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Patagonian giants: early European perceptions 

 

 

“According to Antonio Pigafetta, one of the Magellan expedition's few survivors and its 

published chronicler, Magellan bestowed the name "Patagão" (or Patagón) on the 

inhabitants they encountered there, and the name "Patagonia" for the region. Although 

Pigafetta's account does not describe how this name came about, subsequent popular 

interpretations gave credence to a derivation meaning 'land of the big feet'”.  

…“However, this etymology is questionable. The term is most likely derived from an 

actual character name, "Patagón", a savage creature confronted by Primaleón of Greece, 

the hero in the homonymous Spanish chivalry novel (or knight-errantry tale) by Francisco 

Vázquez. This book, published in 1512, was the sequel of the romance "Palmerín de 

Oliva," much in fashion at the time, and a favourite reading of Magellan. Magellan's 

perception of the natives, dressed in skins, and eating raw meat, clearly recalled the 

uncivilized Patagón in Vázquez's book”.  

 

 

 

 

 

 

 

 

 

 



The meaning of life 

[…] Ma cosa stiamo combinando in realtà? Il mondo moderno è pieno di discutibili distrazioni, scadenze e 

priorità. Giorno e notte si confondono l’uno nell’altra. Veniamo sommersi da una valanga di paure e desideri 

che ci spingono in una gara impossibile da vincere. Così noi ci affrettiamo, ci affrettiamo, ci affrettiamo per 

raggiungere un certo punto ideale nella nostra vita, e poi che succede? […] Molti di noi iniziano a sognare 

una vita meravigliosa libera e selvaggia, ma di solito lontana da quella che vivono realmente. Purtroppo 

scopriamo spesso questa verità proprio alla fine, quando è troppo tardi. Non si può ricominciare tutto ancora 

una volta. […] niente è tanto doloroso quanto la consapevolezza di aver avuto la possibilità di fare quello che 

amavi veramente, e di non averla colta. Allora qual è la passione della tua vita? Che ci stai a fare su questa 

terra? La risposta a queste domande ti schiuderà il grande mistero della vita, tanto più profondo quanto più 

prepotenti ti si pongono questi interrogativi. […] per prima cosa, nessuno ti dirà mai nulla al riguardo. […] È 

anche estremamente inverosimile che un giorno ti ritrovi all’improvviso immerso in una luce intensa e che lo 

scopo della tua vita ti appaia chiaro in una visione mistica. […] La maniera migliore per arrivarci è passare 

un po’ di tempo da solo, rivolgendo a te stesso la difficile domanda. Questo esercizio non è complicato, si 

tratta solo di essere onesti. Basta che tu faccia cosi: “Alza la mano se senti di poter avere di più dalla tua 

vita”. […] Molto presto la “risposta” ti colpirà in piena faccia, proprio come quando sei a metà strada per la 

spiaggia e improvvisamente ricordi che hai lasciato il ferro da stiro acceso a casa. E quando saprai, o almeno 

avrai il sospetto di sapere, cosa fare della tua vita, fallo! Spicca un folle salto nel buio se è il caso, poi, non 

appena tocchi il suolo, corri, perché non hai un secondo da perdere. […] Tieni a mente che qualunque cosa tu 

faccia, gli errori sono parte della vita. Quindi non perdere tempo a prenderti a calci per il passato. Non 

impantanarti o stressarti chiedendoti se stai facendo la cosa giusta. […] Invece di scoraggiarti, ricordati 

sempre che il rifiuto e la resistenza sono quasi certi quando stai facendo qualcosa di molto importante e 

speciale. Quando comincerai a vivere i tuoi sogni, molte persone (comprese quelle che ti amano di più) 

cercheranno di tenerti a freno. A questo mondo ci sono molti insopportabili pessimisti che hanno 

abbandonato i loro sogni e ti diranno: Stai perdendo il tuo tempo, non ce la farai mai”. Intorno a te potrebbero 

esserci persone che di nascosto desiderano che tu ottenga il meno possibile, o addirittura faccia fiasco solo 

per non apparire inferiori. “Scordatelo” dicono “non ne vale la pena, e comunque non è la cosa giusta per te”. 

Quindi è importante rendersi conto che seguire il proprio cammino è incredibilmente gratificante, ma di 

sicuro non è semplice. Come qualsiasi altra persona, vivrai dei giorni migliori di altri. Talvolta, tutto intorno 

a te sembrerà un totale disastro. […] Ma qualunque cosa succeda, devi solo tenere duro. Ricordati che capita 

a tutti di essere esausti. È incredibilmente sfiancante passare le giornate facendo qualcosa che proprio non ti 

piace e di cui nemmeno ti importa. Ma se segui i tuoi sogni, per lo meno sarai esausto per aver fatto quello 

che ami di più. […] Quando ricavi il massimo dalla tua vita, assaporandola fino all’ultima goccia, tutto ciò 

che ti riguarda si trasformerà da ordinario a straordinario. […] Il bello è che, facendo le cose che ti fanno 

arricciare i baffi dalla gioia (supponendo, naturalmente che tu abbia i baffi)  stimolerai qualcun altro a correre 

dietro ai suoi sogni. […] Sai una cosa? Anche se commetterai grossi errori, se sbaglierai su tutti i fronti, 

vivrai comunque un’avventura stupefacente e piena di divertimento; di notte andrai a dormire sapendo che 

hai dato tutto e fatto la differenza, e ti sveglierai ogni mattina attendendo con ansia il futuro, che sarà bello ed 

eccitante come riesci a immaginare. Sai un’altra cosa? Se darai retta al tuo cuore e userai la testa, non 

sbaglierai mai. 
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1. Introduction 

Sediments, oceanic crust and mantle lithosphere return and re-equilibrate with the Earth’s 

mantle in subduction zones (Figure 1.1) and for this reason they are considered the largest 

recycling system on Earth. Their descent and re-equilibration into the mantle, may trigger 

partial melting in the mantle wedge above the slab ultimately leading to the generation of 

new crust. The sinking of the lithosphere also provide the greatest force driving the plates 

and inducing the spreading of the mid-ocean ridges, although some debate is actually going 

on the negative buoyancy of the oceanic lithosphere (Doglioni et al., 2007). As proposed 

by Hofmann (1997) the material which is not recycled in the first few hundred kilometres 

of the upper mantle, may sink into the lower mantle down to the core-mantle boundary 

(CMB) where it can be reheated and possibly resurrected by a mantle plume (Figure 1.2).  

 

Figure 1.1: Convergent margins on Earth (from Stern, 2002) 

 

A subduction environment is very complex, and the best way to describe its features is by 

dividing it in four main components: the incoming plate, the downgoing plate, the mantle 

wedge and the arc-trench complex (Figure 1.3). 
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Figure 1.2: Schematic section through the center of the Earth (Stern, 2002), which shows the scale of 
subduction zones. Subducted lithosphere is shown both penetrating the 660 km discontinuity (right) and 
stagnating above the discontinuity (left). A mantle plume is shown ascending from the site of an ancient 
subducted slab.  
 

1.1 The incoming plate 

The lithosphere of the incoming plate is composed of mantle lithosphere, crust and 

sediments. These three elements exert fundamental controls on the behaviour of the 

subduction zones, but each one in a different way. In fact the mantle lithosphere controls 

the physics of the subduction, the sediments control the chemistry and the crust control 

both the physics and the chemistry.  

The mantle lithosphere is slightly more dense (1-2% in excess) than the underlying 

asthenosphere. This excess of density powers the subduction zones and moves the plates 

(Davies, 1999). The increasing density of the plate is controlled by its thickness and age, 

the latter exerting also a first-order control on the trench depth (Grellet and Dubois, 1982). 

Old and dense lithosphere readily sinks, while young, buoyant lithosphere resists 

subduction. Subduction of old lithosphere results in relatively steep subduction zones, 

whereas subduction of young lithosphere is characterized by shallower dips (Jarrard, 

1986). 
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The different behavior of subduction zones involving young and old lithosphere is also 

shown in the strain regime manifested behind the magmatic arc. In fact in some cases they 

affect the back arc basins with rifting or even seafloor spreading, whereas others induce 

folding and thrusting behind the arc. Jarrard (1986) subdivided subduction zones into 

seven strain classes, with class 1 being strongly extensional and class 7 being strongly 

compressional. He concluded that the strain regime in the overlying plate is correlated with 

the age of the subducted lithosphere and with the absolute motion of the overriding plate. 

A first-order differentiation of subduction zones distinguishes those subducting old 

lithosphere (Mariana type, class 1) from those subducting young lithosphere (Chilean type, 

class 7) (Figure 1.4).  

 

Figure 1.3: Main components of a subduction environment (from Stern, 2002). Note that the mantle wedge 
(not labelled) is the part overlying the incoming plate. 

 

Subducted crust affects subduction zones in several ways. First of all, its density and 

thickness largely determine whether the subduction zone operates normally or fails. 
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Normal oceanic crust is invariably subductable, but subduction of continental crust leads to 

subduction zone failure. Failure of a subduction zone happens when sufficient buoyant 

material is introduced into the system to disrupt downwelling. This is called collision or 

terrane accretion. Contrasts in lithospheric bulk density (crust plus mantle) of  0.1 gm/cm3 

determine whether normal subduction or 

collision occurs (Cloos, 1993). Secondly, 

oceanic crust transports a great amount of 

chemical elements processed in subduction 

zones. Typical oceanic crust is ~6 km thick and 

is composed of MORB and diabase underlain 

by gabbroic equivalents. Fresh MORB is 

depleted in incompatible trace elements and 

contains almost no water. Abundances of water, 

CO2, and incompatible trace elements 

(especially K and U) increase significantly in 

MORB because of hydrothermal alteration, 

which also leads to formation of amphibolites 

at greater depth in the crust, and seafloor 

weathering, that affects the uppermost 500 m of basalts, for which Staudigel et al. (1996) 

infer 2.7% H2O, 3.0% CO2, and a two to threefold increase in K. Formation of 

amphibolites in the lower crust sequesters significant amounts of water but little else 

(Carlson, 2001). The presence of even small amounts of serpentinite in the oceanic crust is 

important for water cycling through subduction zones, because equal volumes of 

serpentinite carries an order of magnitude more water than hydrated mafic crust and 

because serpentinite is stable to much greater pressures (13% H2O versus 1–2% in 

hydrated mafic crust and 7 GPa or more versus 3 GPa. Pawley and Holloway, 1993; Ulmer 

and Trommsdorf, 1995). Crust produced at slow and fast spreading ridges stores water, 

bound in minerals, in different way. Whereas fast spreading ridges are robust magmatic 

systems that produce crust composed almost entirely of basalt, diabase, and gabbro, slow 

spreading ridges have intermittent igneous activity, or it may be absent altogether, so that 

this crust may be largely composed of serpentinized peridotite. Because serpentine 

contains more water than altered basalt or gabbro and because crust produced at slow 

spreading ridges contain more serpentine with respect to that formed at fast spreading 

Figure 1.4: End member of Jarrard’s 
classification of subduction environments. 
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ridges (Karson, 1998), slow spreading crust may carry proportionally more water into 

subduction zones than fast spreading crust. 

Fast spreading oceanic crust is probably pervasively hydrated, but the associated 

peridotites are not, except at transform faults and fracture zones. Oceanic crust produced at 

slow spreading ridges is probably much more heterogeneous, with masses of unaltered 

crust (as wide as a few tens of kilometers (Stern, 2002)) separated by major fault zones that 

penetrate the full thickness of the crust and result in substantial serpentinization of mantle 

rocks. 

From seismic velocity data for the slow spreading North Atlantic ridge Carlson (2001) 

concluded that no more than 13% of this oceanic crust could be composed of serpentinized 

ultramafics. It is important to know how much of the subducted lithosphere is 

serpentinized, in order to understand the subduction zone water budget. Deep earthquakes 

(up to 50 km) related to normal faulting on the outer trench rise may allow seawater to 

infiltrate and serpentinize mantle at much greater depths in the lithosphere than would be 

expected (Peacock, 2001). This would increase the proportion of serpentinite in the 

lithosphere, with the effect of significantly increasing the amount of water carried into 

subduction zones. Because serpentine is ductile, this would also weaken the lithosphere 

and greatly reduce the amount of work needed to bend the plate. 

Finally sediments carried on the subducting plate play a fundamental role for element 

recycling. They may be the ultimate source of many of the unusual enrichments and other 

chemical signatures found in arc lavas. For example, the presence in some arc lavas of 
10Be, which is produced only in the upper atmosphere and which has a half-life of 1.6 

million years, testifies to the recycling of sediments through the subduction zone (Morris et 

al., 1990). The covariation of other, fluid-mobile trace elements (such as K, Sr, Ba) has 

also been interpreted to indicate the importance of sediment recycling (Plank and 

Langmuir, 1993). Because of the great difference of the sediments that can be subducted in 

different environments, a mean composition has been calculated (GLOSS, GLObal 

Subducting Sediments) (Plank and Langmuir, 1998). A great proportion of the GLOSS is 

represented by terrigeneous material (76%) but it also contains significant proportions of 

biogenic calcium carbonate (7%) and silica (10%), along with 7% mineral-bound water.  
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1.2 The downgoing plate. 

Most of the processes associated with subduction zones happen deep below the surface and 

our understanding of these processes is largely based on geophysics and geochemistry of 

active systems, geochemistry of erupted products and on studies of exhumed old 

subduction zones.  

The thermal structure of a subduction zone depends on many factors. Those playing the 

most important role are age and speed of the incoming plate, followed by shear stress 

across the subduction interface which induce convection in the overlying mantle wedge, 

geometry of subduction, fluids migrating through the subduction zone, and radioactive 

heating.  

Models of subduction zone thermal structure are supported by seismic imaging. Two 

important factors for tomographic imaging of subduction zones are the presence of 

significant differences in material properties, manifested as seismic velocities, and the 

seismic “illumination” of the subduction zone by deep earthquakes. The coolness of 

subduction zones allows the slab to be tomographically traced to great depth. Some slabs 

may stagnate at the 660 km discontinuity, but most of them appear to penetrate into the 

lower mantle (Stern, 2002).   

As the plate descends, it is progressively heated and squeezed, changing the mineralogy 

and volatile content of sediments, crust, and mantle lithosphere. The importance of kinetic 

effects in subduction zones are clearly demonstrated by the behavior of Mg2SiO4 

polymorphs. Olivine and its high-pressure and hydrated polymorphs make up most of the 

upper mantle and the subducted lithosphere. Away from subduction zones, olivine 

structure change into β-spinel (wadsleyite) at ~410 km depth (boundary between the upper 

mantle and the transition zone with a 6% increase of density). Wadsleyite change into γ-

spinel structure (ringwoodite) at ~520 km, which then should yield perovskite structure 

(MgSiO3) plus magnesiowustite (MgO) at 660 km depth (it defines the transition zone–

lower mantle boundary with a 8% density increasing; Helffrich and Wood, 2001). But 

things change when we consider these reactions in a subductive environment. The first 

reaction occur much shallower than 410 km, whereas the conversion of ringwoodite to 

perovskite + magnesiowustite should occur deeper than 660 km (Irifune, 1993). This is 
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because the Clapeyron slope (dP/dT) for the olivine-wadsleyite reaction is positive, while 

is negative for the ringwoodite to perovskite+magnesiowustite transition. 

The shallower nature of the first conversion increases the density of the subducting 

lithosphere, favoring continued sinking, while the deeper nature of the second conversion 

decreases the slab density. These predictions are consistent with the observation that deep 

earthquakes first appear at ~325 km depth, about where the olivine-wadsleyite phase 

change is first expected, and cease at ~700 km depth, where the ringwoodite-perovskite + 

magnesiowustite change should be complete.  

Numerical models of mantle convection suggest that the 660 km discontinuity generally 

should not act as a barrier to continued slab sinking (Davies, 1995). This conclusion is also 

supported by mantle tomography, suggesting that some slabs can be traced down well 

beyond 660 km (Figure 2). 

Another important reaction in subducted lithospheric mantle is the breakdown of 

serpentinite to olivine, orthopyroxene, and water, which results in a very large density 

increase as it releases a lot (13 wt %) of water. Depending on temperatures, antigorite (a 

variety of serpentine) is stable up to pressure of 8 GPa, ~250 km deep in a subduction zone 

(Ulmer and Trommsdorf, 1995), providing an effective way to transport water to great 

depths.  

Subducted sediments transport most of their incompatible elements budget into subduction 

zones. Although many uncertainties remain about the changes that accompany subduction 

of sediments due to their variable bulk composition from one arc to another, it is possible 

to put forward some general observations about their behaviour. First of all the progressive 

heating and squeezing of sediments causes progressive transformations that increase 

density and decrease water content. Second, the solubility of cations in hydrous fluids 

increases rapidly with temperature and pressure; for example, SiO2 in aqueous fluid 

increases from 1000 to 100,000 times as pressure increases from 0 to 2 GPa (Manning, 

1996), corresponding to a depth of 70 km. Third, fluid-mobile elements and light isotopes 

fractionate as subduction and dewatering proceeds, so that light element isotope ratios of 

sediments before these enter the trench should not characterize sediments beneath arc 

volcanoes. Fourth, clay-rich sediments melt at temperatures similar to mafic crust and at 

comparable pressures corresponding to depths greater than ~50 km (700°– 800°C at 120 
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Figure 1.5: Plot of melt fraction versus 
temperatures of hydrous batch melts from 
peridotite containing 0.15% and 0.32% H2O 
(Stolper and Newman, 1994). Upper axis shows 
forsterite content of equilibrium olivine. 

km, Nichols et al., 1996; Johnson and Plank, 1999). Trace element systematics of some arc 

lavas associated with cold subduction zones have led some authors to conclude that 

sediment melting generally occurs (Elliott et al., 1997). 

 

1.3 The mantle wedge 

The mantle wedge is the part of the mantle that overlie the subduction zone, and where 

subducting materials are mixed with convecting mantle to generate magmas, fluids, and 

ultimately continental crust. In this scenario one of the most important role is played by the 

convecting asthenosphere, because it is able to interact with slab-derived fluids and melts 

to generate arc magmas. The dynamics of magma generation in subduction environment is 

different from the two other magma-producing tectonic settings, i.e. intraplate and 

divergent environments. In fact while for hot spots and ridges melts are linked to mantle 

upwelling, the mantle wedge melts are associated with cold thermal regime. 

The generation of magmas is due to the 

interaction of the aqueous fluids and melts 

released by the slab with the overlying mantle, 

whose melting temperature can be lowered by 

several hundred degrees with respect to dry 

melting (Figure 1.5). Melting due to fluid 

addition to the mantle wedge is thought to be 

responsible for 10 ± 5% melting of the mantle, 

with 10% melting for every 0.2% water added 

(Pearce and Peate, 1995).  

 

1.4 The arc-trench complex 

A mature and stable subduction zone causes 

magmatic and tectonic phenomena in the overlying lithosphere, which can be recognized 

as arc-trench complexes, where subduction zone products can be studied directly. 
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Arc-trench complexes differ fundamentally depending on whether they are built on 

continental lithosphere (Andean-type arcs) or oceanic lithosphere (intraoceanic or 

primitive arcs). The crust of Andean-type arcs can be up to 80 km thick, about twice that of 

normal continental crust (Allmendinger et al., 1997; Yuan et al., 2000), while intraoceanic 

arc crusts are typically 20–35 km thick. Three main components characterized the arc-

trench systems: the forearc, the magmatic arc and the back arc. 

The forearc lies between the trench and the magmatic front and is 166 ± 60 km wide (Gill, 

1981). Two types of forearc can be distinguished: the accretionary and non-accretionary 

(Figure 1.6), depending on the thickness of the sediments subducted. When the thickness 

of sediments is greater than 400–1000 m, they will be scraped off the downgoing plate and 

transferred to the overriding plate to form an accretionary prism (Dahlen, 1990; von Huene 

and Scholl, 1991; Le Pichon et al., 1993). Furthermore the high sedimentation rates 

associated with accretionary forearcs produce also forearc basins forming between the 

accretionary prism and the magmatic arc (Figure 1.6a) (Dickinson, 1995). Non-

accretionary forearcs (Figure 1.6b) form where the amount of sediment available on the 

sudbucting plate is low, typically distant from continents. Therefore neither an accretionary 

prism nor forearc basins are recognized. As a consequence, the igneous infrastructure of 

the forearc is exposed. Non-accretionary forearcs provide unique insights into how 

subduction zones begin and their early history, the significance of ophiolites, and the 

nature of fluids released from relatively shallow parts of subduction zones.  

The magmatic arc is generally characterized by an igneous activity concentrated near the 

magmatic front, decreasing with the distance from the trench. Arc magmas are generally 

fractionated, porphyritic, and wet (Perfit et al., 1980; Ewart, 1982; Tatsumi and Eggins, 

1995), especially when compared to mid-ocean ridge or hot spot magmas. Arcs are also 

characterized by crustal thickening with respect to the other magmatic environments, 

because of the relatively fix position of the mantle that is melting as well as the overlying 

lithosphere (mantle and crust). Consequently, mafic magmas tend to stagnate, giving rise 

to fractional crystallization and assimilation processes. Arc lavas are dominantly silica-

oversaturated and subalkaline and are further subdivided into volumetrically predominant 

calc-alkaline and tholeiitic suites and less common shoshonitic suites.  

Water content in arc melt inclusions varies widely, from 5 to 6 wt.% H2O for inclusions 

from Nicaragua (Cerro Negro), central Mexico, and the Marianas, to <0.5 wt.% for 
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Galunggung, Indonesia (Wallace, 2005). Values as high as 8–10 wt.% H2O have been 

found in melt inclusions in high-Mg andesites from the Shasta region of California (Grove 

et al., 2002). The H2O variations appear in some cases to be related to primary factors such 

as the proximity to the arc front or the relationship with the amount of subducted material. 

In assessing variations with distance from the trench, it is important to note that the lower 

end of the H2O range for arc basalts overlaps the values of submarine basaltic glasses from 

back-arc basins such as the Marianas back arc and Lau Basin, in which H2O contents vary 

from 0.5 to 2 wt.% (Stolper and Newman, 1994; Kent et al., 2002). This is consistent with 

the interpretation that subduction input of H2O into the mantle wedge decreases with 

increasing slab depth and distance from the trench. 

 

 

Figure 1.6: End-member forearc types: (a) accretionary forearc and (b) nonaccretionary forearc. 

 

Finally, the back arc region lies behind the magmatic arc, and it can show a wide range of 

magmatic and tectonic styles, depending on strain class (Jarrard, 1986). Lowstrain arcs 
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(strain classes 1 or 2) are associated with back arc extension, whereas arcs with high strain 

(strain classes 6 or 7) may be associated with back arc thrusting. Intermediate strain classes 

may be associated with a back arc region showing little or no tectonic and magmatic 

activity. Active extension, rifting and seafloor spreading, characterize the back arc regions 

above several subduction zones: the best examples are represented by the Mariana Trough 

behind the Mariana arc (spreading rate of 4 cm yr-1, Bibee et al., 1980), the Lau-Havre 

Trough behind the Tonga-Kermadec arc (spreading rate of 16 cm yr-1, Bevis et al., 1995), 

the North Fiji Basin behind the Vanuatu (New Hebrides) arc, the Manus Basin NE of New 

Guinea, and the East Scotia Sea behind the South Sandwich. Extensional back arcs may rift 

as well as spread.  

Rifting is observed where the extensional regime propagates along the strike of the arc 

system, such as the northern Mariana Trough (Martinez et al., 1995) and the Havre Trough 

(Fujiwara et al., 2001), as well as for back arc basins that are in the initial stages of 

development like Okinawa Trough (SW of Japan, Fabbri and Fournier, 1999) and the 

Sumisu Rift in the Izu arc (Taylor et al., 1991). Lavas erupted at back arc basins are 

commonly referred to as back arc basin basalts (BABB). BABB erupted from spreading 

ridges are dominated by pillowed basalts that are compositionally similar to MORB 

(Hawkins and Melchior, 1985) but contain more water and a significant “subduction 

component” (Gribble et al., 1998; Newman et al., 2000). BABB from back arc rifts, 

however, may be compositionally similar to those erupted from the affected arc. 

Furthermore back arc regions of high-strain convergent margins can be affected by crustal 

shortening and compression leading to the development of a system of back-arc basins 

behind the magmatic arc. The best Cenozoic example is found behind the present Andean 

arc (Jordan, 1995). This is a fold-and-thrust belt formed in response to subduction of 

young, buoyant lithosphere.  
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2. State of the art 

Samples of the sub-arc mantle, represented by peridotite xenoliths entrained in arc 

magmas, are rare relative to mantle samples from non-arc settings, i.e. from oceanic 

hotspots and continental rift zones (Nixon, 1987). This means that there is a paucity of 

xenolith-based direct petrological information about the mantle wedge relative to other 

tectonic settings. Hence the rare examples of arc-derived peridotite xenoliths need to be 

investigated systematically and in detail to explore the nature of mantle-wedge materials 

and processes.  

Peridotite xenoliths of mantle-wedge origin have been described from various localities 

worldwide, for example those from the Japanese island arcs (Takahashi, 1978; Aoki, 1987; 

Abe, 1997; Abe et al., 1998; Arai et al., 1998, 2000), the Colorado Plateau (Smith and 

Riter, 1997; Smith et al., 1999), the Cascades, USA (Brandon and Draper, 1996; Ertan 

and Leeman, 1996), Mexico (Luhr and Aranda-Gomez, 1997), Papua New Guinea 

(Gregoire et al., 2001; McInnes et al., 2001; Franz et al., 2002) and Kamchatka 

(Kepenzhiskas et al., 1995; Arai et al., 2003; Ionov, 2010).  

Mantle xenoliths entrained in alkali basalts occur also in several localities from Patagonia, 

most of them situated between 40 and 52°S in intra-arc to back-arc positions with respect 

to the Andean volcanic arc. This material represent a peculiar, transitional type between 

the two above-described categories. They come in fact from a back-arc setting, but are 

entrained in alkali basalts similar to those found in intra-plate settings. Ntaflos et al.(2006) 

investigated a suite of unmetasomatized anhydrous spinel lherzolite and harzburgite from 

Tres Lagos (situated within the Volcanic Gap). Their Sr- and Nd-isotopic ratios have been 

affected by host basalt infiltration, whereas their high Sr-isotopic ratios point to subsequent 

contamination by ground-water and/or Ca-rich surface solutions. The authors speculated a 

two-stage partial melting process responsible for the origin of the Tres Lagos xenoliths. A 

first step should have been occurred in the garnet stability field (2% of batch melting) and 

subsequently the residue experienced 2–8% batch melting in the spinel peridotite field. 

They finally concluded that Tres Lagos peridotites were not been affected by subduction-

related metasomatic processes and they could represent an old lithospheric mantle. 

Conceição et al. (2005) published a paper on the isotopic composition (whole rock Sr and 

Nd) of mantle xenoliths sampled all over Patagonia. They showed that the majority of the 
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samples analyzed fall on the mantle array, but some of them exhibited radiogenic Sr 

enrichments without dramatic changing of the Nd isotopic composition. These isotopic 

features plot those samples on the right side of the mantle array and the authors explained 

these data as result of three possible processes: i) a mixture of a depleted mantle with an 

enriched source (EM-2) for those samples affected by high 87Sr/86Sr and low 143Nd/144Nd; 

ii) a mixture of a depleted mantle with a mixture of mantle-derived and slab-derived melts 

for the samples characterized by high Sr/Nd ratios but low 87Sr/86Sr ratios and iii) 

chromatographic processes for those samples exhibiting enrichment of radiogenic Sr 

without dramatic change of Nd isotopic composition. 

Another work (also in this case mainly isotopic) is that of Schilling et al. (2005) on spinel-

bearing lherzolites and harzburgites entrained in alkaline lavas erupted by the cinder cone 

of Cerro Redondo. Based on P-T estimates (indicating T between 823 °C and 1043 °C and 

P ranging from 12.4 kb to 21.4 kb), petrographic, geochemical, and isotopic characteristics, 

they concluded that Cerro Redondo xenoliths came from a thick homogeneous mantle 

column (36 km to 63 km depth) characterized by different degrees of basalt infiltration. 

Using a simple mixing model based on Sr isotopes, they quantify the host basalt 

infiltration, calculating a contamination value between 0.2% and 12%. As the interaction 

with the host basalt increased, xenoliths showed a gradual increase of disequilibrium 

textures such as reaction rims and exsolution lamellae in orthopyroxene and clinopyroxene, 

and increase of TiO2, CaO, Al2O3, Na2O, K2O, P2O5, LREE, and incompatible element 

concentrations. 

One of the most important studied locality in Patagonia is Gobernador Gregores (Santa 

Cruz Province, Argentina). The most interesting debate concerning the mantle nodules 

carried on by Plio-Pleistocene alkali basalts in this area is the presence of carbonatitic 

fluids that metasomatize the mantle wedge. As already explained at the beginning of this 

chapter the occurrence of mantle xenoliths in subduction regions is rare, but the presence 

of carbonatitic metasomatizing fluids is even rarer. Laurora et al. (2001) tried to 

investigate the origin of these fluids in Gobernador Gregores studying a suite of spinel-

facies mantle xenoliths. They were characterized by higher CaO/Al2O3 whole-rock ratios 

with respect to other Southern Patagonian mantle xenoliths occurrences and in some 

samples by TiO2 enrichments. They described three different occurrences: i) anhydrous 

lherzolites and harzburgites, containing clinopyroxene with a depleted major element 
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composition; ii) formation of new phases such as amphibole±phlogopite±Cl-apatite-

bearing during a metasomatic episode and iii) pockets of Na-Si-rich glass and carbonate 

drops, with amphibole as residual phase, due a decompressional event during the xenoliths 

uplift to the surface, that caused a closed system disequilibrium melting of the second 

assemblage (mainly the amphibole). The carbonated silicate melt underwent liquid 

immiscibility, products of which are represented by the carbonated drops and the silicate 

glass. Because of the different flow rates of carbonate and silicate melt, the xenoliths 

became enriched in carbonate (found in vein) during their migration. Therefore they finally 

hypothesized an aqueous slab derived Cl-rich fluids metasomatic agent and concluded that 

the origin of the carbonated silicate melt was the merely result of decompression melting 

during the uplift of the xenoliths to the surface.  

Scambelluri et al. (2008) on the same suite of xenoliths recognized carbonic fluid 

inclusions, glass and carbonate in several textural domains on which they focused their 

attention. The high densities preserved by a number of CO2 inclusions indicated that fluid 

infiltration took place at mantle depths. The low densities pertaining to the majority of 

analyzed fluid inclusions derived from inclusion re-equilibration during xenolith ascent. 

The glasses analyzed (occurring mainly as reaction haloes around clinopyroxene, 

amphibole and phlogopite, with microlites of new pyroxene, olivine and locally carbonate) 

varied widely their compositions in terms of both major (SiO2 = 47.0 – 68.3 wt%; 

Na2O+K2O = 5.8 – 12.2 wt%) and trace elements. Incompatible trace element patterns of 

glasses in anhydrous xenoliths were similar to those of the host alkali basalts, whereas the 

compositions of interstitial and vein glasses in the hydrous xenoliths indicated that a 

compositional control has been exerted by the local mineral assemblage (mainly 

amphibole). The combined textural and microthermometric investigations clearly showed 

that the carbonic fluid and glass post-dated a stage of hydrous metasomatism of this mantle 

wedge: CO2 and siliceous glass formed immediately before and/or during breakdown of 

the hydrous mantle assemblage. The microstructural and chemical data let the authors 

asses a close relationship between (i) infiltration of the host alkali basalt together with 

CO2-fluid and (ii) partial melting of hydrous rock-forming minerals favoured by high-CO2 

contents of the ambient fluid phase. The presence of carbonic fluid was likely due to a 

decrease of CO2 solubility in the uprising basaltic melt. At the xenolith scale, hydrous 

phase breakdown produced a reactive percolating melt that progressively increased its 
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silica and alkali content due to interaction with the host peridotite minerals. They finally 

concluded that the Si- and alkali-rich glasses could be due to a reaction between the host 

(or similar) magma and xenolith minerals. These reactions most probably occured at 

mantle depths in the presence of significant amounts of exsolved CO2, immediately before 

and/or after the early entrainment of the xenoliths into the host magma,  producing a 

variety of textures and chemical compositions depending on the local assemblages and 

physico-chemical parameters of melt/peridotite reactions. 

Rivalenti el al. (2004) investigated the mantle xenoliths entrained in the lavas of nine 

Patagonian localities comprised between 40°S and 52°S. The most common texture in the 

xenoliths was the re-crystallized granular or porphyroblastic one. As far as the xenoliths 

studied could represent the whole Patagonia mantle, these textures suggest that the mantle 

wedge experienced a regional, pervasive re-crystallisation that left only a few relics of the 

preceding mantle (in fact the authors found only six samples characterized by 

protogranular or porphyroclastic texture). They divided the lithotypes observed for all the 

localities in two groups: the first comprises anhydrous lherzolites and harzburgite, rare 

dunites. Their bulk-rock and clinopyroxene trace element profiles varied from slightly 

LREE-depleted to LREE-enriched. The second group was composed of lherzolites, 

harzburgites and rare wehrlites containing hydrous phases (amphibole ± phlogopite ± 

apatite), abundantly represented at Gobernador Gregores. With respect to the anhydrous 

group these samples were characterized in both bulk-rock and clinopyroxene by a convex 

upwards trace element pattern resembling that of peridotites affect by alkali basalt 

metasomatism, and by variable, and sometimes high Ti, Hf and Zr depletion and Nb 

enrichment. The composition of calculated melts in equilibrium with clinopyroxene 

resulted similar to the Patagonia arc magmas closer to the trench, but in the region South of 

latitude 46.30°S, it changed eastwards to an E-MORB-like melt. The authors interpreted 

the textural and geochemical bulk-rock and clinopyroxene features of the xenoliths as 

controlled by two main processes: (1) melting in the region of thermal inversion of the 

wedge, triggered by infiltration of hydrous components; (2)  reactive porous flow of the 

melts into the overlaying mantle. The component triggering melting is inferred to be slab-

derived in the western occurrences and a garnet-facies, asthenosphere-derived melt in the 

eastern occurrences as a consequence of wedge thickening. Differences between northern 

and southern Patagonia were interpreted to be due to variable contribution of slab 
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components to the wedge. Compared to the southern region, slab-derived melts are 

tentatively attributed to the subduction of older and colder segments of the Nazca plate in 

the North. 

Finally, another interesting work carried out on a suite of spinel-facies mantle xenoliths 

(lherzolites, harzburgites and dunites) entrained in the alkali basalts of the Cerro de los 

Chenques Quaternary back-arc volcano (200 km E of the volcanic arc) has been published 

by Rivalenti et al. (2007). The clinopyroxene geochemistry indicated that the pristine 

mantle was a lherzolite with Depleted Mantle (DM) composition, recording either melting 

episodes triggered by infiltration of a metasomatic agent or only enrichment of highly 

incompatible elements in those sectors where percolation occurred under decreasing fluid 

volume. Metasomatism was operated by a fluid originated in garnet-bearing assemblages 

that induced olivine and clinopyroxene dissolution, variations in the Sr and Nd isotopic 

signatures (i.e. pre-metasomatic mantle: 87Sr/86Sr=0.702712 and 143Nd/144Nd=0.513495; 

xenoliths recording the highest metasomatism: 87Sr/86Sr =0.704234 and 143Nd/144Nd 

=0.512870), and increase in LILE and LREE, but not in Nb and Ti. The authors ruled out 

several hypothesis on the origin of the metasomatic agent, such as a metasomatism induced 

by the entraining alkali basalt. They also excluded a possible subarc origin of the mantle 

beneath Los Chenques subsequently transported by reversed corner flow 200 km to the 

East (the distance between arc and Los Chenques). They finally concluded that the features 

of the mantle xenoliths studied could be reasonably related to the fluids released by the 

slab and consistent with the signature and basalts forming the upper part of the subducted 

Nazca plate. 
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3. Cenozoic evolution of Patagonia. 

In Patagonia the Andean volcanic arc is distinguished into a Southern Volcanic Zone 

(SVZ; Thorpe et al., 1982) and an Austral Volcanic Zone (AVZ; Stern and Kilian, 1996) 

separated by a volcanic gap occurring between 46.3 and 49°S latitude (Figure 3.1).  

 

Figure 3.1: Sketch map of Patagonia (after D’Orazio et al., 2000). The light red and yellow circles indicate 
respectively the SVZ and the AVZ. VG is “Volcanic Gap”. (a), (b) and (c) indicate the back-arc volcanic 
fields respectively of Northern Patagonia, Central Patagonia and Southern Patagonia. 
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The geological history during the Cenozoic of both SVZ and AVZ is related to the 

subduction of the Nazca and Antarctic plates respectively, beneath the South American 

plate. The average convergence rate over this period has been of 10 cm/yr for the Nazca 

plate and of 2 cm/yr for the Antarctic plate. The two plates are separated by the Chile 

ridge, and the present day position of the triple point between the Nazca, South America 

and Antarctic plates (Chile Triple Junction, CTJ) occur at 46.3°S. (Cande and Leslie, 1986; 

Forsythe et al., 1986).  

A peculiar feature of Patagonia is the presence of several continental mafic volcanic 

plateaux ranging in age from late Paleocene to Recent time (Ramos and Kay, 1992). They 

are the Eocene Posadas Formation (located between 46 to 50°S), the late Oligocene to 

early Miocene Somoncura magmatic province (41 to 43°S and similar age magmas erupted 

up to 46°S) and the late Miocene to Pliocene Triple Junction (TJ) province east of the CTJ 

(46 to 49°S). The Posadas and the TJ provinces have been respectively associated with 

Eocene and Miocene-Recent collision of the Farallon-Aluk (Ramos and Kay, 1992; Kilian 

et al., 1997; Ramos and Aleman, 2000) and the Nazca-Antarctica (Ramos and Kay, 1992; 

Gorring el al., 1997) spreading ridges with the Chile trench, while the Somoncura province 

with a mantle thermal anomaly linked to the late Oligocene/early Miocene changes in plate 

convergence vectors (Kay et al., 1993, 2007).  

Because of the vastness of Patagonia (extending for more than 2000 km from north to 

south), and to simplify the back arc geological description I will divide the area in 

“Northern Patagonia” (extending from 40°S to 46°S), “Central Patagonia” (from 46°S to 

49°S) and “Southern Patagonia” (from 49°S to 52°S), focusing more attention on the 

Central Patagonia, since most of the studied samples have been collected from post plateau 

volcanics of this area. 

 

3.1 Northern Patagonia and the Somoncura Province (40°S-

46°S). 

 

Between 40°S and 46°S occurs the largest post-Eocene mafic volcanic field of the 

Northern Patagonia, the Somoncura igneous province (Figure 3.2). It consists of a series of 

Oligocene to early Miocene volcanic fields that cover more than 55 000 km2 in the Meseta 
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de Somuncura and surrounding region (Meseta de Cari Laufquen and Meseta de Canquel), 

overlying a late Precambrian to Paleozoic magmatic and metamorphic basement itself 

covered by the extensive Jurassic silicic volcanic rocks of the Chon Aike province (Kay et 

al., 1989; Pankhurst and Rapela, 1995) as well as Cretaceous to Tertiary volcanic and 

sedimentary rocks (Rapela and Kay, 1988; Rapela et al., 1988; Ardolino et al., 1999). 

 

 

Figure 3.2: Sketch map of Northern Patagonia (from Kay et al., 2007) showing the Somoncura igneous 
province, comprising from North to South the Meseta de Cari de Laufquen, the Meseta de Somoncura and 
the Meseta de Canquel. Symbols indicating the timing of magmatism are reported in legend. 
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Somuncura province volcanic rocks can be divided into pre-plateau, plateau and post-

plateau groups. Low-volume late Oligocene pre-plateau flows are typically intraplate 

alkaline basalts and hawaiites, with depleted isotopic compositions (87Sr/86Sr < 0.704; εNd 

> +2) and enriched trace element compositions. Voluminous ~27 ± 2Ma plateau flows are 

dominantly hypersthene normative basalts and basaltic andesites with flat REE patterns 

(La/Yb = 4–12), relatively low LILE abundances, transitional to arc-like Ba/La, Sr/La, 

Th/Ta and U/Ta ratios, intraplate La/Ta ratios and enriched Nd–Sr isotopic compositions 

(87Sr/86Sr >0.7043; εNd < +1.3). Finally intermediate to low-volume ~23–17 Ma post-

plateau flows are dominantly alkali olivine basalts and hawaiites with steep REE patterns 

(La/Yb >15), high LILE 

abundances, high Ba/La 

ratios, intraplate Sr/La and 

U/Ta ratios, and depleted 

isotopic compositions 

(87Sr/86Sr = 0.7034–0.7046; 

εNd ranging between +0.9 

and +4.5). 

 

 
 
 
 

 
3.2 Central Patagonia and the TJ igneous province (46°S-49°S) 
 
 

In central Patagonia (Figure 3.3) the middle Miocene to Recent northwards migration of 

the CTJ from approximately 50°S (Cande and Leslie, 1986; Forsythe et al., 1986) to 

46.3°S, has generated unique geodynamic, structural, and magmatic features (Gorring et 

al., 1997), namely the modern volcanic arc gap between the SVZ and the AVZ, the 

eruption of arc adakitic magmas (Kay et al., 1993) and in the AVZ (Stern and Kilian, 

1996) and finally the extensive late Miocene to Pleistocene magmatism that originated the 

TJ province.  

Figure 3.3: Sketch map of Central Patagonia (from Gorring et al., 1997). 
In black the Neogene plateau. 
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The TJ province can be subdivided into a voluminous, late Miocene to early Pliocene main 

plateau sequence, and a less voluminous, latest Miocene to Plio-Pleistocene post plateau 

sequence (Gorring et al., 1997). Main plateau sequence forms the smaller mesetas to the 

northeast (called “northeastern region”) and the large and elevated plateaux of de la Muerte 

(MM), Belgrano (MB), Central (MC) and del Lago Buenos Aires (MLBA) Mesetas 

(Figure 3.4).  

Main plateaux lavas of MM, MB and MC are tholeiitic basalts and basaltic andesites 

(Ramos and Kay, 1992; Gorring and Kay, 1993, 1994), whereas those from the 

“northeastern region” and MLBA are alkaline basalt and hawaiite (Baker et al., 1981; 

Stern et al., 1990; Ramos and Kay, 1992; Gorring and Kay, 1993, 1994). Post plateaux 

lavas are typically alkaline basalt and  

 

Figure 3.4: Map showing the occurrence of the different plateau of Central Patagonia (from Gorring et al., 
1997). In grey and black are represented the main and post-plateau sequences respectively. 

 

hawaiite (Ramos and Kay, 1992; Gorring and Kay, 1993, 1994), except in MLBA where 

strongly alkaline lavas, basically basanites, are recognized. Post-plateaux volcanics 

generally occur as small cones, pyroclastic debris on the top of large plateaux and as flows, 

filling paleovalleys and forming small hills. Total estimated volumes for the main and 

post-plateau sequences for all mesetas are ~1000 km3 and ~100 km3 respectively (Ramos 

and Kay, 1992). 
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Main plateau and post-plateau lavas are characterized by a strong OIB affinity, in terms of 

trace element and isotopic composition. In fact they have OIB-like ratios and 

concentrations of LILE, LREE and HFSE, and relatively enriched Sr and depleted Nd 

isotopic signature (87Sr/86Sr ranging from 0.7034 to 0.7046 with εNd between +5 and 0). 

Slightly higher LILE/HFSE and LREE/HFSE ratios of the western plateaux lavas (MM, 

MC, MB) by comparison to those of the “northeastern region” and MLBA indicate the 

presence of minor arc components in these latter.  
40Ar/39Ar radiometric ages (Figure 3.5 and 3.6) for the main plateaux lavas of the western 

back-arc range from 12 to 7 Ma, whereas those from further northeast are between 7 and 2 

Ma. Post-plateaux lavas are generally 5 to 2 Ma younger than those of the main plateaux.  

 

 

 

Figure 3.5: Distribution of the MLBA plateau basalts (from Ramos and Kay, 1992). K/Ar ages are from 
Charrier et al., 1978, 1979; Sinito, 1980; Baker et al., 1981; Ramos, 1982; Busteros and Lapido, 1983; 
Ramos and Drake, 1987. 
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Figure 3.6: 40Ar/39Ar ages of the MB, MC, MM, and the northeast region (from Gorring et al., 1997) with 
light grey indicating the main plateau sequence and black the post plateau volcanic.  

 

3.3 Southern Patagonia and the Pali Aike Volcanic Field (49°S-

52°S) 

 

This area is characterized by the occurrence of the southernmost and youngest Cenozoic 

back-arc Patagonian plateau lavas, represented by the Pali Aike Volcanic Field (PAVF). It 

covers an area of about 4500 km2 north of the Magallanes fault system and is situated 200 

km east of the Andean Cordillera. More than 80% of the totality of the volcanic products 

consist of an extensive succession of plateau-like basaltic lava flows, while the remaining 

20% consists of more than 450 monogenetic structures represented by maars, tuff-rings, 

scoria and spatter cones, and by associated lava flows (D’Orazio et al., 2000). D’Orazio et 

al. (2000) observed two main elongation trends of the cones, one with an ENE direction 

and another with a NW direction, the first being linked to the still active Magallanes Strait 

Rift System described by Diraison et al. (1997) while the second is probably connected 

with the Mesozoic Patagonian Austral Rift (Corbella et al., 1996).  
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The erupted products are basically alkaline and olivine basalts and basanites. Trace 

element distribution is relatively homogenous and reveals a typical within-plate OIB-like 

signature, with high LREE/HREE ratios. Sr and Nd isotopic compositions are close to the 

MORB values, and are the most depleted among the whole set of Cenozoic Patagonian 

plateaux lavas.  

Available 40Ar/39Ar ages (Mercerer, 1976; Linares and Gonzales, 1990; Meglioli, 1992; 

Singer et al., 1997; Corbella, 1999) indicate an age for the erupted lavas between 3.78 and 

0.17 Ma, with the oldest rocks cropping out in the western sector of the volcanic field. 

 

3.4 Cenozoic geodynamic evolution of Patagonia 

 

As already noticed at the beginning of this chapter, one of the largest Cenozoic back-arc 

continental basaltic provinces of the world occurs in Patagonia. A major question remains: 

why these Patagonian magmatic events, which are not tied to major times of back-arc 

extension, occurred (Kay, 2002a)? Part of the explanation seems to lie in the fact that 

oceanic ridges and young oceanic crust have been subducted at the Chilean trench located 

to the west throughout much of the Cenozoic. As a result, the spatial and temporal pattern 

of some major events have been associated with slab-windows formed in conjunction with 

collisions of spreading ridges with the Chile trench (Ramos and Kay 1992; Gorring et al. 

1997; D’Orazio et al. 2001). The slab-window model has been proposed to explain the 

plateaux lavas generated in Central (the four mesetas, MM, MC, MB, MLBA and the 

“northeastern region”) and Southern (PAVF) Patagonia. Those from Central Patagonia 

were originally interpreted as due to an extensional regime (Baker and Rea, 1978), or 

related to a mantle plume, but the two hypothesis were abandoned after the work of  

Ramos and Kay (1992). In fact they showed the lack of significant Neogene extension and 

pointed out the absence of topographic swells or hotspot tracks in central Patagonia, 

linking the emplacement of the plateaux with the opening of a slab window between the 

subducted Nazca and Antarctic plates as a result of late Miocene to Pliocene ridge 

collisions. Based of 40Ar/39Ar radiometric age dating Ramos and Kay (1992), Gorring et al. 

(1997) and D’Orazio et al. (2000) highlighted a spatial and temporal link between the 

ridge-trench collision, the slab window and the eruption of the plateaux lavas. Northeast of 

where the ridge collided ~12 Ma ago most lavas are syncollisional or postcollisional in 
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age. Trace element and isotopic data indicate that main plateau lavas formed by a higher 

percentage of melting of a garnet-bearing, OIB-like mantle than post plateau lavas. The 

highest volume of melts were erupted in the western and central plateaus. According to 

Gorring and Kay (1997) in a migrating slab window model, main plateau lavas can be 

explained by melts that formed from upwelling, subslab asthenosphere which flowed 

around the trailing edge of the descending Nazca Plate and then interacted with 

subduction-metasomatized asthenospheric wedge and continental lithosphere. Alkaline, 

post-plateau lavas can be explained as melts generated by weaker upwelling of subslab 

asthenosphere through the open slab window.  

The slab window model has been also proposed by D’Orazio et al. (2000, 2001) in order to 

explain the Southern Patagonian volcanic province of Pali Aike. They concluded that 

geochemical features of the plateaux lavas of this area indicate a fertile garnet-bearing 

asthenospheric source. The model they proposed (Figure 3.7) referred always to the 

collision of the Chile Ridge with the Chile Trench at 14 Ma proposed by Gorring et al. 

(1997), attributing to the prominent change in the kinematics of the South America–Scotia 

plate boundary the 8–6 m.y. delay between the passage of the trailing edge of the Nazca 

Plate beneath the PAVF area and the subsequent volcanic activity.  

Further north in Patagonia, between 40 and 46°S, the origin of the Somoncura ignueous 

province is still matter of debate. Some authors associated the plateau events to thermal 

anomalies correlated with a major late Oligocene/early Miocene change in plate 

convergence vectors (Kay et al., 1993; Muñoz et al., 2000; de Ignacio et al., 2001) and the 

aftermath of shallow subduction events (Kay 2001, 2002b), but the problem with this 

explanation is that the volume of magma erupted in plateau events is greater than those 

expected as a thermal consequence of these events (Gorring et al., 1997; Kay, 2001).  

The 29 to 26 Ma tholeiitic to mildly alkaline mafic flows that built most of the plateau 

have an intraplate-like chemistry with a number of striking isotopic and chemical parallels 

to oceanic intraplate magmas from the Hawaiian Islands (Kay et al. 1993). As in Hawaii, 

the main plateau (shield stage) lavas can be modeled as the deepest and highest percentage 

melts from the most isotopically enriched mantle source. These similarities are consistent 

with the Somuncura magmas having a link to a mantle thermal anomaly or “hotspot”-like 

mantle. Most trace element and isotopic differences between Somuncura and Hawaiian 

lavas can be related to interaction of the Somuncura magmas with an arc-like component 
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inherited from lithospheric or upper asthenospheric mantle sources. Evidence for such an 

arc-like component is strongest in western plateau flows which have transitional arc-like 

trace elements (La/Ta ratios = 20-25) and enriched isotopic signatures. Further east, a 

transition to higher 87Sr/86Sr ratios at a given εNd and higher Ba/La ratios in plateau 

compared to pre-plateau magmas indicate the participation of this component into the 

mantle magma source during plateau formation (Kay et al. 1993). High Ba/La ratios in the 

plateau flows are consistent with a subcrustal origin. The simplest explanation is that this 

high Ba/La component is derived from the involvement of the subducted slab that gave rise 

to Paleocene arc lavas (Rapela et al. 1988) to the west. A problem in explaining the 

Somuncura plateau magmas is the cause of such a “hotspot-like” mantle thermal anomaly. 

Oceanic plate and paleogeographic reconstructions show that this event was not 

contemporaneous with important arc volcanism or ridge collision to the west. The lack of 

any clear tectonic cause led Kay et al. (1993) to suggest an association with a ‘hot-spot’-

like thermal instability generated by mantle disturbances related to major late Oligocene 

plate reorganization. Subsequently, de Ignacio et al. (2001) amplified this suggestion by 

arguing that the Somuncura magmas were generated by asthenospheric corner flow that 

lead to a transient thermal anomaly above the subducting plate at the time of plate 

reorganization. They suggested that the intake of hot asthenosphere was induced by slab 

rollback and was focused by assumed favorable concave-up geometry of the subducting 

plate. Near the same time, Muñoz et al. (2000) argued that ~ 29 to 19 Ma lava flows to the 

west in Chile (38°S to 43°S) were related to extensional lithospheric thinning. This event 

was attributed to asthenospheric upwelling in a slab window that formed in response to 

changes in subduction zone geometry and that also produced the Somuncura magmas. 

Problems with this model include creating a slab window in the absence of ridge collision 

or other evidence for a gap in the subducting plate, lack of evidence for major extension in 

the Somuncura region, and the volume of the Somuncura flows. Kay et al. (2004) have 

argued that the formation of the Somuncura plateaux magmas may be related to a change 

in the rate of motion of the South American plate relative to the “hot-spot” mantle 

reference frame. Silver et al. (1998) argued that the Andean deformation cycle beginning at 

~25 Ma was driven by an increase in the relative motion of South America with respect to 

Africa. O’Connor et al. (1999) have shown that the motion of Africa was faster relative to 

hotspots after 20 Ma than before 45 Ma. Unfortunately, there are still no reliable 

constraints on relative rates between 45 and 20 Ma, but there is an age correspondence 
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between the eruption of the Somuncura province and the upsurge of the African plate 

hotspots between 30 and 19 Ma (O’Connor et al., 1999). 

 

Figure 3.7: Slab window opening beneath Pali Aike according to D’Orazio et al. (2000). 
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4. Chemical composition of the host lavas 
 
The mantle xenoliths from this study are entrained in the alkaline post-plateau lavas of the 

MLBA. As already described in the geological setting MLBA lavas can be subdivided in 

two sequences related to the main and to the post-plateau event respectively. 40Ar/39Ar 

radiometric ages (Figure 3.6) from MLBA main plateau lavas range from 10 to 4.5 Ma 

(Sinito, 1980; Baker et al., 1981; Mercer and Sutter, 1982; Thon-That et al., 1999) with 

the oldest lavas exposed on the southeast edge of the plateau. Post plateau lavas range from 

3.4 to 0.125 Ma an age, but most are ≤1.8 Ma (Baker et al., 1981; Thon-That et al., 1999).  

Samples represent the host rock of the xenoliths, thus they do not represent an extensive ad 

hoc sampling. Lavas are quite fresh, characterized by a porphyritic texture with 2 to 5% 

phenocrysts overwhelming dominated by euhedral olivine (Figure 4.1 A-A’). Sometimes 

is possible to observe glomerophiric assemblage of olivine (in some cases surrounded by 

marked rim of reaction) that probably have a mantle origin (Figure 4.1 B-B’). The 

groundmass is microcrystalline indicating a rapid magma cooling, with abundant acicular 

plagioclase (Figure 4.1 C-C’), associated to clinopyroxenes, olivine and Fe-Ti oxides.   

  

  

 
A A’ 

B B’ 
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Figure 4.1: Microphotographs in plane polarized light (A, B, C) and cross polarized light (A’ , B’ , C’ ) of 
the MLBA lavas. A-A’  microphotographs show a crystal of euhedral olivine (MGP4). B-B’  represent a  
glomerophiric assemblage of olivine (MGP2). C-C’  microphotographs showing the groundmass of 
sample MGP1.  

 

MGP1 MGP2 MGP3 MGP4 MGP5 MGP6 
SiO2 50.83 50.52 50.65 50.73 50.56 50.82 
TiO 2 2.13 2.15 2.14 2.10 2.13 2.14 
Al 2O3 16.38 16.36 16.41 16.55 16.41 16.29 
Fe2O3 Tot 9.28 9.57 9.43 9.31 9.52 9.49 
MnO 0.15 0.16 0.16 0.16 0.16 0.15 
MgO 3.93 4.02 4.13 4.00 4.11 4.04 
CaO 7.52 7.62 7.48 7.46 7.45 7.42 
Na2O 5.69 5.59 5.45 5.64 5.57 5.63 
K 2O 2.65 2.58 2.51 2.55 2.57 2.55 
P2O5 1.09 1.08 1.07 1.07 1.06 1.07 
LOI 0.35 0.36 0.56 0.43 0.45 0.40 
TOTAL 100 100 100 100 100 100 
mg# 48.65 48.45 49.51 49.05 49.15 48.79 

Rb 32 32 31 31 32 32 
Ba 398 393 376 390 387 387 
Th 5 4 5 5 6 3 
Nb 49 49 50 47 50 48 
La 27 27 29 29 26 26 
Ce 92 92 97 98 88 79 
Sr 682 689 681 674 685 678 
Nd 38 39 36 38 36 38 
Zr 256 256 253 251 254 252 
Y 20 21 20 21 21 20 
Co 24 24 26 26 25 27 
Cr 195 182 210 173 174 164 
Ni 46 45 47 47 47 45 
Pb 9 10 7 11 12 12 
V 157 157 161 155 158 158 
Zn 66 70 67 66 67 68 
Cu 40 38 40 39 39 40 
Ga 30 35 29 27 28 28 
Sc 20 20 20 19 21 19 

 

  

Table 4.1: Major and trace element composition of the six lavas analyzed by XRF. Mg# (MgO/(MgO+FeO) mol 
%) is calculated with Fe2O3=0.15*FeO  

C C’ 
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Figure 4.2: Total Alkali vs. Silica diagram of Cox et. al. (1979). Empty diamonds indicate the samples 
analyzed in this work, while light blue diamonds are MLBA post plateau lavas from Gorring et al. (2003). 
Solid black line indicates the field of the Somoncura pre-plateau lavas; solid and dashed red line indicate the 
Somoncura main plateau and post plateau lavas respectively (Kay et al., 2007). Solid and dashed green line 
indicate the field of the main and post plateau lavas of the TJ Province respectively (Gorring and Kay, 1997). 
Blue line is the PAVF field (D’Orazio et al., 2001). Dashed red line separates the alkaline and subalkaline 
domains.  

 

The geochemical compositions of MLBA lavas analyzed in this study are given in Table 

4.1. MLBA post plateau lavas are sodic alkaline (~50 wt.% SiO2; ~8 wt.% Na2O+K2O, 

with Na2O/ K2O >2), plotting in the mugearite field on a total alkali–silica classification 

diagram (Figure 4.2). They have low MgO content (~4 wt%) as well as Ni and Cr, the first 

being ~45 ppm and the second varying from 164 to 210 ppm. This characteristics can be 

explained by a differentiation suffered by these samples with respect to the other Neogene 

Patagonian post plateau lavas, as well as those coming from the same locality. As shown in 

Figure 4.2 most of MLBA post plateau lavas are in fact basanites/tephrites and hawaiites 

(Gorring et al., 2003). 

In Figure 4.3 some variation diagrams are reported. SiO2 is always on the x axis, while 

CaO, K2O, MgO and Na2O are plotted on the y axis. MLBA samples from this study fall in 

the field of the post plateau lavas of both the Somoncura and TJ Provinces for CaO (~7.50 

wt%), MgO and K2O (~2.50 wt%) contents, while they are outside any field for Na2O. In 

fact the value of ~5.60 wt% is very high with respect to MBLA post plateau lavas, as well 
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as to the main and post plateau lavas from the other localities. The Na2O enrichment of 

xenolith-bearing lavas can be related to a higher differentiation degree, although the 

capacity of carrying heavy mantle rocks is highly reduced by differentiation. The tendency 

for MBLA lavas to be more alkaline in nature (as also testified by the absence of tholeiitic 

product in the main plateau stage) may be instead an indication for a substantially lower 

degree of partial melting and/or higher Na2O content in the source region of these basalts. 

  

 

Figure 4.3: Harker type variation diagrams for major element concentration (wt%) plotting SiO2 on the x 
axis vs. CaO (A), K2O (B), MgO (C) and Na2O (D). 

 

Chondrite normalized trace element concentrations of the samples are reported in Figure 

4.4. In the spider diagram are also reported the fields of the main and post plateau lavas 

from the TJ province (MM, MB, MC and the northeastern region, from Gorring and Kay 

(2001)), and the composition of the OIB and the N-MORB from Sun and Mcdonough 

(1989). The patterns of the lavas of this work resemble that of the OIB, as those of the 

main and post plateau from the TJ province, the latter having a slightly higher 

incompatible trace element concentrations with respect to those of the main plateau. 

Moreover the OIB signature of the samples is also highlighted by the Ba vs. Nb diagram 

B 

D C 

A 
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proposed in Figure 4.5, in which the samples clearly fall in the field of the within plate 

composition, together with those of all the other localities belonging to the TJ province. 

 
Figure 4.4: Chondrite normalized trace element compositions of MLBA post plateau lavas. Solid and dashed 
green line fields represent the main and post plateau lavas respectively from TJ province. Red and blue lines 
are OIB and N-MORB compositions respectively (from Sun and Mcdonough, 1989) 

 

 

Figure 4.5: Nb vs. Ba plot. Empty black diamonds are the samples of this work. 
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5. Petrography of the xenoliths. 
 
15 xenoliths occurring in the post plateau lavas of the MLBA have been studied. Most of 

them are very small in size (few centimeters across) and rounded in shape. Their modal 

composition (Table 5.1) has been calculated by counting over 1,000 point per each thin 

section. 

 

 olivine orthopyroxene clinopyroxene spinel Total 
MPG 1b 56.2 34.2 5.0 4.6 100 
MPG 1c 68.4 30.2  1.4 100 
MPG 1d 72.5  12.8 14.7 100 
MPG 1h 91.7 5.2 1.4 1.7 100 
MPG 2a 80.6 3.1 3.9 12.4 100 
MPG 2b 71.4 13.1 9.5 6.0 100 
MPG 2b2 59.0 22.7 13.3 5.0 100 
MPG 3a 77.3 16.7 3.0 3.0 100 
MPG 4b 60.8 29.7 2.0 7.5 100 
MPG 4c 51.0 40.4 2.3 6.3 100 
MPG 5a 89.5 0.6 2.9 7.0 100 
MPG 1g 84.4 12.2  3.4 100 
MPG 4e 87.8 7.9 0.2 4.1 100 
MPG 3b 73.6 20.5 4.0 1.9 100 
MPG 4a 94.7  1.0 4.3 100 

 

Table 5.1: Modal composition of the mantle xenoliths from Estancia Sol de Mayo. 

 

 

The xenoliths are mainly represented by anhydrous spinel-bearing harzburgites (7) and 

dunites (5), with minor lherzolites (2) and one wehrlite (Figure 5.1). They are 

characterized by a coarse grained protogranular texture (Mercier and Nicolas, 1975) and 

they are devoid of metasomatic features, such as spongy rims, reaction rims around spinel 

and/or orthopyroxene, glassy patches, as well as any hydrous minerals. 

The most common feature is the presence of two textural kinds of clinopyroxenes (cpx) 

and three types of orthopyroxenes (opx). The former generally occur as protogranular in 

the peridotitic matrix (cpx1) or growing around the spinel (spl, cpx2); opx is present as i) 

large protogranular crystals with exsolution lamellae (opx1), ii) small clean and 

undeformed grains without exsolution lamellae (opx2) and iii) as smaller grains arranged 

in vein (opx3).  
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Figure 5.1: Ultramafic classification diagram (after Streckeisen, 1976). 
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5.1 Lherzolites 

  
Figure 5.2: Thin sections microphotograph of two lherzolite samples. Samples MGP2b (A) and MGP2b2 

(B). 

 

Two samples (MGP2b and MGP2b2, Figure 5.2) fall in the lherzolite field. Olivine is the 

most abundant mineral (71.4 and 59% respectively); it has variable dimensions, reaching in 

same cases 1 cm. It is often characterized by 120° triple junctions (Figure 5.3 A), as well 

as strong kink banding.  

Opx (13.1 and 22.7% respectively) is recognized as both opx1 and opx2. Opx1 has 

generally smaller dimension with respect to the olivine, sometimes intensely fractured, 

especially when close to the xenolith/host lava boundary. The biggest grains are often 

characterized by exsolution lamellae. Opx2 is less abundant and smaller when compared to 

opx1. It does not show exolution lamellae or any sign of deformation as in the case of 

opx1. Furthermore they are clearly recognizable for their shiny brown colour.   

In both samples cpx (9.5 and 13.3% respectively) is found as cpx1 and cpx2 (Figure 5.3 B 

and C). The latter is generally much smaller than cpx1, and its common texture is 

represented in Figure 5.3 C, where the cpx2 envelops the spinel.  

B A 
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Finally the spl (6 and 5% respectively) always occurs as the smallest mineral. It is always 

almost totally black, in same cases showing a brown colour along the rim (Figure 5.3 D). 

It can have tabular or elongated shape. 

  

  

 

Figure 5.3: Microphotographs from the two lherzolite samples. (A) 120° triple junctions of a group of 
olivines in sample MGP2b2; (B) three cpx1 from MGP2b2 sample; (C) example of cpx2 growing around the 
spl in sample MGP2b; (D) spl preserving the brown color (indicated by the black arrow) along the rim in 
sample MPG2b. 

 

 

 

 

 

 

 

B A 

ol 
ol 

ol 
ol 

cpx1 

C 

spl 

ol 

ol 

ol 

cpx 

D 



5. Petrography of the xenoliths 

~ 37 ~ 

5.2 Harzburgite 

 

With 7 samples (MGP1b, MGP1c, MGP1g, MGP3a, MGP3b, MGP4b, MGP4c) 

harzburgite is the most represented lithotype of the Estancia Sol de Mayo suite. One 

sample (MGP1b, Figure 5.4A) fall on the boundary separating harzburgites from 

lherzolites, but considering its low cpx percentage (only 5%) with respect to the previously 

illustrated two lherzolites I prefer to classify it as harzburgite.  

The most abundant mineral is olivine, varying its modal content from 51% (MGP4c) to 

84.4% (MGP1g), followed by orthopyroxene ranging from 12.2% (MGP1g) to 40.4% 

(MGP4c), spinel ranging from 1.4% (MGP1c) to 7.5% (MGP4b) and finally clinopyroxene 

comprised between 2% (MGP4b) and 5% (MGP1b).  

Olivine has an average size of several millimetres. The biggest grains are generally marked 

by strong kink-banding, as in sample MGP4b, MGP1g and MGP1b, but it is common also 

Figure 5.4: Thin section photomicrograph of two representative harzburgite thin sections. (A) sample 
MGP1b; (B) sample MGP1c. 

A B 
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in the small sample MGP1c. As for lherzolites, olivines in harzburgites show 120° triple 

junction.  

In all samples orthopyroxene is observed as opx1 and opx2. The former is characterized by 

variable dimensions, ranging from several microns up to ~1 mm. Only in one sample 

(MGP1b) the biggest opx1 present strong king-banding and exsolution lamellae. In two 

samples two peculiar textural features are recognized: in MGP1g a group of big and 

equidimensional opx1 is concentrated in a cluster (Figure 5.5A), well separated from other 

few smaller opx, and variable in dimension and shape; in MGP1c almost all the opx are 

located in the tip of the sample that has a triangular shape (Figure 5.4B). As for the 

lherzolites, also opx2 in the harzburgites are recognizable for their smaller dimension and 

their shiny colour. Also in this case they do not present neither kink banding nor exsolution 

lamellae. 

Both cpx1 and cpx2 are present in MGP1b and MGP4b. While in the first sample the two 

cpx generations are equally distributed, in the second cpx2 prevails. In samples MGP3B 

and MGP1c only one generation of cpx is observed: cpx1 in the former, cpx2 in the latter. 

In MGP1g cpx is completely absent. The dimension and the shape are the main differences 

between cpx1 and cpx2. The former is always bigger and tabular, while the second has a 

typical elongated shape, resembling in some cases that of the spinel (as shown in Figure 

5.5B).  

Finally the spinel is always black, generally very little (few mm in si size) and with an 

elongated shape when linked to the growth of the cpx2. Otherwise it is bigger and tabular 

in shape. 
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Figure 4.5: (A) Thin section photomicrograph of harzburgite MGP1g. In the black square is shown the 
cluster of opx; (B) elongated cpx2 from sample MGP1c, preserving two little spinels in the centres. 
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5.3 Dunites 

 

Figure 5.6: Thin section photomicrograph of two representative dunites. (A) sample MGP2a; in the black 
square there is the opx2 vein, shown in the next figure; (B) MGP1h. 

 

Five samples (MGP1h, MGP2a, MGP4a, MGP4e and MGP5a) are classified as dunites. 

They have a modal composition dominated by olivine (varying from 80.6 up to 94.7%), 

followed by orthopyroxene, spinel and clinopyroxene (comprised between 0.6 and 7.9%; 

1.7 and 8%; 0.2 and 3.9 % respectively).  

Olivine is always of big dimensions (up to ~1 cm), often fracturated even when observed 

far from the contact with the host lava and characterized by kink banding and 120° triple 

junctions. 

Orthopyroxene is observed as opx3 only in sample MGP2a, where the crystals are clearly 

arranged in vein. Here they have dimension comprised between few millimetres up to ~0,5 

A B 
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cm, and they are surrounded by a microcrystalline groundmass mainly composed of 

plagioclase (Figure 5.7).  

Both generations of cpx are equally represented in dunites. Cpx1 is generally bigger than 

cpx2, the latter observed always with an elongated shape. In sample MGP1h only small 

cpx2 are recognized, some of them preserving in the centre a relict of the aluminiferous 

phase. Otherwise the spinel can be completely absent, but the shape of the cpx suggest it 

growth at the expense of the spinel.  

Finally the spinel is always black and small, and in some cases it can be very abundant 

(like in sample MGP2a). 

 

Figure 5.7: Opx3 arranged in vein in sample MGP2a. 
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5.4 Wehrlite 

 

One sample is classified has wehrlite (MGP1d, Figure 5.8). Its modal composition is 

shown in Table 5.1. 

It is characterized by abundant olivine, that frequently reaches the dimension of ~1 cm. 

120° junctions are often observed, while kink banding is quite rare. 

Big crystals of clinopyroxene occur in all the thin section analyzed, with one grain 

reaching up to 2 cm in size. The others are smaller even if they are among the largest cpx 

observed in all the samples of the Estancia Sol de Mayo suite. All the clinopyroxenes can 

be described as cpx2. Generally the associated spinel is found within the clinopyroxenes, 

but sometimes it is situated along the rim of the cpx.   

The spinel (always black) is generally of several millimetres in size. Its shape is mainly 

tabular, even if few elongated crystals maybe found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.8:  This section photomicrograph of the wehrlite  MGP1d. 
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6. Geochemistry of the mineral phases 

In this chapter the major and trace element compositions of the mineral phases observed 

within the Estancia Sol de Mayo mantle xenoliths are described. The former have been 

measured using an Electron Microprobe (EMP) on olivines, clinopyroxenes, 

orthopyroxenes and spinels, while the latter have been acquired only for pyroxenes using a 

Femto-Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). 

Both major and trace elements have been performed at the Observatoire Midi Pyrenees - 

CNRS of the University of Toulouse (see Appendix for analytical methods).  

6.1 Major element compositions 

In the following diagrams the various lithotypes are illustrated by different symbols: 

diamond identifies the lherzolites, circles the harzburgites, triangles the dunites, and finally 

asterisk the wehrlite. Furthermore each sample is identified by a different colour. When 

two types of clinopyroxene or spinel occur in the same sample the symbols for secondary 

cpx or spl are empty but the line have the colour of the sample. The legend is shown in 

Figure 6.1. 

 

  

Figure 6.1: Legend for the olivine and orthopyroxene (A), clinopyroxene (B) and spinel (C) diagrams. 
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6.1.1 Olivine 

In the following chapter the major element composition of olivines will be discussed. The 

complete set of analyses are reported in Appendix 1. 

 

Figure 6.2: Fo vs. SiO2 (A) and NiO (B). 

As illustrated in Figure 6.2 olivines of the lherzolites have a Fo content ranging from 

90.47 to 91.29. The two samples are characterized by a wide range of SiO2 content, with 

A 
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MGP2b2 (39.52-42.07 wt%) showing a higher variation than MGP2b (40.18-41.36 wt%). 

The two samples present a rather narrow but similar range of NiO (0.27-0.50 wt%). 

Olivines in harzburgites (five samples over the total of 7 described in the petrography 

chapter) have Fo content varying from 84.18 up to 92.09. Apart from sample MGP4b 

which present Fo content (91.71-92.06) higher than those of lherzolitic olivines and a 

narrow range of variation of SiO2 (40.95-41.70 wt%) and NiO (0.33-0.45 wt%), the 

remaining harzburgites have comparable or lower Fo content (89.20-90.82). Olivines of 

samples MGP1b and MGP1g have particularly low Fo in olivine (84.18-88.62) as well as 

SiO2 and NiO contents, the former varying from 39.22 to 40.39 wt% and the latter from 

0.17 to 0.46 wt%. The dunites (MGP1h and MGP2a) are characterized by Fo (89.37-91.42) 

contents comparable to those of lherzolites with sample MGP1h (90.07-91.42) showing a 

range slightly higher than the one of MGP2a (89.37-90.05). Also the SiO2 and NiO content 

variations are comparable to those of lherzolites, varying from 39.63 to 41.17 wt% and 

from 0.21 to 0.46 wt% respectively. Finally, olivines of the wehrlite show the lowest Fo 

values, ranging from 81.29 to 82.10. They also show low SiO2 and NiO values, but 

comparable to those of the harzburgite MGP1g, ranging respectively from 38.86 to 39.75 

wt% and 0.14 to 0.20 wt%. 
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6.1.2 Clinopyroxene  

As already described, a further classification of clinopyroxenes (Appendix 2) is necessary. 

In the following description they will be classified not only based on lithotype and sample, 

but also according to their textural position, i.e. primary those occurring as protogranular 

(cpx1) and secondary those linked to spinel (cpx2). 

Cpx1 from lherzolites have mg# ranging from 91.4 to 94. that are comparable to those of 

the cpx2 (91.6-93.9). The latter show slightly higher Al2O3 and Cr2O3 (Figure 6.3) 

contents (4.01-4.31 wt% and 1.19-1.45 wt% respectively) with respect to the former (3.21-

4.12 wt% (with only one reaching 4.52 wt%) and 0.56-1.02 wt% respectively). They have 

comparable CaO (20.92-21.59 wt%), Na2O (0.76-1.02 wt%) and TiO2 (0.12-0.39 wt% with 

a couple of cpx1 having 0.05 and 0.08 wt%) contents, while SiO2 varies widely for both 

types of cpx, with cpx2 marked by lower values (50.03-53.12 wt% for cpx2 and 51.11-

53.66 wt% for cpx1). 

Mg# of cpx1 from harzburgites vary from 89.9 up to 93; they have an Al2O3 content (1.75-

3.56 wt%) lower than those of the lherzolites, but comparable Cr2O3 (0.57-1.45 wt%), as 

well as Na2O, and CaO (Figure 6.4), the former varying from 0.71 to 1 wt% and the latter 

from 20.77 to 21.72 wt%. They are characterized by much lower TiO2 (0.05-0.2 wt%) 

contents, but higher SiO2 (51.83-54.05 wt%) (Figure 6.5). Except the one of sample 

MGP1b (mg# 88.9-90.1), the secondary cpx show a range of mg# (91.2-93.5) similar to 

those of lherzolite cpx2, falling in the same field in terms of Al2O3 (3.46-4.34 wt%),Cr2O3 

(1.26-1.59 wt%), CaO (21.02-21.33), and TiO2 (0.12-0.31 wt%) contents. Moreover they 

show a narrower range of SiO2 (52.25-53.05 wt%) and a higher content of Na2O (0.95-1.18 

wt%). Cpx2 from sample MGP1b do not show any compositional differences with the 

primary cpx from the same sample. 

Cpx1 from dunites have a very narrow mg# range, from 91.2 to 92.4 comparable with that 

of harzburgite MGP3b. It also displays the same Al2O3 content, ranging from 1.75 to 3.12 

wt%, but slightly lower Cr2O3 (from 0.73 to 1.2 wt%). At comparable mg# values they are 

characterized by higher TiO2 (0.07-0.3 wt%) and Na2O (0.74-1.13 wt%) contents with 

respect to their equivalent in harzburgites (but similar to those of lherzolites) and lower 

SiO2 (52.12-53.37 wt%) and CaO (20.49-21.77 wt%) contents. Secondary cpx have mg# 

(90-92) similar to that of the primary, but have higher Al2O3 (2.65-4.03 wt%) and Na2O (1-
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1.27 wt%), slightly higher Cr2O3 (0.91-1.36) and TiO2 (0.24-0.51 wt%) and slightly lower 

SiO2 and CaO contents (varying from 51.62 to 52.77 and from 19.86 to 21.07 

respectively). All these features collocate the cpx2 of dunites in the same field of those 

previously described and belonging to the lherzolites and the harzburgites (with the 

exception of cpx2 from sample MGP1b). 

Finally clinopyroxenes of the wehrlite show the lowest mg# ranging from 82.3 to 86.6. 

They are characterized by the highest Al2O3 and TiO2 contents, the former comprised 

between 5.13 and 7.3 wt% and the second between 0.63 and 1.12 wt%.  At the same time 

they are characterized also by the lowest values of Cr2O3 (0.37-0.86 wt%), CaO (12.4-

21.38 wt%), Na2O (0.32-0.96 wt%) and SiO2 (49.43-51.62 wt%). 
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Figure 6.3: Al2O3(A) and Cr2O3 (B) vs mg#. 
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Figure 6.4: Na2O (A) and CaO (B) vs mg#. 
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Figure 6.5: SiO2 (A) and TiO2 (B) vs mg#. Y axis of (B) is in logarithmic scale. 
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6.1.3 Orthopyroxene 

As described above (Chapter 5), orthopyroxenes have been divided in three groups on the 

basis of their textural position and optical features. However no difference between opx1 

and opx2 have been found in terms of major element composition, while opx arranged in 

vein (opx3,  sample MGP2a) is always quite well discriminated. 

Orthopyroxenes (Appendix 3 and Figure 6.6) from lherzolites have mg# ranging from 

90.8 to 92.49 with an Al2O3 content comprised in the range 2.62-2.97 wt%. They also 

show high and quite variable Cr2O3, SiO2 and CaO contents, with the first varying from 

0.48 to 0.7 wt%, the second from 55.33 to 56.4 wt% and the last from 0.84 to 0.99 wt%. 

Orthopyroxenes of harzburgites are characterized by a wide mg# range, from 85.24 to 

92.76. Two samples (MGP3b and MGP1c) have mg# (90.59-91.56) comparable to those of 

lherzolites, with lower Al2O3 (1.37-2.14 wt%), slightly lower Cr2O3 (0.26 to 0.63 wt%), 

similar CaO (0.82 and 0.97 wt% (with one sample having 0.72 wt%)) and higher SiO2 

contents (55.84-57.15 wt%). Opx from the other two samples (MGP1b and MGP1g) have 

Al 2O3 (2.3-3.32 wt%) contents comparable (or slightly higher) to those of lherzolites but 

lower mg#, ranging from 85.24 to 89.53. They are also marked by similar CaO contents 

(0.79-0.98 wt%) but lower SiO2 (54.1-55.91 wt%) and Cr2O3 (0.26-0.6 wt%) contents. 

Finally orthopyroxenes from sample MGP4b are characterized by a very high mg# (91.6-

92.76), and by Al2O3, SiO2 and CaO comparable to those of lherzolites. In fact Al2O3 

varies from 2.38 to 2.94 wt%, SiO2 from 55.76 to 57.23 wt% and CaO from 0.85 to 1 wt%. 

Cr2O3 content is slightly higher, ranging from 0.44 to 0.73 wt%. As it can be appreciated 

from the proposed diagrams, the opx3 (those arranged in vein in the dunitic sample 

MGP2a) are always distinguished from all the others. They have a mg# analogous to those 

of opx from lherzolites and harzburgites MGP1c and MGP3b, comprised between 90.45 

and 91.49, but they have (at comparable mg#) higher Al2O3 content (3.02-3.52 wt%), and 

lower CaO (0.76-0.89 wt%), SiO2 (54-55.47 wt%) and Cr2O3 (0.2-0.4 wt%) contents. 

Opx1 from the other dunitic sample (MGP1h) have comparable Cr2O3 (comprised in the 

range 0.25-0.42 wt% except one analyses up to 0.56 wt%) and CaO (0.8-0.96 wt%) 

contents to those of opx3 of sample MGP2a, but they show much higher SiO2 (57.29-57.88 

wt%) and lower Al2O3 (1.18-1.59 wt%) contents. 
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Figure 6.6: Al2O3 (A), Cr2O3 (B), SiO2 (C), CaO (D) vs mg# for orthopyroxenes. 

 

 

 

 

C 

D 



6. Geochemistry of the mineral phases 

~ 54 ~ 

6.1.4 Spinel 

As for the clinopyroxenes, spinels (Appendix 4) have been further classified according to 

their textural position in “Spcpx” and “Sp”: the former are those occurring close to a cpx, 

while the latter is not related to any pyroxene. The legend of the following diagrams 

showing the composition of the spinel is the same than that of Figure 6.1. 

In Figure 6.7 are plotted the data according to the spinel textural positions. It is possible to 

highlight the presence of three groups. One is composed of the Spcpx that have a large range 

of mg# (61.19-77.18) and low cr# (37.06-50.97), indicating that these spinels have a higher 

Al 2O3 content with respect to Cr2O3 (Group I). All the other spinels (those not related to the 

cpx) fall in the second group (Group II), at higher cr# (49.21-60.60) and lower mg# (61.95-

67.36) comparable only with that of few Spcpx. The third group (Group III) is composed of 

few spinels of both Sp and Spcpx, at very low cr# (17.48-26.50) and mg# (54.96-64.86).  

 

Figure 6.7: cr# vs. mg# for spinels. The two symbols indicate their different textural position. The thin black 

line indicates Group I, the bold black line Group II and the dashed bold black line Group III. 
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Also if we take into account the lithotype, in Figure 6.8 A and B it is possible to observe 

that spinel from lherzolites have mg# and cr# ranging from 72.28 to 73.13, and from 37.06 

to 38.15 respectively, with only one sample falling outside these ranges (mg#=77.18 and 

cr#=38.53). Those belonging to harzburgites have quite different geochemical 

composition, with one sample (MGP4b) having the highest mg# (74.83-76.91) and cr# 

comparable to that of lherzolites; three samples (MGP1b, MGP1c and MGP3b) 

characterized by higher cr# with respect to MGP4b and lherzolites (42.63-59.97) and lower 

mg# (61.19-67.48), and two spinels of sample MGP1g with very low mg# and cr#. Spinels 

of dunites fall in the field defined by the three harzburgites MGP1b, MGP1c and MGP3b, 

with mg# ranging from 61.95 to 66.36 and cr# from 46.64 to 57.05. Three Spcpx from 

dunite MGP1h plot outside this group, having slightly higher mg# (69.55-70.42) and lower 

cr# (43.46-43.89). Finally spinels of the wehrlite are the most aluminiferous (cr# 17.48-

20.82) and have mg# ranging from 62.63 up to 64.86. 
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Figure 6.8: cr# vs. mg# for spinels. In (A) spinels are subdivided only for lithotype, while in (B) both for 
lithotype and textural position. 
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6.2 Trace element compositions 

6.2.1 Clinopyroxene 

Trace element compositions of clinopyroxenes are reported in Appendix 5. All the 

patterns do not show any correlation neither with the textural position (Figure 6.9) nor the 

lithotype. Thus cpx1 and cpx2 are practically indistinguishable solely on the base of trace 

element composition. Chondrite-normalized trace element and REE (Rare Earth Elements) 

compositions for each sample are proposed in Figure 6.10 and 6.11. Symbols representing 

the samples are shown in Figure 6.1 B.  

Cpx from lherzolites are characterized by a strong positive Th anomaly, a strong negative 

Nb anomaly, and negative Zr and Ti anomalies. Most of them are LREE (Light REE) 

enriched with (La/Yb)N ranging from 2.09 to 5.57. Few grains are marked by a lower 

(La/Yb)N ratio comprised between 1.55 and 1.96, corresponding to an increase of the 

HREE (Heavy REE) content. Clinopyroxenes from harzburgites show similar positive Th 

and negative Nb anomalies to those highlighted for the lherzolites, but they are also 

characterized by more pronounced negative Ti anomaly and by a very variable, but always 

negative, Zr anomaly. In fact, while sample MGP1c (and few grains of MGP4b) show a 

slightly negative Zr anomaly, cpx from MGP1b, MGP3b and MGP4b are marked by a 

strong negative Zr anomaly. The REE patterns resemble those of the lherzolites, with an 

enrichment in LREE, most of the cpx having a (La/Yb)N comprised between 2.09 and 7.28. 

Some of them are characterized by a contemporaneous HREE enrichment, leading to a 

decrease of the (La/Yb)N ratio (0.87-1.68). 

Only one clinopyroxene from the dunite MGP2a (the sample with the vein of 

orthopyroxene) has been analyzed. It shows a more fractionated incompatible trace 

element pattern, always characterized by the prominent positive Th and negative Nb 

anomalies. It has also marked Zr and Ti negative anomalies, and a steep REE pattern, with 

a (La/Yb)N equal to 4.11. 

As described for lherzolites, harzburgites and dunite, clinopyroxenes of the wehrlite are 

also characterized by the negative Nb and positive Th anomalies, even if the last one is less 

marked than that of the other cpx because of the lower Th content. Indeed while in the Lh 

it varies from 0.235 up to 14.7 ppm, in the Hz from 0.706 to 14.2 ppm, and in the Du it is 
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equal to 2 ppm, Th content of the cpx of the wehrlite ranges from 0.12 and 0.41 ppm. Also 

the two negative Zr and Ti anomalies are present in the wehrlitic clinopyoxenes, the former 

being generally marked and the second varying from slightly to strong. Based on REE 

patterns two different kind of cpx can be highlighted, one with a convex upward pattern 

and a (La/Yb)N ranging from 0.79 and 1.04 and another that show LREE enrichment with a 

(La/Yb)N varying from 2.87 up to 5.26. These two compositions, however, are not related 

to different textural position. 

Finally in Figure 6.12 two binary diagrams are proposed. In this case the trace elements 

are correlated with the Al2O3 content of the samples (as index of depletion). As it can be 

observed the (La/Yb)N (Figure 6.12 A) and the SrN content (Figure 6.12 B) increase with 

the decreasing of the Al2O3. This behaviour rules out a relation of the composition of the 

samples to a depletion evolution, because in this case we should observe an inverse trend, 

i.e. a decreasing of the LREE with the decreasing of the Al2O3 content. 

 

 

Figure 6.9: Chondrite-normalized trace element compositions of clinopyroxenes. The blue field 
encompasses the patterns of cpx2, while cpx1 are all represented by black lines. 

 

0,001

0,01

0,1

1

10

100

1000

Ba Th Nb La Ce Sr Nd Zr Sm Eu Ti Gd Dy Er Yb Lu



6. Geochemistry of the mineral phases 

~ 59 ~ 

 

Figure 610: Chondrite-normalized trace element compositions of clinopyroxenes from Estancia Sol de 

Mayo. 
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Figure 6.11: Chondrite-normalized REE patterns of clinopyroxenes from Estancia Sol de Mayo. 

 

 

 

 



6. Geochemistry of the mineral phases 

~ 61 ~ 

A 

 

B 

 

 

Figure 6.12: (La/Yb)N (A) and SrN (B) vs. Al2O3. 
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6.2.2 Orthopyroxene 

Trace elements compositions of orthopyroxenes are shown in Appendix 6, while the 

chondrite-normalized trace elements and REE patterns are shown in Figure 6.13 and 

Figure 6.14 respectively. Orthopyroxenes from the two lherzolites are characterized by a 

prominent positive Th and negative Sr, Zr and Ti anomalies. MGP2b and MGP2b2 show 

flat MREE (Medium REE) and HREE at about 5X chondritic, and depleted LREE with a 

negative Ce anomaly. The (La/Yb)N ratio varies between 0.06 and 0.3.  

Orthopyroxenes from harzburgites MGP1b and MGP1c display the same prominent 

positive Th and negative Sr, Zr and Ti anomalies similar to those from the lherzolites. Also 

their REE patterns show flat MREE and HREE slopes with a drastic LREE depletion with 

a (La/Yb)N ratio ranging from 0.14 to 0.18. The other three harzburgites (MGP1g, MGP3b 

and MGP4b) are characterized by the strong positive Th and negative Sr anomalies but 

slightly negative Zr and Ti anomalies. The REE patterns show flat HREE and depleted 

LREE and MREE, with (La/Yb)N ranging from 0.16 and 0.74. 

Finally orthopyroxenes analysed in the two dunites MGP1h and MGP2a show always 

marked positive Th and negative Sr anomalies, but while the former has slightly negative 

Zr and Ti anomalis, the latter (opx3 in vein) display a positive Zr and a prominent negative 

Ti anomalies. The REE patterns are similar, with flat MREE and HREE and a depletion in 

LREE evidenced also in this case by the low (La/Yb)N ratio between 0.21 and 0.36. 



6. Geochemistry of the mineral phases 

~ 63 ~ 

 

Figure 6.13: Chondrite-normalized trace element patterns of orthopyroxenes from Estancia Sol de Mayo. 
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Figure 6.14: Chondrite-normalized REE patterns of clinopyroxenes from Estancia Sol de Mayo. 
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On the basis of this preliminary description of the incompatible trace element 

concentrations of orthopyroxenes from Estancia Sol de Mayo it is quite clear that on the 

contrary of what observed for clinopyroxenes, two different groups of pattern could be 

distinguished. This is  highlighted by the difference in the negative Zr (that become 

positive in the case of the orthopyroxenes from the vein of sample MGP2a) and Ti 

anomalies that is possible to observe and by the different REE patterns. Hence Figure 6.15 

allows to better distinguish the different groups of orthopyroxenes. Figure 6.15A show Ti* 

[TiN/((EuN+GdN)/2)] vs (Ce/Yb)N. This diagram clearly distinguishes two groups of 

orthopyroxenes, one at low Ti* (i.e. prominent Ti negative anomaly) and (Ce/Yb)N (the 

lherzolites MGP2b and MGP2b2 and the harzburgites MGP1b and MGP1c, Group I ) and 

one at higher values of both (Ce/Yb)N and Ti* (three harzburgites MGP1g, MGP3b and 

MGP4b, and the two dunites MGP1h and MGP2a, Group II ). Figure 6.15B better 

constrains this subdivision by taking into account the Zr anomaly (expressed in the 

diagram as Zr*, [ZrN/((SmN+NdN)/2)]) that, as described previously, can be slightly to 

prominent negative, but also positive in one case. Once again it is possible to observe the 

two groups, but the orthopyroxenes in vein of sample MGP2a clearly plot outside Group 

II due to their positive Zr anomaly, forming Group III .   

 

 

Figure 6.15: Ti* (A) and Zr* (B) vs. (Ce/Yb)N for orthopyroxenes. Zr* is calculated as ZrN/[(NdN+SmN)/2], 

while Ti* is calculated as  TiN/[(EuN+GdN)/2]. 
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The complete trace element patterns of the three groups are shown in Figure 6.16. 

 

 

 

Figure 6.16: Trace element compositions (A, C and E) and REE (B, D, and F) of the three groups of orthopyroxenes. 
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6.3 P-T estimates 

Temperature and pressure estimates (Appendix 7) of the spinel-bearing ESM peridotites have 

been calculated using the two pyroxenes geothermometer of Brey and Köhler (1990) and the 

geobarometer of Köhler and Brey (1991). The former is based on the Fe exchange between the 

two pyroxenes for a fixed pressure of 1.5 GPa while the latter uses the Ca exchange between 

olivine and clinopyroxene. Unfortunately the measurements of the CaO content of the olivines 

have been performed only by Electron Microprobe, hence they are not so precise to guarantee 

reasonable and useful results. For this reason some care is needed looking at the diagram of 

Figure 6.17 particularly regarding those pressures exceeding 2 GPa. Notwithstanding the 

diagram indicate that most of the samples fall in the spinel stability field, with the temperature 

ranging from 1011 to 1044 °C and a pressure comprised between 1.2 and 2 GPa. A second 

group of samples fall in the plagioclase stability field and show a narrower range of pressure 

(0.15-0.54 GPa) and a wider range of temperature (943-1037 °C). Finally three P-T estimates 

fall in the garnet field (with temperature and pressure comprised between 1026 and 1055°C 

and between 2.4 and 3.7 GPa respectively). 

Because of the poor constrained equilibration pressures for Patagonian mantle xenoliths 

available in literature, only the T estimates of this suite of mantle nodules have been compared 

to those studied by Dantas (2007). As shown by the histogram proposed in Figure 6.18 the T 

obtained for the ESM mantle xenoliths fit well with those estimated for other localities from 

central Patagonia that show two picks, one at 1020-1040 °C (the majority of the samples) and 

another at 820-840 °C. Also Pali Aike (southern Patagonia) show almost the same T of ESM, 

with a major pick at 980-1000 °C. On the other hand, the localities from northern Patagonia 

show a very wide range of T of equilibration of the mantle nodules, varying from 780 up to 

1200 °C 
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Figura 6.17: P-T estimates of Estancia Sol de Mayo peridotites. PL, SP and GT stand for plagioclase, spinel and 
garnet respectively. 1 is the hydrous solidus, while 2 is the anhydrous solidus. 

 

 

Figura 6.18: Histogram of the T estimates of Estancia Sol de Mayo peridotites (green cylinders) and of peridotites 
from northern (red cylinders), central (pink cylinders) and south (blue cylinders) Patagonia (Dantas, 2007). 
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6.4 Sr and Nd systematics 

Separated clinopyroxenes from four samples from Estancia Sol de Mayo (two lherzolites 

and two harzburgites) have been analyzed by TIMS for the acquisition of the Sr and Nd 

isotopic ratios. The results are given in Table 6.1  

MGP1-A MGP2-A MGP2-B MGP4-A 
Rb (ppm) ˉ ˉ ˉ ˉ 
Sr (ppm) 138 99 100 125 
87Sr/86Sr 0.70386 0.70371 0.70374 0.70368 
2σ 0.00001 0.00001 0.00001 0.00001 
Nd (ppm) 9.11 4.92 5.81 11.2 
Sm (ppm) 2.37 1.37 1.70 2.97 
147Sm/144Nd 0.15662 0.16811 0.17595 0.16022 
143Nd/144Nd 0.51276 0,51279 0,51279 0,51269 
2σ 0,00001 0,00002 0,00001 0,00003 

 

Table 6.1: Sr and Nd isotopic compositions of the four Estancia Sol de Mayo samples. 

 

In the 143Nd/144Nd vs. 87Sr/86Sr diagrams proposed in Figure 6.19 A and B the analysed 

samples plot in the field of the mantle-derived basalts from the Southern Volcanic Zone 

(A), close to the HIMU field (B) described by Zindler and Hart (1986). They have a quite 

high 87Sr/86Sr ratio ranging from 0.70368 up to 0.70386, and low  143Nd/144Nd (0.51269-

0.51279). 

Figure 6.20 A and B shows the variation of the two isotopic ratios related to the inverse of 

the concentration of Sr and Nd respectively. It is clear that the negative correlation existing 

between 87Sr/86Sr ratio with 1/Sr (i.e. a contemporaneous increasing of the isotopic ratio 

with the concentration of Sr) and the positive correlation between 143Nd/144Nd and 1/Nd, 

are characterized by an increasing of the isotopic ratio correlated to a decreasing of Nd 

content.  

Finally in Figure 6.21 is shown the relationship between 143Nd/144Nd and 147Sm/144Nd 

ratios. The latter have been calculated as 0,1435*([Sm]/[Nd])*(3,69014+143Nd/144Nd). The 
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behaviour of the samples is the same already shown for Figure 6.20 B, i.e. a positive 

correlation between the two ratios, with an increasing of the 143Nd/144Nd related to an 

increasing of 147Sm/144Nd ratios with one sample (MGP4-A) that fall outside this trend.   

 

 

 

 

 

Figure 6.19: Sr–Nd isotopic composition of Estancia Sol de Mayo xenoliths (represented by the yellow 
diamonds). In (A) for comparison the fields of mantle derived basalt from volcanic zones from South 
America (NVZ, CVZ, SVZ from Conceicao et al., 2005) and Pali Aike (Stern et al., 1999) and Estancia Lote 
17 (Gorring and Kay, 2000), while in (B) are plotted the fields of DMM, HIMU, EM I and EM II from  
Zindler and Hart (1986). 
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Figure 6.20: 87Sr/86Sr vs. 1/Sr (A) and 143Nd/144Nd vs. 1/Nd (B). 
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Figure 6.21: 143Nd/144Nd vs. 147Sm/144Nd for Estancia Sol de Mayo xenoliths. 
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7. Comparisons 

The aim of this chapter is to compare major and trace elements contents of mineral phases 

of the xenoliths from Estancia Sol de Mayo, illustrated in Chapters 6, to other Patagonian 

localities studied mainly by Dantas (2007). In her work six localities (Table 7.1 and 

Figure 7.1) covering a length from North to South of about 1000 Km have been 

investigated (four from Northern Patagonia and two from Central Patagonia). To simplify 

the following discussion and to a better understanding of the proposed diagrams, the 

localities belonging to the same part of Patagonia will be represented by one symbol, full 

when referred to peridotites, and empty for the pyroxenites. For all the other symbols used 

refer to Figure 6.1. 

 

 

Northern Patagonia 
Area Meseta Somoncura Meseta Canquel 

        

Locality Cerro Aznare Praguaniyeu Cerro Rio Chubut Cerro de los Chenques 

        

Age of volcanism ~20-29 Ma ~20-29 Ma ~49-52 Ma ~20-25 Ma 

Central Patagonia 
Area Northeastern region Meseta Central 

        
Locality Cerro Clark Gobernador Gregores 

        
Age of volcanism ~11-2 Ma ~3,4-3,6 Ma 

 

Table 7.1: List of the localities compared with Estancia Sol de Mayo. 
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Figure 7.1: Sketch map of Patagonia (from Dantas, 2007) showing the position of the localities (red dots) 
chosen for the comparison with the samples from Estancia Sol de Mayo (represented by the red star). Dot 
numbers represent: 6 Cerro Aznare (Dantas, 2007), 10 Cerro Rio Chubut (Bjerg, 2005; Aliani, 2009), 12 
Cerro de los Chenques (Dantas, 2007; Rivalenti 2004, 2007), 23 Gobernador Gregores (Dantas, 2007; 
Rivalenti, 2004), 24 Cerro Clark (Dantas, 2007; Rivalenti, 2004), 25 Tres Lagos (Ntaflos, 2006; Rivalenti, 
2004). Red arrows indicate the absolute movement of the plates, while green arrows the relative one 
(Corvolàn, 1981; Ramos and Kay, 1992). The dashed white line represents the limit between the arc and 
back-arc. 
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The comparison of the clinopyroxenes from Estancia Sol de Mayo to those analyzed in 

other suites of mantle xenoliths highlights, as shown in Figure 7.2, the presence of three 

different trends. The two groups of cpx from ESM described in the Geochemistry chapter, 

the first characterized by mg# varying from 91.2 to 94, and high Al2O3 contents ranging 

from 4.52 to3.22 wt. %, and the second with mg# ranging from 82.3 to 93 and Al2O3 from 

7.3 wt. to 1.93 %, plot respectively along the trends that are defined as trend 1 and trend 

2. Also the cpx of peridotites from Northern Patagonia plot along the trend 1, with Al2O3 

contents ranging from 2.28 to 6.60 wt. % at mg# comprised between 94.98 and 89.38, 

while those from Central Patagonia are the most scattered, with almost an equal number of 

cpx plotting in the two groups (Al2O3 from 2.45 wt. % up to 8.17 wt. % with a mg# 

variable between 86.48 and 94.21). Cpx of wehrlites from Central Patagonia clearly plot 

along trend 2, and are characterized by Al2O3 contents ranging from 2.47 wt. % to 9.30 wt. 

%, and mg# varying between 82.01 and 93.19. Cpx from pyroxenites of Northern 

Patagonia are clearly divided into two groups: one fall in the same field of those belonging 

to the first trend (Al2O3 ranging from 2.66 wt. % to 8.09 wt. %, and mg# comprised 

between 89.48 and 92.69), while the second is not aligned neither with the first nor the 

second trend. In fact these cpx plot on a third trend (trend 3) with mg# varying from 84.56 

to 89.79 with low Al2O3 contents (2.65-4.43).  

 
Figure 7.2: Al2O3 vs. mg# diagram for clinopyroxenes of Estancia Sol de Mayo (for legend see Figure 6.1) 
and other localities from Patagonia (legend in the inset). Bold red line identifies “trend 1”, dashed bold red 
line “trend 2”, dashed bold black line “trend 3”. 
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The orthopyroxenes from Estancia Sol de Mayo also define two trends, one that can be 

linked to trend 1 and the second to trend 3 defined by cpx. The lack of trend 2 is due to 

the fact that it is defined by the cpx analyzed in the wehrlites, where opx is very rare. As 

reported in Figure 7.3 A and B the samples from Estancia Sol de Mayo described as 

enriched in Al2O3 and depleted in Cr2O3 (MGP2b, MGP2b2, MGP4b and MGP2a) plot 

along trend 1 together with the opx from the peridotites (Al2O3 and mg# varying between 

1.51 wt. % to 6.04 wt. % and 86.43 to 92.03 respectively) and pyroxenites (characterized 

by Al2O3 contents ranging from 2.97 wt. % to 4.85 wt. % and mg# comprised into a narrow 

range, from 90.15 to 90.60) from the Central Patogonia and a group of websterites from 

Northern Patagonia (Al2O3 and mg# varying between 3.56 wt. % to 4.62 wt. % and 89.74 

to 90.95 respectively). On the other hand, opx from harzburgites MGP1b, MGP1c, MGP1g 

and MGP3b, plot along trend 3 together with the second group of websterites from 

Northern Patagonia, characterized by Al2O3 contents varying from 1.90 wt. % to 3.62 wt. 

% and a mg# ranging from 80.43 to 88.34. The increasing of the mg# of the opx from ESM 

is linked to a decreasing of the Al2O3 content and an increasing of Cr2O3. 

The definition of similar trends to those defined by clinopyroxenes and orthopyroxenes is 

less clear when observing the cr# vs. mg# of spinels. As described in section 6.1.4 the 

spinels can be also divided into two groups, one comprising the majority of the phases 

analyzed crystals and characterized by a decreasing of the cr# (i.e. increasing of the Al2O3) 

with an increasing of the mg#, and a second group composed of very few grains (the 

spinels of the wehrlite MGP1d and the harzburgite MGP1g) that plot outside the mantle 

array at very low cr# (17.53-26.50) and mg# ranging from 54.96 to 64.86. In Figure 7.4 

the data from Dantas (2007) are plotted: it can be observed that spinels from the peridotites 

(characterized by cr# ranging from 11.80 to 34.79 and mg# comprised between 69.33 and 

77.73) and pyoxenites (with cr# and mg# varying from 9.54 to 22.97 and from 74.67 to 

77.82 respectively) from Northern Patagonia are aligned with those of ESM falling on the 

mantle array, but at lower cr# and higher mg#. Also the spinels of peridotites from the 

Central Patagonia (cr# ranging from 9.33 to 60.35 and mg# from 55.57 to 81.35) plot in the 

same field, even if they are more scattered (as also observed in Figure 7.3 for the 

clinopyroxenes belonging to the samples of the same area) and some of them are aligned 

with the spinels from the samples MGP1d and MGP1g. 
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Figure 7.3: Al2O3 vs. mg# diagram (A) and Cr2O3 vs. mg# (B) for orthopyroxenes of Estancia Sol de Mayo 
(for legend see Figure 6.1) and other localities from Patagonia (legend in the inset of Figure 7.2 A); the 
two fields represented by the bold red line and the dashed bold black line correspond to trend 1 and trend 3 
as in Figure 7.2. 
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Figure 7.4: cr# vs. mg# for the spinels of Estancia Sol de Mayo. For comparison also spinels of peridotites 
and pyroxenites from Northern and Central Patagonia are plotted. Symbols are shown in Figure 6.1 and 7.2. 
 

As already shown in Figure 6.12 the clinopyroxenes from ESM are characterized by 

LREE enrichment related to an Al2O3 depletion. This is true not only for the Estancia Sol 

de Mayo suite, but also for other Patagonian mantle xenoliths suites. The diagrams 

proposed in Figure 7.5 evidence the same situation for mantle peridotites from Cerro de 

los Chenques and Cerro del Fraile (Figure 7.5 A and A’) characterized by an increase of 

(La/Yb)N and the SrN when the Al2O3 content decreases. On the other hand, Cerro Rio 

Chubut and Tres Lagos (Figure 7.5 B and B’) are characterized by a decreasing of the two 

parameters correlated to a decreasing of the Al2O3 content. This is the typical situation in 

which a portion of mantle that underwent partial melting has not been subsequently 

affected by metasomatism. Finally a more complex situation is observed at Gobernador 

Gregores. As it can be appreciated from (Figure 7.5 C and C’) both the situations 

described for the other localities are recognized: in fact a group of sample clearly record 

only a depletion event, while a second is affected by metasomism that affect the REE and 

the Sr contents. 
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Figure 7.5: (La/Yb)N (A, B, C) and SrN (A’ , B’ , C’) (normalized to Chondrite) vs. Al2O3 content of 
clinopyroxenes from Estancia Sol de Mayo and other eight localities taken for comparison.  
 

 

Finally the isotopes from Estancia Sol de Mayo described in Chapter 6.4 have been 

compared to other samples (Appendix 8, Figure 7.6 and 7.7), chosen on the basis of the 

lithotype and the modal content of the clinopyroxenes. Most of them belong to the suite of 

mantle xenoliths studied by Dantas (2007), the others come from three suites studied by 

Bjerg et al. (2005), Faccini (2008) and Aliani et al. (2009).  

A A’  

B B’  

C’  C 
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Figure 7.6: 143Nd/144Nd vs 87Sr/86Sr plot. Symbols for each locality are reported in the inset. The full symbols 
represent peridotitic samples (lherzolites, harzburgites, wehrlites), while empty symbols indicate pyroxenites. 
For the comparison fields refer to Figure 6.19. 

 

 

Figure 7.7: 143Nd/144Nd vs 87Sr/86Sr plot. Symbols are the same that in Figure 7.6. Sr-Nd of the plateau lavas 
are also plotted. The Somoncura Province is represented by the light orange field (Kay et al., 2004), the 
Triple Junction Province by the blue field (Gorring et al., 1997, Gorring and Kay, 2001), Meseta Lago 
Buenos Aires by the yellow field (Gorring et al., 2003) and Pali Aike by the red field (D’Orazio et al., 2000, 
2001).  
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As it is possible to observe, the samples (that plot all on the mantle array) can be divided 

into three different groups: the first group (Group I ) is represented by a couple of samples 

from Cerro de los Chenques, one peridotite and one pyroxenite, having an isotopic 

composition close to the depleted mantle (DM). The most depleted has a 87Sr/86Sr and 
143Nd/144Nd ratios of 0.702704 and 0.513087 respectively, while the second has 87Sr/86Sr of 

0.702736 and 143Nd/144Nd of 0.513038. The second group (Group II ) of samples 

comprises all those analyzed from Gobernador Gregores, those from Pali Aike, two from 

Cerro de los Chenques, two from Cerro Fraile and two from Cerro Clark. They are all 

peridotites, and they are characterized by a typical HIMU signature, varying the 87Sr/86Sr 

ratio from 0.703046 to 0.703464 and the 143Nd/144Nd between 0.512807 and 0.512986. 

Finally the last group (Group III ) comprises the four samples from Estancia Sol de Mayo, 

three from Cerro de los Chenques, and one from Cerro Rio Chubut and Cerro Clark. 

Except one mantle xenolith from Cerro de los Chenques that is classified as websterite, all 

the others are peridotites. These samples are clearly aligned toward the Enriched Mantle I 

(EM I) composition. They show a wider range in the isotopic composition of both the 
87Sr/86Sr and the 143Nd/144Nd ratio being the first comprised between 0.703676 and 

0.704297, while the second ranging from 0.512694 and 0.512902.  

The samples from the different groups are also characterized by different trace element 

patterns. As highlighted by Figure 7.8 the samples are characterized by an increasing of 

the LREE contents proceeding from Group I to Group III, being the most depleted those 

belonging to the first one.  
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Figure 7.8: Chondrite-normalized trace element patterns of Group I (A), Group II (B) and Group III (C) 
clinopyroxenes. For the symbols refer to the inset of Figure 7.6. 
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8. Discussion 

In this section the results obtained and described in the previous chapter will be discussed. 

First of all I will discuss those from Estancia Sol de Mayo and then I will try to focus the 

attention on all the other localities used for the comparison and of which some isotopic 

analysis have been performed.  

The geochemical features of the clinopyroxenes and orthopyroxenes analyzed at Estancia 

Sol de Mayo and shown in Chapter 6, highlight the presence of three different evolutionary 

trends showing a decrease in Al2O3 content with the increasing of the mg# (Figure 6.3 A 

and 6.6 A). The difference among the trends could be supported by the partial melting of 

three different sources, that have almost the same mg# but a different Al2O3 content. If we 

consider this kind of evolution for the ESM xenoliths, we should observe a correlation 

between the increasing of the mg# and the nature of the lithotype left from the partial 

melting, i.e. the gradual passage from lherzolites to harzburgites to dunites. This is not the 

case for the xenoliths of this suite, because as the proposed diagrams suggest, no 

correlations can be established among the variation of the mg# and the lithotypes. The 

hypothesis of an origin of the xenoliths linked to a simple partial melting is also ruled out 

by the trace element composition (Figure 6.12 A and B). In the first diagram (La/Yb)N vs. 

Al 2O3 if we assume to melt a fertile lherzolite, the residue left would have a minor Al2O3 

content (what we observe from the major elements) coupled with a decreasing of the 

LREE, i.e. in this case a decreasing of the ratio (La/Yb)N. Indeed the diagram clearly show 

a negative correlation between these two parameters, with an increasing of the LREE 

linked to a decreasing of the aluminum content. The same is observed from Figure 6.12 B 

in which Sr is correlated with Al2O3. Sr should behave as the LREE, i.e. it should decrease 

when Al2O3 decrease. But it shows the same feature than the (La/Yb)N, it increases when 

Al 2O3 decreases. These geochemical features as well as the presence also of two texturally 

different cpx and opx observed in thin sections highlight a metasomatic/refertilization 

event affecting the upper mantle beneath Estancia Sol de Mayo.  
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8.1 Nature of the metasomatic liquid 

One of the major problem when dealing with mantle xenoliths 

metasomatism/refertilization is to identify the nature of the liquid that could have affected 

the portion of mantle considered. As far as ESM suite is concerned, in Figure 8.1 is 

proposed the Al2O3 vs. mg# diagram for the clinopyroxenes (already shown in Figure 7.2) 

in which the three trends highlighted by the cpx from pyroxenites and wehrlites from 

northern and central Patagonia (Dantas, 2007) are plotted together with their REE patterns 

(in the three insets and in Figure 8.2).   

Figure 8.1: Al 2O3 vs. mg# for ESM clinopyroxenes and REE (insets) compositions of clinopyroxenes of 
pyroxenites and wehrlites from northern and central Patagonia (Dantas, 2007). Symbols are the same of 
Figure 7.2. 

 

It is clear that the three groups have different trace element compositions (better 

highlighted by Figure 8.2): pyroxenites from northern Patagonia (trend 1) are 

characterized by prominent Nb and slightly negative Ti anomalies, depleted LREE and 

from enriched to flat MREE and HREE. The same feature can be observed also for the 

clinopyroxenes of the pyroxenites of central Patagonia that fall in the same group, except 

for a slightly negative Zr anomaly and for less enriched REE patterns. Wehrlites from 
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central Patagonia that belong to trend 2 show the highest trace elements concentrations, 

with prominent negative Nb and Ti 

 

 

Figure 8.2: Chondrite-normalized trace elements composizions (A) and REE (B) of pyroxenites and 
wehrlites from northern and central Patagonia (Dantas, 2007). 

 

anomalies, negative to positive Zr anomaly, enriched LREE and fractionated HREE. 

Finally clinopyroxenes of pyroxenites from northern Patagonia that form trend 3 are 

characterized by the wider range of trace elements concentrations, with negative Nb, Zr 

and Ti anomalies. LREE contents vary from depleted to slightly enriched and fractionated 

A 

B 
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to flat HREE. The REE patterns of the cpx from peridotites from Estancia Sol de Mayo 

clearly resemble those of the cpx from pyroxenites of the trend 3 as it is possible to 

observe from Figure 8.3.  

 

Figure 8.3: Chondrite-normalized REE compositions of ESM peridotites. The green line identifies trend 1, 
the yellow line trend 2 and the pink line trend 3.  

 

The next step consists in understanding the origin of the clinopyroxenes from ESM (those 

belonging to trend 3) and also constrain the possible evolution of those belonging to the 

other two trends. As already said, from the major element compositions the ESM samples 

identified two trends, trend 1 and trend 2, but from Figure 8.2 and 8.3 it is possible to 

observe that their trace element compositions resemble those of the cpx belonging to trend 

3. The REE patterns of the clinopyroxenes from trend 3 are similar to those of the 

transitional/alkaline lavas from the Somoncura Province, as shown in Figure 8.4 A and B. 

Starting from these compositions, and using the partition coefficient between 

clinopyroxene and transitional melts (the data from GERM, http://earthref.org/GERM/) 

and considering the most and the least LREE-enriched Somoncura lavas, the 

clinopyroxenes in equilibrium with these lavas have been calculated. The results are shown 
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in Figure 8.5: the two patterns represented by the white asterisks with a black background 

are the clinopyroxenes calculated from the two selected Somoncura lavas. They clearly fall 

in the field represented by the pink dashed line (clinopyroxenes of pyroxenites from 

northern Patagonia, trend 3) and their patterns are exactly the same than those of the 

clinopyroxenes from the peridotites of ESM (blue lines), confirming that a 

transitional/alkaline metasomatism event has affected the mantle beneath ESM.  

Furthermore, while the clinopyroxenes of trend 2 are clearly related to an alkaline 

metasomatic event, for those belonging to trend 1 is feasible to infer a 

metasomatism/refertilization event related to tholeiitic melts. Figure 8.6 supports this 

hypothesis: the REE patterns of phenocryst cpx from tholeiitic lavas from literature have 

been plotted together with those of the clinopyroxenes of trend 1. The two suites of 

clinopyroxenes show exactly the same patterns, supporting the evidence of the percolation 

in the ESM mantle of a tholeiitic melt. The same kind of process can be envisaged also for 

some ESM cpx, that fall on trend 1 (Figure 8.2). What can be speculated is that the ESM 

mantle portion suffered a tholeiitic refertilization process, notwithstanding the complete 

absence within the Meseta Lago Buenos Aires of tholeiitic lavas, being typical eruptive 

products of the main plateau sequences of all the other Triple Junction Province mesetas. 

This refertilization process with respect to “normal” metasomatism is characterized by a 

much higher melt/rock ratio. The tholeiitic refertilization has been followed by a 

transitional/alkaline metasomatic event (as shown by the calculation of the clinopyroxenes 

in equilibrium with the lavas of Somoncura) as suggested by the succession recorded in all 

plateaux. The large difference in trace element contents between the two melts caused a 

substantial enrichment of the source, not associated to an analogous increase in major 

element, i.e. Al2O3, which are much more similar. In order to  have this last event recorded 

by cpx, it should have been occurring some time before the entrainment and the uprising of 

the xenoliths.  

The possible involvement of a tholeiitic melt as refertilization agent can be put forward 

also considering the textural and geochemical features of orthopyroxenes. From the 

petrographic study of the samples three generations of orthopyroxenes are recognized. 

They have been classified mainly as protogranular with exsolution lamellae (opx1), or 

smaller (with respet to opx1) protogranular without exsolution lamellae (opx2), with some 

grains arranged in a vein (opx3). The latter is a clear evidence of a metasomatic event, that 
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has affected the sample very recently. Because of the new crystallization of opx, it is easy 

to support and confirm the idea that a SiO2-satured (or oversatured) melt (such as a 

tholeiite) percolate the mantle.  

 

 

 

B 

A 
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Figure 8.4: Chondrite-normalized REE of trend 1 and trend 2 clinopyroxenes (A) and trend 3 (B) of 
peridotites and pyroxenites from northern and central Patagonia (Dantas, 2007) with the blue field 
representing in both the diagrams the tholeiitic lavas of Somoncura.  

 

 

Figure 8.5: Chondrite-normalized REE of calculated clinopyroxenes (white asterisk with black 
background) in equilibrium with a tholeiitic melt. For the blue patterns and the three different fields refer to 
Figure 8.3 

 

Figure 8.6: Chondrite-normalized REE clinopyroxenes belonging to trend 1 (for symbols see the previous 
Figures) and of phenocrysts of clinopyroxenes of tholeiitic lavas from Ethiopia (Beccaluva et al., 2009). 
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If this will be the case the contemporaneous presence of tholeiitic and transitional/alkaline 

melts in the ESM mantle has to be inferred, contrary of what it is observed in the lava 

succession of the plauteaux where tholeiitic magmas always anticipate those transitional or 

alkaline. 

 

8.2 Isotopic modelling 

Many natural processes on Earth cause mixing of two or more components having 

different chemical and/or isotopic compositions. The chemical and isotopic compositions 

of two-component mixtures are expressed by simple linear or hyperbolic patterns. When 

two components (A and B) mix, the chemical composition of the mixture (M) vary 

systematically depending on the relative abundances of the end members. With this aim fA 

is defined as the mixing parameter: fA = WA/(WA + WB) where WA and WB are the weights 

(or volumes) of the components A and B in the mixture. As it is possible to understand fA 

is a dimensionless number, that can vary from 0 and 1. Obviously it will be 0 when the 

mixture M is composed only by component B and 1 when only component A is present in 

the mixture. Hence the mixing parameter fA is the “weight fraction” or “volume fraction” 

of component A in two component mixtures. That means that the complementary weight 

fraction of B (fB) is equal to 1- fA, i.e. equal to WB/(WA + WB). The concentration of any 

element (X) in a binary mixture of A and B depends on the concentration of that element in 

the components A and B. Therefore the concentration of element X in a mixture (M) of 

components A and B is: (X)M = (X)AfA + (X)B(1 - fA), where the parentheses mean 

“concentration”. By rearranging the last equation it is possible to obtain that (X)M =  

fA[(X) A - (X)B] + (X)B, that represents the equation of a straight line with slope m equal to 

(X)A - (X)B and intercept q equal to (X)B. 

The isotope composition of some elements are variable because some of their isotopes are 

the products of naturally occurring radioactive parents or because of isotope fractionation. 

Therefore it is possible to consider cases where mixing occurs between two materials that 

contain the same element but with different isotopic compositions. Imagine that we want to 

mix two components that have different 87Sr/86Sr ratios. For what has been said above, the 

concentration of Sr of a mixture of two components A and B is given by (Sr)M = (Sr)A fA + 

(Sr)B(1 - fA) [1]. If the end members have different 87Sr/86Sr ratios, then the isotopic 
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composition of any mixture must be the weighted sum of the 87Sr/86Sr ratios where the 

weighting factors are (Sr)A/(Sr)M and (Sr)B/(Sr)M (a detailed derivation is given by Faure, 

1986). Therefore the equation for the 87Sr/86Sr ratio of a binary mixture is: 
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 When two components having different Sr concentrations and isotopic compositions are 

mixed in varying proportions, the resulting mixtures differ from the end members both in 

terms of Sr concentration and 87Sr/86Sr ratio. Both these values can be calculated from the 

previously defined equations for selected values of the mixing parameter fA. However most 

of the times the problem that the geologists have is the opposite, that means that we 

measure the Sr concentration and 87Sr/86Sr ratio of a suite of samples and then we wish to 

test the hypothesis that they derive from the mixing of two components. The desired 

isotopic mixing equation is derived by solving equation [1] and [2] for fA and equating the 

results. The outcome of this algebraic manipulation is: (87Sr/86Sr)M = [a/(Sr)M] + b [3],  

where a is equal to     
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Equation [3] is a hyperbola in coordinates of (Sr)M (x-coordinate) and (87Sr/86Sr)M (y-

coordinate) whose position and curvature are defined by the numerical values of a and b, 

which depend entirely on the compositions of the end members. 

 

8.2.1 Isotopic composition of Patagonian clinopyroxenes 

The isotopic results measured on separated cpx from four samples of Estancia Sol de Mayo 

(Figure 6.19) and from 29 samples from other localities of Patagonia (Figures 7.6 and 

7.7), support the idea of the presence of a transitional/alkaline percolating fluid in the 

peridotitic matrix as previously put forward. Using the equations described in Chapter 8.2 

the mixing percentage of two components, DMM and EM II have been calculated. The 

compositions of these two end members have been selected on the basis of previous works: 

the depleted mantle composition is the same used by Ionov et al., (2002) and corresponds 
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to a residue of about 5% partial melting of a primitive spinel lherzolite; its 87Sr/86Sr and 
143Nd/144Nd ratios are of 0.70263 and 0.51313 respectively, while the Sr and Nd 

concentrations are 14.72 and 0.581 ppm respectively. The enriched mantle component is 

an average of the Kerguelen OIB alkaline basalts (data from GEOROC, 

http://georoc.mpch-mainz.gwdg.de/georoc/). 87Sr/86Sr ratio is 0.705479 and 143Nd/144Nd 

ratio is 0.512634, while its Sr and Nd concentrations are 235 and 14.78 ppm respectively.  

In Figures 8.7 is reported the same figure already presented in Chapter 7 with the mixing 

hyperbola superimposed. As it is possible to observe the samples do not fall on the mixing 

line, but they are aligned just below it. Furthermore in the diagram fA are also indicated. A 

couple of samples from Cerro de Los Chenques fall very close the DMM composition, 

while for the other four samples it is possible to infer a mixing with the EM II ranging 

between 3% and 8%. At Gobernador Gregores and Pali Aike the percentage of EM II 

involved in the mixing is around 2%, less than that of Cerro de Los Chenques. Cerro Clark 

is the locality that show the major influence of an enriched component added to the 

system: it goes from 2-3% up 9%. Finally Estancia Sol de Mayo is characterized by high 

percentage of the EM II mixed with the DMM, that has been calculated around 5-6%.  
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Figure 8.7: 143Nd/144Nd vs. 87Sr/86Sr for the 33 samples analyzed. Fields are from Zindler and Hart (1986). 
The red (A) and white (B) asterisks with black background represent the DMM and EM II compositions of 
the end-members chosen for the mixing. The solid black line represents the mixing hyperbola. Numbers are 
the percentages of the EM II component in the mixture. Black asterisks represent the different isotopic 
compositions of the mixtures.  

 

8.3 Considerations on the lithospheric mantle beneath Patagonia 

From the comparison of Chapter 7 it is possible to have an overview of a large area of 

Patagonia. From the clinopyroxenes study, three different trends are recognized. The cpx 

from Estancia Sol de Mayo plot along two of these trends together with those from 

peridotites and pyroxenites from Northern and Central Patagonia. The third trend is that 

composed of the cpx from the pyroxenites from Northern Patagonia. Furthermore the two 

diagrams shown in Figure 7.5 highlight the behaviour of the trace element compositions 

that are plotted versus Al2O3 content. Not only the samples from Estancia Sol de Mayo 

show a negative correlation between LREE/Sr and Al2O3. Also those from Cerro de los 

Cenques, Cerro Clark, Praguanyieu and Cerro Fraile are characterized by enrichment in 

LREE and Sr related to a decrease of the aluminum content, that as explained for the cpx 

of ESM, can be related to a metasomatic event affecting the mantle. At Gobernador 

Gregores the situation is more complex, because one group of cpx shows the typical 

correlation related to partial melting processes, while another group is characterized by the 

same trend observed for ESM. That means that at Gobernador Gregores there is a clear 

evidence of a mantle that underwent partial melting, followed by metasomatic event able to 

increase the LREE/Sr contents. Two localities (Cerro Rio Chubut and Tres Lagos) clearly 

evidence only to partial melting events, showing a positive correlation between (La/Yb)N – 

SrN and Al2O3. For the latter locality Ntaflos et al. (2006) consider this mantle portion as a 

residuum after partial melting event starting within the garnet stability field and ending 

within the spinel stability field. No evidence of metasomatic process were detected by the 

same authors in this locality. 

Also the orthopyroxenes from the different localities define two trends, that are the same of 

those observed for the clinopyroxenes. The story of the cpx can be linked to that of the 

orthopyroxenes. In fact if we consider, for example, at the mantle xenoliths from ESM the 

samples containing the cpx affected by the increasing of the A2O3 content, they also 
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display the opx characterized by the same enrichment. The same happens for those Al2O3 

depleted samples. 

Finally from the isotopic results shown in the previous Chapters and from the data reported 

above it is possible to point out a mixing between a depleted and an enriched mantle 

beneath Patagonia. Although for two investigated localities (Gobernador Gregores and Pali 

Aike) the percentage of the EM II is very low (around 2%), for Estancia Sol de Mayo, 

Cerro de Los Chenques and Cerro Clark a mixing of up to 9% of an EM II component has 

to be considered.  
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9. Conclusions 

A new suite of mantle xenolites from Patagonia has been studied. They have been sampled 

at the south western corner of the Meseta Lago Buenos Aires, one of the five mesetas 

comprised in the Triple Junction Province together with the Meseta de la Muerte, 

Belgrano, Central and the northeastern region and are entrained in the alkaline post-plateau 

lavas of the MLBA. As described in the geological setting MLBA lavas can be subdivided 

in two sequences related to the main and to the post-plateau event respectively. 40Ar/39Ar 

radiometric ages (Figure 3.6) from MLBA main plateau lavas range from 10 to 4.5 Ma 

with the oldest lavas exposed on the southeast edge of the plateau, while post-plateau lavas 

range from 3.4 to 0.125 Ma, but most are ≤1.8 Ma in age. Chondrite-normalized trace 

element patterns of the lavas resemble those of the OIB, as well as those of the main and 

post-plateau from the TJ province, the latter having a slightly higher incompatible trace 

element concentrations with respect to those of the main plateau. The OIB signature of the 

samples is also highlighted by the Ba vs. Nb diagram proposed in Figure 4.5, in which the 

samples clearly fall in the field of the within plate composition, together with those of all 

the other localities belonging to the TJ province. 

The xenoliths are represented by anhydrous spinel-bearing harzburgites and dunites, with 

minor lherzolites  and one wehrlite. They are characterized by a coarse grained 

protogranular texture and they are devoid of modal metasomatic features. They show two 

texturally different clinopyroxenes. One is protogranular, defined cpx 1, while the second 

is linked to the spinel (cpx 2). Also three different orthopyroxenes are recognized: one is 

represented by large protogranular crystals with exsolution lamellae (opx1); the second by 

small clean and undeformed grains without exsolution lamellae (opx2) and the last occurs 

as smaller grains arranged in vein (opx3). 

On the whole the geochemical features of clinopyroxenes and orthopyroxenes major 

element compositions highlight three different trends. Two of them are shared by cpx and 

opx: the first is characterized by high Al2O3 content at almost constant mg# (trend 1) and 

the second by a slight increase of the Al2O3 content with a decreasing of the mg# (trend 

2). A third one is observed only for the cpx and is situated in between the other two trends: 

it comprises the clinopyroxenes of the wehrlites. The trace element concentrations 

normalized to those of the Chondrite do not show any difference between cpx 1 and cpx 2 

(characterized by prominent to slightly negative Nb, Zr and Ti anomalies and LREE 
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enriched), but discriminate the three groups of the orthopyroxenes: one is represented by 

the opx 3 (those arranged in vein) characterized by a prominent positive Zr anomaly, while 

the other two show always prominent to slightly negative Ti and Zr anomalies and LREE 

depleted. 

The correlation between incompatible trace elements ((La/Yb)N and SrN) and Al2O3 

features of the cpx highlight the presence of a refertilization/metasomatic events affecting 

the Estancia Sol de Mayo upper mantle, evidenced by the enrichment of the LREE and Sr 

correlated to a decreasing of the Al2O3 content. The melt accounted for the refertilization 

process has a tholeiitic affinity: the hypothesis is supported by the major element 

compositions of some clinopyroxenes falling in trend 1 and by the occurrence of 

secondary orthopyroxene arranged in vein that need a SiO2-saturated (or oversaturated) 

parental melt to crystallize. Because of the lack on the ESM field of tholeiitic lavas, and 

taking into account the large amount of melt involved in tholeiitic magmatic activity, the 

most feasible process which can be envisaged is refertilization, i.e. with a melt/rock ratio 

higher than metasomatism. 

A further metasomatic event occurred within the ESM mantle. The interaction affected the 

trace element compositions of the clinopyroxenes (as described in chapter 8.1). The 

metasomatizing agent is transitional/alkaline in affinity and analogous to the lavas 

occurring within the various plateaux. This conclusion has been reached by reconstructing 

the REE pattern of a clinopyroxene in equilibrium with a selected lava from the 

Somoncura Province that resemble those of the clinopyroxenes from Estancia Sol de 

Mayo. This metasomatic event is also evidenced by the isotopic data for some separated 

ESM cpx that are characterized by high 87Sr/86Sr and low 143Nd/144Nd ratios, plotting close 

to the HIMU field.  

From the comparison with other localities already studied it is evident that the Al2O3 

enrichment observed for both the cpx and the opx is common all over Patagonia. Also the 

cpx from other Patagonian localities are aligned on the same trends than those defined by 

the cpx and opx of Estancia Sol de Mayo. Moreover the trace elements features of mantle 

xenoliths evidence the occurrence in some localities of metasomatic events affecting the 

upper mantle. Other localities only evidence mantle partial melting events. 
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Sr-Nd systematic performed for all the localities show a large range of both 87Sr/86Sr and 
143Nd/144Nd isotopic ratios. This large range is also observed in xenoliths from a same 

locality (i.e. Cerro de Los Chenques and Cerro Clark). Because some of the samples fall 

close to the DMM field and the other are aligned toward the EM II end member, some 

calculations of isotopic mixing have been performed. It has been possible to asses that for 

the most radiogenic samples up to 9% of an EM II has to be considered in order to account 

for the samples with the highest Sr and the lowest Nd isotopic ratios.  
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Appendix: Analytical methods 

 

This study is based on the major and trace elements characterization of the mineral phases 

of Patagonian mantle xenoliths measured in Electron Microprobe (EMP) and major and 

trace element compositions of the entraining lavas performed with X-Ray Fluorescence 

(XRF). Furthermore 87Sr/86Sr and 143Nd/144Nd have been measured on separated 

clinopyroxenes with Thermal Ionization Mass Spectrometer (TIMS). All the analysis have 

been performed at the UMR 5563 (LMTG, Observatoire Midi-Pyrenees) of the University 

Paul Sabatier (Toulouse III), except the bulk rock composition of the lava, performed at the 

University of Ferrara. 

Major element compositions of minerals were determined with the CAMECA SX50 

electron microprobe and a standard program: beam current of 20 nA and an acceleration 

voltage of 15 kV, 10 – 30 s of peak counting, 10 s of background counting, and natural and 

synthetic minerals as standards. Nominal concentrations were subsequently corrected using 

the PAP data reduction method (Pouchou & Pichoir 1984). The theoretical lower limits of 

detection are about 100 ppm (0.01%). 

Concentrations of REE and trace elements in clinopyroxene and orthopyroxene were 

determined in situ using the Agilent 7500 ICP – MS instrument (Observatoire Midi 

Pyrénées, University Toulouse III) coupled either to CETAC laser ablation module that 

uses a 266 nm frequency-quadrupled Nd-YAG laser or either to a commercial femtosecond 

Ti : Sa laser system (Amplitude Technologies Pulsar 10) based on the Chirped-pulse 

amplification  (CPA) technique. Pulses are amplified in this set-up by a regenerative and a 

multipass amplifier up to 12 mJ. This system provides laser pulses at 800 nm with a 

variable pulse energy and a pulse duration as short as 50 fs. Its contrast on 10 ps is of the 

order of 10-7. Its repetition rate can be varied between 1 Hz and 10 Hz. The shot-to-shot 

stability (RMS) is 2 %. The linearly polarized laser beam is injected in a BX51 microscope 

(Olympus). The beam is reflected by a 45° dielectric mirror and focused down to the 

sample placed in an ablation cell mounted on a XY stage, using a 0.9 Cassegrain objective. 

The NIST 610 and NIST 612 glass standards were used to calibrate relative element 

sensitivities. Each analysis was normalized using CaO values first determined by electron 

microprobe. A beam diameter of 50 – 100 µm and a scanning rate of 20 µm/s were used. 
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The theoretical limits of detection range from 10 – 20 ppb for REE, Ba, Th, U, Zr to 2 ppm 

for Ti. The accuracy on a typical laser analysis is between 1 and 10%. 

 

Whole-rock major and some trace elements (Zn, Cu, Sc, Ga, Ni, Co, Cr, V, Rb, Ba, Th, 

Nb, Sr, Zr, and Y) were obtained by X-ray fluorescence (XRF) on pressed-powder pellets, 

using an ARL Advant-XP automated X-ray spectrometer. Calibration was performed using 

international reference samples (some of which were also run as unknowns in order to 

determine accuracy and detection limits), and the matrix correction method proposed by 

Lachance and Trail (1966) was applied. Mean accuracies were generally better than 2% 

for major oxides, and 5% for trace element determinations, while the detection limits for 

trace elements were: Zn, Ba, Cu, Sc = 5 ppm; Ni, Co, Cr, V, Rb, Y, Th, Nb = 1 ppm; and 

Sr, Zr, Ga = 2 ppm. Volatile contents were determined as loss on ignition at 1000 °C. 

Measurements of Sr and Nd isotopic ratios were realised on leached hand picked 

clinopyroxenes, following the method described in Snow et al. (1994) and used in Benoit et 

al. (1999), in order to reduce the effect of the hydrothermal fluid-rocks interactions which 

affect principally the 87Sr/86Sr ratios. Leached clinopyroxenes underwent acid digestion 

with a mixture of HF–HClO4 at 140 °C, to prevent the formation of Ca fluorides which 

trap REE. Drying of the samples was made at the same temperature until the complete 

evaporation of HClO4. Chemical separation was performed on combined Sr-Spec/Thru-

Spec columns. The Sr cut was processed again through the same column to efficiently 

separate Sr from Rb and Ca while Nd was further eluted on LnSpec Eichrom resin. 

Isotopic measurements were conducted on a Finnigan Mat 261 for all measurements. Sr 

was run on a single W filament with Ta activator, while Nd was run on a Re double 

filament. The NBS 987 (for Sr) and La Jolla (for Nd) standards were run regularly to check 

the measurements: average value 87Sr/86Sr = 0.710248 ± 0.000020 (n = 17, Triton mass 

spectrometer), average value 87Sr/86Sr = 0.710246 ± 0.000012 (n = 23, Mat 261 mass 

spectrometer), and average value 143Nd/144Nd = 0.511853 ± 0.000010 (n = 16, Triton mass 

spectrometer). Blanks were <650 pg for Sr and <350 pg for Nd. 
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Appendix 2: Major element composition of clinopyroxenes 
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