that has as its state space the parameters of the statistical model, and as
stationary distribution the posterior distribution of the parameters. The MCMC algorithm
involves the following steps. The chain starts at an arbitrary point in the parameters
landscape (©). In the next generation of the chain, a new point is considered (0*) drawn
from a proposal distribution f(@*/0). The ratio of the posterior probabilities at the two
points is then calculated (= P(©*|D)/P(©|D)); if the new point has higher posterior

probability (the point is “uphill”), the chain moves to this state and it becomes the starting
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point for the next cycle of the chain; otherwise, if the ratio is <1, the new state is accepted
with a probability that is proportional to the height ratio (Fig 1.5). After this, a new state is
proposed. It turns out that for a properly constructed and adequately run Markov chain, the
amount of time it eventually spends sampling a particular parameter value or interval is

proportional to the posterior probability of that value or interval.

The chain starts from random parameter values, and it is quite likely that the initial
likelihoods are low, so low that is not really fair to consider those points as being drawn from
the posterior distribution to be estimated. This early phase of the run is known as the burn-
in, and the burn-in samples are often discarded because they are heavily influenced by the
arbitrarily-chosen starting point. After a phase in which the posterior probabilities tend to
increase, the chain reaches the stationary distribution. At this point the likelihood values
tend to a plateau, and this can be confirmed from the trace plot, i. e. the plot of the
likelihood values against the generation of the chain. Looking at the trace plot is important
to monitor the performance of an MCMC analysis, since we are not only interested in
reaching stationarity, but also in an adequate coverage of this region (which means that
there has been convergence of the sample to the stationary distribution). The convergence
diagnostics helps determine the quality of the sampling from the posterior distribution.
Three different types of diagnostics are currently in use: examining autocorrelation times
(effective sample sizes), comparing samples from successive time segments in a single chain,
and comparing samples from different runs started from different space points. The speed
with which the chain covers the interesting region of the posterior is known as mixing
behavior. The better the mixing, the faster the chain will generate adequate sample from the
posterior. To improve mixing, and thereby convergence, it might be possible to implement a
Metropolis-coupled version of the algorithm (Geyer 1991) in which multiple chains are run
simultaneously, with all chains but one having heated stationary distribution. This heating is
achieved by raising the posterior probability to a power smaller than one. The effect is to
flattened out the posterior probability surface, and if the surface is flattened, a Markov chain
will move faster in the space. This is useful also if local maxima, i.e. isolated peaks of
probability are present in the space, and the chain may get stuck on one of these local
maxima, thus disregarding the absolute maxima of the posterior distribution. The heated
chains will not individually return the correct posterior distribution but they will explore the
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state space more quickly than the non-heated chain (cold chain) will. At regular intervals,

there is a swap of the states between two randomly picked chains, and if the cold chain is

one of them, it can jump a considerable distance in parameter space in a single step. In this

way the overall mixing of the cold chain may be substantially improved.

Pr[Accept] =

New Height
—<1.0

0Old Height

Fig 1.5. Markov chain Monte Carlo
procedure. MCMC analysis is used to
generate valid samples from the posterior.
A: The chain is started at a random point
(red), and a new state is proposed
according to a proposal distribution (blue).
If the new point is uphill, it will be always
accepted as the new point of the chain.
When another state is proposed (green)
that is downhill with respect to the
current state (blue), we accept it with a
probability is proportional to the height
ratio. B: The chain explores the
parameters space until reaching
stationarity. The initial running of the
chain before approaching the stationary

distribution is the burn-in phase (red

points). After that, the chain starts to explore the posterior distribution (black points) and

the amount of time it spends sampling a region of the parameters’ space (proportional to

the density of black circles) is proportional to its posterior probability.

1.3.4 Bayesian Model Choice

So far, in referring to the posterior distribution, we have always considered implicitly

that it was conditioned on a specific model. To make it explicit, we could write Bayes’

theorem as:
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P(pIM) X P(D|p, M)

POID,M) = ==

It is now clear that the normalizing constant (P(D[M)), is the probability of the data
given the chosen model after we have integrated out all parameters. This quantity is known
as “model likelihood” and is used for Bayesian model comparison. Indeed, if we assume that
we are choosing within two models, MO and M1, the ratio of their posterior probabilities can

be calculated as:

P(MO|D) _ P(MO) _P(D|MO)
P(M1|D) _ P(M1) « P(D|M1)

The first factor is the prior odds, and the second factor is known as the Bayes Factor,
which is the ratio of the model likelihoods, calculated as the harmonic mean of the likelihood
values from the stationary phase of an MCMC run. When the compared models have the
same prior probability, the first factor is equal to one, the Bayes Factor is the same of the
posterior odds, and from it we can get information about the support of the data to model 0
with respect to model 1. The interpretation of a Bayes Factor comparison is up to the
investigator, but some guidelines were suggested by Kass and Raftery (1995). An alternative
of the Bayes Factor to compare models is the reversible-jump MCMC. Instead of running a
full analysis on each model and then choosing among them using the estimated model
likelihoods, in a reversible jump MCMC a single Bayesian analysis explore the models in a
predefined model space. In this case, all parameters estimates will be based on an average

across models, each model weighted according to its posterior probability.

1.3.5 Summarizing the data: the Approximate Bayesian Computation

All these methods are computationally intensive, and analyzing the data fully and
accurately becomes impossible when loci are many and the models complex. In MCMC
methods the difficulty lies in evaluating the likelihood, and in evaluating it in a reasonable
time. In fact, even if the statistical estimation of mutation and demographic parameters
have drastically improved in the last 10 years (Marjoram & Tavaré 2006), these methods are
still restricted to relatively simple models for which the likelihood function can be computed,

or to small dataset that can be analyzed in a reasonable amount of time. The increasing
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production of genetic data and the need to simulate more realistic (which usually means
complex) models, has led to the development of methods that try to approximate the
likelihood. One of these methods was firstly proposed by Fu and Li (1997) and Tavaré et al
(1997), and then by Weiss & Von Hassler (1998) and Pritchard et al (1999) under the name of
Approximate Bayesian Computation (ABC). Few years later, Beaumont et al. (2002)
formalized and generalized this approach introducing a series of improvements, so that the
actual birth of the ABC coincides with his study. The ABC methods, for the first time in
population genetics, combine the analysis of abundant data and realistic modeling. They
allow the probabilistic comparison of different models of evolution accounting for the
observed variation, the simultaneous estimation of demographic and evolutionary
parameters, and the quantitative evaluation of the results credibility. An explanation of a
complete ABC analysis, detailing the approaches used in this thesis, can be found in the

Methods section (3.2.2).

In general, the idea behind the classical ABC methods is to use simulations across a
wide range of parameter values within a model to find the parameter values that match
most closely those in the observed data. Initially, at each iteration of the simulation step, the
simulated data D’ were compared with the observed data D, and if D’ were identical to D,
the parameters that generated that dataset were stored, and discarded otherwise (Tavaré et
al. 1997). At the end of the simulation step the retained parameters were used to estimate
the posterior distribution. Since this procedure is very unlikely to produce a dataset identical
to the observed one, whenever the data are many and/or the models are complex, it has
been proposed to replace the data with a set of summary statistics (S), and to retain a
simulation only if the simulated set of summary statistics (S’) are sufficiently close to the
observed S (Pritchard et al. 1999). In order to account for the difference between S and §’,
Beaumont et al (2002) proposed to perform a local weighted linear regression to compute
the posterior distribution, and this adjustment showed to substantially improve estimation.
Recently, Leuenberger and Wegmann (2010) propose to reformulate the regression step
using the General Linear Model (GLM) to improve the fit of the relationship between
parameters and summary statistics in the retained simulations (ABC-GLM). Other
improvements have recently been proposed, to increase the efficiency of the simulation
step. Indeed, during an ABC analysis, all simulations are independent; this means that if a
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simulated genealogy produces a data set of statistics similar to the observed one, the next
simulation can be absolutely useless. Millions of simulations are needed to be sure of
approaching the real values a sufficient number of times to opportunely calculate the
posterior distributions. Interesting solutions, which | will not describe in detail here, were
proposed by Wegmann and colleagues (2009; MCMC without likelihood (ABC-MCMC)) and
Beaumont et al (2009; Population Monte Carlo (PMC)).

In short, the whole ABC machinery is based on comparisons between observed and
simulated statistics, calculated respectively on observed and simulated data sets of genetic
variation. The choice of the statistics is recognized as one of the most important step
(Beaumont, Zhang & Balding 2002; Marjoram et al. 2003), but there is still no general rule
about which and how many statistics should be used. The set of statistics has to be
“sufficient”, to capture the whole information contained in the data about the model
parameters, but what “sufficient” means is difficult to say. Increasing the number of
summary statistics calculated on the data obviously increases the amount of information
considered, but other issues may arise; the larger the number of summary statistics, the
larger the statistical noise included in the posterior estimation (known as “curse of
dimensionality”, Joyce & Marjoram 2008). In other word, by considering many variables one
takes the risk to give limited or insufficient weight to the variables that would be most
informative about the process of interest. Many approaches have been proposed to solve
this trade-off between information and stochastic noise. Between these, Joyce and
Marjoram (2008) proposed to score the different summary statistics based on their impact
on the inference and Wegmann et al. (2009) proposed to transform the summary statistics
via Partial Least Square to obtain a set of orthogonal linear combination of statistics best
explaining the variance in the model parameter space. Alternatively, principal component
analysis (PCA) can be used to select statistics most correlated with the model parameters

variance (Bazin, Dawson & Beaumont 2010).

A second, critical point is the criterion to identify the model best accounting for the
data. There are two main methods for the model selection in the ABC procedure, detailed in
the Methods section. The first one is a “direct” method proposed by Pritchard et al. (1999) in

which, after pooling all the simulations generated under different models, only those falling

30



Genealogical inferences based on comparison of modern and ancient DNA

within an arbitrary distance threshold from the real data are retained. The posterior
probability of each model is then calculated as the fraction of retained simulations produced
by each of them. This method is simple and straightforward; however it could be inaccurate
if the distance threshold between observed and simulated statistics is not close to zero. To
solve this problem, Beaumont (2008) proposed to improve the model selection procedure

using a logistic regression approach (see Methods for details).

When the likelihood function can be evaluated, there is no advantage of using ABC as
alternative. However, for many applications of population genetics, the likelihood function
can be evaluated in principle, but in practice it is computationally too expensive. Moreover,
the trend is analyze increasingly large datasets and to interpret them in the light of more
realistic models, for which ABC methods can provide reasonable good estimates in a

reasonable computational time.
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1.4 Ancient DNA

For many years, inferences about the past of human populations could only come
from the study of modern genetic variation. With the advent of ancient DNA techniques is it
possible to add the genetic information coming from humans and pre-humans and to
address directly questions such as the evolution of genes involved in human specific traits,
the analysis of diversity of ancient populations and the reconstruction of their histories, the
determination of past frequencies for alleles involved in phenotypes such as pigmentation,
dietary adaptation linked to agriculture, and responses to particular pathogens.
Unfortunately, there are lots of practical difficulties with ancient DNA analysis in general,
and analysis of human samples in particular, due to the postmortem degradation of

molecules of DNA and contamination with ubiquitous modern DNA.

1.4.1 Molecular damage

Within living cells, the integrity of DNA molecules is maintained by enzymatic
processes (Lindahl 1993). After the death of an organism, cellular compartments that
normally seize catabolic enzymes stop working, and, as a consequence, DNA is degraded by
enzymes such as lysosomal nucleases. Under some rare conditions, a tissue becomes rapidly
desiccated after death, or the DNA becomes adsorbed to a mineral matrix, escaping
enzymatic degradation. Besides the enzymatic degradation, some other chemical processes
can affect DNA in a dead cell; many of these are similar to those affecting the DNA in living
cells, with the difference that in a living cell these processes are counterbalanced by cellular
repair processes. After death, damages accumulate progressively until the DNA loses its
integrity and decomposes, with an irreversible loss of nucleotide sequence information.
With the development of polymerase chain reaction (PCR), that made it possible to produce
unlimited number of copies of the same sequence of DNA from very few or even single
original DNA copies, the salvage of information from rare samples in which disintegration of

DNA is not yet complete is possible, although technically challenging.

Another problem of the DNA extracted from subfossil and fossil remains is its
degradation to small fragments, usually between 100 and 500 base pairs in size (Hofreiter et

al. 2001). This degradation is due both to enzymes and to hydrolytic cleavage of
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phosphodiester bonds in the phosphate-sugar backbones (Lindahl 1993), and of glycosidic
bonds between nitrous bases and the sugar backbone. The extent of degradation by these
processes depends on the preservation of the specimens, and represents a limit during a
PCR amplification. Moreover, the functionality of the PCR is limited by lesions blocking the
elongation of DNA strands by Tag polymerase. These lesions are induced by free radicals,
which are created by background radiation, attacking the double bounds of pyrimidines and
purines (major sites of oxidative attack) leading to ring fragmentation. DNA extracted from
fossil remains is susceptible to cleavage with endonuclease Ill, which is specific for oxidized
pyrimidines (Paabo 1989); sequences with higher amounts of oxidized pyrimidines could not

be amplified via PCR (Hoss et al. 1996).

In addition to fragmentation and DNA modification that prevent the extension of
DNA polymerase, there are other common damages in ancient DNA. Some of these are
problematic for the investigator because even if they allow the amplification of template
molecules, they cause incorrect bases to be incorporated during the PCR. An example is the
hydrolytic loss of amino groups from the bases adenine, cytosine, 5-methylcytosine and
guanine, resulting in hypoxanthine, uracil, thymine and xanthine, respectively (Friedberg,
Walker & Siede 1995). When the deamination produces uracil, thymine and xanthine are
incorrectly inserted by PCR. Clearly, the risk of determination of incorrect DNA sequences
due to misincorporations is great if amplification starts from a single DNA molecule and if
DNA sequences are determined from a single amplification. Under such conditions, any
consistent misincorporation would result in an incorrect base being determined. A way

around this problem is to perform more amplifications and compare the results.

1.4.2 Contamination with exogenous DNA

Ancient samples may not contain endogenous DNA detectable with current
techniques. However, if primers that amplify current human DNA are used to perform
amplifications from non-human remains, they often yield DNA sequences identical to those
found in contemporary humans (Serre et al. 2004). This means that, together with the
ancient specimen’s DNA, and sometimes in the absence of amplifiable DNA, modern DNA is

present in many ancient samples. Identifying it is easy in studies of non-human species, but
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not at all when the specimen’s DNA does not differ by much from the contaminant’s DNA
(Handt et al. 1994; Handt et al. 1996; Hofreiter et al. 2001; Wall & Kim 2007). This problem
might be alleviated in two ways: first, it is necessary to handle specimens, perform DNA
extraction, and set up amplifications in dedicated laboratory facilities, where no post-PCR
work has ever been conducted (Paabo 1990), and where all extraction work is conducted
with protective clothing and the work space cleaned regularly with oxidant such as bleach
and irradiated with UV lights; second, it was suggested to follow some criteria of authenticity
(Paabo 1989), detailed below. The first published criteria of authenticity (Paabo 1989) were
limited to three points: (a) testing of control extracts should be performed in parallel with
extracts from old specimens to detect contamination introduced from reagents and
solutions during the extraction procedure; (b) more than one extract should be prepared
from each specimen and both should yield identical DNA sequences; (c) there should be an
inverse correlation between amplification efficiency and size of the amplification product,
reflecting the degradation and damage in the ancient DNA template. Later, these criteria
have been expanded (Cooper & Poinar 2000; Hofreiter et al. 2001), and they can now be

summarized as follows:

1. Cloning of amplification products and sequencing of multiple clones. This serves to
detect heterogeneity in the amplification products, due to contamination, DNA damage, or

jumping PCR (Paabo, Irwin & Wilson 1990).

2. Extraction controls and PCR controls. Each set of extractions should include at least
one extraction control that does not contain any sample material but is otherwise treated
identically. Similarly, for each set of PCRs, multiple negative PCR controls should be
performed to differentiate between contamination that occurs during the extraction and

during the preparation of the PCR.

3. Repeated amplifications from the same or several extracts. This serves two
purposes. First, it allows detection of sporadic contaminants; second, it allows detection of
consistent changes due to miscoding DNA lesions in extracts containing extremely low

numbers of template molecules.
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4. Quantitation of the number of amplifiable DNA molecules. This shows whether
consistent changes are likely to occur or not. If consistent changes can be excluded (roughly

for extracts containing >1000 template molecules), a single amplification is sufficient.

5. Inverse correlation between amplification efficiency and length of amplification.
Because ancient DNA is fragmented, the amplification efficiency should be inversely
correlated with the length of amplification. If not, there is reason to believe that the DNA

extract is largely composed of exogenous molecules.

6. Biochemical assays of macromolecular preservation performed on amino acids.
This method serves two purposes: first, to support the claim that a specimen is well enough
preserved to allow the preservation of DNA, secondly, to perform a rapid screening to
identify specimens that, according to their general state of preservation, may contain DNA.
To this aim, the most widely technique used is based on the analysis of amino acids present
in specimens, relating on the combination of total amount of amino acids, their composition,
and their extent of racemization. Samples that contain very little amino acids, indicating that
the macromolecules in the specimens have been replaced by microorganisms, or where

amino acids are extensively racemized, are unlikely to contain endogenous DNA.

7. Exclusion of nuclear insertions of mtDNA. It is highly unlikely that several different
primer pairs all preferentially amplify a particular nuclear insertion. Therefore, substitutions
in the overlapping part of different amplification products are a warning that nuclear
insertions of MtDNA may have been amplified. A lack of diversity in population studies can

also be taken as an indication that nuclear insertions may have confounded the results.

8. Reproduction in a second laboratory. This serves a similar purpose as criteria 2 and
3, i.e., to detect contamination of chemicals or samples during handling in the laboratory.
Note that contaminants that are already on a sample before arrival in the laboratory will be

faithfully reproduced in a second laboratory.

(Paabo et al. 2004)

Even if all the criteria are followed, this hardly represents a positive proof that a DNA

sequence is genuinely ancient. Indeed, if a specimen is contaminated within a certain DNA
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sequence, all criteria can be verified, but the results would still be invalid. When the ancient
DNA comes from animal, contamination with modern human DNA is easily retrievable; but
that is not so simple when the DNA comes from ancient humans. In the last case, stricter
criteria ought to be followed, such as to verify that the sequence determined from the
ancient specimen is not present in all the investigators, including excavators, museum

personnel, or laboratory researchers.

So far, the most common marker used in the ancient DNA study is the mitochondrial
DNA (mtDNA). This is because mtDNA is present in several hundreds of copies per cell, in
contrast to the single-copy nuclear genome. Thus, integer sequences of mtDNA are more
likely to be present in any single extract, and can be easily amplified, than are nuclear
sequences. In the last years, the development of high-throughput DNA sequencing
technologies (Bentley et al. 2008) allows large-scale, genome-wide sequencing of random
pieces of DNA extracted from ancient human specimens, until obtain complete ancient
genomes (Green et al. 2010; Reich et al. 2010); however the degree of confidence related to
these genomes is still low, and, to date, they cannot be safely used in a comparative analysis

with modern humans.
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2. Purpose of the Thesis

In this thesis we compare different datasets of modern and ancient human
populations living in the same geographical areas in different periods of time. This has been
done in order to highlight traces of past genetic variation in modern populations, and to
evaluate whether, and to what extent, ancient and modern populations can be considered

genealogically related.

To do this, we analyzed the data within the approximate Bayesian computation
framework, that allows us to simulate complex (and hence, realistic) demographic models
including the genetic information coming from ancient populations. Moreover, the Bayesian
philosophy allowed us to incorporate in the analysis the prior information about model
parameters, such as mutation rate, effective population sizes for both modern and ancient
populations, separation time (for models involving more than one population) and migration
rate. This increases considerably the power to draw inference about the evolutionary
histories of the considered populations. For the first time we applied this methodology to
datasets of ancient and modern human variation, studying the genealogical relationships
between archaic humans (i.e. Neandertals), anatomically modern humans (i.e. Cro-Magnon)
and modern Europeans (see Applications, section 4.1), between ancient (Nuragic) and
modern Sardinians (see Applications, section 4.2), and between Etruscans and modern
Tuscans (see Applications, section 4.3 ). Within this framework, for each dataset considered,
we explicitly compared different demographic models estimating the most probable
mechanism of evolution of the data, we estimated the combination of demographic end
evolutionary parameters of the most probable model and we evaluated in several ways the

quality of our estimates.
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3. Methods

3.1 Measuring and summarizing genetic variation

Genetic data can be summarized by summary statistics calculated on the data (for
example on DNA sequences). Even if these statistics do not encapsulate all the information
present in the data, and in general are not sufficient for reliable inference about the
evolutionary processes that have generated the data, the description of the data is an
important starting point to have an idea about the amount of population’s diversity and

population’s structure.

Descriptive statistics of genetic interest can be mainly grouped into two categories:
statistics calculated to summarize genetic variation within populations (i.e. intra-population
statistics, 3.1.1), and statistics calculated between populations (inter-populations statistics,
3.1.2) to highlight their degree of genetic differentiation. Below, | report the statistics we
used to summarize ancient and modern mitochondrial DNA data; all the statistics were

calculated with the software Arlequin 3.5.1 (Excoffier & Lischer 2010).
3.1.1 Genetic variation within population
We summarized genetic variation within population through the following statistics:
Haplotype number: number of different sequences in the sample.

Segregant sites: number of sites in the sample showing more than one allele per

locus.

Gene diversity: the gene diversity calculated on haploid data such as mitochondrial
DNA is equivalent to the expected heterozigosity for diploid data. The gene diversity at a
locus is defined as the probability that two randomly chosen haplotypes are different in the

sample:

i=—"_qa zk 2
_n—l( i=1pi)
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Where n is the number of gene copies in the sample, k is the number of different

haplotypes in the sample, and p; is the sample frequency of the i-th haplotype (Nei 1987).

Mean number of pairwise differences (nt): mean number of differences between all

pairs of haplotypes within the sample. It is given by:

Where dij is a count of the number of differences between i and j (i.e. the number of
mutations having occurred since the divergence of haplotype i and j),k is the number of
haplotypes, p; is the frequency of haplotype i, and n is the sample size (Tajima 1983).
Analogous to the mean number of pairwise differences is the nucleotide diversity: it
represents the probability that two copies of the same nucleotide drawn at random from a
set of sequences will be different from one another, and is calculated as the mean number

of pairwise differences divided by the total length of the sequence.

Tajima’s D: this statistic compares two estimates of theta (0), the population
mutation parameter that represents the level of variation in a population under mutation-
drift equilibrium. Under neutral evolution, when equilibrium is reached, the generation of
new alleles by mutation is balanced by the elimination of alleles by drift; hence the
expectation is that, under neutrality, different estimates of 0 should be equal. Tajima’s D
compare two different estimates of 6, one based on the number of segregating sites (Theta
S), and the other based on the nucleotide diversity (Theta ). Theta S is estimated from an
infinite-site equilibrium relationship (Watterson 1975) between the number of segregating

sites (S), the sample size (n) and O for a sample of non-recombining DNA:

b S
'S a
where:
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(Tajima 1989)

Theta mt is estimated from the infinite-site equilibrium relationship between the mean

number of pairwise difference (m) e 0:
E(m)= 6
(Tajima 1989)

The test statistic D is then defined as:

(Tajima 1989)

Under neutrality the two estimates are expected to be equal, and so Tajima’s D is
expected to be zero. The significance of the D statistic should be tested by generating
random samples under the hypothesis of selective neutrality and population equilibrium,
using a coalescent simulation algorithm adapted from Hudson (1990). The P value of the D
statistic is then obtained as the proportion of random D statistics less or equal to the
observation. Significantly positive values of this statistic indicate that the differences
between alleles are greater than expected from the level of variation, a phenomenon often
caused by population subdivision or balancing selection. When the value of Tajima’s D is
significantly lower than zero, meaning that there are many alleles with respect to variation
as measured by pairwise differences, this may often be due to a population expansion or

positive selection.

3.1.2 Genetic distance measures

To estimate the degree of genetic differentiation between populations, we used the

following statistics:
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Hudson’s Fst: this statistic measures the degree of variation between pairs of
populations and is based on the mean number of pairwise differences within and between

populations. It is calculated as:
H,y,
Fst=1—(—
s ()

(Hudson, Slatkin & Maddison 1992)

Where H,, is the mean number of differences between different sequences sampled
from the same subpopulation, and Hy is the mean number of differences between sequences

sampled from the two different subpopulations sampled.

Haplotype Sharing: similar to allele sharing for genotypic data, this statistic
represents the degree of genetic similarity between pairs of samples. It is calculated as the
number of haplotypes that are shared between two samples (e.g. between popl and pop?2),
divided by the number of haplotypes in popl (haplotype shared between popl and pop2
respect to pop1l) or in pop2 (haplotype shared between popl and pop2 respect to pop2).
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3.2 Inference from diversity: estimating parameters from molecular

data

Recent population genetics methods (i.e. coalescent based methods) can help us
understand the evolutionary and demographic processes at population level. These methods
are implemented in various software packages and programs, which have grown enormously
in last years. In this section, | outline the two principal methodologies we used to analyze the
data. The first is a likelihood method based on the Isolation with Migration model (3.2.1)
(Nielsen & Wakeley 2001) that we applied to study the relationships between two modern
populations in the Etruscan study (see Applications, section 4.3). Secondly, when the goal
was to highlight the genealogical links between ancient and modern populations, the models
became more complex (involving more populations and an elevate number of parameters)
and cannot be analyzed by classical likelihood methods. To bypass this problem we referred
to approximate Bayesian computation methods (3.2.2), by which the data are not fully
considered but are summarized by means of statistics, allowing to simulate genetic data

according to any demographic model.
3.2.1 The Isolation with Migration model

The Isolation with Migration (IM) model provides a statistical framework making it
possible to discriminate between two factors leading to increased genetic similarity of
populations, namely common origin and gene flow. The IM model tests for the relative
weight of common ancestry, drift and gene flow in two (or more) populations. Consider a
general IM model in which an ancestral population gives rise to two populations, after which
there may be gene exchange between these two populations (Fig 3.1). In its original
formulation the model has six main parameters, namely the size of the three populations
(NA, N1, N2), the time of the splitting event (t), and the rates of gene flow between daughter
populations (m1, m2). The IM model differs from classical population-genetics models
(Wright’s island model, Malécot and Morton’s isolation-by-distance model) in that it does
not require the (often unlikely) assumption that mutation, genetic drift and gene flow have
reached an equilibrium. As such, it may be used to quantify the roles of these factors in

determining the degree of genetic relatedness between populations, a classical question in
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evolutionary genetics. Indeed, in principle, a certain level of similarity between two
populations may reflect a recent common origin followed by isolation, or a remote common
origin followed by genetic exchanges, or anything in between. By the IM method one obtains
maximume-likelihood estimates of the parameters describing the effects of drift (t, NA, N1,

N2 ) and gene flow (m1, m2) (Nielsen & Wakeley 2001; Hey & Nielsen 2004).

At first, Nielsen and Wakeley (2001) developed a Bayesian framework for fitting this
six-parameters version of the IM model to data from a single, nonrecombining locus drawn
from two population or closely related species. A few years later, Hey and Nielsen (Hey &
Nielsen 2004) introduced an extension allowing for multilocus analysis, and wrote a
computer program to implement  the method (freely available at

http://genfaculty.rutgers.edu/hey/software ). In this formulation the IM model could not

account for changes in population sizes, and for the sizes of founding populations. Later both
these issues were addressed by including a seventh parameter, s, representing the
proportion of members of the ancestral population giving rise to each daughter populations

(respectively, s and 1-s) (Hey 2005).

Under the assumption of selective neutrality and no recombination within loci, the
IM software repeatedly generates gene genealogies by Monte Carlo Markov Chain (MCMC)
simulation (see Introduction, section 1.3.3). Each gene genealogy is generated choosing
random values (within a predefined interval) of the six or seven parameters. Each new
parameter value is accepted or rejected, according to standard criteria, until the parameter
space is explored and stationarity is reached. One way to have an idea whether the program
generated a good estimate of the parameter (i.e., whether there was convergence), is to run
repeated analyses that differ only for the random parameter values from which the
simulations start. At the end, one can see whether the same parameter distributions are
obtained. Another possibility is to observe over the course of a run how accurately the
parameter space is explored. In the IM software this is done by plotting recorded values over
the course of the run and then by measuring how these values are autocorrelated over the
length of the run. If the autocorrelation persists for a large number of steps, this means that

the space is being explored slowly, and longer runs are required. To improve mixing, and
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thereby the convergence, the IM software allows the Metropolis coupling of Markov chains,

where multiple chains are run simultaneously (see Introduction, section 1.3.3).

We applied this method to the analysis of the Etruscan population (for details see
Applications, section 4.3), in order to estimate the time of the separation between
Southwestern Anatolia population (Etruscans’ homeland according to Herodotous) and the
Tuscan populations related to the Etruscans. Estimating the separation time between these
two populations allows as understand whether the genetic resemblances between Turks and
Tuscans can be referred to a common origin just before the onset of the Etruscan culture
(hence not more than 3,000 years ago), placing the Etruscans’ homeland in Anatolia, or,
rather, the time estimated supports the autochthonous development of the Etruscan culture

in ltaly.

Time

Fig 3.1. A scheme of the basic model of isolation with migration with the additional
parameter s, as reported in Hey (2005). It is assumed that, t generations ago, an ancestral
population of size N, split into two daughter populations of sizes, respectively, N; and N,
connected by gene flow. The rates of gene flow between daughter populations are
expressed by m; and m,, and s is the proportion of the members of the ancestral population

giving rise to the first daughter population.
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3.2.2 Likelihood free inference: the Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is a flexible framework developed to
choose among alternative models and to infer their parameters. Its flexibility depends on the
likelihood-free inference allowing to analyze complex, and therefore realistic, demographic
models (see Introduction, section 1.3; for a review see Bertorelle, Benazzo & Mona 2010).
We applied this framework to test the genealogical relationships between modern and
ancient populations living in the same area in different periods of time, and to estimate
demographic and evolutionary parameters for the models showing the highest fit with the
data. The ABC algorithm we used was firstly proposed by Beaumont in 2002 (Beaumont,
Zhang & Balding 2002) as an extension of the simple rejection procedure by Pritchard et al

(1999). This procedure includes the following steps:

1. First of all, one has to “set the scene”, that is specify the history and the
demography of the populations using a model of evolution with the specific parameters. If
one is interested in testing among different hypotheses, several models can be designed and
compared.

2. For each demographic model thus defined, millions gene genealogies are
simulated. In our analyses, these genealogies were generated using a serial coalescent
algorithm by the Bayesian version of SERIALSIMCOAL (Anderson et al. 2005; freely available
on http://iod.ucsd.edu/simplex/ssc/BayeSSc.htm). Using this software it is also possible to
include samples collected at different moments in time. Suppose, e.g., that one has samples
of sizes ng, ni, ny...ngx of populations studied O, ti, t,..tx generations ago. The program
generates genealogies proceeding backwards in time, starting with no samples in the present
(to) and adding ny, n,...n, samples at the appropriate moments in the past. The genealogy is
then extended backwards until it reaches the most recent common ancestor (MRCA) of the
sampled lineages through a series of coalescence events (see Introduction, section 1.2). At
this stage, mutations are added onto the tree according to an infinite-site model. The
parameters defining the model (population sizes, mutation rates, timing of demographic
processes) are considered as random variables, and their values are extracted from broad
prior distributions, representing the knowledge on the parameters before the analysis;

samples ages and sizes are equal to those of the observed samples.
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3. Observed and simulated data are summarized using the same set of statistics;
the most common statistics used in our studies were described in the previous section
(Methods, section 3.1)

4, For each simulated dataset, a Euclidean distance 6 between the observed and
simulated summary statistic is calculated. Model selection and parameters estimation (see

below) are based on the 6 values thus estimated.

3.2.2.1 Model Selection

The ABC methods make it possible to compare alternative hypotheses about a
process, and assign a probability to each hypothesis tested (i.e. simulated) referring to the
same set of data. For our analyses, we calculated the posterior probabilities of the models in

two ways.

The first criterion is based on the simple rejection procedure (AR) proposed by
Pritchard et al (1999), for which model posterior probabilities are computed by counting
how many simulations run under the i-th model (ni) are found among an arbitrarily-defined
number of simulations resulting in the shortest 6 between observed and simulated data
(nt). The posterior probability for the model is then = ni/nt. Results of previous studies
suggest that straightforward rejection may not be robust when considering more than a few
hundred simulations (Beaumont 2008), and so, when using this approach, we considered nt

equal to 100, i.e. we selected the 100 closest simulations.

Under the second criterion, proposed by Beaumont et al (2008), the posterior
probability for each model can be computed by means of a weighted multinomial logistic
regression procedure (LR). In the ABC simulations the summary statistics are the predictive
variable, and the model parameters are the response variable; under the logistic regression
method the model is the categorical dependent variable Yj (1 <j <n for n tested models).
The regression is local around the vector of observed summary statistics, and the simulations
are weighted by an Epanechnikov kernel according to their distance from the observed data
set. The maximum likelihood values of the B coefficients of the regression model are then
estimated. The probability of the model is evaluated in the point corresponding to the

observed vector of summary statistics. For this estimation procedure we considered the
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50,000 simulations generating the shortest 6 distance between the observed and simulated

summary statistics.

For the model selection procedures performed in these studies, we used a modified
version of the calmod function, written by M. A. Beaumont (available at

http://www.rubic.rdg.ac.uk/~mab/stuff/ ) for the R statistical package.

3.2.2.2 Parameters Estimation

The purpose of the model selection procedure is to identify the best-fitting model,
that is, the model that best explains the observed variation. After that, within the ABC
framework, is it also possible to estimate the demographic and evolutionary parameters
underlying this model. To do so, only a subset of simulations are retained (in general 2,000
or 5,000), i.e. the simulations producing statistics closest to the observed statistics, chosen
from the total amount of simulations generated under the model. For this purpose, we
implemented the approach developed by Beaumont et al. (2002) based on the computation
of a local, weighted, linear regression between each parameter and the vector of the chosen
summary statistics. Each retained simulation is assigned a weight (the commonly used
weighting function is the Epanechnikov kernel) based on a function increasing as the
distance between the observed and simulated data decreases. The regression slope is then
used to adjust the parameters value from the retained simulations towards the value in
correspondence of a distance zero between observed and simulated statistics. This way we
obtained an estimate of the parameters’ values that mimic a situation in which all
simulations produce summary statistics equal to the observed values. Parameters need be
transformed before the regression step (we use the logtan transformation, Hamilton,

Stoneking & Excoffier 2005), to avoid adjustment outside the prior distribution.

The mode and the median value of the correspondent posterior distribution are
usually used as parameter estimators; the 95% interval of the highest posterior density is
also calculated, that is the interval which includes the 95% of the parameter values and

within which the density is never lower than the density outside it.
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For these purposes we used a modified version of the make_pd2 script, written by M.

A. Beaumont (available at http://www.rubic.rdg.ac.uk/~mab/stuff/ ) for the R statistical

package.
3.2.2.3 Validation of the estimates

After an ABC analysis it is common to investigate the robustness of the results. To
test the reliability of the model selection procedures, one can calculate the type | error,
whereas to assess the quality of the parameters estimate one can calculate indices like the
coefficient of determination (R?), the bias and the root mean square error (RMSE), the
coverage and the factor 2. Finally, to test whether the model we considered to best fit the
observed data might actually generate patterns of genetic diversity resembling the observed

ones, a posterior predictive test is commonly performed.

To assess if the models we simulated may be correctly recovered by the procedure
we chose to calculate their posterior probability (that is: is there enough power in the data
to allow one to distinguish the alternative models?), Type | Error (i.e. the probability of
rejecting a true null hypothesis) is evaluated. To do this, some hundreds datasets are
generated using each of the models considered in the model selection analysis; these
pseudo-observed datasets are then treated as observed datasets in an ABC analysis using
the previously simulated models. After that, the Type | error can be calculated as the
proportion of cases in which the LR or the AR procedures were not able to recover the right
model, as suggested in Fagundes et al. (2007) and Cornuet et al. (2008). If the Type | error is
low, this means that the genetic data used in the analysis allow one to distinguish between

the demographic models tested.

To determine whether the summary statistics we chose contain enough information
to estimate model parameters, the coefficient of determination (R?) can be computed. R?
indicates the percentage of variance of the dependent variable (i.e., the parameter)
explained by the predictors (i.e., the summary statistics). In the absence of an established
threshold value, there is a general agreement that when R? < 0.10, the summary statistics do
not convey enough information about their posterior distribution (Neuenschwander et al.

2008).
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The accuracy of the median estimate of model parameters can be assessed by
computing the relative bias and the relative mean square error. For these tests, n datasets
are generated using median or mode point estimates as demographic parameters. Each of
these n datasets is then used as a pseudo observed dataset which is analyzed with the
previously described ABC methodology. Bias and RMSE depend, respectively, on the sum of
differences, and on the sum of squared differences, between the n estimates of each
parameter thus obtained, and the respective median point estimate (Neuenschwander et al.
2008). A value of 0 means that the median perfectly estimated the parameter, positive and

negative values reflect, respectively, biases towards overestimation and underestimation.

To calculate the coverage and the factor 2, the same pseudo observed datasets are
used. The coverage is defined as the proportion of times the known value (median or mode
value) lies within the credible interval of the n estimates. For example, the 90% coverage is
the proportion of instances in which the true value (i.e. the parameter value estimated
during the ABC analysis) fall within the 90% credible interval of each of the n estimates
derived from the pseudo observed dataset. The factor 2 statistic, instead, represents the
proportion of the n estimated median or mode values from the pseudo observed datasets
lying between the 50% and the 200% of the fixed (known) value. Note that factor 2 gives
information about the absolute precision of the estimator, because it is independent of the

posterior distribution’s variance (which, conversely, is not a property of the coverage).

Once a model has been shown to be better than any alternatives in generating data
compatible with the observed one, the question is whether that model can actually generate
data that faithfully reproduce the observed variation. This question can be addressed by
performing a posterior predictive test (Gelman et al. 2004). To do this, thousands (n)
datasets are generated under the selected model, by repeatedly drawing the parameter
values from the posterior distributions estimated. These simulated data sets are summarized
by summary statistics, which are then compared with the corresponding summary statistics
from the observed data. This way one computes a posterior predictive P-value for each of
the statistics considered, and then combines their probabilities into a global P-value, by a
method that takes into account non-independence of the statistics (Voight et al. 2005). This

global P-value is calculated in four steps: (1) each simulated summary statistic is compared
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with the other n-1 values representing the empirical distribution of the statistic from the
simulations, and thus associated with a two-tailed P-value; (2) for each simulated genealogy,

a new statistic C, combining the P-values of the individual statistics (pi) is calculated as:

C= _ZZ In(pi)

where summation is over all P-values from each summary statistic. This step is
repeated n times, so as to obtain a null distribution of C; (3) By repeating the same
procedure over the observed statistics, we calculate an observed C value, Co; (4) by
comparing Co with the C null distribution, we estimate a one tailed P-value (the Bayesian P-

value) for Co.

A scheme of a complete ABC analysis is outlined in Fig 3.2.
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Fig 3.2. From Bertorelle, Benazzo and Mona (2010).
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4. Applications

In this chapter, | briefly present the three studies | co-authored during my PhD. The
first is a study about the genealogical relationships between archaic humans (i.e.
Neandertals), anatomically modern humans (i.e. Cro-Magnon) and modern Europeans (4.1);
the second work regards the genealogical relationships between Bronze-age and modern
population in Sardinia (4.2); the last study regards the origins and evolution of the Etruscan
population (4.3). Within the ABC framework, applied here for the first time to datasets of
ancient and modern human variation, we explicitly compared several models to choose the
one which best accounts for the observed variation. Then we estimated the parameters of

the best model and we evaluated the quality of these estimates.
A detailed description of these works is reported in the “Papers” section (7).
4.1 Neandertals, Early Modern humans and Modern Europeans

The debate on modern human origins regards the interpretation of a vast body of
archaeological, fossil and genetic data, from which the relationships between ancient and
modern populations and their migrational history can be approximately inferred. Many
models have been proposed to account for the observed patterns of diversity and similarity,
but, as a first approximation, it is fair to say the two main models are the “Out of Africa”
model, and the Multiregional model (Fig 4.1). The distribution of fossils and artifacts clearly
shows that, up to perhaps 2 million years ago, all human ancestors lived in Africa. Starting
from that period, human forms are documented in Asia and Europe. At the end of the 1980s,
the first studies of human molecular diversity suggested that our species had evolved from
an African population that around 100 thousand years ago colonized the whole world,
supplanting the former hominid. This replacement model is called “Out of Africa” (OOA) or
“Recent African Origin” model (Fig 4.1A), and has been widely adopted by the human
population genetics community. However, this model was disputed by some archaeologists
for whom there is evidence of a regional continuity in the Pleistocene fossil record, which
cannot be explained by a complete replacement of Homo erectus in Asia or Neandertal in
Europe (Wolpoff 1989). They hence proposed a model of Multiregional evolution (MRE) (Fig
4.1B), where modern humans would have emerged gradually and simultaneously from
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archaic forms in different continents. Modern humans would represent a single species
because the archaic human groups of Africa, Asia and Europe were not reproductively
isolated, but connected by gene flow (Wolpoff, Hawks & Caspari 2000). Further studies of
worldwide modern human variation have discovered three trends in summary statistics as a
function of increasing geographic distance from Africa: a decrease in heterozygosity (Li et al.
2008), an increase in linkage disequilibrium (LD) (Jakobsson et al. 2008), and a decrease in
the slope of the ancestral allele frequency spectrum (indicating that derived alleles tend to
be more frequent in populations at a greater distance away from Africa) (Li et al. 2008); all
these piece of evidence are in favor of the Out of Africa model. A related question is what
extent of genetic exchange between archaic and modern humans is compatible with the
OOA model. If the Multiregional model could only be rejected by proving that no exchange
has been happened between them, the model would be impossible to falsify with scientific
tools, and hence the debate would not be possible within the realm of science. The study
and the comparison of DNA in ancient human forms (i.e. Neandertals), in anatomically
modern humans (i.e. Cro-Magnon), and in modern populations, can be useful to address all
these questions. In fact, Neandertal and Cro-Magnon coexisted in Europe for millennia, and
fossil and archaeological data document a progressive withdrawal of Neandertal
communities towards Western Europe as Cro-Magnoids expanded. The Neandertals
anatomy and their artifacts disappeared from the record around 29,000 years ago (Mellars
1992; Mellars 2006). In analyses of mitochondrial DNA (mtDNA) Neandertal sequences fell
out of the range of current European variation (Krings et al. 1997; Briggs et al. 2009), and
even a small mitochondrial contribution of Neandertals to the modern human gene pool
appeared unlikely (Currat & Excoffier 2004; Belle et al. 2009). However, in the first survey of
the whole Neandertal nuclear genome, patterns of allele sharing with modern humans have
been interpreted as suggesting 1-4% admixture between Neandertals and the ancestors of
non-African people (Green et al. 2010). On the contrary, when a sample of mtDNA from Cro-
Magnon was analyzed, it appeared indistinguishable from those of modern humans

(Caramelli et al. 2003; Caramelli et al. 2008).

In this study, we explicitly compared models of modern human evolution using
ancient and modern mtDNA sequences under the framework of Approximate Bayesian
Computations (ABC, see Methods, section 3.2.2). The use of the demographic models allows
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not only to compare modern and ancient variation highlighting the degree of resemblance in
the sequences, but also to estimate the degree of confidence in considering Neandertals as
the ancestor of modern Europeans and how much gene flow between them that can be
compatible with the observed variation. To do this, we used all the ancient sequences
available for Neandertals (7) and Cro-Magnon (3), and 150 modern European sequences
coming from the same geographical area of the ancient samples. From the ABC analysis, the
model having greater probability was the one in which the Neandertals underwent extinct
around 29,000 years ago and belong to a separate genealogy respect to the Cro-Magnon and
the modern Europeans. According to this model, anatomically modern humans emerged
from a small population after a founder effect that followed the expansion out of Africa of
the early humans. The Out of Africa model of human evolution appears to be hundreds-fold
as likely as the alternative model. A direct comparison between a model without gene flow
from Neandertals into Cro-Magnons and a model of gene flow during the period of the
coexistence in Europe of Neandertals and Cro-magnons, showed that the best estimate of
mitochondrial admixture between Neandertals and the ancestors of modern Europeans is
zero. Additional tests on the reliability of the estimates confirmed the quality of the analysis,
indicating that the data we analyzed contained enough information to allow one to

distinguish among the models tested.

This study, albeit exploiting one of the most powerful statistical methodology of
genetic inference, was limited to the mitochondrial DNA, and hence to the maternal lineage.
In the recent nuclear genome survey, Neandertals appeared genetically closer to all non-
Africans than to Africans. This observation was interpreted as evidence of admixture,
between 1% and 4%, between Neandertals and the common ancestors of Asians and
Europeans, in the Levant (Green et al. 2010). We propose a way to reconcile these findings,
involving a more articulate model of genetic drift. Under such a model, the greater similarity
between Neandertals and non-Africans would not necessarily require admixture between
them. Indeed, if the common ancestors of Neandertals and modern humans were
geographically structured, as proposed by Falush et al. (2003) and Harding & McVean (2004),
all non-Africans could share with Neandertals a longer section of their genealogy, also
sharing more alleles than Africans with Neandertals, including the derived alleles upon which
Green et al. (2010) based their estimates. By contrast, in the mitochondrial DNA, having
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lower effective population size compared with nuclear DNA, the sorting of the lineages due
to genetic drift would be already complete. This view is also supported by data on the DNA
of the human gastric parasite Helicobacter pilori, in which ancestral genetic clusters seem to
have given rise to two distinct populations, one exclusively African, and the other
cosmopolitan (Falush et al. 2003), and by the extreme levels of DNA variation still present in
Africa (Schuster et al. 2010). The only additional assumption one has to make to account for
the observed results is that the latter population was also ancestral to the European

Neandertals typed by Green et al. (2010).

The complete published study is reported at p. 74.

A | d B
Europe and . . ustralia an : " Australia and
Middle fast  Africa EastAsia  goutheast Asia E}ﬁ&o E Eg‘g Africa East Asia SOﬂih"S;?ta,i‘sia
Modern Humans
Modern Humans
Homo erectus Homo erectus
AFRICA AFRICA

Fig 4.1. Out of Africa (A) and Multiregional (B) model of human evolution.
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4.2 Modern and ancient mitochondrial variation in Sardinia

The population of Sardinia is known as one of the main genetic outliers in Europe
(Cavalli-Sforza & Piazza 1993).When compared with populations from all over the world,
Sardinians are clearly part of a European genetic cluster (Rosenberg et al. 2002), but they
differ sharply from their European (Barbujani & Sokal 1990) and Italian (Barbujani & Sokal
1991; Barbujani et al. 1995) neighbors. Moreover, Sardinian populations show some
(elsewhere rare) Y-chromosome and mitochondrial haplotypes at very high frequencies
(Morelli et al. 2000; Semino et al. 2000; Quintana-Murci et al. 2003), and an unusual pattern
of internal genetic diversity. Strong genetic differences are observed among Sardinian
communities, both for allele frequencies (Barbujani & Sokal 1991) and polymorphism level
(Fraumene et al. 2003). These peculiar features are probably due to the small effective
population size combined with the reproductive isolation, caused by the fragmented habitat,
that have probably enhanced the role of the genetic drift within the Sardinian communities.
An ancient Sardinian sample was analyzed in a previous work (Caramelli et al. 2007),
comprising 23 mitochondrial sequences from Bronze-Age Sardinia (“Nuragic” population).
The authors observed very different resemblances with two modern populations of the
island, separated in space by less than 120 km. One population came from Ogliastra, an
isolated community in the middle-east of the island, and the other came from Gallura, an
“open” region in the north-east of the island, where recent immigration is documented from
mainland ltaly. More than a half of the ancient haplotypes were present in the Ogliastra’s
sample, but only the 18% in Gallura, which is the same proportion one would observe by
picking up random modern individuals from all over Europe (Caramelli et al. 2007). The
existence of such sharp differences between one modern population and the ancient
inhabitants of the island calls for an explanation, which lies in questions on the existence and
on the strength of genealogical ties between ancient and modern people, and which can be

empirically addressed by means of ABC.

In our study we defined three main models of evolution, tested both without and
with migration from the mainland into Gallura (as historically documented), and differing
mainly for the genealogical relationships between modern and ancient populations. In fact,

in each of the three models, the ancient sample was placed respectively as ancestor of the
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Ogliastra’s population only, of Gallura’s population only, or of both. The comparison
between the observed mtDNA diversity and the patterns of variation simulated under these
models clearly showed that haplotypes documented in the Bronze Age, or derived from
them assuming a reasonable mutation rate, are still present and common in the isolated
Ogliastra community. Conversely, the modern population of Gallura seems derived from
ancestors who separated in Palaeolithic times (around 12,500 years ago) from the common
ancestors of Bronze-Age and modern Ogliastra people, and have poor genealogical
relationships, if any, with the ancient people of Sardinia. The only haplotype shared between
Bronze-Age Sardinia and Gallura is the Cambridge Reference Sequence (CRS), which is very
common all over Europe; however, the ABC analysis showed that there is no way of
generating the genetic variation observed in Gallura starting from an ancient population
with the same mtDNA diversity of Bronze-Age Sardinia. The most probable model estimated
from the ABC analysis included also variable rates of gene flow from Latium, the mainland
region nearest to Sardinia, into Gallura. Considering this migration rate we could also

account for part of the excess of mtDNA variation found in Gallura with respect to Ogliastra.

This study cast new light on the nature and the extent of the genealogical ties
between modern and ancient populations, a long-term source of controversy in evolutionary
biology. In the case of Sardinia, we showed that, when properly analyzed, even a few tens
ancient sequences can be sufficient to test hypotheses on the relationships between past
and modern people and to improve the estimation of demographic and evolutionary

parameters underlying their model of evolution.

The complete published study is reported at p. 97.
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4.3 Origin and evolution of the Etruscans’ DNA

The first urban settlements in Tuscany (Italy) date back to the Iron-Age, eighth
century BC, and are associated with the onset of the Etruscan culture. Modern Tuscany
broadly corresponds to the core of the Etruscan territory, or Etruria, and indeed the word
‘Tuscany’ itself is derived from ‘Etruscan’. The Etruscan communities shared a non-
Indoeuropean language, a religion and a material culture, but they never formed a political
unit. According to ancient historians, the resemblances between Etruscans and other Iron-
Age populations were extremely low, since they did not language, lifestyle or customs
(Barker & Rasmussen 1998). Between the seventh and the fifth centuries, leagues of
Etruscan cities exerted a crucial cultural and political role in the Mediterranean area. In the
first century BC, the Etruscans obtained Roman citizenship, and their language and culture
vanished from the archaeological record (Pallottino 1975; Barker & Rasmussen 1998). There
is a long lasting controversy about the origin of the Etruscan population, whether local or
Anatolian. To date, there is consensus among modern archaeologists that the Etruscan
culture developed locally, with some features suggesting an Eastern influence; this
hypothesis was also shared by the ancient historian Dionysius of Halicarnassus (Barker &
Rasmussen 1998). However, other ancient historians like Herodotus and Livy regarded the
Etruscans as immigrants, respectively, from Lydia (modern Western Anatolia) or from North
of the Alps. Modern experts definitely support the former view, but affinities between the
Lydian and the Etruscan languages seem to exist (Beekes 2002). Unfortunately, no historical
documents are available to help address this question. In fact, even if we understand
reasonably well the Etruscan language, the surviving Etruscan texts are mainly funerary or
religious inscriptions. However, a language or a culture can rapidly get extinct, but that is
certainly not the case for the DNA of its speakers; genetic evidence from Etruscans and other
related populations may hence help one answer two questions, namely: what were the
Etruscans’ origins? And, what is their biological relationship with the modern inhabitants of

Etruria?

In the last years, in the absence of any ancient genetic information, it was generally
assumed that modern Tuscans are descended from Etruscans. The Etruscans’ origins were

thus studied comparing Tuscans and other modern populations (Piazza et al. 1988; Achilli et
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al. 2007; Brisighelli et al. 2009). Both Achilli et al. (2007) and Brisighelli et al. (2009) observed
some affinities between Tuscans and modern Anatolian people; this similarity might be due
to a common origin at any time in the past, but the authors viewed their data as supporting
a recent historical connection with Anatolia due to migratory contacts leading to the
development of the Etruscan culture. In 2004, for the first time, Vernesi and collaborators
(2004) analyzed Etruscans’ mtDNA obtained from 27 different individuals, highlighting
genetic similarities between the Etruscans and the current population of Turkey, but not
with [talian populations other than Tuscans (even if they shared only two haplotypes).
However, further studies, considering also a Medieval Tuscan sample (Guimaraes et al.
2009), do not supported a direct genealogical continuity between the Etruscans and Tuscans
(or Anatolian) populations (Belle et al. 2006; Guimaraes et al. 2009). The claim that
systematic errors in the ancient DNA sequences led to flawed genealogical inference
(Bandelt & Kivisild 2006; Achilli et al. 2007) is not supported by careful reanalysis of the

Etruscan data (Mateiu & Rannala 2008).

Previous studies did not exploit the inferential power of the ABC methods, and did
not consider the potential effects of genetic divergence when populations are structured or
subdivided. If most Etruscans’ descendants lived in isolated communities in the last 2,000
years, their DNAs may still persist in some localities, but will escape detection unless they
are sought at the appropriate (i.e., smaller) geographical scale. In this study we compared an
enlarged Etruscan sample with Medieval Tuscans (Guimaraes et al. 2009), and four modern
Tuscans population; three in historical Etruria, namely Casentino, Murlo and Volterra (Achilli
et al. 2007), and one from Florence (Turchi et al. 2008), representing the general Tuscan
population. In two populations, Casentino and Volterra, we found evidence of genealogical
continuity from Etruscans, through Medievals, to current times. By contrast, for Murlo and
Florence, the ABC analysis highlighted as most probable the model in which the modern
population occupies a distinct branch of the genealogical tree with respect to Etruscans and
medieval Tuscans; for these populations this model was shown to be 7 to 99 times more
likely than any alternative model. We then asked whether genetic similarities between
current Tuscans and Anatolians (Achilli et al. 2007; Brisighelli et al. 2009) provide some
evidence for an Etruscan homeland in Anatolia. To answer, we exploited the algorithm of the
IM methods to estimate the most probable separation time between Anatolians (from Di
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Benedetto et al. 2001) and Tuscans populations showing genealogical continuity with the
Etruscans. Our basic hypothesis was that if the genetic resemblance between Turks and
Tuscans reflects a common origin just before the onset of the Etruscan culture, (meaning
that the Etruscan population came from Anatolia as hypothesized by Herodotous) we would
expect that the two ancestral populations separated around 3,000 years ago. Assuming an
average generation time of 25 years, a plausible mutation rate, and complete isolation after
the split from the common ancestors, the estimates of the separation time between Tuscany
and Anatolia was around 7,600 years ago, with a 95% credible interval between 5,000 and
10,000. Thus, there might have been a genealogical link between modern Tuscans and what
Herodotus considered the Etruscans’ homeland, Anatolia. However, these results do not
support an oriental origin for the Etruscans, because, even under the unrealistic assumption
of complete reciprocal isolation between Tuscany and Anatolia, the likely separation of the
two gene pools is dated long before the onset of the Etruscan culture. To date, no available
genetic evidence suggests an Etruscan origin outside Italy, and traces of genealogical links
with Etruscans are still recognizable in specific localities of Tuscany. This study represents
the first effort to shed light on the origin and evolution of the Etruscans’ DNA considering
ancient DNA data and explicitly testing demographic models of evolution within the

framework of approximate Bayesian computation.

This study has been submitted to Molecular Biology and Evolution; the submitted

manuscript is at p. 112.
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5. Future Developments

For many years, studies of human genetic diversity have been necessarily limited to
modern populations, severely limiting our ability to investigate the detail of past processes.
With the advent of methods for reliably typing ancient DNA, it has been possible to increase
the power in reconstructing historical demographic processes, and in explicitly testing
evolutionary hypotheses. Until recently, the ancient genetic information derived mainly from
a single marker, the mitochondrial DNA (mtDNA), thus allowing one to study the fate of
maternal lineages. Many advances in this field have been made in the last years and in 2010
the first three ancient hominid nuclear genomes were published (Green et al. 2010;
Rasmussen et al. 2010; Reich et al. 2010). These results were achieved thanks to the
technological developments in high-throughput sequencing, making it feasible to move from
single genetic locus (such as mtDNA) to (almost) complete genome sequencing of ancient
populations, and offering novel means of assessing authenticity of ancient DNA, even from
modern humans. Moreover, extensive human genome data are becoming available, both
from genome wide SNP data (Li et al. 2008; Reich et al. 2009; Xing et al. 2009; Hatin et al.
2011; Henn et al. 2011), and from the 1000 Genome Project and other human genome and
exome studies (Schuster et al. 2010; The 1000 Genomes Project Consortium 2010). In this
light, we will soon have large numbers of whole genome sequences from several modern
and ancient populations. Combining this advance in the availability of whole genome
sequence data and the statistical power provided by model-based methods such as ABC, in
the near future it will be possible to clarify other long-standing evolutionary questions, and

to highlight aspects of human history at an unprecedented resolution.
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ABSTRACT Neandertals, the archaic human form
documented in Eurasia until 29,000 years ago, share no
mitochondrial haplotype with modern FEuropeans.
Whether this means that the two groups were reproduc-
tively isolated is controversial, and indeed nuclear data
have been interpreted as suggesting that they admixed.
We explored the range of demographic parameters that
may have generated the observed mitochondrial diversity,
simulating 3.0 million genealogies under six models
differing as for the relationships among contemporary
Europeans, Neandertals, and Upper Palaeolithic Euro-
pean early modern humans (EEMH), who coexisted with
Neandertals for millennia. We compared by Approximate
Bayesian Computations the simulation results with mito-

Two anatomically different human forms, the archaic
Neandertals and the European early modern humans of
the Upper Palaeolithic (hereafter EEMH, sometimes
referred to as Cro-Magnoids), coexisted in Europe for
millennia. Fossil and archaeological data document a
progressive withdrawal of Neandertal communities as
EEMH expanded; the Neandertal anatomy and their
artifacts disappeared from the record at a moment in
time which is traditionally placed around 29,000 years
ago (Mellars, 1992; Mellars, 2006).

The biological relationships between these human
forms are controversial. For many years, the debate
focused on the relative merits of two classes of models,
Regional Continuity, and Replacement. According to the
former, anatomically archaic hominids of the Old World
formed a subdivided population, within which a transi-
tion from archaic to modern morphology occurred; under
the Replacement (or “Out of Africa”) model, anatomically
modern humans expanded from Africa replacing all
archaic groups. More recently, Assimilation models
emerged, i.e., the idea that contemporary populations
are largely descended from an anatomically modern
group expanding from Africa, but Neandertals contrib-
uted to the modern European gene pool to a non-negligi-
ble extent (Relethford, 2001; Trinkaus, 2007). Thus,
the main controversial point became how much genetic
exchange, if any, there has been between the two human
forms.

Complete replacement is impossible to demonstrate,
because the same genetic consequences are expected
both without admixture and with extremely low levels of
admixture. However, most morphological and genetic
evidence seems to agree with the predictions of a model
in which anatomically-modern people and archaic

©2011 WILEY-LISS, INC.

ra, Italy

genetics; Approximate Bayesian Computations; coalescent

chondrial diversity in 7 Neandertals, 3 EEMH, and 150
opportunely chosen modern Europeans. A model of
genealogical continuity between EEMH and contemporary
Europeans, with no Neandertal contribution, received
overwhelming support from the analyses. The maximum
degree of Neandertal admixture, under the model of gene
flow supported by nuclear data, was estimated at 1.5%, but
this model proved 20-32 times less likely than a model
without any gene flow. Nuclear and mitochondrial evi-
dence might be reconciled if smaller population sizes led to
faster lineage sorting for mitochondrial DNA, and Nean-
dertals shared a longer period of common ancestry with
the non-African’s than with the African’s ancestors. Am J
Phys Anthropol 146:242-252, 2011.  ©2011 Wiley-Liss, Inc.

humans did not hybridize. With very few possible excep-
tions (see e.g., Zilhdo, 2006), European fossils are clearly
classified as either archaic or modern; the absence of
intermediate morphologies suggests that levels of admix-
ture were extremely low or nil (Tattersall and Schwartz,
1999). Neandertal mitochondrial DNA (mtDNA) sequen-
ces fall out of the range of current European variation
(Krings et al., 1997; Briggs et al., 2009), so that even a
small mitochondrial contribution of Neandertals to the
modern human gene pool appeared unlikely (Currat and
Excoffier, 2004; Belle et al., 2009). By contrast, in the
first survey of the whole Neandertal nuclear genome,
patterns of allele sharing with modern humans have
been interpreted as suggesting gene flow from Neander-
tals into the ancestors of modern non-Africans, before
the Eurasian populations separated (Green et al., 2010).
No clear consensus has yet emerged from studies
of modern DNA diversity either; compare e.g., Labuda
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version of this article.
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Fig. 1.
EEMH,; Circles: Modern Europeans.

et al. (2000), Plagnol and Wall (2006) and Templeton
(2007), with Excoffier (2002), Hodgson and Disotell
(2008) and Jakobsson et al. (2008). In most cases, the
evidence suggesting some degree of genetic exchange
between archaic and modern human forms is a deep ba-
sal node in the gene tree, reflecting high levels of haplo-
type divergence. Such deep splits, accompanied by high
linkage disequilibrium, are expected if there was admix-
ture between groups that have long evolved in isolation
(Templeton, 2005), but may also reflect genetic structur-
ing of the common ancestors of modern humans and
Neandertals (see e.g., Currat et al., 2006). Accordingly,
many regard the current genetic data as insufficient to
discriminate between models.

Better data may take long to accumulate, but more
refined biostatistical approaches are already available.
In this study, we compared for the first time ancient and
modern mtDNA sequences under the framework of Ap-
proximate Bayesian Computations (ABC). The available
mitochondrial data allow one to test hypotheses for
which fossil evidence is inconclusive, and which cannot
be currently tested at the nuclear level. We could thus
evaluate posterior probabilities for a set of models differ-
ing as for the genealogical relationships of two ancient
(Neandertal and EEMH) and six modern Europeans pop-
ulations. We also estimated the demographic parameters
of the best-fitting model, and demonstrated that the data
have enough statistical power to identify the correct
model. These results restrict the range of hypotheses
potentially accounting for the genetic relationships
between Neandertal and modern people, and show how
analyses of nuclear and mitochondrial diversity can be
reconciled without invoking admixture processes.

MATERIALS AND METHODS
The data

We investigated diversity in the mitochondrial hyper-
variable region I, spanning 360 bp, in 150 modern and

Geographic localization of the samples considered. Triangles: Neandertals; Squares: Early European Modern Humans, or

10 ancient individuals. The letter are seven Neandertal
individuals: two from Feldhofer in Germany (Krings et
al., 1997, Schmitz et al., 2002), two from the Vindija
Cave in Croatia (Krings et al., 2000), one from Mezmais-
kaya in the Russian Caucasus (Ovchinnikov et al.,
2000), one from Monti Lessini in Italy (Caramelli et al.,
2006), and one from El Sidrén cave, Asturias, Spain
(Lalueza-Fox et al., 2006), plus 3 EEMH sequences from
the Paglicci cave, Italy (Caramelli et al., 2003; Caramelli
et al., 2008). No other sequences of the entire mitochon-
drial hypervariable region I are available for European
Neandertals or EEMH (Hodgson and Disotell, 2008).

To have similar effects of geography for ancient and
modern populations, we chose modern samples from Ger-
many (Richards et al., 1996), Croatia (Babalini et al.,
2005), the Caucasus (Nasidze and Stoneking, 2001), two
regions of Italy (Babalini et al., 2005) and Spain (Corte-
Real et al., 1996) (see Fig. 1). Sample sizes were very dif-
ferent; to avoid any resulting confounding effect (such as
those due to an excessive weight of the largest samples
upon estimates of haplotype sharing), we randomly
resampled 25 sequences from each modern population.
In a preliminary step, we made sure that the summary
statistics calculated on the resampled datasets are con-
sistent with those calculated on the complete datasets.

Serial coalescent simulations

Three million mitochondrial genealogies were gener-
ated by the serial coalescent algorithm implemented in
the Bayesian version of SERIALSIMCOAL (Anderson et
al., 2005). With this program one can generate multiple
gene genealogies according to any demographic model.
Suppose that one has samples of sizes ng, ny, no...ny
from populations studied ¢g, t1, fe...f) generations ago.
The program generates genealogies proceeding back-
wards in time, starting with no samples in the present
(ty) and adding n,, ns...n, samples at the appropriate
moments in the past. The genealogies were extended

American Jowrnal of Physical Anthropology

75



Genealogical inferences based on comparison of modern and ancient DNA

244 S. GHIROTTO ET AL.
Time
2 > .
o 2
40,550 —— f— —
29,000
25,325 E —m g
I AT
0 — s — ——
MODEL 1 MODEL 2 MODEL 3 MODEL 4
Nexp
Lr | 50,000 0.001 | 0.059 | 0.107 | 0.833 |
Ak | 100 | 0000 | 0.000 | 0.000 | 1.000 |
Fig. 2. Schematic presentation of the six models tested. Numbers on the Y-axis refer to years from the present. OOA (Out of

Africa) is the time of the dispersal from Africa. The posterior probability is given under each model, according to two criteria: AR,
or acceptance-rejection, and LR, or weighted multinomial logistic regression. Nexp is the number of experiments considered.
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Fig. 3. Comparison between Models 4, 5 and 6. The arrows
in Models 5 and 6 represent gene flow from the Neandertal to
the EEMH population (Model 5) and gene flow from Neandertal
to the ancestors of modern European and Asian populations
(Model 6).

backwards until, through a series of coalescence events,
they reached their most recent common ancestor, or
MRCA. Mutations were then randomly distributed onto
the tree, under a finite-site model with two potential
allelic states for each site, a transition bias = 0.9375 and
a rate-heterogeneity parameter = 0.26 (see Belle et al.,
2009 and reference therein).

Demographic models and priors

The six models are outlined in Figures 2 and 3. Model
1 assumes genealogical continuity between Neandertal,
EEMH, and modern samples; under Model 2, the Nean-
dertal lineage separates from the lineage leading to
EEMH and modern Europeans; under Model 3 the
EEMH population is descended from Neandertal ances-
tors, whereas the modern populations are part of
another lineage. Model 4 resembles Model 2, but the lin-
eage that gave rise to EEMH and modern Europeans
undergoes a founder effect associated with the dispersal
from Africa. Models 5 and 6 add gene flow from the
Neandertals, either (Model 5) during the maximum span
of the possible coexistence of Neandertals and EEMH,
42,000 to 30,000 years ago, or (Model 6) starting 80,000
years ago, as suggested by Green et al. (2010). In all
simulations, the modern samples were placed at genera-
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tion 0. The EEMH and Neandertal samples were at gen-
erations 1,013 and 1,622, corresponding to the average
age of the respective specimens, 25,325 and 40,550
years, assuming a generation time = 25 years (Currat
and Excoffier, 2004; Fenner, 2005; Noonan et al.,
2006;Fagundes et al., 2007). All population sizes
increased exponentially through time, at constant rate,
starting >1,622 generations ago.

Under Model 2 the Neandertal lineage got extinct
1,160 generations (29,000 years) ago (Mellars, 1992);
other authors (Walker et al., 2008; Zilhdo et al., 2010)
proposed that this has happened earlier, around 37,000
years ago in the Iberian peninsula, but a well-dated
specimen shows that Neandertals were still present, at
least in the Caucasus, 29,000 years ago (Ovchinnikov et
al., 2000). At any rate, choosing a late date of Neander-
tal disappearance increases the time interval through
which there might have been contact with EEMH, thus
favoring the admixture model. Under Model 3, in which
EEMH and Neandertals were in the same lineage, both
became extinct at an arbitrary time, 20,000 years ago. In
both cases, the date of extinction has no effect on the
results of the tests, in so far as it is more recent than
the age of the youngest specimen.

Under Models 4-6, we added to Model 2 a founder
effect in the Cro-Magnoid and Modern lineage, bringing
the population size to 500 at a moment between 50,000
and 80,000 years ago (Liu et al., 2006; Fagundes et al.,
2007). A complete description of the prior information
considered is in Supporting Information Tables 1 and 2.

Summary statistics

Internal genetic diversity was summarized by the
number of different haplotypes, the average pairwise
sequence difference, and the haplotype diversity, calcu-
lated with Arlequin ver. 3.11 (Excoffier et al., 2005). We
compared pairs of samples in two ways: (a) by estimating
Fgr (Hudson et al., 1992); (b) by classifying the segregat-
ing sites into four categories, namely (1, 2) those that
are polymorphic in one population and monomorphic in
the other (i.e., exclusive sites for population 1 or 2); (3)
polymorphic sites shared between populations 1 and 2
(shared differences); (4) fixed differences between popu-
lations 1 and 2 (Wakeley and Hey, 1997; Leman et al.,
2005; Becquet and Przeworski, 2007). In this way, we
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TABLE 1. Observed summary statistics describing genetic variation within and between samples: Neandertal, NE; Early European
modern humans, EEMH; Modern Europeans, ME

NE EEMH ME
Number of sequences 7 3 150
Number of distinct haplotypes 6 2 115
Segregating site 17 1 92
Mean pairwise difference 5.238 0.667 4.549
Haplotype diversity 0.952 0.667 0.990
Fst Hudson
NE/EEMH 0.8600 EEMH/NE 0.0966 ME/NE 0.7839
Class of Segregating Sites
SHARED SITES FIXED SITES

ME_EEMH ME_NE EEMH_NE ME_EEMH ME_NE EEMH_NE

1 9 0 0 7 15

EXCLUSIVE SITES

ME_EEMH EEMH_NE ME_NE NE_ME EEMH_NE NE_EEMH

9 0 83 8 1 17

obtained 12 statistics (four counts of segregating sites,
times three pairwise comparisons) (Table 1).

These statistics were chosen from a larger set, in order
to capture the whole information contained in the data.
Indeed, the larger the number of summary statistics, the
larger the statistical noise included in the posterior esti-
mation (known as “curse of dimensionality”) (Joyce and
Marjoram, 2008). To this aim, we assessed by principal
component analysis the correlation between each
descriptor of genetic diversity and the genetic diversity
generated by our simulations, to choose only those statis-
tics having a substantial impact on the inference.

Approximate Bayesian Computations

All the following procedures were developed in the R
environment (R Development Core Team, 2008) using
scripts available at http:/www.rubic.rdg.ac.uk/~mab/stuff/.
The ABC procedure included three main steps (Beaumont
et al., 2002). First, for each model, 500,000 genealogies
were simulated (for a total of 3,000,000 experiments), con-
sidering as random variables the demographic and evolu-
tionary parameters of the model. Therefore, for every simu-
lation experiment, these values were chosen at random
from the corresponding prior distributions. Next, we sum-
marized the genetic variation of the samples calculating
the same set of statistics in the observed data and in each
simulated dataset. Finally, we calculated for each experi-
ment a Euclidean distance between observed and simu-
lated statistics, thus ordering the experiments according to
their distance from the observed dataset. The choice of the
best model and the parameter estimation were based on
the subset of simulation experiments producing the short-
est Euclidean distances.

Model selection

We compared the posterior probabilities of the models
in two ways, using the calmod function, also available at
http://www.rubic.rdg.ac.uk/~mab/stuff/. The first crite-
rion is a simple acceptance-rejection procedure (AR)
(Pritchard et al., 1999). For each model, we initially
counted the number of simulations (n;) which were found
among the N simulations with the shortest Euclidean
distance. The posterior probability for the i-th model was

simply n;/N. This method is considered reliable only
when based on a small set of simulations showing an
excellent fit with the observed data (Beaumont, 2008); in
this case, we chose to retain the 100 simulations produc-
ing statistics closest to the observed statistics. We also
resorted to a second method, estimating posterior proba-
bilities by weighted multinomial logistic regression (LR)
(Beaumont, 2008). Under this procedure, each model rep-
resents a categorical dependent variable Yi (where i is
again the identity number of the model), and the sum-
mary statistics are the predictive variables. The probabil-
ity of the model is evaluated at the point corresponding to
the observed vector of summary statistics. For this calcu-
lation we retained the 50,000 simulation experiments
associated with the shortest Euclidean distances.

Parameter estimation

Within models, the parameters of the 1,000 experi-
ments showing the shortest Euclidean distances between
simulated and observed statistics were logtan trans-
formed (Hamilton et al.,, 2005); we then calculated a
weighted local regression, using summary statistics as
predictors to adjust the parameter values towards the
values expected in correspondence of the observed sum-
mary statistics (Beaumont et al., 2002). We thus
obtained the posterior distributions of four classes of pa-
rameters, namely effective population sizes, separation
times, mutation rates and migration rates.

Posterior predictive test and quality of the
estimates

Next, we tested whether the model we chose could
indeed generate patterns of genetic diversity resembling
the observed ones. For that posterior predictive test
(Gelman et al., 2004) we simulated 10,000 datasets
according to the model with the highest probability,
using the estimated posterior parameter distribution. We
then estimated 9 additional descriptors of genetic diver-
sity, namely the number of segregating sites within each
population and the haplotype sharing between samples,
which had not been considered during the inferential
step, and compared them with the observed ones. If the
model is realistic and our posterior distributions esti-
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TABLE 2. Demographic parameters estimated under Model 4:

S. GHIROTTO ET AL.

prior distribution (U: uniform in all cases), median, mode, lower

(0.05) and upper (0.95) limits of the 90% credible interval and coefficient of determination (R?)

Model 4 Prior distribution Median Mode 0.05 0.95 R?
Time MRCA * 16,433 16,079 9,586 25,086 0.73
Ne Modern {U: 1,000,000-10,000,000} 4,173,069 1,027,003 1,000,000 7,945,095 0.02
Ne Neandertal {U: 5,000-100,000} 32,263 15,676 4,375 90,080 0.29
(before extinction)
Time Out of Africa {U: 50,000-80,000} 2,726 3,037 2,106 3,200 0.07
Separation time {U: 80,025-900,000} 11,785 11,031 3,877 25,848 0.62
Mutation Rate {U: 0.0002-0.008} 0.0008 0.0007 0.0006 0.0011 0.90
Ancestral Ne EEMH {U: 5-5,000} 2,071 5 5 4,025 0.03
Ancestral Ne Neandertal {U: 5-5,000} 766 5 5 4,105 0.10

The time to the most recent common ancestor, Time MRCA was
distribution.

mates are plausible, summary statistics inferred from
the simulated and observed datasets should not signifi-
cantly differ. A posterior predictive P-value for each
summary statistics was thus estimated, and these proba-
bilities were combined into a global P-value (see Ghirotto
et al., 2010), taking into account nonindependence of the
individual statistics (Voight et al., 2005).

Finally, we asked whether models could actually be
discriminated on the basis of the available data. To an-
swer, we simulated 1,000 datasets from the prior distri-
bution of each model and we treated them as observed
datasets in an ABC analysis using previously simulated
models. For each dataset we calculated Type I error as
the number of experiments in which the simulated
model was not recognized by the model selection proce-
dure (AR), or Type I Error.

To assess the reliability of the inferred parameters we
calculated the coefficient of determination (R?, indicating
the percentage of the parameter’s variance explained by
the summary statistics we used), the relative bias and
the relative root mean square error (RMSE), that allow
to evaluate biases toward overestimation and underesti-
mation of parameters point estimate, and the 95% cover-
age for each estimated parameter (see Neuschwander et
al., 2008 and, for an application, Ghirotto et al., 2010).

RESULTS
Model selection

Table 1 reports the statistics summarizing mtDNA
sequence variation in 7 Neandertal (NE), 3 EEMH and
150 Modern Europeans (ME). Of the demographic mod-
els initially considered (see Fig. 2) Model 4 showed by
far the highest ability to reproduce the observed varia-
tion, reaching probabilities >83% under the LR
approach and = 100% under the AR approach. This
means that almost all simulated datasets showing good
agreement with the observed data had been generated
assuming independent genealogies for the NE versus the
EEMH and ME mtDNAs. Moreover, none of the best-fit-
ting experiments was simulated assuming genetic conti-
nuity between NE and ME or EEMH, since Model 1 has
P = 0 under both methods used for comparison.

We then added the possibility of migration from the
NE into the EEMH between 42,000 and 30,000 years
ago (Model 5), or during the early stage of the dispersal
from Africa (Model 6), as suggested by Green et al.
(2010). In the comparison of Models 4, 5, and 6, under
both estimation procedures, Model 4 reached probabil-
ities between 95% and 97%, appearing 20-32 times as
likely as Model 6 (see Fig. 3).

American Journal of Physical Anthropology

estimated from the simulated data and not extracted from a prior

Parameter estimation

Table 2 shows the posterior parameter estimates for
Model 4. The age of the Most Recent Common Ancestor
(MRCA), the separation time between the NE and
EEMH-ME lineages and the mutation rate were well
estimated, as shown by the high value of their RZ
respectively 73%, 62%, and 90% (posterior distributions
in Fig. 4). The likely age of the Most Recent Common
Ancestor (TMRCA) is around 411,000 years (median
value), in agreement with previous estimates (Krings et
al., 1999; Ovchinnikov et al., 2000; Briggs et al., 2009),
but lower than the 660,000 years ago inferred from the
survey of the entire mitochondrial genome (Green et al.,
2008). The separation time between populations is esti-
mated at about 295,000 years ago, close to the value
inferred by Noonan et al. (2006) from 65,000 nuclear bp,
and within the range estimated considering the whole
genome (270,000-440,000) (Green et al., 2010). The
mutation rate (0.0008 per generation for the 360-bp
region, hence about 0.1 mutational events per million
year per nucleotide) is lower than recently estimated
(Henn et al., 2009; Soares et al., 2009) but appears reli-
able, considering that across our long evolutionary times
multiple mutational events on the same site may occur,
reducing the apparent mutation rate.

Our median estimate for the time of dispersal from
Africa is about 69,000 years ago, and its 90% credible
interval is between 52,650 and 80,000 years ago. These
values suggest that the dispersal might have occurred
earlier than inferred from studies of modern DNA diver-
sity, i.e. 51,000 (Fagundes et al., 2007) or 56,000 (Liu et
al., 2006) years ago, although the R? value is admittedly
low (7%). We could not substantially improve the prior
estimates of other parameters, including the effective
sizes of the ME and EEMH populations, both associated
with broad posterior distributions and low R%. Changing
the prior distribution from uniform to log-uniform had
basically no effect upon the estimate and on its accuracy
(Supporting Information Table 3).

Even though Models 5 and 6 appeared to be highly
unlikely, we also estimated their parameters and found
they have largely overlapping distributions. The gene
flow rate from Neandertals to EEMH, under Model 5,
has a 90% upper bound of the posterior density at
0.0057, with a mode 0.0008 and a median 0.001
(Supporting Information Table 4a). This means on aver-
age 3 events of migration per generation, considering
the NE effective female population size estimated during
the period of coexistence with the EEMH. Simulating
migration right after early modern human dispersal
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TABLE 3. Power of the AR procedure to recover the true model, estimated as the proportion of cases in which data generated by the
models listed on the Y-axis were attributed to the models listed on the X-axis

% of model attribution

Type I

MOD1 MOD2 MOD3 MOD4 error

SIMULATED MODEL MOD1 0.992 0.005 0.003 0 0.008
MOD2 0.031 0.947 0.009 0.012 0.052

MOD3 0.015 0.022 0.962 0.001 0.038

MOD4 0.002 0.031 0.002 0.963 0.035

Type I error, in the last column, is the fraction of cases in which the true model was not identified.

from Africa as suggested by Green et al. (2010) (Model 6,
which proved at least 20 times less likely than a model
without gene flow) the upper bound of the 90% posterior
density distribution reaches 0.015, but the modal
estimate is 0 (Supporting Information Table 4b). In other
words, gene flow between NE and EEMH appears
extremely unlikely (see Fig. 3), and if it was not zero it
was nearly so. This parameter, with its narrow posterior
distribution and good R? (45%, Supporting Information
Tables 4a and 4b), seems well estimated.

Posterior predictive test and quality assessment
of the estimates

Additional tests support the reliability of our esti-
mates. For Model 4, the P-values representing the dis-
crepancy between the observed data and the datasets
generated drawing parameter values from the estimated
posterior distributions were insignificant for all statistics
(Supporting Information Table 5), and the global P-value
was 0.478. Therefore, this model, besides having a prob-
ability close to 100% with respect to alternative models,
is also capable to generate patterns of diversity fully con-
sistent with all observed statistics.

We then asked whether the method used for the model
selection (AR) is powerful enough to identify the model
under which the data were generated (Table 3). Comparing
Models 1 to 4, all the datasets were correctly identified,
with probabilities of recovery from 94% to 99% and hence a
Type I Error never >5.2%. In other words, had mtDNA di-
versity evolved according to one of the other simulated
models, the present analysis would have shown it. As could
be expected, slightly less power was shown in the compari-
son between Model 5 and Model 6 (Type I Error: 38%, Sup-
porting Information Table 6). This is due to the fact that
these models are very similar, differing just for the time of
the gene flow events from Neandertal into EEMH, and
hence generate similar patterns in the data.

Finally, we ran several tests to assess the quality of
the parameters estimated under Model 4 (Supporting In-
formation Table 7). Both relative Bias and RMSE for the
modes and medians of each parameter are generally low.
Only the modes of the two ancestral Ne have high values
of both Bias and RMSE, suggesting, as said before, that
these parameters could not be well estimated. Most of
the parameters show high values of the 95% coverage,
indicating that their posterior distributions are in gen-
eral well estimated (Supporting Information Table 6).

DISCUSSION

Nordborg (1998) first remarked that the nonoverlap
between Neandertal and modern mtDNA variation does
not imply that there was no admixture, because, at the
low Palaeolithic population sizes, drift could have elimi-
nated rare, and even not-so-rare, haplotypes. The ques-
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tion, then, became how rare a haplotype should be, and
how small the population, to produce the observed
absence of Neandertal haplotypes in modern subjects,
despite admixture having actually occurred.

Currat and Excoffier (2004) demonstrated by simula-
tion that the absence of Neandertal mtDNAs in the
modern gene pool is compatible with a maximum inter-
breeding rate = 0.1%, which translates into 1 admixture
event every 100 years, during the coexistence of the two
human forms in Europe. Belle et al. (2009) incorporated
EEMH sequences in their analyses, but still failed to
find evidence for any appreciable degree of Neandertal
admixture in the European mtDNA pool. For methodo-
logical reasons, in both studies mutation rates and popu-
lation sizes had to be fixed at the start of the simulation.
Conversely, the ABC methods we employed in this study
allowed us to explore for each model a broad and contin-
uous range of population sizes, mutation rates and,
when applicable, separation times and gene flow rates.
In this way, the models were compared in a statistically
rigorous way, and their final performance is independent
of any specific value of the simulation parameters. We
found that the best estimate by far of mitochondrial
admixture between Neandertals and the ancestors of
modern Europeans is zero. Even at very low population
sizes and with high mutation rates, the patterns of
diversity observed in ancient and modern samples appear
incompatible with a Neandertal contribution to the mito-
chondrial genealogy of EEMH and modern Europeans.

There is reason to believe that the estimates we
obtained can be trusted. The shapes of the posterior
probability distributions, the posterior predictive tests,
and several statistics estimated from the simulated data
strongly suggest that the information available was suf-
ficient to discriminate among models, and that most pa-
rameters are well estimated. The main area of uncer-
tainty concerns the modern population sizes, which
appear extremely large and distributed across the whole
range of the prior distribution. This finding is not un-
usual in studies of this kind (Fagundes et al., 2007; Belle
et al., 2009; Wegmann et al., 2009; Laval et al., 2010),
and does not seem to reflect the choice of priors. Rather,
it is probably a consequence of a simplistic, yet unavoid-
able, assumption, namely that populations evolved in
isolation. In reality, people with different mitochondrial
features must have migrated for millennia from other
regions. This process resulted in an increase of genetic
diversity, which the model accommodated by inflating
the population size estimates. However, it is hard to
imagine that the Neandertal contribution to the modern
gene pool would be more likely in a (much more compli-
cated) model also considering successive gene flow from
multiple modern sources. On the other hand, such a
complicated model would require the estimation of a
very large number of parameters (i.e., migration rates
between all possible pairs of populations), resulting in a
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NEANDERTAL

Fig. 5. Schematic view of the gene genealogies for markers transmitted by one (left) and two (right) parents, in Neandertals
and modern humans. a: time since the mitochondrial most recent common ancestors; b: time since the autosomal most recent com-
mon ancestor; 5: excess evolutionary time shared with Neandertals only by the lineage leading to non-African modern people; AF,

NON-AF: African and Non-African modern populations.

loss of accuracy in the estimation of the parameters that
really matter, i.e., admixture rates between Neandertals
and anatomically modern people.

In the recent genome survey, Neandertals appeared
genetically closer to non-Africans than to Africans. This
observation was interpreted as evidence of admixture
between Neandertals and the common ancestors of
Asians and Europeans, in the Levant, resulting in a
Neandertal contribution to the modern genomes esti-
mated between 1% and 4%. Alternative explanations are
possible, but were considered less likely (Green et al.,
2010). However, the poor performance of Model 6 in this
study shows that the hypothesis of early admixture in
the Levant has some problems too. Unless we have made
serious errors in the interpretation of mitochondrial
data, the model favored by the analysis of nuclear diver-
gity seems to account very poorly, if at all, for the
observed patterns of mitochondrial diversity in archaic
and contemporary populations of Europe.

Only one complete Neandertal genome has been studied
so far, and, given the rigid standards established to guaran-
tee the quality of the data, sample size is not going to
increase any time soon. A second problem is that the
admixture model between Neandertal and anatomically
modern populations proposed by Green et al. (2010) implies
that the ancestors of all modern humans who left Africa
had contacts with Neandertals, including those from Papua
New Guinea. On the contrary, it is possible that ancestral
modern humans also dispersed from Africa via a Southern
route, through the Arab peninsula, the Indian subconti-
nent and Melanesia. This hypothesis was proposed to
account for temporal and spatial patterns of cranial diver-
sity (Lahr and Foley, 1994), has been supported by analyses
of mtDNA variation (Quintana-Murci et al., 1999; Maca-
Meyer et al., 2001; Macaulay et al., 2005) and, recently, by
the analysis of >100,000 nuclear single-nucleotide poly-
morphisms (Ghirotto et al., 2011). If some modern popula-
tions of Southern Asia and Papua New Guinea are
descended from people who left Africa without crossing Pal-
estine, we see no way that their ancestors could have met,
and hybridized with, Neandertals. Therefore, their genetic
affinities with Neandertals must have a different origin.

It is thus necessary to find another explanation for the
discrepancy between the apparent implications of the mito-
chondrial and nuclear analyses. In principle, two possibil-
ities, neither simple to support empirically, would be sex-bi-
ased gene flow and hybrid selection. The former means
that maybe Neandertal males, but not females, admixed
with early anatomically modern Europeans. This is in con-
trast with studies of sex-biased admixture in modern com-
munities, suggesting that the invading population tends to
incorporate females more than males (Abe-Sandes et al.,
2004; Goncalves et al., 2008; Gonzalez-Andrade et al.,
2007; Stefflova et al., 2009; Quintana-Mureci et al., 2010); to
what extent this might also apply to prehistoric popula-
tions, nobody knows. Hybrid selection could account for the
observed differences between admixture estimates if Nean-
dertal mtDNAs had lower fitness in combination with a
hybrid nuclear genome. Once again, we see no way to test
empirically whether that was actually the case.

Moving on to testable hypotheses, a simple process of
genetic drift after admixture is not the explanation we
seek (see Fig. 3). In addition, in a simple admixture model,
alleles passed from a resident to an invading population
are expected to often surf to high frequencies if the invad-
ing populations also undergoes demographic growth
(Currat et al.,, 2008). Because the incoming EEMH
doubtless increased in numbers, even small Neandertal
contributions should be detectable in the gene pool of their
descendants, which is not the case for the European
mtDNAs (Currat and Excoffier, 2004; this study).

To reconcile findings based on nuclear and mitochon-
drial variation we thus need a more articulate model, of
which genetic drift is only a component. Many studies of
modern DNA data have suggested that the common
ancestors of Neandertals and modern humans might
have been geographically structured (Falush et al., 2003;
Harding and McVean, 2004; Lahr and Foley, 1994). A
few simple calculations show that this possibility, also
mentioned by Green et al. (2010), should be taken seri-
ously (see Fig. 5). The expected time since the MRCA is
2N generations for mtDNA, where N is the female popu-
lation size; if the sex ratio among Neandertals was 1
female : 1 male, the age of the nuclear DNA MRCA
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should be 4 times as large. Briggs et al. (2009) quantified
the size of the Neandertal female population around
3,500 or less. This means that the mitochondrial and nu-
clear MRCAs of Neandertals can be placed respectively
7,000 generations (or 175,000 years) and 28,000 genera-
tions (or 700,000 years) ago. These figures come with a
large standard error, but imply that if the lineages lead-
ing to Neandertals and modern humans separated
between 175,000 and 700,000 years ago, one would
expect exactly what has been observed, namely inde-
pendent mtDNA genealogies, and a certain degree of
allele sharing at the autosomal level (see Fig. 5). On the
basis of cranial measurements, anatomically archaic and
modern humans separated between 311,000 and 435,000
years ago, with an upper limit of 592,000 (Weaver et al.
2008, and references therein). In this paper, we esti-
mated that the same event occurred about 295,000 years
ago (median value), with an upper 95% limit of 646,200
years. Therefore, the Replacement model with structured
ancestral population is in reasonable agreement with
fossil, nuclear DNA and mtDNA evidence, whereas the
model of admixture fails to account for the observed rela-
tionships between ancient and modern mtDNAs.

Under a model in which the ancestral population was
structured, the greater nuclear similarity between Nean-
dertals and non-Africans would not necessarily require
admixture between them. Indeed, if the non-Africans
shared with Neandertals a longer section of their geneal-
ogy (represented by the interval labeled as J in Fig. 5),
they would also share more alleles than Africans and
Neandertals, including the derived alleles upon which
Green et al. (2010) based their estimates. This view is
also supported by data on the DNA of the human gastric
parasite Helicobacter pilori, in which ancestral genetic
clusters seem to have given rise to two distinct popula-
tions, one exclusively African and the other cosmopolitan
(Falush et al., 2003), and by the extreme levels of DNA
variation still present in Africa (Schuster et al., 2010;
Henn et al.,, 2011). The only additional assumption one
has to make to account for the observed results is that
the latter population was also ancestral to the European
Neandertals typed by Green et al. (2010). Therefore, the
hypothesis of genetic drift in a structured ancestral pop-
ulation, in which Neandertals shared a longer period of
common ancestry with the non-African’s than with the
African’s ancestors, seems to reconcile most findings
about DNA diversity in Neandertal and modern people.
This hypothesis predicts that the nuclear alleles prefer-
entially shared by Neandertals and non-African will
have MRCAs falling in the upper part of the genealogy
(6 interval in Fig. 5), and we are preparing to test this
hypothesis.
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Supplementary Material

Supplemental Table 1. Information upon which the prior distributions are based. For missing parameters
(i.e. ancestral Ne and time of the onset of expansion) we chose a wide, uniform, prior distribution.

MRCA (most recent common ance

stor)

Years ago

550,000 - 690,000

465,000 (Cl: 317,000 - 741,000)
500,000

365,000 - 853,000

516,000 (Cl: 465,000 - 569,000)
461,000 - 825,000

706,000 (CI: 468,000 - 1,015,000)
560,000 (Cl: 509,000 - 615,000)
706,000 (CI: 466,000 -1,028,000)
244,200 + 2,200

511,200 (Cl: 388,900 - 641,300)
439,000 (Cl: 321,900 - 553,800)
441,000 - 684,000

Note

based on mtDNA

based on mtDNA

based on mtDNA

based on mtDNA

DNA

mtDNA

DNA

based on Green et al. (2006)
based on Noonan et al. (2006)
based on mtDNA

based on mtDNA

based on mtDNA

based on nuclear genome

References

(Krings et al., 1997)
(Krings et al., 1999)
(Paabo, 1999)
(Ovchinnikov et al., 2000)
(Green et al., 2006)
(Green et al., 2006)
(Noonan et al., 2006)
(Wall and Kim, 2007)
(Wall and Kim, 2007)
(Belle et al., 2009)
(Briggs et al., 2009)
(Briggs et al., 2009)
(Green et al., 2010)

Separation time

Years ago

250,000 - 400,000

106,000 - 246,000

440,000 (Cl: 170,000 - 620,000)
325,000 (CI: 135,000 - 557,000)
150,000

182,000 - 592,000

270,000 - 440,000

Note

archaeological evidence

based on mtDNA

based on the European data
based on Noonan et al. (2006)
based on mtDNA

based on cranial measurements
based on nuclear genome

References

(Foley and Lahr, 1997; Rightmire, 2001)
(Ovchinnikov et al., 2000)

(Noonan et al., 2006)

(wall & Kim, 2007)

(Belle et al., 2009)

(Weaver et al., 2008)

(Green et al., 2010)

Neandertal Persistence in Europe:

Years ago
29,000 years ago

References
(Mellars, 1992)

Admixture Rate Neandertal_EEMH

Lower than
25%

45%

0,1%

25%

0%

5%
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References

(Nordborg, 2001)

(Cooper et al., 2004)

(Currat and Excoffier, 2004)
(Serre et al., 2004)

(Noonan et al., 2006)

(Blum and Rosenberg, 2007)
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0%
0,001%

(Wakeley and Hey, 1997)
(Belle et al., 2009)

Neandertal Population Size

250,000
5,000 - 9,000
3,000

3,500

Note

female population
female population
female population

References

(Biraben, 2003)
(Lalueza-Fox et al., 2005)
(Green et al., 2006)
(Briggs et al., 2009)

Modern Population Size

Geographic Area

References

4,079,702 Apulia, Italy http://demo.istat.it/pop2009/index.html
4,333,979 Emilia Romagna, Italy http://demo.istat.it/pop2009/index.html
4,435,056 Croatia http://www.eustat.es/idioma_i/indice.html
3,758,878 Southern Spain http://www.ine.es/censo/es/consulta.jsp
463,000 Cherkessian http://www.kcr.narod.ru

14,926,820 Northern Germany http://www.destatis.de

Dating

Years ago Sample References

Neandertal

43,000 ElSidron1252 (Lalueza-Fox et al., 20086)

40,000 Feldhoferl (Schmitz et al., 2002)

40,000 Feldhofer2 (Schmitz et al., 2002)

29,000 Mezmaiskaya (Ovchinnikov et al., 2000)

50,000 Monti Lessini (Caramelli et al., 2006)

42,000 Vindija75 (Krings et al., 2000)

38,000 Vindija80 (Serre et al., 2004)

EEMH

25,000 Paglicci 12 (Caramelli et al., 2003)

28,000 Paglicci 23 (Caramelli et al., 2008)

23,000 Paglicci 25 (Caramelli et al., 2003)
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Supplemental Table 2. Prior distribution of all the parameters for each model

Model 1

Prior distribution®

Ne Modern

{U: 1,000,000 - 10,000,000}

Time at the start of exponential growth

{U: 40,575 - 900,000}

Mutation Rate

{U: 0.0002 - 0.008}

Ancestral Ne

{U: 5 - 5,000}

Model 2

Prior distribution®

Ne Modern

{U: 1,000,000 - 10,000,000}

Ne Neandertal (before extinction)

{U: 5,000 - 100,000}

Separation Time

{U: 40,575 - 900,000}

Mutation Rate

{U: 0.0002 - 0.008}

Ancestral Ne EEMH

{U: 5 - 5,000}

Ancestral Ne Neandertal

{U: 5 - 5,000}

Model 3

Prior distribution®

Ne Modern

{U: 1,000,000 - 10,000,000}

Ne EEMH (before extinction)

{U: 5,000 - 100,000}

Separation time

{U: 40,575 - 900,000}

Mutation Rate

{U: 0.0002 - 0.008}

Ancestral Ne Modern

{U: 5 - 5,000}

Ancestral Ne Neandertal

{U: 5 - 5,000}

Model 4

Prior distribution®

Ne Modern

{uU: 1,000,000 - 10,000,000}

Ne Neandertal (before extinction)

{U: 5,000 - 100,000}

Time Out of Africa

{U: 50,000 - 80,000}

Separation Time

{U: 80,025 - 900,000}

Mutation Rate

{U: 0.0002 - 0.008}

Ancestral Ne EEMH

{U: 5 - 5,000}

Ancestral Ne Neandertal

{U: 5 - 5,000}

Ne before Out Of Africa

{U: 5,000 - 100,000}

Model 5

Prior distribution®

Ne Modern

{U: 1,000,000 - 10,000,000}

Ne Neandertal (before extinction)

{U: 5,000 - 100,000}

Time Out of Africa

{U: 50,000 - 80,000}

Separation time

{U: 80,025 - 900,000}
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Mutation Rate

{U: 0.0002 - 0.008}

Ancestral Ne EEMH

{U: 5 - 5,000}

Ancestral Ne Neandertal

{U: 5- 5,000}

Ne before Out Of Africa

{u: 5,000 - 100,000}

Gene flow rate from Neandertal to EEMH

{U: 0.000 - 0.02}

Model 6

Prior distribution®

Ne Modern

{U: 1,000,000 — 10,000,000}

Ne Neandertal (before extinction)

{U: 5,000 - 100,000}

Time Out of Africa

{U: 50,025 — 80,000}

Separation time

{U: 80,025 - 900,000}

Mutation Rate

{U: 0.0002 - 0.008}

Ancestral Ne EEMH

{U: 5 - 5,000}

Ancestral Ne Neandertal

{u: 5 - 5,000}

Ne before Out Of Africa

{U: 5,000 - 100,000}

Gene flow rate from Neandertal to EEMH

{U: 0.000 - 0.02}

Time is expressed in years
Ne= Effective female population size

a: U= Uniform probability, in the range between the two values
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Supplemental Table 3. Comparison of Ne estimates obtained under Model 4 using different distributions

of priors

Prior distribution Median Mode 0.05 0.95 R?
Uniform {U: 1,000,000 - 10,000,000} 4,173,069 | 1,027,003 | 1,000,000 | 7,945,095 | 0.02
Log uniform {U: 1,000,000 - 10,000,000} 2,358,466 | 1,000,000 | 1,000,000 | 8,069,306 | 0.08
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Supplemental Table 4a. Demographic parameters estimated under Model 5: prior distribution, median,
mode, 90% of the posterior distributions credible interval and coefficient of determination .

Model 5 Prior distribution Median Mode 0.05 0.95 R?

Time MRCA 18,858 19,034 9,684 30329 | 041
Ne Modern {U: 1,000,000 - 10,000,000} 5,493,974 1,000,000 1,000,000 3,264,626 0.02
Ne Neandertal (before

o i N 0 30,269 16,246 5,235 82,059 0.16
extinction)
Time Out of Africa (U 50,000 — 80,000} 2,601 2,609 2,000 2,314 0.03
Separation time {U: 80,025 - 900,000} 13,618 10,171 4,047 32,238 0.25
Mistation Rate i —-— 0.0005 0.0002 0.0002 00015 | 0.82
Ancestral Ne EEMH {U: 5 - 5,000} 2,610 3,725 5 4,678 0.01
Ancestral Ne Neandertal {U: 5 - 5,000} 979 274 5 4,213 0.09
Gene flow rate from

0.0011 0.0008 0.0000 0.0057 0.26

Neandertal to EEMH

{U: 0.000 - 0.01}

Time is expressed in years, and time of MRCA is calculated at any simulation by the program

? U = uniform probability, in the range between the two values
®Upper and lower limits of the 90% credible interval

¢ Coefficient of determination

4 Effective female population size
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Supplemental Table 4b. Demographic parameters estimated under Model 6: prior distribution, median,
mode, 90% of the posterior distributions credible interval and coefficient of determination.

Model 6 Prior distribution Median Mode 0.05 0.95 R?

Time MRCA * 13,755 12,825 8,116 21,636 0.54
Ne Modern {U: 1,000,000 — 10,000,000} | 4,620,743 1,000,000 1,000,000 9,211,521 0.02
Ne Neandertal (before {U: 5,000 - 100,000}

35,822 20,506 5,955 92,080 0.19
extinction)
Time Out of Africa {U: 50,025 - 80,000} 2,087 2,000 2,000 2,757 0.38
Separation time {U: 80,025 - 900,000} 7,855 6,498 3,201 20,547 0.26
Mutation Rate {U: 0.0002 - 0.008} 0.0010 0.0010 0.0006 0.0013 0.85
Ancestral Ne EEMH {U: 5 - 5,000} 1,987 5 5 3,835 0.01
Ancestral Ne Neandertal {U: 5 - 5,000} 1,173 224 5 4,309 0.08
Gene flow rate from {U: 0.000 - 0.01}

0.0018 0.0000 0.0000 0.0156 0.13

Neandertal to EEMH

Time is expressed in years, and time of MRCA is calculated at any simulation by the program

? U = uniform probability, in the range between the two values
® Upper and lower limits of the 90% credible interval
¢ Coefficient of determination

4 Effective female population size
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Supplemental Table 5. Posterior predictive test for Model 4.

P_value
Global for Model 4 0.478
Seg_site_Mod 0.130
Seg_Site_EEMH 0.122
Seg Site_N 0.262
AS_Mod_EEMH(Mod) 0.186
AS_Mod_EEMH(EEMH) 0.271
HS_EEMH_N(EEMH) 0.483
HS_EEMH_N(N) 0.484
HS_Mod_N(Mod) 0.472
HS_Mod_N(N) 0.474

Mod: Modern

EEMH: Early European modern humans
Nea: Neandertal

Seg_site: Number of segregating Sites
AS: Allele sharing

HS: Fraction of haplotypes in common
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Supplemental Table 6. Power of the AR procedure to recover the true model, comparing Models 4, 5 and

6.

% of model attribution ®

MOD4 MODS5 MOD6 Type | error
MOD4 0.93 0.02 0.05 0.07
SIMULATED MODEL MOD5 0.03 0.89 0.08 0.11
MOD6 0.1 0.37 0.53 0.38

? These figures represent the proportion of simulations generated under the Models on the Y-axis, which
were assigned to the models on the X-axis by the AR procedure. Shaded cells represent the proportion of

correct assignments.
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Supplemental Table 7. Accuracy of the estimated parameters Model 4: Bias, RMSE, 95%Coverage.

MEDIAN Bias RMSE 95% Coverage
Ne Modern 0.296 0.370 1

Ne Neandertal 0.788 1.026 1
Time Out Of Africa -0.060 0.071 1
Separation Time 0.014 0.353 0.983
Mutation Rate 0.067 0.138 0.972
Ancestral Ne Modern 0.150 0.287 1
Ancestral Ne Neandertal 0.220 0.386 1
MODE Bias RMSE 95% Coverage
Ne Modern 0.900 1.716 1

Ne Neandertal -0.021 0.319 1
Time Out Of Africa -0.023 0.028 1
Separation Time -0.370 0.398 0.981
Mutation Rate -0.052 0.121 0.989
Ancestral Ne Modern 160.933 338.820 0
Ancestral Ne Neandertal 49.543 64.098 0
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Abstract

The ancient inhabitants of a region are often regarded as ancestral, and hence genetically related, to the modern dwellers
(for instance, in studies of admixture), but so far, this assumption has not been tested empirically using ancient DNA data.
We studied mitochondrial DNA (mtDNA) variation in Sardinia, across a time span of 2,500 years, comparing 23 Bronze-Age
(nuragic) mtDNA sequences with those of 254 madern individuals from two regions, Ogliastra (a likely genetic isolate) and
Gallura, and considering the possible impact of gene flow from mainland Italy. To understand the genealogical relationships
between past and present populations, we developed seven explicit demographic models; we tested whether these models
can account for the levels and patterns of genetic diversity in the data and which one does it best. Extensive simulation
based on a serial coalescent algorithm allowed us to compare the posterior probability of each model and estimate the
relevant evolutionary (mutation and migration rates) and demographic (effective population sizes, times since population
splits) parameters, by approximate Bayesian computations. We then validated the analyses by investigating how well
parameters estimated from the simulated data can reproduce the observed data set. We show that a direct genealogical
continuity between Bronze-Age Sardinians and the current people of Ogliastra, but not Gallura, has a much higher
probability than any alternative scenarios and that genetic diversity in Gallura evolved largely independently, owing in part
to gene flow from the mainland.

Key words: ancient DNA, mitochondrial DNA, coalescent simulations, approximate Bayesian computation.

Introduction to estimate the relevant parameters, referred to as approx-
imate Bayesian computations (ABC; Beaumont et al. 2002).
These methods proved powerful in addressing several bi-
ological questions, ranging from the introduction of corn
worm in Europe (Miller et al. 2005), the evolution of intra-
host HIV genetic diversity (Shriner et al. 2006), and the
spread of tuberculosis (Tanaka et al. 2006) to the origin
of early modern humans (Fagundes et al. 2007), Polynesians
(Kayser et al. 2008), and pygmies (Verdu et al. 2009). So far,

ABC methods have never been used to compare ancient

For several decades now, important aspects of human evo-
lutionary history have been reconstructed by studying pat-
terns of genetic variation in the geographical space.
Traditionally, these studies start from a description of ge-
netic diversity in samples of contemporary people, from
which inferences are drawn on the relative weight of nat-
ural selection, mutation, drift, long-range migration, and
short-range gene flow in the population’s history (see
eg, Menozzi et al. 1978; Sokal et al. 1991; Nielsen 2005;

Nielsen and Beaumont 2009).

Two recent developments have substantially improved
the power of such studies. One is the availability of ancient
DNA data. Although information on genetic diversity in the
past remains essentially limited to mitochondrial DNA
(mtDNA; see e.g, Bramanti et al. 2009) because of the
well-known risk of undetected modern contamination
(Paibo et al. 2004), in principle, questions on the existence
and strength of genealogical ties between ancient and
modern people can now be empirically addressed. The sec-
ond development is a new set of statistical methods, de-
signed to compare alternative evolutionary models and

and modern human DNA data and test alternative models
of their genealogical relationships.

This study stemmed from the observation that a sample
of mtDNA sequences from Bronze-Age Sardinia, known in
archeology as the “nuragic” people, shows very different re-
lationships with two modern populations of the island, sep-
arated in space by less than 120 km. More than half of the
mitochondrial haplotypes of the nuragic sample are present
in one region, Ogliastra, but only 18% in the other region,
Gallura, which is the same proportion one would observe
by picking up random modern individuals from all over Eu-
rope (Caramelli et al. 2007). Sardinia is known as one of the

© The Author 2009. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please

e-mail: journals.permissions@oxfordjournals.org
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main genetic outliers in Europe (Cavalli-Sforza and Piazza
1993; Quintana-Murci et al. 2003; Pugliatti et al. 2006) and
shows unusually high levels of internal diversity (Barbujani
and Sokal 1991; Zei et al. 2003), but the existence of such
sharp differences between one modern population and the
ancient inhabitants of the island calls for an explanation.

To find such an explanation, we generated by serial co-
alescent simulation (Anderson et al. 2005) a total of 10.5
million mtDNA genealogies, considering alternative mod-
els of the genetic relationships among populations and
a wide range of parameter values within models. Under
the ABC framework, we then compared the posterior prob-
abilities of the models and we estimated the most likely
parameter values. Finally, we showed that using the param-
eter values estimated under the most likely model, we
could generate patterns of genetic diversity that closely
resemble the observed ones.

Materials and Methods

Genetic Data

The data analyzed are sequences of the first hypervariable
region of mtDNA (HVR1) spanning 360 bp. The ancient Sar-
dinian data set is represented by 23 Bronze-Age, or nuragic,
sequences (Caramelli et al. 2007), and the modern Sardinian
data set includes two samples, respectively, from Ogliastra
(n = 175), generally considered a genetic isolate (Fraumene
et al. 2003), and Gallura (n = 27), an area in which immigra-
tion is documented in historical times (Morelli et al. 2000).
Modern samples from mainland Italy, namely Latium (n =
52; Babalini et al. 2005) and Tuscany (n = 197; Achilli et al.
2007), were used as proxies for DNA diversity in recent im-
migrants. In fact, only 52 random Tuscan sequences were
considered, so as to have the same sample sizes for both
modern Italian populations.

Summary Statistics

We estimated in each sample 1) the number of different
haplotypes, 2) the number of segregating sites, 3) the av-
erage number of pairwise differences, 4) haplotype diversity,
and 5) Tajima's D, as measures of internal genetic diversity.
In addition, we quantified the relationships between sam-
ples by (6-8) three measures of haplotype sharing (esti-
mated as the number of shared haplotypes between two
populations scaled by the total number of haplotypes in
the ancient sample or, for the comparison between modern
populations, in the Ogliastra sample), and (i) Hudson's F,
(Hudson et al. 1992). We preliminarily tested different sets
of summary statistics, always obtaining comparable results.
In particular, because the two modern Sardinian samples
have very different sizes (175 vs. 27), we resampled 1,000
times 27 sequences from the larger sample, Ogliastra,
and calculated from them the haplotype sharing. This pro-
cedure had the purpose to determine whether the haplo-
type sharing values somewhat reflected the different
sample sizes; however, in the ABC procedure, we always
considered values estimated from the whole Ogliastra sam-
ple. In the more complex simulations taking into account

876

modern samples from the mainland (Models 4-7), we sum-
marized variation within samples only by three statistics
(haplotype number, segregating site, and pairwise differen-
ces). Summary statistics in the observed data were calcu-
lated by Arlequin version 3.1 (Excoffier et al. 2005).

The Simulations

Mitochondrial genealogies of samples collected at different
moments in time were simulated using a serial coalescent
algorithm, according to specific demographic models. Sup-
pose that one has samples of size ng, nq, n, ... ny, of in-
dividuals studied ty t, t, ... tx generations ago. The
serial coalescent algorithm (Anderson et al. 2005) generates
genealogies proceeding backward in time, starting with ng
samples in the present (t,) and adding ny, n, . . . n, samples
at the appropriate moments in the past. The genealogy was
extended backward in time until it reached the most recent
common ancestor of the sampled lineages through a series
of coalescence events. Then, mutations were added onto
the tree according to an infinite-site model. Each of the
demographic models tested was characterized by a series
of parameters, detailed below. The Bayesian version of the
SERIALSIMCOAL program (Anderson et al. 2005) freely
available on http://iod.ucsd.edu/simplex/ssc/BayeSSc.htm
was used to generate simulated genealogies and to
estimate summary statistics from the simulated data.

Demographic Models

We considered seven demographic models, differing for the
relationships between ancient and modern samples and for
the presence of immigration from the mainland. Under
Model 1, the ancient sample is ancestral to the Ogliastra
but not to the Gallura population; under Model 2, to
the Gallura but not to the Ogliastra population, and under
Maodel 3, to both. Models 4 through 6 are analogous, with
additional gene flow from the mainland into Gallura in the
time period separating ancient and modern samples. We
fixed the separation time between the populations of
mainland Italy and Sardinia at 721 generations ago
(=18,000 years ago), corresponding to the first likely hu-
man presence in Sardinia (Vona 1997). The last model,
Model 7, is equivalent to Model 4, but migration rate from
Latium to Gallura is fixed to 0, so as to essentially replicate
the features of Model 1, making it comparable with models
with immigration.

In all simulations, the modern samples were placed at
generation 0,and the nuragic samples at generation 126, cor-
responding to the average age of the ancient specimens,
3,146 years, thus assuming that a generation lasts on average
25 years (Fenner 2005; see also Currat and Excoffier 2004;
Noonan et al. 2006; Fagundes et al. 2007). The ancestors
of the Ogliastra and Gallura populations could separate
from their common ancestor at a time >126 generations
under Models 1, 2, 4, 5 and 7 or <126 generations under
Models 3 and 6 because only in this way could the nuragic
people be regarded as ancestral to the appropriate modern
samples.
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Approximate Bayesian Computations

Models were compared, and parameters were estimated,
by ABC. Approaches based on ABC algorithms include the
following steps: 1) a large number of simulations are per-
formed under the chosen model, with demographic pa-
rameters extracted from prior distributions, representing
the prior knowledge on the possible parameter values;
2) a vector of summary statistics is computed in each sim-
ulation; 3) the euclidean distance is computed between
each simulated vector of summary statistics and the vector
of observed statistics; 4) the parameter values associated
with an arbitrary number d (or “threshold”) of simulations,
that is, the d simulations closest to the observed data, are
retained; 5) after a transformation of the parameters (see
Hamilton et al. 2005), a weighted local regression is per-
formed to adjust the values of the retained parameters us-
ing summary statistics as predictors. Parameters were
estimated by retaining, for each model tested, the 2,000
simulations associated with the shortest euclidean distan-
ces, chosen from a total of 1.5 millions simulations per
model. This was done in the R environment (R Develop-
ment Core Team 2008) using a modified version of the
makepd4 script, freely available at htep://www.rubic.rdg.
ac.uk/~mab/stuff.

Priors

For all models, all priors were taken from uniform distri-
butions, in the range described below: Modern N, Gallura
and Ogliastra, between 100 and 200,000; ancestral N, one
generation after the split, between 5 and 6,000; and sep-
aration time between Gallura and Ogliastra, between 127
and 720 generations (or between 0 and 125 generations for
Model 3 and 6). HVR1 mutation rate between 0.0003 and
0.006, corresponding to between 0.06 and 1.3 mutations
per million years per site (commonly accepted estimates
range from 0.05 to 0.5; Pakendorf and Stoneking 2005).
Models were also tested with a fixed mutation rate of
0.0027 substitutions per generation for the 360 bp of
the mitochondrial HVR1, which was shown to be compat-
ible with the time window under investigation (Henn et al.
2009).

Under Models 4-7, modern Latium N, was 400,000, that
is, one-twelfth of the 2001 census population size. In a pan-
mictic population, the individuals who actively reproduce
are around one-third of the census size (see e.g., Tishkoff
and Gonder 2007; Cela-Conde and Ayala 2007). Because
females are one-half of the reproductively active individu-
als, a rough estimate of the N, for mtDNA would be around
one-sixth of the census size. We further divided this value
by 2 to take into account the fact that the current popu-
lation increased dramatically in recent times because of
massive immigration into Rome and the increased effects
of drift in subdivided populations. The time since separa-
tion of the Sardinia and mainland populations was fixed at
721 generations (Vona 1997); migration rate from Latium
into Gallura was between 0 and 0.01 per generation. The
same set of priors were also used when we simulated im-
migration from Tuscany, rather than from Latium.

Model Selection

Models were compared by estimating their posterior prob-
abilities in two ways. The posterior probability can easily be
estimated by acceptance-rejection sampling (Pritchard
et al. 1999), comparing the distribution of normalized dis-
tances between observed and simulated summary statistics
(acceptance-rejection [AR] method). If all models have the
same prior probability, the posterior probability of the i-th
model is simply obtained by ranking simulations according
to their associated distances. One then counts how many
simulations run under the i-th model (1;) are found among
an arbitrary number, d, of the simulations resulting in the
shortest distances between observed and simulated data. The
posterior probability for the model is then equal to n;/d.

Results of previous studies suggest that straightforward
rejection may not be robust when d is greater than a few
hundred simulations (Beaumont 2008). The alternative
approach (logistic regression [LR] method) estimates the
models’ posterior probabilities by multinomial logistic re-
gression, which is known to perform better than the AR
method particularly when investigating the population tree
topology (Beaumont 2008). Under the LR method, a logistic
regression is fitted where the model is the categorical de-
pendent variable Y; (1 <j < 3 when comparing Models 1-3
and 4-6; 1 < j < 4 in the comparisons of Models 4-7) in
the ABC simulations and the summary statistics are the
predictive variables (Fagundes et al. 2007, Beaumont
2008). The regression is local around the vector of observed
summary statistics in the same way as in the parameter
estimation procedure. The probability of the model is fi-
nally evaluated in the point corresponding to the observed
vector of summary statistics.

The f coefficients of the regression model were esti-
mated by maximum likelihood; the standard error of the
estimates was taken as a measure of the accuracy of
the posterior probabilities. For both AR and LR, we used
the “calmod” function, written by M. A. Beaumont (available
at http://www.rubic.rdg.ac.uk/~mab/stuff/) for the R sta-
tistical package. Model selection within each set of scenar-
ios was based on 1,500,000 simulations for each model.
Different numbers of simulations (i.e,, different thresholds)
were considered for both approaches. Finally, we analyzed
the power of the LR procedure to correctly recover the true
model as suggested by Fagundes et al. (2007) and Cornuet
et al. (2008). Specifically, we first simulated 1,000 data sets
from the prior distribution under each model considered
(for a total of 7,000 simulated data sets) and analyzed them
using the same simulations and setting as in the observed
data. We thus assigned each of the 1,000 simulated data
sets to the model showing the highest posterior probability
and counted how many times the true model was correctly
identified. Typel erroris the fraction of cases in which the true
model was not recovered.

Quality of the Estimation
To determine whether the summary statistics we chose
contain enough information to estimate model parame-

ters, during the regression step, we computed the
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coefficient of determination (R”). R” indicates the percent-
age of variance of the dependent variable (i.e,, the param-
eter) explained by the predictors (ie, the summary
statistics). In the absence of an established threshold value,
there is a general agreement that when R? < 0.10, the sum-
mary statistics do not convey enough information about
their posterior distribution (Neuenschwander et al. 2008).

The accuracy of the median estimate of model param-
eters was assessed computing relative bias and relative
mean square error. For these tests, we generated 1,000 data
sets using our median point estimates as demographic pa-
rameters. Each of these 1,000 data sets was used as
a pseudo-observed data set, which was analyzed with
the 1,500,000 simulations previously performed for ABC es-
timation in the observed data. Bias and root mean square
error (RMSE) depend, respectively, on the sum of differen-
ces and on the sum of squared differences, between the
1,000 estimates of each parameter thus obtained and
the respective median point estimate (Neuenschwander
et al. 2008). A value of 0 means that the median perfectly
estimated the parameter, positive and negative values re-
flect, respectively, biases toward overestimation and under-
estimation.

We also calculated the factor 2 statistic, representing the
proportion of the 1,000 estimated median values lying be-
tween the 50% and the 200% of the fixed (known) value,
and the 50% coverage, defined as the proportion of times
that the known value lies within the 50% credible interval
of the 1,000 estimates. Note that factor 2 gives information
about the absolute precision of the estimator because it is
independent of the posterior distribution’s variance
(which, conversely, is not a property of the coverage).

Posterior Predictive Tests for the Models

Finally, we evaluated by a posterior predictive test whether,
under any specific model, we were able to reproduce the
observed data (Gelman et al. 2004). This test is the Bayesian
analogue of the parametric bootstrap under the frequent-
ist framework. Its rationale is, if our posterior distribution
estimates are plausible, they should be able to generate
data sets similar to the observed data. The discrepancy be-
tween the model and the data is measured by a test quan-
tity yielding a final Bayesian P value that can be interpreted
as the probability of accepting the null hypothesis that our
data have been generated by that model (Gelman et al.
2004). For each demographic model, we first computed
a posterior predictive P value for each of the statistics con-
sidered and then combined the probabilities of the single
statistics into a global P value, by a method that takes into
account nonindependence of the statistics (Voight et al.
2005). Briefly, for each model of interest, random draws
from the posterior probability of the demographic param-
eters inferred by ABC were used to generate by coalescent
simulations 10,000 data sets with the sample size of the
sample considered. Summary statistics were then com-
puted in these data sets to obtain their null distribution
(under the model of interest), against which we tested
the summary statistics computed in our observed data ob-
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taining a Bayesian P value for each statistic. The global P
value was calculated in four additional steps: 1) Each sim-
ulated summary statistic was compared with the other
9,999 values representing the empirical distribution of
the statistic from simulation and thus associated with
a two-tailed P value; 2) For each simulated genealogy,
a new statistic C, combining the P values of the individual
statistics (p;), was calculated as:

C= — 2Zln(pl).

where summation is over all P values from each summary sta-
tistic. This step was repeated 10,000 times, so as to obtain
a null distribution of C; 3) By repeating the same procedure
with the observed statistics, we calculated an observed C
value, C,; 4) By comparing C, with the C null distribution,
we estimate a one-tailed P value (the Bayesian P value) for C,,.

Results

A median-joining network (Bandelt et al. 1999) summariz-
ing the relationships among the DNA sequences of modern
and ancient populations is in figure 1, and a list of the nu-
cleotide substitutions observed in the ancient specimens is
in supplementary table S1 (Supplementary Material online).

Choosing the Best Model

Summary statistics computed from the observed data
(rable 1), namely mtDNA sequences in nuragic Sardinians
(n = 23) and modern people from Ogliastra (n = 175),
Gallura (n = 27), and Latium (n = 52) (fig. 2), were com-
pared with the statistics calculated from the simulated
data. In addition, we also ran the same simulations and
analyses using Tuscany (n = 52) instead of Latium. The
results were absolutely consistent when immigrants came
from either mainland population, and so, unless otherwise
specified, our comments will refer to the simulations in
which immigrants were taken from the Latium data set.
Because the two modern Sardinian samples have different
sizes, as a preliminary test of the effects of sample size, we
resampled 1,000 times 27 sequences from the Ogliastra
data set and calculated from them the summary statistics.
We found that sample size had but a minimal effect on the
estimates, and so, we could conclude that the higher frac-
tion of Bronze-Age haplotypes shared by Ogliastra than by
Gallura is not simply an artifact and is informative for the
inference of genealogical relationships.

We started from six demographic models, differing from
each other as for the genealogical relationships between
the nuragic and the modern samples (fig. 3). Sardinia is ge-
netically isolated under Models 1-3, whereas Models 4-6
incorporate variable rates of immigration from mainland
Italy.

Model 1 was favored among the models without immi-
gration (fig. 4A), showing a posterior probability up to 0.97
and in any case never less than 0.70, depending on the cri-
terion chosen to compare the results across models. Alter-
native models received only scanty, if any, support. When
immigration was added to the previously simulated
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Fic. 1. Median-joining network of the DNA sequences considered. Ancient samples are represented by white areas in the pies, Gallura by gray
areas and Ogliastra by black areas. Figures on the edges of the network indicate the position of the nucleotide substitution in the mtDNA

reference sequence minus 16,000.

scenarios, we fixed the separation time between the pop-
ulations of Latium and Sardinia at 721 generations ago
(=18,000 years ago), corresponding to the first likely hu-
man presence in Sardinia (Vona 1997), so that that sepa-
ration would necessarily precede the split between the
ancestors of current people from Gallura and Ogliastra.
Equal levels of genetic diversity can be obtained through
many generations of gene flow at low rates, a few gener-
ations of intense gene flow, or any combinations of factors
in between (Hey 2006). Therefore, fixing the separation
time was expected to simplify the estimation of migration
rates, and it did. In the comparison of Models 4-6 (fig. 4B),
Model 4, analogous to Model 1 in the assumed genealogical
links, with the addition of gene flow from Latium into Gal-
lura, showed the highest posterior probability (between
0.71 and 0.79, depending on the criterion chosen). Little
changed if the Tuscany, and not the Latium, data set
was used as a source of migrants into Sardinia (fig. 4C).

Models without immigration and models with immigra-
tion from Latium could not be directly compared because
of the different data sets analyzed. However, in both cases,
the models of genealogical continuity with Ogliastra (1 and
4) proved better than the others. The question to address,
at that point, was only whether migration adds to the abil-
ity of the model to account for the data. To answer, we
developed a seventh model, identical to Model 4 but with
m set to 0. In this way, we obtained a way to test on the
same data set (including the Latium data set in addition to
the ancient and modern Sardinians) whether considering
gene flow from the mainland improves the resemblance
between observed and simulated statistics. In fact, little
changed when the models including immigration were
compared with Model 7, which shows a posterior proba-
bility between 0.15 and 0.30, versus 0.10 or less for Models 5
and 6 (data not given). When the comparison was re-
stricted to the two best models, 4 and 7, both considering

Table 1. Observed Summary Statistics Describing Genetic Variation in the Samples.

Bronze Age Ogliastra Gallura Latium
Haplotype number 10 26 21 36
No. of segregating sites 10 22 31 45
Mean pairwise difference 1.39 2.49 4.42 4.07
Haplotype diversity 0.83 0.79 0.97 0.95
Tajima’s D —1.64 —0.97 —1.66 —2.02
Fg (Ogliastra-Gallura) 0.0218

Ogliastra/Bronze Age = 0.400
Haplotype sharing Gallura/Bronze Age = 0.100

Gallura/Ogliastra = 0.095
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Fic. 2. A map of Sardinia (left) and its geographical relationship with mainland Italy. Gallura and Ogliastra are shaded in gray; solid circles
represent the archeological sources of the ancient specimens considered in this study.

the nuragic people as ancestral to the Ogliastra popula-
tions, nonzero immigration from the mainland into Gallura
(Model 4) resulted in a roughly 2-fold greater posterior
probability when compared with no immigration (Model
7), with values ranging from 0.64 to 0.71 (fig. 4D).

These results show altogether that what really made the
difference among models was to represent the Ogliastra
people as direct descendants of local nuragic ancestors
(Models 1, 4, and 7), to the exclusion of the Gallura people.
Considering immigration from the mainland into Gallura
did increase the resemblance between simulated and ob-
served statistics, although up to one-third of the simula-
tions favored Model 7, both when compared with all
alternative models and when compared with Model 4 only.

In all these tests, the mitochondrial mutation rate was
estimated from the data. We also repeated the experiments

Time in
generations

126+

assuming a fixed molecular clock at a rate of 0.3 substitu-
tions per nucleotide per million year (0.0027 per generation
for the 360 bp of the HVR1 assuming a generation time of
25 years). This value was taken from a recent study (Henn
et al. 2009) and seems plausible for the time window we are
considering. Results with the fixed rate were essentially the
same as above (data not given).

Estimating Population Parameters

Table 2 shows the posterior distribution of the parameters
estimated under Models 1 and 4, respectively, along with
the priors. The mutation rate (median values of 0.0020 and
0.0014 per generation for the 360-bp hypervariable mtDNA
region for Models 1 and 4, respectively) is close to the val-
ues accepted in most studies of mtDNA diversity (Vigilant
et al. 1991; Forster et al. 1996) and barely lower than the

MODEL 1

MODEL 2

04 £ ; [\ /J L \ A
OGL GAL OGL GAL OGL GAL

MODEL 3

GAL LAT OoGL

MODEL 4

PN

GAL

MODEL 5

LAT

oGL GAL LAT

MODEL 6

Fic. 3. A schematic summary of the six models tested. Numbers on the y axis are generations from the present. The horizontal line at
generation 126 represents the nuragic population; the arrows represent gene flow at a rate M, which was estimated from the data, from the

mainland into Gallura. OGL, Ogliastra; GAL, Gallura; LAT, Latium.
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Models without immigration; (B) models with immigration from Latium; (C) models with immigration from Tuscany; and (D) a comparison of

the two best models, with immigration from Latium (Model 4) and

value (0.0027) estimated by Henn et al. (2009), under
a model that differed from ours in that it did not include
migration. Credible intervals of mutation rate include the
values estimated in recent studies (Henn et al. 2009; Soares
et al. 2009), and in one case (Model 4), the median value
overlaps exactly with the estimate of Soares et al. (2009).
Therefore, our estimates for this parameter appear reason-
able, and robust, as shown by the high values of the coef-
ficient of determination, R®.

Under both models, the ancient effective population
sizes appear to be around one or a few thousand individ-
uals, in agreement with Y-chromosome-based estimates
for the European Palaeolithic (Contu et al. 2008) and with
the finding that N, is systematically larger for females than

without it (Model 7).

males in humans (Dupanloup et al. 2003; Wilder et al.
2004). Estimated modern population sizes can be com-
pared with the data of the 2008 census, that is, 58,389
for Ogliastra and 153,339 for Gallura (see http://demo.ista-
tit/). Because, as a rule of thumb, approximately one-third
of the population is considered to be reproductively active
in humans and because half of the reproductively active
individuals are females, one should expect N, values around
one-sixth of the census values, that is, 10,000 and 26,000,
respectively (or less, if the population is subdivided). In fact,
under Model 4, we found N, of 11,290 for Ogliastra, which
seems an excellent approximation, especially considering
that our study is necessarily based on a single locus. On
the other hand, we estimated N, at 104,000 in Gallura,

Table 2. Demographic Parameters Estimated under Models 1 (Upper Panel) and 4 (Lower Panel).

Median 0.025* 0.975" R*® Prior®
Model 1
N2 Ogliastra 8,947 2,645 65,724 0.550 U: 100-200,000
N," Gallura 128,534 21,010 196,314 0.171 U: 100-200,000
Separation time 551 230 714 0.286 U: 127-2,5000
Mutation rate 0.0020 0.0009 0.0044 0.688 U: 0.0003-0.006
Ancestral N® Ogliastra 346 65 2,061 0.446 U: 5-6,000
Ancestral N,d Gallura 811 121 4,655 0.351 U: 5-6,000
Model 4
N,d Ogliastra 11,290 2,646 70,762 0.540 U: 100-200,000
N.! Gallura 104,183 10,450 195,062 0.129 U: 100-200,000
Migration rate from Latium 0.00497 0.00031 0.00972 0.081 U: 0-0.001
Separation time (Sardinia) 513 185 709 0.291 U: 127-720
Mutation rate 0.0014 0.0008 0.0023 0.746 U: 0.0003-0.006
Ancestral N,* Ogliastra 824 158 4,177 0.455 U: 5-6,000
Ancestral Ned Gallura 683 37 4,564 0.149 U: 5-6,000
Ancestral N.® Latium 1,137 124 5,291 0.337 U: 5-6,000
* Upper and lower limits of the 95% credible interval about the estimated median.
® Coefficient of determination.
U, uniform probability, in the range between the two values.
9 Effective female population size.
881
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Table 3. Power of the LR Procedure to Recover the True Model.

% of Model Attribution®

Without immigration MOD1
Simulated model MOD1 92.9
MOD2 1.6
MOD3 4.8
With immigration MOD4
Simulated model MOD4 94.8
MOD5 3.8
MOD6 6.0
With immigration, plus Model 7 MOD4
Simulated model MOD4 71.2
MOD5 2.9
MOD6 3.7
MOD7 26.6

MOD2 MOD3 Total
1.2 5.9 100.0
89.8 8.6 100.0
6.1 89.1 100.0
MODs MODe6 Total
0.4 4.8 100.0
91.9 4.3 100.0
3.4 90.6 100.0
MODs MODé6 MOD7 Total
0.5 4.1 24.2 100.0
90.9 5.1 1.1 100.0
29 87.0 6.4 100.0
1.9 5.6 65.9 100.0

* Proportion of cases in which the analysis correctly recovered the true model. One-thousand replicates were generated for each model using random values drawn from
the prior distributions. Replicates were considered assigned to the model that has the highest posterior probability.

corresponding to more than 600,000 in census terms. We
believe that this high value basically reflects a high mtDNA
variation in Gallura; under the conditions of Model 4, those
levels of diversity can only be generated in a very large pop-
ulation or if the mutation rate is very high but not by the
effects of continuous gene flow with neighboring popula-
tions, which we could not incorporate in the model. The
uncertainty in the N, estimates is also shown by the broad
posterior probability distributions and by the low R? values,
both for the current population and for the ancestral pop-
ulation after separation from the common ancestor to
Bronze-Age nuragic people (table 2). Conversely, the pos-
terior probability distribution is narrower, and R” is high
(>0.5) for the modern and ancient Ogliastra’s N, estimates.
Both results indicate that the summary statistics used to
infer the posterior distribution of N, in Gallura do not har-
bor sufficient power for an accurate estimation. The results
also suggest that the Gallura population received immi-
grants from the mainland at a median rate of 0.005 per
generation, but, once again, this value represents the effect
of one of the probably multiple migration processes, that is,
the only one we could model with reasonable accuracy.

The median separation of the two ancient Sardinian pop-
ulations (one ancestral to both nuragic and Ogliastra people,
the other to the Gallura people) is around 513 generations,
or 12,825 years ago, but 95% of the values estimated from the
best simulations fall in a broad interval, between 185 and 709
generations ago (4,625-17,725 years ago).

Validating the Estimated Statistics
We then ran several tests to assess the quality of our esti-
mates. First, we calculated for each demographic parameter
of each model two statistics, the relative bias and the relative
RMSE, to quantify the accuracy of the estimated median val-
ues. Second, we calculated factor 2 statistic and 50% cover-
age, two indexes of the quality of the posterior distributions
(supplementary table S1, Supplementary Material online).
Both the relative bias and the relative RMSE are generally
low and do not point to any systematic over- or underes-
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timation of the various parameters. The Models associated
with the highest posterior probability (Models 1 and 4) do
not have (with few exceptions) bias or RMSE higher than
one. In general, the width of the 50% credible intervals is
small, showing that the parameters are reasonably well es-
timated; most values of the parameter estimates resulting
from these pseudo-observed data sets lie between 50% and
200% of the estimated median values.

We then asked whether models are different enough for
us to correctly recover the true model by the logistic re-
gression procedure (type | error). To answer, we counted
the number of cases in which we recovered the true model
in a set of 1,000 simulations from the prior distributions of
each model. Because of the different data sets used, we had
to separately compare models without, and with, immigra-
tion. We found that the data sets generated under Models
1 through 3 are correctly identified (i.e, have the highest
posterior probability) in the vast majority (89% or more)
of cases, and the same was the case for Models 4 through
6 (91% or more) (table 3). When Model 7 was compared
with models with immigration, a slight loss of power was
evident because Models 4 and 7 are very similar. Neverthe-
less, Model 7 was identified as the correct one in almost
two-thirds of the experiments.

Finally, we ran posterior predictive tests to evaluate
whether we could reproduce the observed data, under
the specific demographic scenario described by each
model. We found that no scenario can actually be rejected
(the global P values were insignificant for all models; sup-
plementary rtable S2, Supplementary Material online).
When we considered each summary statistic, we found
that only Model 1 showed all insignificant P values. Under
Model 4, which was favored by a large majority of the tests
we ran, 23 of the 25 statistics considered could be faithfully
reproduced, but significant differences merged for Tajima’s
D in the nuragic population and for the level of haplotype
sharing between ancient and modern individuals. In other
words, models of genealogical continuity between Nuragic
Sardinians and Ogliastra 1) showed in every case the

104

Sap ENSIQAIUN e /F10 s [euImolpIojxo-aquy/:dny woly papeojumo(]

€1 AIENIqa ] uo 1zein) d[jap BLIEJ S BIAOI|qIE -BILLID] 1P IPIS 1]

fAlira



Genealogical inferences based on comparison of modern and ancient DNA

Bronze-Age and Modern DNA Variation - doi:10.1093/molbev/msp292

MBE

highest posterior probabilities, regardless of whether the
model included immigration from the mainland (Models
1 and 4) and 2) generated data whose summary statistics
are largely (when immigration from the mainland was con-
sidered; Model 4) or fully (in the case of no immigration;
Model 1) compatible with the observed ones.

Discussion

The first human remains discovered so far in Sardinia date
back to 14,000 years ago, and the first human presence in
the island may be placed around 18,000 years ago (Vona
1997). The analysis of mtDNA variation in ancient and
modern Sardinia and the comparison of observed and sim-
ulated patterns of mtDNA diversity clearly show that hap-
lotypes documented in the Bronze Age, or derived from
them assuming a reasonable mutation rate, are still present
and common in the isolated Ogliastra community. Con-
versely, the modern population of Gallura seems derived
from ancestors who separated in Palaeolithic times
(>12,500 years ago) from the common ancestors of
Bronze-Age and modern Ogliastra people and only have
loose genealogical relationships, if any, with the ancient Sar-
dinian people. Indeed, the only Bronze-Age sequence that
is also observed in the modern Gallura sample is the Cam-
bridge Reference Sequence (CRS), which is very common all
over Europe. Conversely, the modern Ogliastra sample
comprises not only the CRS but also two relatively rare se-
quences documented in the Ogliastra nuragic sites of Seulo
and Perdasdefogu (Caramelli et al. 2007). All models assum-
ing alternative genealogical links between past and present
populations are much less supported by our analyses.

We assessed the quality of the analysis by a number of
tests. First, we showed that in general, a large proportion of
the parameters’ variance is explained by the estimated
summary statistics, and we identified the few parameters
that could not be accurately estimated. Second, we evalu-
ated the breadth of the empirical confidence intervals (in
fact, 95% credible intervals) about the estimated parame-
ters. Third, we showed in various ways that simulations
based on the estimated parameters can in fact reasonably
reproduce the observed data set. Clearly, a certain degree of
uncertainty necessarily affects any analysis based on a single
DNA region and on the necessarily small samples in which
ancient DNA is typed. Within these unavoidable limits, we
believe that the properties of the demographic models
could hardly be explored in greater detail.

Under the models showing the best fir, Model 1 and
Model 4, the Gallura population was larger than that of
Ogliastra and grew faster through time, consistent with
the trends known for the last centuries (Francalacci
et al. 2003). Under Model 4, the population increase in Gal-
lura appears partly due to immigration from the mainland,
at a median rate that we estimate around 0.005 per gen-
eration (table 3). This value was calculated assuming that
migration occurred at a constant rate, whereas in fact that
seems unlikely; therefore, it should not be regarded as a pre-
cise measure of the actual input of genes at any moment in

time. The estimated ancestral population sizes, between
1,000 and 2,000 individuals (corresponding to the sum
of the two population sizes after the split), do not suggest
that the Sardinian populations underwent dramatic bottle-
necks, which is in good agreement with the population
growth suggested by negative values of Tajima’s D in both
the modern and Bronze-Age populations.

The median values of the posterior distribution of the
mutation rate are 0.0020 and 0.0014 for the whole
HVR1 region (for Model 1 and Model 4, respectively), val-
ues in close agreement with those estimated in phyloge-
netic comparisons of humans and chimps (Pakendorf
and Stoneking 2005) and hence with the relatively low val-
ues commonly accepted in studies of human mtDNA (see
e.g, Hill et al. 2007). However, we also noticed that the me-
dian estimate of the mutation rate ranges from 0.0014 of
Model 4 to 0.0049 of Model 3. This 3-fold difference shows
how the evolutionary model considered affects the estima-
tion of the mutation rate from ancient DNA data, an issue
that has so far received little attention (but see Navascués
and Emerson 2009). We think that these results illustrate
how a wrong population genetic model can produce an
undetected bias in the estimation of evolutionary and de-
mographic parameters. In our study, we took different
models into considerations, and so, we could notice that
they yielded rather different estimates of mutation rates.
On the contrary, most studies of modern DNA variation
consider just a single model (i.e, constant population size
or exponential increase of population size) and hence reach
conclusions that may or may not hold true under different
models. The R? values of table 2 represent the fraction of
the total variance explained by the summary statistic, and
show that most parameter estimates can be considered re-
liable (Neuenschwander et al. 2008), especially those refer-
ring to the mutation rate, and of N, in both ancient and
modern Ogliastra (all > 0.45).

In this analysis, as well as in previous diachronic analyses
of genetic diversity (Belle et al. 2009), it proved difficult to
reproduce the high number of different haplotypes of some
modern populations. In the present study, that was the
case for Gallura; considering its population extremely large
by any standards (N, > 100,000) was the only way to sim-
ulate levels of genetic diversity compatible with the ob-
served ones. That N, value is unrealistic, and it probably
reflects the limitations of currently testable models. We
could model directional gene flow from Latium (identified
as a plausible source of immigrants) into Sardinia, but we
had no useful information on the sources and rates of con-
tinuous immigration processes that likely occurred across
the last millennia. Therefore, we had to represent our pop-
ulations as essentially isolated; in this way, we disregarded
the well-known fact that mtDNA diversity is not simply the
product of mutations accumulating through time in isola-
tion (see e.g, Wilkins 2006) but also reflects the input of
lineages of different origins. The fact that not always could
we reproduce the observed levels of Gallura's haplotype di-
versity seems a consequence of this inevitable approxima-
tion. Actually, the close agreement between our estimate
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based on gene genealogies and the census data shows that
the Ogliastra population, or at least its mtDNA pool, did
evolve under strong reproductive isolation, as also indi-
cated by previous studies (Morelli et al. 2000; Angius
et al. 2001). On the contrary, the 4-fold difference between
our N, estimate for Gallura and the census value probably
just means that Gallura was all but isolated, and gene flow
from various sources increased its genetic diversity. Because
we could not appropriately model this process, our simu-
lations tended to reproduce the observed levels of diversity
in Gallura by expanding the population size estimates, which
also resulted in large variances about the median values. In
short, not only the models we used are clearly a simplification
of the true demographic history of these populations (even if
we tried to accurately model the historical events that have
likely shaped genetic diversity) but there is also an inherent
limitation in using a single genetic marker to uncover com-
plex demographic histories. Therefore, the data we are using
contain enough information to estimate many, but not nec-
essarily all, the parameters of interest, and that seems the
case especially for the N, of Gallura.

Predictably, when the simulations included variable
rates of gene flow from the nearest mainland region, Lat-
ium, we could account for part of this excess variation;
Model 4 (with gene flow) had indeed a greater posterior
probability than Model 7. On the other hand, however,
in the posterior predictive test (supplementary table S2,
Supplementary Material online), only Model 1 proved to
generate data that are fully compatible with the observed
ones, whereas for Model 4, there were significant differen-
ces for 2 statistics of 25. In commenting this result, one has
to keep in mind that there is often a trade-off between
complexity of the model and its accuracy in reproducing
the data. Models 4-7 have more parameters than Models
1-3, and as the number of parameters increases, their joint
estimation becomes increasingly complicated. This prob-
lem is particularly serious when a single locus is considered,
as in this study; however, we do not foresee any simple so-
lution. In short, complicating the models did not fully clar-
ify the missing details of the picture, and hence, at this
stage, further complications seem unlikely to decrease sig-
nificantly the estimates’ uncertainty. Substantial progress
in this area is to be expected only with the development
of reliable methods for the typing of nuclear DNA polymor-
phisms in ancient samples.

Even so, this study casts new light on the nature and the
extent of the genealogical links between past and present
populations, a long-term source of controversy in evolu-
tionary biology and not only there. In studies of admixture,
allele frequencies of modern populations are often consid-
ered to approximate the unknown allele frequencies of the
past (see e.g, Gauniyal et al. 2008; Auton et al. 2009). Al-
though algorithms have been developed to somehow take
into account the effect of genetic drift through time
(Chikhi et al. 2001; Sousa et al. 2009), a genealogical con-
tinuity between the people occupying a certain region in
the past and in the present is still a very common assump-
tion. Often, such approximate admixture estimates are cru-
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cial for understanding disease susceptibility or in other
medical applications (Lai et al. 2009), and so, errors in their
estimation may lead to incorrect conclusions about the in-
teraction between genes and environment in determining
phenotypes of clinical relevance.

This study, albeit limited to DNA transmitted along the
female lines of descent, strongly suggests that such a con-
tinuity is certainly a possibility, but not necessarily a general
rule across several centuries, as previously shown, for in-
stance, by the comparison of Etruscans and modern Tus-
cans (Guimaraes et al. 2009). Even when separated by short
geographical distances, as in our case, modern populations
may differ sharply in their genealogical relationships with
prehistoric and historic inhabitants of nearby territories.
However, this study also shows that it is actually possible
to test for genealogical continuity across time and hence
base the admixture estimation procedure upon empirical
genetic information. Whenever ancient DNA data are avail-
able, a preliminary validation of the assumptions on genetic
ancestry is feasible, within the framework provided by ABC
methods.

In the case of Sardinia, our approach could reconstruct,
and highlight the consequences of, a complex scenario in
which two geographically close populations evolved under
the effects of different factors. We showed that, when prop-
erly analyzed, a few tens ancient sequences are sufficient to
test hypotheses on the relationships between past and
modern people and to distinguish between the effects
of isolation and those of even limited rates of gene flow
from an external source.

Supplementary Material

Supplementary tables S1, S2, and S3 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org).
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Supplemental Table 1. List of nucleotide substitutions in the ancient dataset.
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Supplemental Table 2. Parameter’s Bias, Rmse, Coverage (50%) and Factor2

MODEL 1 BIAS RMSE (Cov (50%) | Factor2

N, Ogliastra 0.555 1.269 0.633 0.815

N, Gallura -0.177 0.262 0.887 0.932
Separation Time 0.343 0.885 0.875 0.992

Mutation Rate -0.180 0.390 0.552 0.977

Ancestral N, Ogliastra 0.968 1.832 0.489 0.605

Ancestral N, Gallura 0.868 1.421 0.564 0.626

MODEL 4 BIAS RMSE | Cov (50%) | Factor2
N, Ogliastra 0.564 1.077 0.52 0.642
N, Gallura -0.161  0.387 0.991 0.990
Migration Rate from Latium to Gallura 0.143 0.225 0.978 0.998
Separation Time (Sardinia) -0.099 0.187 0.839 0.986
Mutation Rate -0.118  0.227 0.425 0.996
Ancestral N, Ogliastra 0.229 0.753 0.624 0.738
Ancestral N, Gallura 1.376 1.712 0.439 0.344
Ancestral N, Latium 0.480 0.840 0.365 0.692
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Supplemental Table 3. Posterior predictive test for all models analysed.
Values showing significant departures from the data are shown in bold type. The Latium sample is

not included in models 1 to 3.

Model Model Model Model Model Model Model

1 2 3 4 5 6 7
ic 0.341 0403 0383 0429 0365 0410 0.337
Hap_numb_O 0395 0.392 0310 0.419 0434 0460 0.453
seg_site O 0213 0231 0102 0208 0278 0248 0.260
pair_diff_O 0261 0288 0169 0253 0.321 0253 0.312
hap_div_O 0315 0429 0236 0303 0431 0410 0.348
D_taj O 0353 0.399 0214 0200 0366 0.155 0.341
Hap_numb_G 0342 0315 0147 0347 0231 0243 0.221
seg_site G 0.396 0404 0350 0262 0.337 0267 0.461
pair_diff_G 0300 0.296 0212 0247 0286 0244 0.361
hap_div_G 0206 0211 0.134 0179 0171 0150 0.159
D taj G 0.194 0174 0056 0.126 0.149 0.117  0.264
Hap_numb_L . : . 0.428 0454 0446 0.425
seg_site_L 5 . - 0.277 0321 0274 0.396
pair_diff L g . : 0.241 0270 0268 0.323
hap_div_L % ; . 0.372 0370 0387 0.325
D_taj L . . . 0.126 0.174 0218 0.270
Hap_numb_A 0482 0218 0391 0477 0464 0439 0.456
seg_site A 0252 0.160 0.137 0229 0236 0230 0.300
pair_diff_A 0216 0170 0123 0235 0247 0230 0.279
hap_div_A 0.343 0453 0494 0383 0314 0.397 0.328
D_taj A 0.084 0.103 0.018 0.047 0099 0.020 0.090
Fst_Hud_O/G 0110 0.118 0216 0.127 0138 0.146  0.148

Hap_Shar OG/G 0423 0485 0.116 0405 0.291 0.195  0.462
Hap_Shar OA/A  0.0565 0.050 0377 0.017 0460 0.254 0.037
Hap_Shar GA/G  0.386 0.072 0.032 0384 0.037 0.136 0.299

!Hap_numb = haplotype number; seg_site = number of segregating sites; pair_diff = pairwise
sequence difference; hap_div = haplotype diversity; D _taj = Tajima’s D; Fst Hud = Hudson'’s Fst;
HapShar = Haplotype sharing. Significant values (at P<0.05) are in boldtype.

O = Ogliastra; G = Gallura; L = Latium; A = ancient sample.
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What previous studies overlooked is the potential genetic effect of population subdivision.
If most Etruscans’ descendants lived in isolated communities in the last 2,000 years, their DNAs
may still persist in some localities, but will escape detection unless they are sought at the
appropriate (i.e., smaller) geographical scale. To better understand the biological relationships
between contemporary and ancient populations, we sampled multiple burials in classical Etruria.
MtDNA was extracted from bones, amplified and sequenced by a combination of classical
methods and Next Generation Sequencing. After adding these sequences to other Etruscan
sequences (Vernesi et al. 2004) we compared them with those of relevant ancient and modern
human populations, namely Medieval Tuscans (Guimaraes et al. 2009), contemporary Tuscans
from three sites in historical Etruria (Casentino, Murlo, Volterra) (Achilli et al. 2007) and from
Florence (Turchi et al. 2008) (fig. 1), and Southwestern Anatolians (Di Benedetto et al. 2001). Once
established that genealogical ties with the Etruscans are still present in some regions of Tuscany,
we estimated the separation time between these Tuscan populations and a population from
Southwestern Anatolia, evaluating whether the estimated time can be reconciled with an Etruscan

origin in Anatolia and a subsequent migration in Italy around the 8" century BC.

Materials and Methods

DNA extraction and characterization of the Etruscan samples

We obtained 18 bone samples (each represented by two fragments of the right tibia) from
a multiple burial from Casenovole, Southern Tuscany, near Grosseto. Their approximate age,
based on archaeological evidence, is the 3rd century BC. The bone fragments were freshly

excavated and collected according to the most stringent ancient DNA criteria (Caramelli et al.
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2006) by one of us (EP) and can safely be regarded as belonging to different individuals (Minimum
number of individuals estimated in the burial =21). These fragments were processed in the ancient
DNA facilities at the University of Florence using standard ancient DNA procedures (Caramelli et al.
2008). After a first round of DNA extraction, the samples were subjected to multiple PCRs, cloning

and cycle sequencing.

In a successive step, DNA was independently reextracted from the samples that had given
positive results in the previous analysis. In this case, after multiple PCRs, the amplicons were not
cloned but ligated to the appropriate adaptor sequences and directly sequenced with 454/Roche
technology. Low Molecular Weight DNA (LMW DNA) 454/Roche protocol was applied and a final
procedure modification was added to increase the recovery of a single stranded library (Maricic &
Paabo 2009). Libraries were quantitated using a quantification Real Time PCR (qPCR) by KAPA
Library Quant Kits (KAPA Biosystems, MA, USA). Samples libraries were independently amplified
on beads by emulsion PCR (emPCR), then enriched and counted beads were loaded onto
454/Roche PicoTiterPlate (PTP) divided in 16 regions. Sequencing was performed as in 454/Roche
protocol and the obtained reads were filtered and mapped using the Cambridge reference
sequence (Andrews et al. 1999). For each sample and amplicon, a masking procedure allowed to
remove primer sequences from the reads and obtain a multi-alignment using the 454/Roche
Amplicon Variant Analysis (AVA) software. A consensus was generated by custom scripting and
then mapped on the mitochondrial DNA reference sequence (GenBank accession number:
J01415). Complete mtDNA HVR-I sequences could be retrieved in all samples. At each site the
most frequent nucleotide was observed in a range of 97.7-98.8 % of the reads in the different

samples. Unmapped reads were then analyzed in order to characterize them and we found that
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they are mostly primer dimers. Final consensus sequences of the 10 samples were determined by
comparing results obtained from both standard procedures (575 Clones) and Next Generation
Sequencing (127,837 reads).

Four additional samples from Tarquinia, sequenced in 2004, but never published so far,

brought to 14 the total of Etruscan samples typed for this study.

Datasets of ancient and modern mtDNA diversity

We analyzed four non-overlapping datasets (table 1). The ETR dataset comprises the 14 newly
produced DNA sequences, along with 16 already available sequences from necropoleis in historic
Etruria (Vernesi et al. 2004). The TUS dataset comprises four modern Tuscan populations, i.e.
Casentino, Murlo, Volterra and Florence; the last mentioned is a forensic sample, representing
random members of a large city, to the exclusion of recent immigrants (fig. 1). In addition, this

dataset includes a sample of Medieval Tuscans from Guimaraes et al. (2009).

In all statistic analyses, we replaced the nucleotides occupying position 16180-16188 and
16190-16193 with the nucleotides in the CRS, because they contain two stretches of Adenines and
Citosines known to result in apparent length polymorphism of the mtDNA sequence (Bendall &
Sykes 1995; Bandelt & Kivisild 2006). Genetic distances between the Etruscans and each
population in the ANC, TUS and EUR datasets were visualized by Multidimensional Scaling (MDS),

using the cmdscale function in the R environment (R Development Core Team 2010).
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Approximate Bayesian Computation
Inferring demographic and evolutionary processes from genetic data requires the testing of

models which are often too complex for their likelihoods to be derived. Approximate Bayesian

Co~NOOP,WN =

10 Computation (ABC; Beaumont, Zhang & Balding 2002) offers a valid alternative. Summary statistics
estimated from the data are compared with those generated by simulation, and posterior

15 distributions of the models’ parameters can be approximated by simulating large numbers of gene
17 genealogies. We generated gene genealogies in which individuals are sampled at different
moments in time using the Bayesian version of SERIALSIMCOAL (Anderson et al. 2005; available at

22 http://iod.ucsd.edu/simplex/ssc/BayeSSc.htm). At every iteration, the parameters of the model

24 (population sizes, mutation rates, timing of demographic processes) were considered as random
27 variables, and their values were extracted from broad prior distributions; ages and sizes of the
29 samples were equal to those of the observed samples. We then calculated a Euclidean distance
31 between observed and simulated statistics, and we ordered the simulations according to this

34 distance. In total, 24 million simulations were run (1 million for each of 3 models, 4 modern

36 populations in the TUS dataset and two demographic scenarios, respectively including or not
including a recent bottleneck). All the procedures were developed in the R environment (R

41 Development Core Team 2010) using scripts from http://www.rubic.rdg.ac.uk/~mab/stuff/.

45 Demographic models and Priors

47 The three demographic models tested differ for the relationships between modern and ancient
50 samples (fig. 2); under each model, each population in the TUS dataset was independently

52 compared with the Etruscan and Medieval populations. All prior distributions were uniform and

wide. The effective modern population size ranged between 100 and 200,000; for the time of the

56 7
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onset of the expansion (under Model 1) and the separation time (under Models 2 and 3) the priors
ranged from 101 (one generation before the Etruscans) to 1,500 generations ago. Priors for the
mutation rate encompassed the low value estimated from phylogenies (Pakendorf & Stoneking
2005), and the high value estimated from pedigrees (Howell et al. 2003), from 0.0003 to 0.0075
mutations per generation for HVR-I. The Medieval and the Etruscan effective population sizes
were extracted from a prior distribution spanning from 100 to 50,000, as suggested in Guimaraes
et al. (2009). Ancestral population sizes varied from 5 to 6,000 individuals. The entire procedure
was repeated under a demographic scenario including a population bottleneck corresponding to
the 14% century plague epidemics, in which an estimated one-third of the population was lost

(Biraben 1979).

For each modern population considered, the analysis included four steps, namely: (i) one
million of gene genealogies were generated for each model and each demographic scenario (with
or without bottleneck) by serial coalescent simulation; (ii) we summarized genetic diversity in the
observed and simulated data by the same set of statistics (table 2); (iii) by comparing these
statistics in the observed and simulated data, we selected a set (100 or 50,000, depending on the
criterion chosen, see below) of simulations best reproducing variation in the data and we
estimated the models’ posterior probabilities (PP); (iv) demographic (population sizes) and
evolutionary (mutation rates) parameters for the most probable model were finally estimated

from the simulated data (Beaumont, Zhang & Balding 2002).
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Model selection and parameter estimation
The posterior probabilities of the 24 combinations of models (3), modern populations (2) and

demographic scenarios (4), were calculated either: (i) by a simple rejection procedure (AR)

Co~NOOP,WN =

10 (Pritchard et al. 1999) for which we retained the 100 simulations associated with the shortest
distance between observed and simulated statistics (Beaumont 2008); or (ii) by a weighted

15 multinomial logistic regression (LR) (Beaumont 2008) for which we retained the 50,000

17 simulations generating the shortest distance between the observed and simulated statistics. In
both cases, we normalized the PPs so that their sum for all models being compared is 1. The
22 parameters of the best-fitting model were estimated from the 2,000 simulations closest to the
24 observed dataset, after a logtan transformation of the parameters (Hamilton, Stoneking &

27 Excoffier 2005) and according to Beaumont, Zhang, Balding (2002).

31 Additional tests: Type | Error and Posterior predictive tests

33 We estimated the probability that the true null hypothesis be rejected by evaluating the Type |
Error, i.e. the proportion of cases in which 1,000 pseudo-datasets generated under each model are
38 not correctly identified by the ABC analysis. In addition, to test whether the data can be actually
40 reproduced under a specific demographic model, we carried out a posterior predictive test
(Gelman et al. 2004; Ghirotto et al. 2010). For that purpose, we simulated 10,000 datasets

45 according to the model with the highest probability using the estimated posterior parameter

47 distribution, and we calculated a posterior predictive P-value for each statistic; these probabilities
50 were then combined into a global P-value, taking into account their non-independence (Voight et

52 al. 2005).
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The Isolation with Migration (IM) model

We estimated the likely separation time between the Tuscan and Anatolian gene pools by
Isolation with Migration (IM), a method generating posterior probabilities for complex models in
which populations need not be at equilibrium (Hey & Nielsen 2004). Seven parameters were
estimated from the data, namely the size of the ancestral and daughter populations (Na, N1, N2),
the rates of gene flow between daughter populations (m;, m;), the time since the split (t), and the
proportion of the members of the ancestral population giving rise to the first daughter population
(s) (Hey 2005). Because any degree of genetic exchange increases the t estimate, after some
preliminary tests we set to 0 the values of m; and m;. Most tests were run fixing the mutation
rate at the value estimated in the ABC analysis (0.003 mutational events per locus per generation),
but we repeated the whole IM analysis with both lower and higher values (respectively, 0.0014
and 0.0060 mutational events per locus per generation; Henn et al. 2009; Soares et al. 2009) under
a Hasegawa-Kishino-Yano (HKY; Hasegawa, Kishino & Yano 1985) mutational model. For each
mutation rate tested we ran several analyses starting from different random seeds, in order to
assess the consistency of the results; moreover, to improve the exploration of the parameters’
space, and thereby the convergence, we coupled the Markov chains, running simultaneously 5

chains per run.

Results

Ancient DNA sequences

After a first round of DNA extraction, the 18 Casenovole samples were subjected to multiple PCRs,

cloning and cycle sequencing. In ten of them we could determine the sequence of the complete

10
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mtDNA HVR-I region, whereas the remaining eight gave no results (supplementary figure 1,
Supplementary Material Online). Their final consensus sequences (supplementary table 1) were

determined by comparing results obtained using the standard procedures (575 clones overall) and

CoOo~NoOOOP,WN -

10 Next Generation Sequencing (127,837 reads) (supplementary fig. 2). We added to these the
sequences of four individuals from Tarquinia, (GenBank accession numbers:
15 bankit1285669 GU186064; bankit1285680 GU186065; bankit1285699 GU186066; bankit1285702

17 GU186067).

23 The Etruscans in the context of modern and ancient genetic diversity

26 In table 2 we show several statistics summarizing genetic variation in the ETR and TUS

28 datasets. Estimates of the internal genetic diversity of the Etruscans, as expressed by their mean
31 pairwise difference (2.966+1.56) and by haplotype diversity (0.943+0.032), appear close to those
33 obtained in Vernesi et al. (2004) using a partly different dataset. We also calculated two measures
35 of genetic distance between the Etruscans (ETR) and modern populations (EUR), namely Wright's
38 pairwise Fst and allele sharing, the latter measured as the fraction of modern sequences also

40 observed in the Etruscan sample (supplementary fig. 3). A general decline of genetic resemblance

with geographic distance is evident (fig. 3).

47 Among the 30 Etruscan individuals (ETR dataset) we observed 21 different sequences with
24 variable sites (table 2). Comparisons with 52 modern populations in the TUS and EUR datasets
52 (listed in supplementary table 2) show that 11 of these sequences are shared with at least one of

54 4,910 individuals from Western Eurasia and the Southern Mediterranean shore (supplementary

56 11
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table 1). The Etruscan sample falls within the range of contemporary genetic variation (EUR
dataset, supplementary fig. 4 a and b). In the comparison with the samples of the ANC dataset, the
Etruscans appear to fall very close to a Neolithic population from Central Europe and to other
Tuscan populations; geographically distant Bronze and Iron-age samples, from Iberia and Sardinia,

appear genetically differentiated from the Etruscans (supplementary fig. 4c).

Genealogical relationships between the Etruscans and contemporary populations

We found evidence for genealogical continuity all the way from Etruscan to current times
in two contemporary populations (fig. 2a); the PP of Model 1 was between 0.65 and 0.76 for
Volterra and 0.95 and 0.99 for Casentino, and this result did not change considering different
numbers of best-fitting simulations (say, 500 instead of 100, or 100,000 instead of 50,000). Similar
results were obtain incorporating in the model a population bottleneck at the time of the
Medieval plague epidemics (Livi-Bacci 2007) (supplementary fig. 5), although an explicit
comparison between models with and without plague favoured the latter (fig. 2b). Therefore, this
event was not considered in subsequent analyses. At any rate, the relative success of the models

does not depend on the presence of a bottleneck in the late Middle Age.

By contrast, for Murlo and Florence, Model 2, with the modern DNAs occupying a distinct
branch of the genealogical tree with respect to Etruscans and medieval Tuscans, was shown to be
7 to 99 times more likely than any alternative model (PP between 0.86 and 0.99) (fig. 2a); Model 3
received essentially no support. Choosing different sets of statistics to summarize the data did not

change the essence of the results.
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We then asked whether there is enough power in the data for these models to be
discriminated. To answer, we generated by simulation (separately for Casentino, Murlo, Volterra
and Florence) 1,000 pseudo-observed datasets according to each model analyzed (Models1-3),
with parameters values randomly chosen from the correspondent prior distribution. Type | error,
namely the fraction of cases in which the model generating these 12,000 pseudo-observed
datasets was not recognized, was always < 0.08. In particular, the model emerging from the
analysis of the observed data (Model 1 for Casentino and Volterra, Model 2 for Murlo and

Florence) was correctly identified in at least 95% of cases (table 3).

Under Model 1, archaic population sizes appear small in both Tuscan populations, with an
exponential growth starting around 10,000 years ago for Casentino and 16,500 years ago for
Volterra (supplementary fig. 6). The estimated mutation rate (around 0.3 mutational events per
million years per nucleotide) is in agreement with previous independent reports (Henn et al. 2009;
Ghirotto et al. 2010). In general, all the parameters appear well estimated; indeed, their R? value
are always higher than 0.1, an empirical figure generally accepted to be the value beyond which an
estimate may be considered reliable (Neuenschwander et al. 2008). We note that the posterior
distribution of the modern effective population sizes drives to the upper limit of the priors
(supplementary fig. 6). This has also been observed in previous comparable studies (Fagundes et
al. 2007; Belle et al. 2009; Laval et al. 2010) and reflects the fact that population size is basically a
function of the existing genetic diversity. Clearly, immigration processes have introduced new
haplotypes in populations that we had to model as genetically isolated; the resulting excess of
diversity is reflected in an increase of the estimated population size. However, in simulations

based on the parameters estimated for model 1 (posterior predictive tests) we succeeded in
13
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generating patterns of variation fully compatible with the observed variation; the model’s P-values
(0.332 for Casentino, 0.380 for Volterra) show that the statistics estimated from the observed and
simulated data do not differ significantly, and imply that problems related with the estimation of

modern population sizes did not undermine the general validity of our approach.

An Etruscan origin in Anatolia?

Going back to the issue of the Etruscans’ origins, if the genetic resemblance between Turks and
Tuscans reflects a commoan origin just before the onset of the Etruscan culture, as hypothesized by
Herodotous, (Achilli et al. 2007; Pellecchia et al. 2007; Brisighelli et al. 2009), we would expect that
the two populations separated around 3,000 years ago. To discriminate between the potentially
similar effects of remote common origin and recent gene flow, we ran four independent analyses
based on the IM method (Nielsen & Wakeley 2001; Hey & Nielsen 2004). Under the model that
we tested, the two populations originate from a common ancestor, and may or may not exchange
migrants after the split (supplementary fig. 7a). Assuming an average generation time of 25 years
(Fenner 2005; Fagundes et al. 2007) and no migration after the split from the common ancestors,
the most likely separation time between Tuscany and Anatolia falls around 7,600 years ago, with a
95% credible interval between 5,000 and 10,000 (fig. 4). These results are robust to changes in the
proportion of members of the initial population being ancestral to the two modern populations
(supplementary fig. 7b). For these tests we chose the mutation rate estimated from the data in
the previous ABC analyses (very close to the figure accounting for the time-dependency of the
mitochondrial molecular clock (Henn et al. 2009) (u = 0.003). Tests were also run using the value
incorporating a correction for the effects of purifying selection (Soares et al. 2009) (n = 0.0014),

always finding that it results in a further increase of the estimated separation times
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(supplementary fig.7b). Only assuming an implausibly high mutation rate, twice as large as
estimated in Henn et al. (2009), was it possible to obtain separation times <5,000 years
(supplementary fig 7b). Any degree of gene flow after separation between the ancestors of

Tuscans and Anatolians resulted in more remote separation times.

Discussion

MtDNA data give much stronger support to a model of genetic continuity between the
Etruscans and some Tuscans than to any other model tested, characterised by plausible
population sizes and mutation rates. However, this applies to Volterra, and especially Casentino,
but not to other communities dwelling in areas rich with Etruscan archaeological remains (Murlo),
nor to the bulk of the current Tuscan population, here represented by a forensic sample of the
inhabitants of Florence. The IM analysis shows that there might have been a genealogical link
between modern Tuscans and the inhabitants of what Herodotus considered the Etruscans’
homeland, Anatolia. However, that link does not suggest an oriental origin for the Etruscans,
because, even under the unrealistic assumption of complete reciprocal isolation for millennia
between Tuscany and Anatolia, the likely separation of the two gene pools must be placed long

before the onset of the Etruscan culture.

There are several reasons to be confident that Etruscan sequences are authentic. As for the
ones typed in this study: (i) bones were recovered from burials according to the most stringent
existing procedures and sent directly to the ancient DNA laboratory without manipulations; (ii) the

mtDNA HVR-I motifs of the people who came in contact with the bones at any stage of the analysis

15
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do not match those obtained from the ancient samples (supplementary table 1); (iii) the ancient
samples were typed following the most stringent standard criteria for ancient DNA authentication;
(iv) we used two different sequence determination procedures (classical methodology and high
throughput methodology) and the results obtained from different extractions and different
sequencing methodologies are concordant except in the regions of homopolymeric strings = 5bp
that are problematic for the 454 pyrosequencing technology; in these cases, consensus sequences
were determined considering only the results of the standard sequencing procedure; (v)
sequences make phylogenetic sense, i.e. do not appear to be combinations of different sequences,

possibly suggesting contamination by exogenous DNA.

ABC and other recent Bayesian inference methods are making it possible to test complex
evolutionary models against genetic data (Gelman et al. 2004; Bertorelle, Benazzo & Mona 2010).
These models, albeit more articulate than those that can be tested otherwise, are still a
necessarily schematic representation of the processes affecting populations in the course of
millennia. Many phenomena that we could not incorporate in the models, such as immigration
from other sources or additional demographic fluctuations, most likely occurred and left a mark in
the patterns of genetic diversity. In addition, specific phenomena may have involved mostly or
exclusively males, resulting in genetic changes that are not recorded in mtDNA variation. Still, if we
rule out the unlikely hypothesis that the Etruscans’ and their descendants’ population history was

radically different for males and females, the picture emerging from this study is rather clear.

As also suggested by the analysis of skull diversity (Claassen & Wree 2004), contacts

between people from the Eastern Mediterranean shores and Central Italy likely date back to a
16
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remote stage of prehistory, possibly to the spread of farmers from the Near East during the
Neolithic period (Barker 2006; Lacan et al. 2011), and do not appear related with the onset of the
Etruscan culture (fig.4). We conclude that no available genetic evidence suggests an Etruscan
origin outside Italy. While their culture disappeared from the records, the Etruscans’ mtDNAs did
not; traces of this heritage are still recognizable. However, most current inhabitants of the ancient
Etruscan homeland appear descended from different ancestors along the female lines, as clearly
shown by the analysis of the urban (Florence) sample. Genetic continuity since the Etruscan’s

time is evident only in a few relatively isolated localities, such as Casentino and Volterra.
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Figure Legends

Figure 1. Geographic location of the samples considered in the ABC analysis. Triangles,
Contemporary Tuscans (n=370); Circles, Medieval Tuscans: 1. Massa Carrara (n=3); 2. Florence,
(n=10); 3. Pisa, (n=6); 4. Livorno, (n=3); 5. Siena, (n=4); 6. Grosseto (n=1); Squares, Etruscans: 1.
Castelfranco di Sotto (n=1); 2. Volterra (n=3); 3. Casenovole (n=10); 4. Castelluccio di Pienza (n=1);

5. Magliano/Marsiliana (n=6); 6. Tarquinia (n=9).

Figure 2. Alternative models of the genealogical relationships among past and present
populations, and their posterior probabilities. Shaded areas represent the modern population (at 0
years ago on the Y axis), the Medieval population (900 years ago) and the Etruscans (at 2,500 years
ago). Model 1 assumes genealogical continuity between ancient and modern samples, Model 2
assumes continuity only between Etruscan and Medieval individuals, and in Model 3 the Etruscan
lineage separates from the lineage leading to Medieval and Modern Tuscans. Under each model is
the proportion of the best-fitting simulations supporting it, for the four modern populations
considered, using the acceptance rejection (AR) and logistic regression (LR) methods (Beaumont
2008). (A) Comparison among Models 1-3 for four modern Tuscan populations. (B) Comparison of
the fit of Model 1, with and without a bottleneck corresponding to the Plague epidemics at 625 BP

(Livi-Bacci 2007).

Figure 3. Genetic distances (percent Fs; values) between the Etruscan and modern population

samples. Different colors represent different levels of genetic differentiation from the Etruscans.
22
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The map was obtained using ArcGIS v10 (ESRI; Redlands, CA, USA) with the Kriging interpolation

procedure.
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12 Figure 4. Separation time between the gene pools of Southwestern Anatolians and contemporary
Tuscans (Casentino and Volterra) estimated by the IM model. Means, upper bound and lower

17 bound of the 95% credible intervals in 4 independent runs, obtained fixing the migration rate

19 (indicated by dashed arrows) at 0, with mutation rate =0.003 and assuming that the proportion of
the ancestral population is equal in each descendant population (i.e. s = 0.5). Each analysis

24 consisted of five coupled Markov chains, and 10,000,000 steps. Any degree of gene flow between
26 the ancestors of Anatolians and Tuscans results in an increase of the estimate of the time since the

population separation.

56 23
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Table 1. A synopsis of the datasets analyzed.

Dataset N populations | N individuals Notes
Etruscan sequences from the present paper
ETR 1 30
and from Vernesi et al. (2004)
Medieval and modern sequences from
TUS 5 397
Tuscany
EUR 52 4,910 Modern European sequences
ANC 9 190 Ancient European sequences
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Table 2. Statistics summarizing intra (A) and inter (B) population genetic diversity. These values

were used in the ABC analysis.

A Etruscans | Medievals | Casentino | Murlo | Volterra | Florence
Number of sequences 30 27 122 86 114 48
Number of distinct 21 14 72 59 57 40
haplotypes
Mean pairwise difference 2.966 1.972 4105 | 4278 | 3.850 | 4.152
Haplotype diversity 0.943 0.860 0.976 | 0.975 | 0.955 0.980
Segregating sites 24 14 62 64 58 48
B Etruscans | Medievals | Casentino | Murlo | Volterra | Florence
Etruscans 0.000 0.015 0.020 0.010 0.012 0.014
Fst
Medievals 0.015 0.000 0.020 0.015 0.013 0.022
Etruscans 1.000 0.238 0.333 0.143 | 0.238 0.095
Allele
sharing
Medievals 0.357 1.000 0.500 0.214 0.429 0.143
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Table 3. Type | errors for the 3 Models in the 4 Tuscan samples.

Simulated Model MOD 1 MOD 2 MOD 3 Type |
CASENTINO
error
MOD 1 0.98 0.00 0.02 0.02
MOD 2 0.01 0.99 0.00 0.01
MOD 3 0.02 0.00 0.98 0.02
MURLO Mob1 | mop2 | mop3 | Typel
error
MOD 1 0.95 0.01 0.04 0.05
MOD 2 0.02 0.98 0.00 0.02
MOD 3 0.07 0.00 0.93 0.07
Typel
VOLTERRA MOD1 | MOD2 | MOD3 YP
error
MOD 1 1.00 0.00 0.00 0.00
MOD 2 0.07 0.93 0.00 0.07
MOD 3 0.05 0.00 0.95 0.05
Typel
FLORENCE MOD1 | MOD2 | MOD3 YP
error
MOD 1 0.92 0.03 0.05 0.08
MOD 2 0.04 0.95 0.01 0.05
MOD 3 0.05 0.01 0.94 0.06
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For each of the modern populations listed on the Y axis, data were simulated according to three
models and attributed by the LR procedure to one of the models on the X-axis. The power of the
procedure in recovering the correct model is represented by the rates of correct attribution (along
the main diagonal; shaded cells); the last column (Type | error) represents the fraction of cases in

which the correct model was not identified.

27
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Figure 1. Geographic location of the samples considered in the ABC analysis. Triangles, Contemporary
Tuscans (n=370); Circles, Medieval Tuscans: 1. Massa Carrara (n=3); 2. Florence, (n=10); 3. Pisa, (n=6);
4. Livorno, (n=3); 5. Siena, (n=4); 6. Grosseto (n=1); Squares, Etruscans: 1. Castelfranco di Sotto (n=1);
2. Volterra (n=3); 3. Casenovole (n=10); 4. Castelluccio di Pienza (n=1); 5. Magliano/Marsiliana (n=6); 6.
Tarquinia (n=9).
45x29mm (300 x 300 DPI)
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47 Figure 2. Alternative models of the genealogical relationships among past and present populations, and their

posterior probabilities. Shaded areas represent the modern population (at 0 years ago on the Y axis), the

48 Medieval population (900 years ago) and the Etruscans (at 2,500 years ago). Model 1 assumes genealogical
49 continuity between ancient and modern samples, Model 2 assumes continuity only between Etruscan and
50 Medieval individuals, and in Model 3 the Etruscan lineage separates from the lineage leading to Medieval and
51 Modern Tuscans. Under each model is the proportion of the best-fitting simulations supporting it, for the
52 four modern populations considered, using the acceptance rejection (AR) and logistic regression (LR)

53 methods (Beaumont 2008). (A) Comparison among Models 1-3 for four modern Tuscan populations. (B)
54 Comparison of the fit of Model 1, with and without a bottleneck corresponding to the Plague epidemics at
55 625 BP (Livi-Bacci 2007).
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Figure 3. Genetic distances (percent Fst values) between the Etruscan and modern population
samples. Different colors represent different levels of genetic differentiation from the Etruscans. The map
was obtained using ArcGIS v10 (ESRI; Redlands, CA, USA) with the Kriging interpolation procedure.
42x22mm (300 x 300 DPI)
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Common ancestor
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19 Western Anatolia Casentino and Volterra
21 Run1 Run 2 Run 3 Run 4
22 Mean 7,775 7,980 7,663 6,692
23 95% lower bound 5,572 5,945 5,665 6,002
95% upper bound 9,958 10,556 10,444 9,861

27 Figure 4. Separation time between the gene pools of Southwestern Anatolians and contemporary Tuscans
28 (Casentino and Volterra) estimated by the IM model. Means, upper bound and lower bound of the 95%
29 credible intervals in 4 independent runs, obtained fixing the migration rate (indicated by dashed arrows) at
30 0, with mutation rate =0.003 and assuming that the proportion of the ancestral population is equal in each
31 descendant population (i.e. s = 0.5). Each analysis consisted of five coupled Markov chains, and 10,000,000
32 steps. Any degree of gene flow between the ancestors of Anatolians and Tuscans results in an increase of
33 the estimate of the time since the population separation.

82x49mm (300 x 300 DPI)
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Supporting Figures - Legends

Supp Fig 1: Amplicons of the 10 sequences from Casenovole. DNA sequences from the
575 clones analysed for the 10 Casenovole Estruscan samples. The sequences of the
external primers are not reported in the figure. The Cambridge reference sequence
with the numbering of the nucleotide positions is at the top. Nucleotides identical to
the Cambridge reference sequence are indicated by dots. The clones are identified by a
code (from S1 to S17, indicating the individual), the first number is the extraction, the

second number is the PCR.

Supp Fig 2: Results of the mapping step for the 10 Etruscan samples analyzed. (A) The
number of sequences that map to the reference and those that do not map is plotted
as a histogram. Some samples had a large amount of unmapped reads that were
afterwards characterized as primers' dimers. (B) Frequency distribution (% on the Y-
axis) of the frequency of the most frequent nucleotide for the 10 Etruscan samples
analyzed (the upper limits of the % intervals are reported in the legend). For example,
in sample S1 at around 84% of the positions the frequency of the most frequent allele

among reads is between 99% and 100%.

Supp Fig 3: Allele sharing (A) and Fst (x 100) (B) in 52 modern populations of Western
Eurasia and the Mediterranean basin. Population labels and sample sizes are provided

in supplementary table 2.

Supp Fig 4: Multi Dimensional Scaling summarizing genetic affinities between the
Etruscans and (A) 52 modern populations of Western Eurasia and the Mediterranean
basin; (B) Medieval and modern Italian populations; (C) 9 ancient populations of

Europe. Population labels and sample sizes are provided in supplementary table 2.
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Supp Fig 5: Results of model selection, with or without a bottleneck representing the
plague epidemics at 625 BP, in Casentino, Murlo and Volterra. Dashed lines represent
the presence of plague epidemic that killed one third of the population. For each
sample we report the posterior probabilities calculated comparing Models 1-3, either

considering or disregarding this demographic event.

Supp Fig 6: Parameter estimates and posterior distributions under Model 1, for
Casentino (A) and Volterra (B). Upper panels: Prior distributions (all the priors were
uniform), median and mode estimates, the 95% of the highest posterior density (lower
and upper bound), and coefficient of determination R?. The time is expressed in years,
the mutation rate in number of mutational events per generation per locus. Lower

panels: histograms and smoothed distributions of the parameters estimated.
Supp Fig 7: IM model (A) and IM estimates (B) for the separation time between the

Anatolian and Tuscan gene pools. Different mutation rates and proportions of the

ancestral population founding the descendant populations were considered.
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Supp Fig 1
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Supp Fig 3
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Supp Fig 4
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Supp Fig5
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Supp Fig 6
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Supp Fig7
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Supplementary table 1: Upper panel: Consensus HVRI mtDNA sequences in 30 individuals from
historical Etruria. Tarq represents individuals from Tarquinia, Cas from Casenovole, Vol from
Volterra, Pie from Castelluccio di Pienza, Sot from Castelfranco di Sotto and MM from Magliano
and Marsiliana. CRS is the Cambridge reference sequence (5). The HVR-I motif is the position (-
16,000) where substitution were observed, with respect to the CRS; the observed transversions
are indicated with a capital letter. The haplotypes shared with EUR dataset are in bold type. For
the Casenovole sample, the labels of the individuals used in supplementary fig. 1 are between
parentheses. Lower panel: Sequences of all the investigators who had direct contact with the
ancient specimens.

Sequence label | Century (BC) HVR1 motif (16024-16384) | Haplotype |Reference

Targ_1 3rd 069, 126, 193 Hapl This study

Targ_2 4th-3rd CRS Hap2 This study

Targ_3 6th 270 Hap3 This study

Tarq_4 3rd-2nd CRS Hap2 This study

Targ 5 3rd 126, 229, 362 Hap4 (Vernesi et. al 2004)
Tarq_6 5th 126, 193 Hap5 (Vernesi et. al 2004)
Targ 7 3rd 126, 193, 228, 229, 278 Hapb (Vernesi et. al 2004)
Targ 8 5th 278,334 Hap7 (Vernesi et. al 2004)
Tarq 9 3rd 098, 311, 327 Hap8 (Vernesi et. al 2004)
Cas_1(51) 3rd 192 Hap2 This study

Cas_2 (510) 3rd CRS Hap2 This study

Cas_3 (S11) 3rd 192, 256 Hap9 This study

Cas_4 (517) 3rd 209 Hap10 This study
Cas_5(S53) 3rd 192, 256 Hap9 This study

Cas_6 (54) 3rd 114A, 192,294, 304 Hapll This study

Cas_7 (55) 3rd 304 Hap12 This study

Cas_8 (56) 3rd 114A, 192, 256, 294, 304 Hap13 This study
Cas_9(S8) 3rd CRS Hap2 This study
Cas_10(S9) 3rd CRS Hap2 This study

Vol_1 6th-5th 193, 219 Hapl4 (Vernesi et. al 2004)
Vol 2 2nd-1st 189, 274, 334, 356 Hap15 (Vernesi et. al 2004)
Vol 3 6th-5th 261 Hap16 (Vernesi et. al 2004)
Pie 1 ? 193, 219, 256, 270, 291 Hapl7 (Vernesi et. al 2004)
Sot_1 ? 189, 356 Hap18 (Vernesi et. al 2004)
MM 1 7th-6th CRS Hap2 (Vernesi et. al 2004)
MM 2 6th 126 Hap5 (Vernesi et. al 2004)
MM_3 6th 126, 193 Hap5 (Vernesi et. al 2004)
MM 4 6th 095G, 126, 189 Hapl19 (Vernesi et. al 2004)
MM _5 7th-6th 066, 126,193, 219 Hap20 (Vernesi et. al 2004)
MM 6 6th 311 Hap21 (Vernesi et. al 2004)
Researcher Task HVR1 haplotype

E.P Excavation 16165 G, 16222 T

S.V Ancient DNA Laboratory analysis 16311 C

A.S Ancient DNA Laboratory analysis 16145 A

M.L Ancient DNA Laboratory analysis 16261 T,16311C

D.C. Ancient DNA Laboratory analysis 16193 T, 16278 T
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Supplementary table 2: Detailed description of the samples in the EUR and ANC datasets.

Population 1D Region n Reference
EUR
Adygei Ady Caucasus 50 (Macaulay et al. 1999)
Albanians Alb Europe, SouthEast 84 (Belledi et al. 2000; Bosch et al. 2006)
Arabs, Maroc MoAr North Africa 32 (Rando et al. 1998)
Armenians Arme Caucasus 42 (Nasidze & Stoneking 2001)
Austrians Aus Europe, Central 117 (Handt et al. 1994; Parson et al. 1998)
Azerbaijani Azer Caucasus 41 (Nasidze & Stoneking 2001)
Basques Basq Europe, West 106 (Bertranpetit et al. 1995; Corte-Real et al. 1996)
Belgians Bel Europe, Central 33 (Decorte et al. 1996)
Berbers, Maroc MoBe North Africa 60 (Pinto et al. 1996; Rando et al. 1998)
Berbers, Tunisia TuBe North Africa 155 (Fadhlaoui-Zid et al. 2004)
British GB Europe, North 100 (Piercy et al. 1993)
Bulgarians Bul Europe,SouthEast 882 (Calafell et al. 1996; Karachanak et al. 2011)
Catalans Cat Europe, West 15 (Corte-Real et al. 1996)
Cherkessians Cher Caucasus 44 (Nasidze & Stoneking 2001)
Cornish Cor Europe, NorthWest 69 (Richards et al. 1996)
Croatians Cro Europe, SouthEast 96 (Babalini et al. 2005)
Danes Dan Europe, North 32 (Richards et al. 1996)
Egyptians Egy North Africa 124 (Krings et al. 1999; Stevanovitch et al. 2004)
Estonians Est Europe, North 28 (Sajantila et al. 1995)
French Fre Europe, Central 111 (Cali et al. 2001)
Galicians Gali Europe, West 92 (Salas et al. 1998)
Georgians Geo Caucasus 102 (Comas et al. 2000; Nasidze & Stoneking 2001)
Germans, North GerN Europe, North 108 (Richards et al. 1996)
Germans, South GerS Europe, Central 249 (Richards et al. 1996; Lutz et al. 1998)
Greeks Gre Europe, SouthEast 73 (Vernesi et al. 2001; Bosch et al. 2006)
Ingush Ingu Caucasus 35 (Nasidze & Stoneking 2001)
Italians, Abruzzo Molise Abr-Mol Italy, Central 73 (Babalini et al. 2005)
Italians, Apulia Apu Italy, South 26 (Babalini et al. 2005)
Italians, Basilicata Bas Italy, South 92 (Ottoni et al. 2009)
Italians, Calabria Cal Italy, South 95 (Ottoni et al. 2009)
Italians, Campania Cam Italy, South 48 (Babalini et al. 2005)
Italians, Casentino Cas Italy, Central 122 (Achilli et al. 2007)
Italians, Florence Flo Italy, Central 48 (Turchi et al. 2008)
Italians, Gallura Gal Italy,Sardinia 27 (Morelli et al. 2000)
Italians, Jenne Jen Italy, Central 103 (Messina et al. 2010)
Italians, Latium Lat Italy, Central 52 (Babalini et al. 2005)
Italians, Murlo Mur Italy, Central 86 (Achilli et al. 2007)
Italians, Ogliastra Ogl Italy,Sardinia 175 (Fraumene et al. 2003)
Italians, Sicily Sic Italy, South 154 (Ottoni et al. 2009)
Italians, Vallepietra Val Italy, Central 21 (Morelli et al. 2000)
Italians, Volterra Vol Italy, Central 114 (Achilli et al. 2007)
Kazakhs, Kirghizs,Uyghurs Achen Central Asia 205 (Comas et al. 1998)
Kurds Kur Near East 29 (Comas et al. 1998)
Macedonians Mac Europe, SouthEast 37 (Bosch et al. 2006)
Middle East ME Near East 42 (Di Rienzo & Wilson 1991)
Portuguese Por Europe, West 54 (Corte-Real et al. 1996)
Romanians Rom Europe, SouthEast 105 (Bosch et al. 2006)
Spaniards, Central SpaC Europe, West 74 (Corte-Real et al. 1996; Pinto et al. 1996)
Surians Sur Near East 49 (Vernesi et al. 2001)
Swiss Swi Europe, Central 72 (Pult et al. 1994)
Turks, Western Anatolia Tur Near East 35 (Di Benedetto et al. 2001)
Welsh Wel Europe, North 92 (Richards et al. 1996)
ANC
Medieval Tuscans Med Italy, Central 27 (Guimaraes et al. 2009)
Neolithic Farmers Neo_Farm Europe, Central 71 (Haak et al. 2005; Lacan et al. 2011)
Hunter-Gatherers Europeans H G Europe, Central 20 (Bramanti et al. 2009)
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Pre-Roman Iberian PR_lbe Europe, West 17 (Sampietro et al. 2005)
Lucchesi of Eneolithic Luc_Ene Italy, Central 10 unpublished data
Lucchesi from Frizzone Luc_Friz Italy, Central 8 unpublished data
Lucchesi of I-VII BC Luc_ I-VIIBC Italy, Central 4 unpublished data
Lucchesi of XVI-XVIII BC Luc_ XVI-XVIII BC | Italy, Central 10 unpublished data
Nuragic Sardians Nur_S Italy,Sardinia 23 (Caramelli et al. 2007)
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